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Abstract. Collective dipole excitations for small clusters have been considered in the energy range 

close to the visible light. The absorption energies and static dipole polarizabilities are estimated. In 

the case of Ag8, Na18, Na20, Cs40, Mg10, Ba20, Ag9
+, Na21

+ and Mg11
++ clusters a semi-classical density 

functional method with the Thomas Fermi approximation have been used. Also, applications in Al6, 

Al7, (ZnS)3 and (ZnSe)4 will be discussed. The results are compared with the available data. 
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1. Introduction 

It is quite well known that the excitation energies of small metal clusters depend on the size of these 

nano-particles [1]. These features have important applications in nano-electronics [2, 3] and 

medicine [4], for instance. In the case of solar energy equipments, Ag clusters play an important role, 

because they are able to absorb energy very efficiently in the desired wavelengths. By adjusting the 

size of the clusters, the effect of absorption is possible to optimize in order to further improve the 

energy efficiency. The typical size dependent optical energies are between 1.8 and 3.0 eV [5] 

corresponding the wavelengths of about 689 and 413 nm, respectively. These wavelengths of visible 

light are much larger than the diameter of small nanoclusters, which have a size of the order of one 

nm. This property allows the static approximation in estimating the energies of the collective 

excitations of small clusters [6]. 

In the case of small nanoparticles, the collective electron excitations have been recently interpreted 

as being due to the quantum electron transitions from the occupied energy levels to the empty ones 

[7]. For larger clusters this would mean intra band transitions [8]. Also the lifetime of these 

excitations is decreasing for smaller clusters (<10 nm), since the larger separations of the discrete 

valence energy levels make the frequency determination more uncertain [7]. Nowadays, also the 

size of the nanoclusters can be observed using electron spectroscopic methods, for instance by 

transmission electron microscopy (TEM) [1]. For larger clusters (~103 atoms) surface plasmons have 

been observed as well as longitudinal bulk plasmons using photoelectron spectroscopy [9]. 

The collective electron oscillations and static polarizabilities of small clusters have been estimated by 

a double-jellium model [10, 11], in which the static density functional (DFT) method can be used 

with the Thomas-Fermi approximation. The valence electrons of these free clusters are assumed to 

be s-like in order to avoid extra assumptions concerning the shape of the particles. The electronic 

shell structure and the wave functions have been omitted. Mostly, close shell clusters having a magic 
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 number of valence electrons are considered. In this work new results are obtained, especially for 

charged clusters. 

1. Methods 

The important question is how to estimate the ground state jellium density of charges in small 

clusters. Although the metallic clusters are rather sophisticated ones, some approximations can be 

made to obtain reasonable solutions. In this case the ionic background charge is assumed to be 

frozen in the sense that that the kinetic energy of the ions is neglected. Only the ion-ion interactions 

have been retained. The total kinetic energy of valence electrons is described by the Thomas-Fermi 

approximation. There is a distinction between the more localized inner electrons and delocalized 

valence electrons which allows to treat the latter ones to be free-electron like. The former ones are 

assumed to belong to the background ions. The effect of ions and valence electrons will be described 

by different charge densities in the spheres of radii RC and R, respectively. 

To calculate the static polarization of the cluster in the case of two sharp edged jellium spheres, the  

Hamiltonian will be needed. In our case it is given by [12]. 

(1)      H=∑ 𝑝𝑁
𝑖=1 i

2/2me-∑ ∑ 𝑍𝑒𝑁
𝑖=1

𝑁c
𝑗=1

2/Ιri-RjΙ+½∑ ∑ 𝑒𝑁
𝑗(≠𝑖)=1

𝑁
𝑖=1

2/Ιri-rjΙ+½∑ ∑ (𝑍𝑒)𝑁c
𝑗(≠𝑖)=1

𝑁c
𝑖=1

2/ΙRi-RjΙ 

        =E 

in which E is the energy and the first term on the right hand side describes the total kinetic energy of 

valence electrons in the cluster. According to the Thomas-Fermi approximation, it is of the form [13, 

10], in which the accuracy increases for larger number of electrons  

(2)       ∑ 𝑝𝑁
𝑖=1 i

2/2me≅1.1N5/3(ħ2/me)1/R2, where 

R is the electronic radius and N denotes the total number of valence electrons of the cluster, 

respectively. In the Hamiltonian above, Z is the valence of the atom, NC is the total number of ions in 

the cluster, ri and Rj are the coordinates of electrons and ions, respectively. 

The second term is the sum of the electron-ion interactions, which can be written by changing the 

double summations in (1) to integrals and Gauss´s Theorem gives [14] 

(3)     -∑ ∑ 𝑍𝑒𝑁
𝑖=1

𝑁c
𝑗=1

2/Ιri-RjΙ=-∑ 𝑍𝑒𝑁c
𝑗=1

2∫𝜌c(rj)ρe/Ιr´-rjΙd3r´=-4πZe∫ 𝑉
𝑅𝑐

0
(r)r2𝜌cdr, where 

ρc is the constant number density of ions and ρe for electrons, respectively. RC is the ionic radius of 

the cluster. The electrostatic potential, which is spherical in (3), takes the form inside the cluster [14] 

(4)       V(r)=(eN/2R)(3-r2/R2). 

The third sum in (1) consisting of electron-electron interactions can be described using  

(5)      ½∑ ∑ 𝑒𝑁
𝑗(≠𝑖)=1

𝑁
𝑖=1

2/Ιri-rjΙ=𝑒2/3∫ (4𝜋𝜌
𝑅

0
)2r4dr, where 

R is the electronic radius of the cluster and ρ=3[N(N-1)]½ /(4πR3) is the corresponding number 

density of valence electrons, in which the omission of the self-interaction of electrons (ri≠rj) has been    
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 taken into account [10]. This means that the specific electron in (5) is screened only by other 

electrons. This effect is not important only for electrons but also for ions. Therefore, the last term in 

(1) has been treated the same way. Similarly, only the other ions screen the effect of the ion in this 

term, which is significant for the spherical jellium background of small clusters. 

It is important to achieve the minimum energy of (1).  This value can be obtained as a function of 

RC/R using 

(6)    (∂∕∂RC+∂∕∂R)E=0. 

The energy behavior of (1) can be found as a function of RC/R, when the expression for 1/R, obtained 

from (6), has been substituted into the Hamiltonian. The similar, but narrower minimum can be seen 

in Fig. 1. in the case of 

(7)   (∂∕∂RC )E=(∂∕∂R)E . 

 

Fig.1a 
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Fig.1b    
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Fig.1. a) The energy of Hamiltonian (1) (in Hartree units) as a function of RC/R, when the number of 

atoms Nc of the cluster is 20 and the valence of the atom is one (Z=1). It should be noted, that the 

minimum gives only the RC/R ratio. b) Otherwise the same but now NC=10 and Z=2. The minimum is 

somewhat deeper and it is shifted to lower values of RC/R. 

Combining derivatives (6) and (7) one finds 

(8)    (∂∕∂R)E=0 

and the inverse electronic radius of the cluster is of the form  

(9)     1/R=e2[1.5N(ZNC)-0.6N(N-1)-0.9N(ZNC)(RC/R)2]/(2.2N5/3aO), where 

aO is the Bohr radius and RC/R≤1. 

As it is well known the surface to volume ratio increases when the size of the cluster decreases [15]. 

In our case the number of cluster atoms NC should be consistent with the real size of the cluster, 

which must be close to 2RC in order to have a reasonable physical solution. 

 

2. Results and discussion 

 

2.1.  Static dipole polarizability 

For Ag8 clusters, the ab initio calculations indicate that the d-character of valence electrons is less 

than 10 percent for low excitation energies and the s-like electrons dominate [16]. For instance, it is 

well known that for metallic silver the d-like density of states is about four electron volts lower than 

the Fermi level, which means that the inter band d-s transition energies must be larger than 4 eV 

[15]. The d-like electrons screen the effect of the s-electrons [17]. Omitting the d-like valence 

electron contribution to the Ag8 cluster, one finds for the static dipole polarizability divided by the 

number of atoms α/NC=R3/NC=7.05 Å3 according to (9) for NC=8. This result is slightly larger than 

those obtained with ab initio methods [17]. 

In the case of nearly free electron like metals the situation is favorable, because it is often enough to 

consider only the s-like valence electrons. This approximation will be also assumed for our clusters. 

For the Mg10 cluster consisting of 10 atoms one finds α/NC=10.44 Å3 and for Ba20 the corresponding 

value is 21.26 Å3. In the case of Na18 the static dipole polarizability divided by the number of atoms is 

16.19 Å3, which is in good agreement with the experimental result 16.3±0.6 Å3 of Tikhonov et al. [18] 

but larger than the static polarizability per atom in Ref. [19] at a low temperature of 20 K. The Cs40 

cluster gives a value of 35.41 Å3 being much larger than the other ones. The results indicate that the 

cluster size is important when considering the static dipole polarizability [20]. 

So far we have assumed a spherical distribution of s- valence electrons. For an Al atom, however, 

one has  one p- and two s- electrons. This means that in order to consider the corresponding clusters 

we should treat the p-electrons as they would be s-like. In this case the static dipole 

polarizability/atom for Al6 is 5.75 Å3 according to (9) being smaller than 6.740 Å3, which has been   
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 calculated with the DFT method in Ref. [21]. The explanation is that the jellium model favors magic 

numbers giving lower values. This becomes evident for Al7, in which the previous calculated value is 

6.364 Å3, which is the minimum in Ref. [21], indicating a stable structure, whereas our estimate with 

(9) gives R3/NC=6.78 Å3. 

A selenium atom contains two s- and four p-electrons. Zn has two s-valence electrons. In addition, 

zinc possesses 10d-electrons, which we assume to belong to the background ion, because they have 

larger binding energies. Using (9) for (ZnSe)4 the static dipole polarizability/molecule will be 8.21 Å3. 

The corresponding result has been calculated with the DFT method [22]. The average value for this 

case was <α>av/n=7.975 Å3 concerning the small (ZnS)n quantum dots, when n=4 [22]. Interestingly, 

there is a reasonable agreement between these estimates, although the shape of the cluster is not 

spherical, but having a ring like structure in accordance with Euler´s Theorem [22]. However, the 

valence electrons are delocalized, which may in part explain the agreement between these results. 

Similarly, (ZnS)3 gives the static dipole polarizability/molecule of 6.06 Å3 using (9). This value can be 

compared with <α>av/3=6.578 Å3 calculated in Ref. [23], which is the local minimum suggesting a 

stable structure [23] in the case of the DFT method. Higher static dipole polarizability indicates 

easier fragmentation of the cluster. 

2.2.  The collective excitation of electrons 

Using the atomic units (ħ=e=me=1) the collective excitation energy in the harmonic approximation 

can be written as [12, 24, 10] 

(10)         ωe=(4π/(3N)∫𝜌e𝜌Cd3r)½=((4π)2/(3N)∫ 𝜌
𝑅𝑐

0 e (3ZNC/4πRC
3 )r2dr)½ 

                           =(ZNC)½
 /R3/2, where 

ρe is the electronic and ρC the ionic density of the cluster, respectively. Z is the valence of the atom 

and NC the number of ions. 

 In Table 1 dipole plasmon like collective excitation energies have been summarized for some of the 

uncharged Ag, Na, Mg, Ba and Cs clusters with diameter 2RC of the corresponding particles. One 

could draw some general conclusions concerning the results above. It is interesting to note that the 

size of the Ag8 and Mg10 clusters should be smaller than 1 nm. The diameters of Na20 and Ba20 do not 

differ much. The excitation energy values of Na20 and Mg10 are in line with the previous experimental 

[25] and theoretical [26] estimates, respectively. The time-dependent density functional method 

with self-interaction correction (SIC) results in 2.53 eV for Na18 Ref. [27] which is in good agreement 

with our value 2.57 eV. However, the time-dependent local-density approximation (TDLDA) shows a 

peak at 2.78 eV Ref. [27] indicating that the self-interaction correction is important. In the case of 

Na20 the experimental value is 2.46 eV [25], which is almost the same as the calculated one 2.47 eV 

in Table 1. The large 2RC values also are in line with the argument that Mg10 and Ba20 would have a 

non-metallic bonding.    
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                                         ħωe [eV]                             2RC [nm]                    2(NC)1/3rs [nm] 

Ag8                                   3.94 
Na18                                  2.57                2.53a

    
Na20                                 2.47                2.46b 

Mg10                                4.58                4-5c 

Ba20                                 3.21 
Cs40                                  1.76 
Ag9

+                                 4.11                4.02d 

Na21
+                               2.51 

Mg11
++                             4.72 

            0.73                            0.635 
            1.31                            1.090  
            1.40                            1.129 
            0.94                            0.604 
            1.49                            1.063 
            2.25                            2.035 
            0.78 
            1.43 
            0.95 

 

Table 1. Estimated collective dipole excitations energies ħωe [eV] and sizes 2RC [nm] of small neutral 

and charged clusters. The third column gives the size in the case of Mie resonance, in which the 

electronic charge density of solid has been used [34].  rs is the volume of the sphere containing one 

electron. 

aRef.[27] 

bRef.[25] 

cRef.[26] 

dRef.[36] 

 

The neutral Ag clusters are often in the matrix of adsorbates such as Ne, Ar, Kr, Xe, N2, O2, C2H4 and 

CO [28]. This property usually makes the comparison with experiments difficult. An analytic 

expression of the energy [eV] for the surface plasmon absorption band of Ag clusters in the Ar 

matrix, using a linear regression analysis, has been obtained [29] 

(11)      ћω=3.21+0.58/D, where 

the average diameter of the colloidal particle is D≥1 nm due to the limited resolution of the electron 

microscopy. As can be seen, ћω in (11) is increasing when the size of the noble metal cluster 

decreases [30, 31]. Substituting the value D=0.73 nm (see Table 1.) into (11) one finds ћω=4.00 eV. 

Also, the measured optical absorption spectrum of the Ag8 cluster in the solid matrix at 10 K 

temperature reveals an energy of 3.89 eV for the main peak [32] being quite consistent with the 

result of formula (11). It should be noted that the redshift caused by the Ar matrix has been 

estimated to lower the energy to 3.21 eV for D→∞ instead of 3.50 eV for pure solid Ag [33, 34]. Also, 

there will be smoothing of the spectra [35]. On the other hand, charged clusters can be found by 

using the sputtering method [36] in vacuum conditions and no matrix effect will appear. 

In the case of charged clusters the obtained energy ħωe for Ag9
+, having eight valence electrons, is 

equal to 4.11 eV, which is slightly larger than that of the neutral one in Table 1. The experimental   
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 optical absorption spectrum has given a value of 4.02 eV for this charged cluster [36]. For Mg11
++ the 

excitation energy is 4.72 eV and for Na21
+ one has 2.51 eV, which is close to the experimental and 

theoretical result in Ref. [37]. 

Very often the shape of the cluster deviates from the spherical one [27]. In order to circumvent this 

problem, it has previously been assumed that the volume of the non-spherical particle can be 

calculated and then use this result to estimate the volume of the sphere having the R radius [25, 33].  

It has been observed that the spheroid shape approximation can be used for many open shell 

clusters [27]. In that case two different features would be observed instead of one. The oscillation 

along the short axes of the spheroid would be blue shifted, whereas along the long axes it should be 

red shifted relative to the spherical cluster peak [38, 39]. Often classical methods have been used to 

consider the large metallic clusters [6, 40]. In the Mie model the plasmon energy is size independent 

and constant being suitable for studies concerning the effect of the cluster shape [41]. Even, if the 

plasmon like excitations are not observed but the energies are close to the single particle excitation 

the enhancement for the latter can result [42].  

  Conclusions.                                                                                                                                                                                                    

The jellium model can be extended from the small alkaline and noble metal clusters to earth-alkaline 

ones. The spherical distribution of the valence electrons and ions has been assumed. At the 

moment, the experimental data would be useful to investigate this matter in more detail. It is 

possible to obtain reasonable results with the minimum number of adjustable parameters. 

 

References 

[1]    J.A. Scholl, A.L. Koh, J.A. Dionne, Nature, 2012 483, 421. 

[2]    C. Hägglund, S.P.  Apell, J. Phys. Chem. Lett., 2012 3, 1275. 

[3]    A. Sakko, T.P. Rossi, R.M. Nieminen, J. Phys: Condens. Matter, 2014 26, 315013. 

[4]    G.-S. Park et al., Nano Lett., 2012 12, 1638. 

[5]    M. Scharte et al., Appl. Phys. B, 2001 73, 305. 

[6]    A. Moores, F. Goettmann, New J. Chem., 2006 30, 1121. 

[7]    A. Garcia de Abajo, Nature, 2012 483, 417. 

[8]    Y. He, T. Zeng, J. Phys. Chem. C, 2010 114, 18023. 

[9]    T. Andersson et al., J. Chem. Phys., 2011 134, 094511. 

      [10]   Y.Ya. Amusia, Y. Kornyushin, Contemporary Physics, 2000 41, 219. 

      [11]   Y. Kornyushin, Low Temp. Phys., 2008 34, 838.   



                                                                               8 

      [12]  M. Brack, Rev. Mod. Phys., 1993 65, 677. 

      [13]   G. Toscano et al., Nature Communications, 2015 6, 7132. 

      [14]   A.I. Duff, Ph.D. Thesis, University of Bristol, U.K. 2007  p. 60, unpublished. 

      [15]   A. Liebsch, Phys. Rev. B, 1993 48, 11317. 

      [16]   J.C. Idrobo et al., Phys. Rev. B, 2007 76, 205422. 

      [17]   J.C. Idrobo, S. Ögut, J.  Jellinek, Phys. Rev. B, 2005 72 085445. 

      [18]  G. Tikhonov, V. Kasperovich, K. Wong, V.V. Kresin, Phys. Rev A, 2001 64,  063202. 

      [19]   J. Bowlan, A. Liang, W.A. de Heer,  Phys. Rev. Lett., 2011 106, 43401. 

      [20]  A. Aguado, A. Largo, A. Vega, L.C. Balbas, Chemical Physics, 2012 399, 252. 

      [21]  M. Alipour, A. Mohajeri, J. Phys. Chem. A, 2010 114, 12709. 

      [22]  M. Mojaheri, M. Alipour, Int. J. Quantum Chem. 2011 111, 3888. 

      [23]  A. Mojaheri, M. Alipour, Int. J. Quantum Chem., 2011 111, 3841.   

      [24]  L.G. Gerchikov, C. Guet, A.N. Ipatov, Phys. Rev. A 2002 66, 053202. 

      [25]  K. Selby, et al., Phys. Rev. 1991 43, 4565. 

      [26]  I.A. Solov´yov, A.V. Solov´yov, W. Greiner, J. of Phys. B 2004 37, L137. 

      [27]  S. Saito, G.F. Bertsch, D. Tománek, Phys. Rev. B 1991 43, 6804. 

      [28]  B.N.J. Persson, Surf. Sci. 1993 281, 153 

      [29]  K.-P. Charlé, F. Frank, W. Schulze, Ber. Bunsenges. Phys. Chem., 1984 88, 350. 

      [30]  T. Lüenskens, et al., Phys. Chem. Chem. Phys. 2015 17, 17541. 

      [31]  J. Titantah, M. Karttunen, Eur. Phys. J. B 2016 89, 125. 

      [32]  W. Harbich, S. Fedrigo, J. Buttet, Chem. Phys. Lett. 1992 195, 613. 

      [33]  S. Fedrigo, W. Harbich, J. Buttet, J. Buttet, Phys. Rev. B 1993 47, 10706. 

      [34]  H. Haberland, Nature 2013 494, E1-E2. 

      [35]  R.W. Burgess, V.J. Keast, J. Phys. Chem. C 2014 118, 3194.       

      [36]   J. Tiggesbäumker, L. Köller, H.O. Lutz, K.H. Meiwes-Broer, Chem. Phys. Lett., 1992 190, 42. 

      [37]  W. Kleinig, V.O. Nesterenko, P.-G. Reinhard, Ll. Serra,  Eur. Phys. J. D, 1998 4, 343.  



                                                                              9 

      [38]  M. Thamer et al., Small 2014 10, 2340. 

      [39]  S. Dhara, Reviews in Plasmonics 2016 2015, 275. 

      [40]  Y. Luo et al., Phys. Rev. Lett. 2013, 111, 093901. 

      [41]   P. Koval et al., J. Phys.: Condensed Matter 2016 28, 214001. 

      [42]   J. Ma, Z. Wang, L.W. Wang, Nature Commun. 2015 6, 1. 


