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The heat-shock factors (HSFs) belong to an evolutionary conserved family

of transcription factors that were discovered already over 30 years ago.

The HSFs have been shown to a have a broad repertoire of target genes,

and they also have crucial functions during normal development. Impor-

tantly, HSFs have been linked to several disease states, such as neurode-

generative disorders and cancer, highlighting their importance in

physiology and pathology. However, it is still unclear how HSFs are regu-

lated and how they choose their specific target genes under different condi-

tions. Posttranslational modifications and interplay among the HSF family

members have been shown to be key regulatory mechanisms for these tran-

scription factors. In this review, we focus on the mammalian HSF1 and

HSF2, including their interplay, and provide an updated overview of the

advances in understanding how HSFs are regulated and how they function

in multiple processes of development, aging, and disease. We also discuss

HSFs as therapeutic targets, especially the recently reported HSF1 inhibi-

tors.

Introduction

Transcriptional regulation is crucial during the life of

an organism. Transcription factors are regulatory pro-

teins that bind to DNA and facilitate formation of

multiprotein complexes at specific genomic sites to reg-

ulate gene expression, thereby coordinating the cellular

response to diverse signals. In eukaryotes,

transcription factors interact and function in a combi-

natorial manner, and they typically work as dimers [1].

Most transcription factors can form either homo- or

heterodimers, by which the DNA-binding specificity

and affinity can be regulated, thereby expanding their

target site repertoire [2]. Many transcription factors
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belong to families composed of multiple isoforms, with

capacity of binding to similar DNA sequences, which

makes the transcriptional regulation even more multi-

faceted [3].

The heat-shock factor (HSF) is an evolutionary con-

served transcription factor that binds DNA as a tri-

mer. Only one HSF is found in invertebrates, whereas

the vertebrate family of HSFs consists of at least seven

members; HSF1-5 and HSFX and HSFY [4]. Among

the mammalian HSFs, HSF1 is functionally most simi-

lar to the sole invertebrate HSF, as it is essential for

stress-induced heat-shock protein (HSP) production.

This review focuses mainly on HSF1 and HSF2 that

are rare transcription factors forming either homo- or

heterotrimers in mammals (Table 1). Since the original

discoveries of HSF1 as a key transcription factor dur-

ing acute stress, HSFs are now recognized to regulate

gene expression beyond HSPs and stress responses (for

recent comprehensive reviews, [4,5]), and many new

targets genes have been identified [6,7]. Importantly,

HSFs are activated by both intrinsic and extrinsic sig-

nals during cell differentiation and developmental pro-

cesses, such as gametogenesis and neurogenesis.

Therefore, it is not surprising that HSFs are also

involved in many pathologies, such as cancer and neu-

rodegenerative diseases.

Multifaceted properties of HSFs

The function of a transcription factor is determined by

its structural features. The HSF family members have

functional domains that are either shared or unique

(see more details in Fig. 1). All HSF family members

contain an amino-terminal winged helix-turn-helix

DNA-binding domain (DBD). Two recent crystallo-

graphic studies have solved the structure of HSF1 and

HSF2 DBDs bound to DNA [8,9]. These studies

showed that the carboxy-terminal part of the DBD

wraps around the entire DNA double helix and posi-

tions the rest of the HSF protein on the other side of

the DNA. The DNA-binding activity of HSFs requires

trimerization. Mammalian HSFs trimerize upon acti-

vation via intermolecular interactions between the HR-

A/B oligomerization domain which forms a triple

coiled-coil between three HSF monomers [10]. The

HR-C found in the carboxy terminus interacts

intramolecularly with the HR-A/B and represses

oligomerization under nonstressed conditions [11]. The

largely unstructured transactivation domain (AD) is

required for HSFs to induce transcription and enables

interaction with other transcription factors, cofactors,

and chromatin remodelers [12–16]. The regulatory

domain (RD) in HSF1 has a heat-sensing capacity and

is important for transactivation [17]. Although a puta-

tive RD has been identified in the C-terminal part of

HSF2 (Fig. 1), it may have negative regulatory func-

tions, that is, an opposite effect to that of HSF1

[14,18].

As is common in many transcription factor families,

also HSF1 and HSF2 can bind to the same DNA

sequences, called heat-shock elements (HSEs), in the

genome (Fig. 2). However, there are also reports of

HSEs that are occupied only by either HSF1 or HSF2,

as exemplified by GBA (glucosidase b acid) for HSF1

and MLL (myeloid/lymphoid or mixed-lineage leuke-

mia) or p35 (cyclin-dependent kinase 5 activating pro-

tein) for HSF2 [19–23]. The HSE was originally

identified from only a small set of target genes and

defined as inverted pentameric nGAAn repeats

(n = any nucleotide), and at least three continuous

inverted repeats of nGAAn were found in the HSP

gene promoters [24]. Subsequently, the target gene

repertoire has increased and the HSE architecture dis-

plays a great variation, such as spacing, orientation,

and number of repeats, and the exact sequence of the

cis-acting element can also vary [6,7,25]. The

Table 1. Shared and unique features of HSF1 and HSF2.

Feature HSF1 HSF2 References

Transcriptional regulation Not known HSE in promoter where HSF1 can bind [79]

lncRNA, miRNA HSR1 lncRNA miR-18, miR-144, TUG1 lncRNA [52,136–138]

Stability Stable Unstable, half-life decreases in the

absence of HSF1

[41,53,55,56]

Degradation; Examples of E3

ligases

Via ubiquitination; FBXW7, NEDD4 Via ubiquitination; APC/C [41,43,44]

Cellular localization, as inactive Cytosol and nucleus, monomer Cytosol, dimer [139,140]

Cellular localization, as active Nucleus, trimer, either homo- or

heterotrimer

Nucleus, trimer, either homo- or

heterotrimer

[139,140]

Binding to nuclear stress bodies, nSBs Yes Yes [51,141,142]

Interacting partners Many Few known [135]

Extracellular Not known Not known
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differences in the HSE architecture and within the

chromatin landscape may therefore be important

determinants for HSF binding to their specific target

genes [19,26,27].

Transcription factors regulate gene expression not

only by binding to promoters but also by binding and

activating enhancers. Enhancers are distal regulatory

sequences found upstream or downstream of genes, or

even within genes, and they promote transcription of

nearby genes by forming a loop between the enhancer

and the gene promoter [28]. Enhancers can be tran-

scribed to produce eRNAs, which can regulate both

enhancer activity and transcriptional activity of nearby

genes, but the underlying mechanisms are still largely

unknown [29]. Genome-wide analyses have revealed

that different forms of stress, for example, heat shock,

induce both up- and downregulation of enhancers

[19,30,31]. HSF1 has been shown to bind to a multi-

tude of enhancers and transactivate genes by activating

nearby enhancers in response to heat stress [19,31,32]

(Fig. 2). Almost 500 enhancers are induced by heat

shock in an HSF1-dependent manner. For example, in

the Tax1 binding protein 1 (TAX1BP1) locus, HSF1

was found to bind only to a divergently transcribed

enhancer 4.5 kb upstream of the gene promoter but it

was essential for the heat-induced eRNA transcription

and for the release of paused RNA polymerase from

the TAX1BP1 promoter [32]. Further studies are

required to determine whether also HSF1-HSF2 het-

erotrimers or HSF2 homotrimers can bind and regu-

late transcription via enhancers.

Posttranslational modifications
regulate HSF1 and HSF2

Transcription factors are modified after their synthesis

by conjugation of chemical groups (e.g., acetyl,

methyl, and phosphate) or of whole proteins (e.g.,

SUMO and ubiquitin). These posttranslational modifi-

cations (PTMs) may regulate localization to the

Fig. 1. Comparison of the functional domains of human HSF1 and HSF2, and posttranslational modifications therein. The DNA-binding

domain (DBD) in HSF1 and HSF2 is largely conserved (70% identity, 80% similarity), whereas the rest of the protein is less conserved

(approximately 35% identity). The trimerization domain contains two heptad repeats, HR-A and HR-B, forming a leucine zipper, and the C-

terminal heptad repeat HR-C can interact with HR-A/B and repress trimerization. The regulatory domain RD is extensively phosphorylated in

HSF1, but no PTMs have been reported within the RD of HSF2. The transactivation domain AD resides in the C terminus. The identified

acetylation, phosphorylation, sumoylation, and ubiquitination sites are indicated on both HSF1 and HSF2. Some lysines may be conjugated

by different chemical groups or whole proteins. It is important to note that not all sites are modified simultaneously. Note also that not all

sumoylation and ubiquitination sites have been experimentally validated, as they have been identified in large-scale proteome-wide studies.
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nucleus, DNA-binding, interaction with other factors,

transactivation, attenuation, and degradation [33].

HSF1 and HSF2 undergo different PTMs, including

acetylation, phosphorylation, sumoylation, and

ubiquitination that can have either positive or negative

regulatory effects (Fig. 1, [3,4] for comprehensive

reviews). When bound to DNA, the HSF family mem-

bers expose biochemically distinct surfaces, which

A

B

Fig. 2. Interaction of HSF1 and HSF2 at the chromatin. Panel A summarizes results from genome-wide ChIP-seq or ChIP-on-chip analyses

of HSF1 (blue) and HSF2 (red) binding to their target genes, and panel B illustrates a newly discovered function of HSF1, transactivating

genes via enhancers. (A) The conditions under which HSF1 or HSF2 DNA binding was performed are indicated to the left and the binding

activity is assessed as: + basic levels, ++ increased levels. When both HSF1 and HSF2 were found to bind to the same gene, they are

depicted as an HSF1-HSF2 heterotrimer. Note that the stoichiometry of HSF1 and HSF2 in the heterotrimer can vary, and

heterotrimerization has not been studied on a genome-wide scale. To formally prove heterotrimerization, a sequential chromatin

immunoprecipitation would be required, with one antibody against one HSF, followed by a second immunoprecipitation using the first

pulldown material. As indicated in panel B, HSF1 can operate through enhancers, but the exact mechanisms are still not clear [19,31,32].

Enhancers can also be transcriptionally active and produce eRNAs. It should be emphasized that no comprehensive genome-wide analyses

of HSF1-mediated eRNA-induced transcription are yet available. PIC stands for preinititation complex, n.d. for not determined. * study not

genome-wide.
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could be used for PTMs or protein–protein interac-

tions to specifically regulate the activity of these tran-

scription factors [8,9,34].

HSF1 is phosphorylated at serines and threonines

throughout the protein, with many sites localized at the

RD [4,35,36]. HSF1 is hyperphosphorylated by heat

shock and other protein-damaging stresses, and this

may precede its DNA binding and transactivation

capacity [37,38]. Multiple kinases have been identified

that phosphorylate HSF1 at specific sites, and these

kinases are regulated by different stimuli, such as stress-

induced GlcNAcylation (O-linked b-N-acetylglu-

cosamine modification) of GSK-3b [4,39]. Some HSF1

hyperphosphorylation sites have been connected to the

transcriptionally active HSF1, especially S326 residing

in the RD that is used as a proxy for HSF1 activation

[4,35]. Intriguingly, disrupting all known HSF1 phos-

phorylation sites in the RD did not render HSF1 tran-

scriptionally incompetent, as this mutant HSF1 was still

able to localize to the nucleus and transactivate HSP

genes [40]. Instead, the mutant had a lower threshold for

activation than wild-type HSF1, suggesting that HSF1

RD phosphorylation provides with a fine-tuning mecha-

nism for HSF1’s activity [40]. Nevertheless, distinct

phosphorylation events may be important in different

disease states, regulating HSF1 activity and stability [4].

Both HSF1 and HSF2 proteins can be regulated by

ubiquitin-mediated proteasomal degradation [41–45]
(Table 1). Interestingly, the HSF1 protein levels are dys-

regulated in certain pathologies; for example, in neurode-

generative diseases, the amount of HSF1 is diminished,

leading to impaired HSF1 target gene expression [44–47].
Aberrant HSF1 degradation by the ubiquitin E3 ligase

NEDD4 underlies a-synucleinopathy [44]. Acetylation

of K80 in the HSF1 DBD correlates with increased

HSF1 ubiquitination [44]. HSF1 acetylation has multiple

regulatory effects including stabilization of HSF1, and

acetylation of K80 andK118 in the DBD ofHSF1 during

the attenuation phase of an acute heat shock inhibits

HSF1 DNA-binding activity [42,48]. In cancer and

Huntington’s disease models, the ubiquitin ligase E3

FBXW7 promotes the degradation of HSF1 in a

phosphorylation-dependent manner [43,45]. The two ser-

ine residues S303 and S307 need to be phosphorylated

for FBXW7 and HSF1 to interact and for HSF1 to be

degraded. In recent proteome-wide studies, several HSF1

ubiquitination sites have been identified [49,50], but their

functional impact has not yet been validated (Fig. 1).

Quantitative changes in HSF2 levels have been

observed during cell differentiation, stress, and disease

[41,51–54]. In contrast to HSF1, which is a stable pro-

tein under acute stress, the amount of HSF2 decreases

during heat stress, and importantly, in cells lacking

HSF1, there is usually less HSF2 protein than in wild-

type cells [55,56]. In response to acute stress, HSF2 is

ubiquitinated and degraded [41]. Although mass spec-

trometric analyses have identified multiple lysines on

HSF2 that can be ubiquitinated (Fig. 1), the sites have

not been experimentally validated [49,50,57,58]. The

anaphase-promoting complex/cyclosome (APC/C) E3

ligase can mediate HSF2 degradation, but it is plausi-

ble that other ubiquitin E3 ligases are involved in reg-

ulating HSF2 levels [41]. In mitosis, HSF2 protein and

mRNA levels decline in multiple cell lines [59]. This

affects the chromatin environment of the HSPA1A

(HSP70) promoter, allowing HSF1 binding, which

protects mitotic cells against acute heat stress [59]. The

functional relevance of HSF2 degradation and the

underlying mechanisms are still largely unknown.

Proteome-wide studies have shown that heat shock

induces massive sumoylation of many transcription

factors, including HSF1 and HSF2 [60–63] (Fig. 1).

HSF1 is stress-inducibly sumoylated at K298 (a major

site) and K126 (a minor site). Surprisingly, this sumoy-

lation event is not required for the induction of the

heat-shock response, but it rather suppresses HSF1

transactivation capacity [64–66]. A recent study

showed, using purified proteins, that trimerized HSF1

is more efficiently sumoylated at K298 than mono-

meric HSF1, but sumoylation does not interfere with

HSF1 DNA-binding or HSC70-mediated dissociation

from DNA in vitro [67]. In contrast, sumoylation of

HSF2 at K82 in the DBD inhibits its DNA-binding

activity [68–71]. Multiple sumoylation sites on both

HSF1 and HSF2 in the DBD and HR-A/B have been

identified in an independent mass spectrometric analy-

sis using cell lines exposed to proteotoxic stresses [72].

Although the functional effects of these modifications

have not been established, it is likely that sumoylation

may have a more multifaceted role in regulating

trimerization and DNA binding of HSFs than previ-

ously anticipated.

Taken together, the complex effects of different

PTMs on HSFs, where some sites may be modified by

multiple PTMs or where one PTM depends on

another, provide with a fine-tuning mechanism for

controlling the activity of the HSFs. A major challenge

lies in characterizing the specific PTMs and their func-

tion in various cell types and tissues under physiologi-

cal and pathological conditions.

Trimerization of HSF1 and HSF2
modulates transcriptional capacity

HSF1 and HSF2 are co-expressed in many tissues, and

they can form heterotrimers, suggesting an interplay
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between HSF1 and HSF2 [51,73]. Genome-wide ChIP-

on-chip and ChIP-seq analyses have demonstrated that

HSF1 and HSF2 can bind to the same target gene pro-

moters [6,20–22] (Fig. 2). However, from these studies

it is impossible to distinguish if HSFs bind as hetero-

trimers or homotrimers. Certain genes are also found

to be specific for either HSF1 or HSF2. Cells devoid

of HSF1 cannot activate a heat-shock response, show-

ing that HSF2 is not able to compensate for the loss

of HSF1 [74]. Nevertheless, heterotrimerization of

HSF1-HSF2 may modulate the expression of certain

genes, since cells lacking HSF2 induce HSPs to a lower

level than wild-type cells [56]. HSF2 is considered

responsive to chronic stress, for example at fever-like

temperatures (39–41 °C) and upon exposures to etha-

nol or proteasome inhibition [73,75–78]. The protea-

some inhibitor bortezomib causes an increase in both

mRNA and protein levels of HSF2 in human primary

cells [73]. Recently, a new interrelationship between

HSF1 and HSF2 was suggested when HSF1 was

shown to transcriptionally regulate the levels of HSF2

by binding to an HSE in the HSF2 gene promoter in

cells subjected to proteasome inhibition [79].

HSFs in development, aging, and
degeneration

The HSFs are an exceptional class of transcription fac-

tors. In addition to responding rapidly to different

forms of protein-damaging stresses throughout the life

of an organism, they are also vital for developmental

and differentiation-related processes. To study the

interdependency between HSFs in vertebrates, model

organisms with multiple HSF family members, such as

zebrafish and mice, have been used. Although mice

deficient of HSF1, HSF2, or HSF4 are viable, they all

display different phenotypes, suggesting that individual

HSFs have their specific functions during development

[74,80,81]. For example, HSF1�/� mice display a

reduced body and organ size, which may be due to

compromised protein synthesis [81]. Interestingly, there

is a synergy between HSF1 and HSF2, as both

HSF1�/� and HSF2�/� mice have impaired gametoge-

nesis, whereas the double knockout male mice are

completely sterile [20,21,52,81–84]. The crosstalk

between HSF1 and HSF2 in development is demon-

strated by genome-wide studies, revealing that HSF1

and HSF2 can bind to the same genomic regions in

spermatogenic cells [20].

HSF1 and HSF2 are important for brain develop-

ment and function by regulating crucial processes,

such as neuronal migration, neuronal synapse forma-

tion, and responses to proteotoxic stress [85–88] (for a

recent review, [89]). These HSFs interact and play dual

roles in brain development and stress response, which

has been demonstrated using mice exposed to prenatal

alcohol treatment [76]. HSF2, which under normal

conditions forms homotrimers at certain target genes

and promotes neural migration, heterotrimerized with

HSF1 when mice were treated with ethanol. The

HSF1-HSF2 heterotrimerization alters the gene expres-

sion program by inducing transcription of HSPs to

promote cell survival upon ethanol exposure. Intrigu-

ingly, this prenatal stress leads to neural migration

defects as neuro-specific HSF2 target genes are not

expressed anymore. HSFs may therefore play a role in

neuropsychiatric disorders of neurodevelopmental ori-

gin due to prenatal insults [90].

HSF1 is required for larval development of the

nematode C. elegans [91,92]. A recent study uncovered

how stress signals in neurons can be transmitted to

vulnerable germ cells to provide protection against

damage [93]. In C. elegans, serotonin is released by

maternal neurons during stress, which ensures both the

viability and stress resilience of future offspring. Sero-

tonin acts through a signal transduction pathway

which is conserved between C. elegans and mammalian

cells [93]. In mammalian neuronal cells, serotonin

increases HSP mRNA and protein levels in an HSF1-

dependent manner. In soon to be fertilized germ cells,

serotonin enables HSF1 to alter the chromatin land-

scape by recruiting the histone chaperone FACT,

which results in displacement of histones, thereby

allowing active transcription of protective genes such

as HSPs [93]. Further studies regarding HSF1 activa-

tion by the neurotransmitter serotonin in human cells

are warranted, especially if increased HSF1 activation

could be utilized for developing therapy for neurode-

generative diseases.

During aging, there is a deterioration in the ability

to properly respond to external cues, which coincides

with a failure in maintaining proteostasis, that is, the

balance between protein synthesis, folding, and degra-

dation [94]. This aging-related proteostasis collapse has

been well established in nematodes, whereas it has

been unclear if a similar phenomenon exists in mam-

mals [95,96]. A recent study shows, using

transcriptome-wide characterization of gene expres-

sion, splicing, and translation, that significant deterio-

ration occurs in the transcriptional activation of the

heat shock response in stressed human senescent cells

[97]. Mechanistically, both the nuclear localization and

subnuclear distribution of HSF1 phosphorylated at

S326, a marker for activated HSF1, are impaired. The

proteasome function also declines in stressed senescent

cells, and it is not recovered when the cells are placed
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back to normal temperature [97]. The proteostasis col-

lapse may have multiple implications on how humans

age.

The prevalence of human neurodegenerative diseases

increases with age [36]. The hallmarks of many neu-

rodegenerative diseases are accumulation of misfolded

proteins and a proteostasis collapse due to imbalance

in protein folding and degradation. HSF1 has a pro-

tective role and also genes other than HSPs are

affected [98]. In contrast to HSF1, it is still unknown

whether HSF2 is involved in neurodegenerative dis-

eases. Nevertheless, an HSF2�/� mouse model for

Huntington’s disease displays increased protein aggre-

gation in the brain and a reduced life span, suggesting

that HSF2 may have a role in regulating neuronal pro-

teostasis. Although the underlying molecular mecha-

nisms for HSF2 function are unclear, accumulation of

protein aggregates in the absence of HSF2 is partially

due to changes in chaperone levels, especially aB-
crystallin expression [75]. HSF2 has also been identi-

fied as a gene whose expression is commonly downreg-

ulated during aging when performing a meta-analysis

of transcriptional changes associated with Alzheimer’s

disease and aging [99].

HSF1 and HSF2 in cancer

In numerous types of cancer, elevated chaperone levels

driven by HSF1 have been observed, which correlates

with poor prognosis, increased metastatic potential,

and resistance to therapy [100]. A key role for HSF1

in cancer was established when HSF1�/� mice were

found to be resistant to tumorigenesis [101,102]. In

human tumors, HSF1 protein levels are frequently ele-

vated, mainly due to gene amplification, or due to

mutations in the ubiquitin E3 ligase FBXW7, which

supports tumorigenesis [43,103]. FBXW7 is a nuclear

protein, frequently mutated in multiple different can-

cers [104], suggesting that FBXW7 controls the stabil-

ity of nuclear HSF1 in cancer. Interestingly, only a

few HSF1 mutations have been found in cancers, sug-

gesting that HSF1 is needed intact for transformation

and tumor progression [105]. In many cancer types,

HSF1 is found active in the nucleus, and consequently,

HSF1 levels and nuclear localization correlate with the

degree of malignancy. Since increased HSF1 protein

expression corresponds with the progress of prostate

and breast cancer, and poor disease-specific survival,

nuclear HSF1 could be used as a prognostic marker

[106,107].

HSF1 drives oncogenesis by regulating a specific

cancer gene expression signature (HSF1 CaSig), com-

posed of 456 genes, which includes not only genes

encoding chaperones but also genes involved in cell

adhesion, cell cycle control, metabolism, proliferation,

protein translation, and signaling [7]. This gene expres-

sion profile is different from that induced by HSF1

during heat shock. Importantly, the HSF1 CaSig could

be used for therapeutic and prognostic applications,

and retrospective studies have shown that melanoma

patients with high expression of HSF1 and CaSig

genes have poorer outcome and overall survival than

patients with less HSF1 [7,103,108].

HSF1 has been implicated in immunological

responses as interleukin 6 (IL-6) has been shown to be a

direct target gene for HSF1, and certain HSF1 CaSig

genes are involved in immune functions [7,109]. In

breast cancer cells, programmed death-ligand 1 (PD-

L1), a target for cancer immunotherapy, is an HSF1 tar-

get gene, and phosphorylation of HSF1 at T120 induces

higher expression of PD-L1 [110]. Recently, a role for

HSF1 in antitumor immunity was reported, as HSF1

can regulate interferon c (IFNc)-induced major histo-

compatibility complex I (MHC-I) expression [111]. In

this study, a novel immunogenic long noncoding RNA,

LIMIT, was shown to cis-activate a guanylate-binding

protein (GBP) gene cluster, leading to disrupted

HSP90-HSF1 interaction and HSF1 activation. Inter-

estingly, the authors also suggest that the LIMIT-GBP-

HSF1 axis could be targetable for immunotherapy.

Malignant cells within a tumor are surrounded by

many different types of cells, such as fibroblasts,

immune, and endothelial cells as well as components

of extracellular matrix (ECM). This microenvironment

is essential for tumor formation and progression [112].

Cancer-associated fibroblasts (CAFs) support cancer

cells in a noncell autonomous manner by secretion of

ECM, chemokines, cytokines, and growth factors.

HSF1 is frequently activated in CAFs where it drives

a transcriptional program enabling malignancy. The

transcriptional program is clearly different from that

driven by HSF1 in adjacent cancer cells [113]. In

fibroblasts that are cocultured with cancer cells, HSF1

regulates the expression of genes involved in cell adhe-

sion and wound healing, which activates ECM genes

in adjacent cancer cells [113,114]. Recently, it was

shown that HSF1 is crucial in the remodeling of the

ECM structure and composition in a mouse model of

colitis-associated colon cancer (CAC) [115]. Loss of

HSF1 abrogates ECM assembly by colon fibroblasts,

prevents inflammation-induced ECM remodeling, and

inhibits progression to CAC in mice. These findings

are recapitulated in CAC patients, where a strong acti-

vation of stromal HSF1 is accompanied with a high

expression of many ECM-affiliated HSF1 target genes

[115]. HSF1 also regulates a transcriptional profile that
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promotes malignancy in CAFs from gastric cancer

patients [116]. HSF1 upregulates inhibin subunit beta

A (INHBA) and thrombospondin 2 (THBS2), and

these proteins are secreted in CAF-derived extracellu-

lar vesicles to the tumor microenvironment to promote

cancer [116]. Accumulating evidence indicates that

HSF1 functions as a master regulator in CAFs in mul-

tiple carcinomas from different tissues and that release

of extracellular vesicles is one way to promote tumori-

genesis of nearby cells.

So far, there are only a few reports on involvement

of HSF2 in cancer [54,117], which was highlighted in a

recent comprehensive review [118]. HSF2 expression is

frequently decreased in several human malignancies,

and the decreased HSF2 expression correlates with the

aggressiveness in clinical samples of prostate cancer

[54]. In contrast, in hepatocellular cancer, patients with

higher levels of HSF2 display worse survival [117]. A

loss of HSF2 increases tumor growth and invasive

properties, and silencing HSF2 in prostate cancer cells

promotes invasion through altered expression of genes

linked to focal adhesion and actin cytoskeleton [54].

HSF2 is also implicated in proteasome inhibitor-

mediated control of cancer cell migration [79]. A

recent study in human osteosarcoma cells revealed the

importance of HSF2 in maintaining cell–cell adhesion
during proteotoxic stress [119]. HSF2 is indispensable

for cell survival after prolonged proteasome inhibition,

and the ability to survive proteotoxic stress is not only

dependent on induction of chaperones, but involves

multiple targets in different pathways, including genes

belonging to the cadherin superfamily. Interestingly,

studies in human cells or mouse testis have also identi-

fied cadherins as HSF2 target genes [6,20]. Additional

studies are needed to understand the role of HSF2 in

cell–cell adhesion and to study HSF2 in CAFs. It

would be particularly important to identify the HSF2-

driven cancer-specific gene expression signature in dif-

ferent types of cancer.

Pharmacological regulation of HSFs

HSF1 inhibitors

Because many cancer cells are clearly dependent on

HSF1 due to a so-called nononcogene addiction, and

HSF1 levels or the HSF1 transcriptional signature cor-

relate with the survival of cancer patients, pharmaco-

logical targeting of HSF1 is desirable [103,120].

However, there are major challenges with the drugga-

bility of transcription factors, such as HSF1, which

has no enzymatic activity and contains structurally

extended regions of disorder. Nevertheless, several

HSF1 inhibitors have been identified based on natural

product library screens and different screening

methodologies [103]. In most cases, the compounds

have been found utilizing HSE-promotor reporter

assays, and they may impact either basal or stress-

induced activity. Using this approach, many com-

pounds identified may not be direct HSF1 inhibitors,

but instead inhibit general transcription, translation,

or upstream signaling pathways, and they may also

have ‘off-target’ effects [103].

In addition to natural molecules, some synthetic

compounds have emerged as potential HSF1 inhibi-

tors. For example, KRIBB11 was found in an HSE-

luciferase reporter assay, and it was shown to copre-

cipitate with HSF1 [121]. However, KRIBB11 may

also accelerate Mcl-1 degradation through an HSF1-

independent pathway, suggesting that KRIBB11 is not

specific for HSF1 [122]. Another synthetic compound,

IHSF115, developed using in silico screening, binds

both the full-length HSF1 and the HSF1 DBD in a

surface plasmon resonance analysis [123]. IHSF115 can

disrupt the interaction between HSF1 and ATF1.

ATF1 recruits transcriptional coregulators and modu-

lates HSF1 activity by maintaining an open chromatin

state at HSF1 target loci. Although many functional

properties of HSF1, such as the DNA-binding, protein

stability, and trimerization, are not affected by

IHSF115, it is cytotoxic to a variety of cancer cell lines

[123].

Recently, a novel type of HSF1 inhibitor, named

DTHIB, was developed by screening for small mole-

cules binding to the structurally well-ordered HSF1

DBD using differential scanning fluorimetry [124]. This

study demonstrated that DTHIB is a direct HSF1 inhi-

bitor binding with high affinity to HSF1. DTHIB

destabilized HSF1 protein levels especially in the

nucleus, whereas cytosolic HSF1 was unaffected.

Nuclear HSF1 was degraded by the proteasome in an

FBXW7 ubiquitin E3 ligase-dependent manner. Using

cell lines as well as mouse xenograft and syngeneic

models, DTHIB was shown to inhibit therapy-resistant

prostate cancer cell proliferation. Since DTHIB treat-

ment broadly inhibited the HSF1 CaSig and HSF1-

mediated transcriptional network [124], it will be inter-

esting to see whether this inhibitor is efficacious

toward other cancer types besides prostate cancer.

DTHIB is a welcome therapeutic outcome of drug

development, and it provides new possibilities to

address outstanding mechanistic questions regarding

HSFs in stress biology. To this end, the fate of HSF2

remains unclear when nuclear HSF1 is degraded, as

HSF2 has been earlier shown to be less stable when

HSF1 is downregulated or completely absent [55,56].
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HSF1 activators

Activation of HSF1 has been considered as a thera-

peutic approach against neurodegenerative diseases

that are caused by protein misfolding, for example,

Alzheimer’s, Parkinson’s, ALS (amyotrophic lateral

sclerosis), and polyglutamine diseases including Hunt-

ington’s disease. Multiple small compounds have been

identified to activate endogenous HSF1 and induce

HSP protein production, and some of them could be

promising candidates in pharmacological treatment of

neurodegenerative diseases [125]. However, most of

these compounds are not direct HSF1 binders; instead,

they bind and inhibit chaperones, such as HSP70,

HSP90, or TriC, all proteins known to interact with

HSF1 [126]. Importantly, HSF1 levels are considerably

decreased in Huntington’s and other neurodegenerative

disease models, suggesting that compounds inhibiting

HSF1 degradation and increasing HSF1 levels are

required rather than those stimulating the transactivat-

ing capacity of HSF1 [44,45].

HSP90 inhibitors induce a heat-shock response

HSP90 is an essential and very abundant molecular

chaperone in eukaryotic cells. HSP90 is a dimeric pro-

tein with a large repertoire of so-called client proteins,

including kinases, phosphatases, growth factor recep-

tors, and nuclear hormone receptors [127]. HSP90 can

regulate both the function and stability of its client

proteins. Since many HSP90 clients have crucial roles

in rapidly growing cancer cells, inhibition of HSP90

suppresses many signaling pathways that are impor-

tant for cancer. Thus, multiple HSP90 inhibitors have

been developed for cancer therapies, and many of

them target the N terminus of HSP90 which contains

the ATP-binding site. However, despite several

promising preclinical studies, not a single HSP90 inhi-

bitor has been approved for a clinical use by the FDA

[128]. Most HSP90 inhibitors induce a heat-shock

response and trigger the transcriptional activity of

HSF1 [129]. The increased levels of HSPs and HSF1

activation are unfortunately counterproductive when

treating cancer. In addition, high doses of HSP90

inhibitors may have immunosuppressive functions. It

has therefore been proposed that HSP90 inhibitors

could be used at continuous low doses that do not

induce a heat-shock response, in combination with

other cancer drugs, to receive a better therapeutic effi-

cacy [130,131].

To this date, it is unclear how N-terminal HSP90

inhibitors activate the heat-shock response. The cur-

rent model proposes that HSF1 can be kept in an

inactive state with HSP90, HSP70, and other chaper-

ones, and that once HSP90 is inactivated, HSF1 is

released from the complex, which allows its trimeriza-

tion, and subsequent transcription of HSPs [132]. The

knowledge regarding HSF2, HSP90, and HSP90 inhi-

bitors is scarce. Intriguingly, a recent study shows that

HSF2 can be coprecipitated with HSP90 when using

specific conformationally strained, ‘closed-form’,

HSP90 mutants [133]. Similarly to HSF1-HSP90 inter-

action, different HSP90 inhibitors are able to disrupt

HSF2-HSP90 interaction [132,133]. Other studies have

observed that the HSP90 inhibitor STA-9090 increases

HSF2 levels in multiple bladder cancer cell lines [134].

In addition, HSF2�/� cells are more sensitive to

HSP90 inhibitors geldanamycin and 17-AAG than

wild-type cells [119]. Therefore, HSF2 levels and stabil-

ity of HSF2 should be taken into consideration when

studying HSP90 inhibitors.

Perspectives

During the past years, we have acquired increased

knowledge of the expression patterns and functions of

HSF1 and HSF2 in physiology and pathology. Many

fundamental questions are still unanswered and are

summarized in Box 1.

Although much less research has been performed on

HSF2 than HSF1, there is accumulating evidence

demonstrating a role for HSF2 in biological processes

besides gametogenesis and corticogenesis. Interrela-

tionship of HSF1 and HSF2 is still poorly understood,

particularly whether they compete or work in synergy,

and how the interplay changes depending on the cellu-

lar state (normal, stress, or disease state). So far, most

studies addressing HSF interdependency have been

performed in various cell lines exposed to acute stress,

especially heat shock, and future studies directed

BOX 1. Outstanding questions

- Can HSF2 be transcriptionally active indepen-

dently of HSF1 or other transcription factors?

- What is the HSF2 transcriptional signature?

- What changes HSFs from inducing one transcrip-

tional program to another?

- What is the fate of HSF2 (and the other HSFs)

when HSF1 is inhibited by novel inhibitors?

- Are there compensatory mechanisms when one or

several members of the HSF family are deleted or

downregulated (silenced)?
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toward pathologies are required. Importantly, when

developing and analyzing pharmacological regulators

for HSF1 or the heat-shock response, HSF2 and other

HSF family members should be monitored.

There are gaps in understanding how HSFs are reg-

ulated. HSF protein levels must be carefully tuned and

PTMs may regulate both the stability of these proteins

and their transcriptional activity. We still do not know

how the formation of heterotrimers is regulated.

Examples of questions to be addressed include the fol-

lowing: Do the different PTMs play a key role, or is it

the ratio between HSF1 and HSF2 that determines

heterotrimerization? Do HSF1 and HSF2 form com-

plexes with other HSF family members, such as

HSF4? Identification of proteins that interact with

HSFs may give insights into how they are regulated

and how the condition-specific target genes are

selected. For this purpose, the HSF1 interactome dur-

ing different disease conditions was recently reported,

and HSF1 was shown to interact with a diverse group

of proteins, and interestingly, more partner proteins

were detected under stress than control situations

[135].

The impact of HSFs in cancer is more complex

than previously anticipated, since there is now clear

evidence that HSF1 activity in CAFs promotes

tumorigenesis and metastasis [113–116]. Extracellular

vesicles derived from CAFs contain proteins encoded

by HSF1 target genes that are critical for tumor

progression [116]. This crosstalk emphasizes the

importance of including both the stroma and cancer

cells in forthcoming studies. In addition to different

forms of cancer, many neurodegenerative diseases

progress during aging, and abnormal functions of

HSFs, particularly those of HSF1, have been impli-

cated in aged cells and organisms. Thus, it remains

to be established whether HSFs are dysregulated also

in other aging-related diseases, including metabolic

disorders.
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