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Abstract: Mobile mapping systems (MMS) are increasingly used for many photogrammetric and
computer vision applications, especially encouraged by the fast and accurate geospatial data
generation. The accuracy of point position in an MMS is mainly dependent on the quality of
calibration, accuracy of sensor synchronization, accuracy of georeferencing and stability of geometric
configuration of space intersections. In this study, we focus on multi-camera calibration (interior and
relative orientation parameter estimation) and MMS calibration (mounting parameter estimation).
The objective of this study was to develop a practical scheme for rigorous and accurate system
calibration of a photogrammetric mapping station equipped with a multi-projective camera (MPC)
and a global navigation satellite system (GNSS) and inertial measurement unit (IMU) for direct
georeferencing. The proposed technique is comprised of two steps. Firstly, interior orientation
parameters of each individual camera in an MPC and the relative orientation parameters of each
cameras of the MPC with respect to the first camera are estimated. In the second step the offset and
misalignment between MPC and GNSS/IMU are estimated. The global accuracy of the proposed
method was assessed using independent check points. A correspondence map for a panorama is
introduced that provides metric information. Our results highlight that the proposed calibration
scheme reaches centimeter-level global accuracy for 3D point positioning. This level of global
accuracy demonstrates the feasibility of the proposed technique and has the potential to fit accurate
mapping purposes.

Keywords: multi-camera calibration; direct georeferencing; metric panorama; structure from motion;
epipolar geometry; mobile mapping system

1. Introduction

Mobile mapping system (MMS) is a photogrammetric mapping agent that is usually defined as
a set of navigation (global navigation satellite system (GNSS) and inertial measurement unit (IMU))
and remote sensors—such as cameras, lidar, and odometer sensors—integrated in a common moving
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platform [1]. The importance of an MMS has been widely highlighted based on its cost-effectiveness,
high data-capturing rate, and acceptable level of accuracy [2]. System calibration is an indispensable
part of the process of employing an MMS. Regarding an MMS that is based on multi-cameras and
navigational systems, two calibration process could be mentioned: multi-camera calibration and
MMS calibration. Multi-camera calibration aims to estimate interior and relative orientations of a
multi-camera. MMS calibrations refers to estimating relative position and orientation between a
multi-camera and GNSS/IMU sensors. Accurate system calibration ensures high-quality outputs for
at-least a minimum period that a mapping system stays relatively still; a periodic system calibration
scheme is able to guarantee the correctness of time-dependent parameters.

The first aspect of employing an optical-based MMS relates to the problem of multi-camera
calibration [2–11]. Nowadays, many MMSs are equipped with multi-projective cameras (MPC) because
of their sturdy design, large field of view (FOV), and promising sensor models. Sensor modeling
of an MPC usually consists of interior orientation parameters (IOP) of individual cameras, relative
orientation parameters (ROP) between cameras with respect to a reference camera, and a scale factor
that connects ROPs to a global framework. An important aspect of integrating a camera system in
an MMS relates to the problem of employing a rigorous sensor model that fits to the physics of the
camera. The sensor model maps a 3D object point into its corresponding image point [12]. The next
step is to employ the sensor model as the core of a statistical optimization model to find optimum
values and express our uncertainties about the unknowns such as camera parameters or 3D position of
object points.

Many MMSs use multiple cameras but do not necessarily generate panoramas. A panorama
is a continuous presentation of an environment which is demonstrated by one photo or a series of
photos that are merged together by a ‘stitching’ or a ‘geometric non-stitching’ approach. This form of
photography provides viewers with an unlimited viewing possibility in all directions [12]. Because
of the all-angle viewing property, panoramic photography has found a wide range of applications;
few of those applications are computer vision, robotics, surveillance, virtual reality, indoor/outdoor
photography, and historical heritage documentation.

Recently developed photogrammetric models for MPCs has brought a new perspective in
panoramic images applications. If these cameras, which are initially designed for all-direction
photography, treated with photogrammetric models, numerous potential applications will emerge for
surveying and mapping purposes.

A categorization of panoramic cameras can help us to find shared properties and mathematical
model for members of each class. Amiri Parian and Gruen [12] categorized panoramic imaging into
four groups: stitched, mirror-based rotating-head, near 180, and scanning 360 panoramas. Stitched
panoramas are mainly used for non-metric applications where accurate directions are not important;
therefore, this class is outside the focus of a metric categorization. We may re-categorize most of
commercially available panoramic cameras that are suitable for surveying tasks according to their
internal capturing technology into four groups [13]: (1) rotating-head, (2) multi-fisheye and (3)
multi-projective camera, and (4) catadioptric systems. The benefits of the latter categorization are
twofold. Most of commercially available cameras that are useful in metric photogrammetry tasks fit
into this categorization; moreover, it simplifies the sensor modeling since it has founded based on a
similarity measure that places cameras to a category according to their common sensor model.

The category (1) rotating head cameras contains cameras based on linear array CCDs that
is mounted on a vertically rotating head. Examples of this class include EYESCAN M3 that is
jointly developed by DLR and KST [14] and SpheroCam which is manufactured by SpheronVR AG.
Equivalently, a projective camera such as a Canon EOS 6D could be mounted on a motorized rotating
head such as Phototechnik AG, Roundshot metric, piXplorer 500, or GigaPan EPIC pro. The camera and
step motors are synchronously controlled by a central processing Unit (CPU) that plans the movements
and takes image shots. If the system has been accurately calibrated (optical center of the projective
camera’s lens should be precisely located on the center of rotation), high-precision metric information



Remote Sens. 2019, 11, 2778 3 of 22

and high-resolution panoramic images can be obtained with least effort [15]. Depending on the target
applications, one or two step motors are working simultaneously to rotate the central camera around a
point/axe. One main configurable parameter in building this class is the option to choose between
one or two rotating axes; a post-processing module is responsible to transfer and merge images that
have been captured with different orientations. Subsequently, a color blending approach is required to
ensure that color tunes between stitched images are consistent. Usually a full resolution shot takes
few seconds to even few minutes to compile which makes this class of panoramic cameras relatively
unsuitable for mobile-mapping. Some important use-case of this class is cultural heritage recording
and classification [16,17], high-precision surveying [12,18–21], industrial-level visualization, indoor
visualization, 3D modeling, and artistic photography.

The category (2) multi-fisheye cameras comprises a structure of a dual spherical camera module
mounted on a rigid frame to construct a light-weight mobile 360 imaging system; Few consumer-grade
samples of this class are Samsung Gear 360 [22], SVPro VR 360, MoFast 720, MGCOOL cam 360, SP6000
720, Ricoh Theta S [7]. Some recent works suggests multi-camera system based on a dual-fisheye
design [23,24]. Fisheye camera models for photogrammetric applications were extensively studied and
tested [25–29]. The simultaneous geometric calibration of multi-camera system based on fisheye images,
aiming a 360◦ field of view also started to be discussed recently. For instance, a dual fisheye calibration
model is proposed by [30] and [7]. For this class of cameras, a customized statistical optimization
process that involves using weighted observations and initial distributions of unknowns has proved
sufficiently accurate for low to medium-accuracy surveying applications. However, some limitation of
these systems can be mentioned, such as non-perspective inner geometry, huge scale and illumination
variations between scenes, large radial distortion and nonuniformity of spatial resolution. Therefore,
the overall image quality of panoramic images that are produced by the cameras of this class are
usually worse than the first or third categories, however, some desired aspects—such as data-capturing
rate or simplicity—makes them ideal candidates for applications such as low accuracy mobile mapping
or 3D virtualization [31–35].

The category (3) multi-projective cameras contains panoramic cameras with arbitrary number of
projective cameras mounted fix on a rigid frame (an industrial examples is LadyBug with six cameras [v.3
and v.5; MPC6] by FLIR; a consumer-grade example is Panono 360 with 36 cameras [MPC36]). Cameras
of this class (multi-projective cameras or in short MPC) are usually customized for certain imaging,
navigation, or surveying tasks. A synchronous shutter mechanism is applied to take simultaneous
shots (<1 msec delay). A geometric model for MPC integrated into a statistical adjustment model is
proposed by many researchers, e.g., ([9–11]). This model ensures desirable geometric accuracies for
many tasks such as 3D mapping and surveying, 3D visualization, and texturing. Panoramas that are
initially generated for this class are based on stitching techniques that mainly have visualization and
artistic values; it is in contrast to the geometric values of panoramic images that are taken from cameras
of the first or the second categories; this class of cameras has rigorously found many applications such
as surveying, robotics, visualization, cinema, and artistic photography. Similar to the second class, it
has the potential to be employed in applications that needs fast data-capturing rates such as mobile
mapping, or navigation.

Early attempts to employ relative orientation constraints among multiple cameras was applied to a
stereo camera, e.g., ([3,36,37]). He et al. [36] developed an MMS with a stereo camera and a GPS receiver
to measure global coordinates of any point through photogrammetric intersection. King [3] modified
the conventional bundle block adjustment (BBA) to accept relative orientation stability constraints.
Zhuang [37] employed a fixed-length moving target to calibrate a stereo camera. Later, more complex
systems of cameras went under research investigations. For example, Svoboda et al. [38] calibrated
an MPC4 that were installed on a visual room. Lerma et al. [39] calibrated a MPC3 that consisted of a
stereo camera and a thermal camera by employing distance constraints. Habib et al. [40] analyzed
variations in IOP/Exterior Orientation Parameter (EOP) of multi-cameras. Detchev et al. [41] presented
a system calibration scheme by employing system stability analysis. Some researchers employed a
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calibration field for multi-camera calibration. For example, Tommaselli et al. [5] employed AURUCO
coded targets [42] to design a terrestrial calibration field. They used their proposed photogrammetric
field to calibrate fisheye, catadioptric, and multi-cameras. Khoramshahi and Hokovaara [10] employed
a customized coded target (CT) to create a calibration room. They employed it to calibrate a complex
MPC36 (Panono), and an MPC3 (LadyBug v.3). In this work, we follow the calibration model that was
proposed by Khoramshahi and Honkavaara [10].

Category (4) contains catadioptric systems that employ complex optical systems. A set of
spherical and aspherical lenses, shaped mirrors such as parabolic, hyperbolic, or elliptical mirror [43],
and refractors are employed in catadioptric systems to cover a large FOV. An example of this class
was proposed by [23] as a prototype dual catadioptric camera. A calibration model for a catadioptric
camera consists of a wide-lens camera and a conic mirror was proposed by [44].

The second aspect of employing an MMS relates to the problem of direct geo-referencing. Using
multi cameras of third category for mapping applications require accurate determination of orientation
and position of each panorama. This orientation can be done by indirect or direct georeferencing
techniques, or combining both. Direct geo-referencing is a very useful approach for real-time application
such as mobile mapping, or aerial surveying. Direct geo-referencing is the process to find position
and orientation of captured images (EOPs) in a global reference frame without employing any ground
control point (GCP), which requires the integration of additional sensors such as GNSS receivers and
IMU sensors into the camera’s mounted frame. This integration either provides initial values for
positions and orientations of the camera shots as weighted observations in the BBA, or helps the system
to instantly estimate position vectors and Euler angles of shots [45]. It is worth noting that a successful
direct geo-referencing requires two main aspects. Firstly, GNSS and IMU sensors should be accurately
synchronized to an MPC. Secondly, a robust estimation of lever-arm vector and boresight angles should
be known. These later parameters are known as mounting parameters [46]. Rough estimation of the
MMS calibration parameters could be performed by comparing observations of GNSS and IMU with
the output of BBA. To enable a direct geo-referencing, a customized sensor model is required to be
employed by considering additional parameters of lever-arm and boresight misalignments of an MPC
with respect to GNSS and IMU sensors.

A variety of calibration schemes has been overly discussed in the literature; however, as far as
the authors concerned, a rigorous, practical, and easy solution for direct georeferencing of an MPC
does not exist that completely fit to the configuration of a multi-camera MMS. Moreover, stitching
operation is required to compile a panorama from images of the third category cameras. This panoramic
presentation usually has just artistic or visual values. A non-stitching panoramic creation scheme is
also feasible for this class that adds geometric value to generated panoramas. This paper contributes to
a rigorous, easy, and practical scheme for calibrating a multi-camera MMS equipped with an MPC,
GNSS and IMU sensors in a terrestrial vehicle. We also present a novel non-stitching algorithm by
introducing a panoramic correspondence map. We propose a modified BBA that comprises MPC
calibration and MMS calibration. We assess quantitatively the quality of the proposed approach by
checking the accuracy of the point intersection by independent checkpoints. Our results demonstrate
that sub-decimeter level accuracy is achievable by this technique.

2. System Calibration

Mathematical theory behind the implementation of this work is discussed in this part. We first
start with sensor model of an MPC, then we continue toward discussing a complete sensor model for
the underlying MMS. Finally, a modified BBA is discussed to employ the sensor model and statistically
express uncertainties about parameters.
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2.1. Individual Camera Model

The following interior orientation model removes main distortions from image coordinates and
outputs undistorted pinhole image coordinates as

x1 =
(x)t1

−PPx

f , y1 =
(y)t1

−PPy

f , r2 =
√

x2
1 + y2

1, Rad =
(
1 + K1·r2 + K2·r4 + K3·r6

)
,

(xn)t1
= x1·Rad + 2·P1·x1·y1 + P2·

(
r2 + 2(x1)

2
)
− δ·x1 + λ·y1(

yn

)
t1
= y1·Rad + 2·P2·x1·y1 + P1·

(
r2 + 2

(
y1

)2
)
+ λ·x1,

(1)

where (x)t1
and (y)t1

are distorted coordinates of a point in pixel unit, PPx and PPy are coordinates of
the principal point, Ki are radial distortion coefficients, Pi are tangential distortion parameters, and δ
and λ are scale and shear factor respectively. It is trivial to show that the underlying model (Equation
(1)) is exchangeable to Brown’s model [47,48].

An image of a projective camera is linked to the camera’s sensor model, and relates to six
orientation and position parameters that uniquely determines it inside a 3D Euclidean space. Therefore,
a linear relationship between an object point and its undistorted pinhole coordinates is established by
the collinearity model

x1 = −
M1·(X−X0)

M3·(X−X0)
, y1 = −

M2·(X−X0)

M3·(X−X0)
, (2)

where Mi is the ith row of the rotation matrix M3×3, X is a vector of (3 × 1) of the object point’s
coordinates, and X0 is a (3 × 1) vector of location of image in a 3D cartesian space (bold letters are used
for vectors and matrices and normal letters are used for scalers throughout this paper).

2.2. Multi-Projective Camera Model

An MPC is presented in this work by the following calibration parameters:

1. IOPi (i = 1 : n) (f, PPx, PPy, K1, K2, K3, P1, P2, δ, λ ),
2. ROPi (i = 2 : n)

{
(ζ,η,ψ) ,(∆x, ∆y , ∆z)},

3. ΛMPC,

where IOPi is interior orientation parameters of an individual camera of an MPC, ROPi is
relative orientation of an individual camera with respect to the first camera, (ζ,η,ψ) are Euler angles,(
∆x, ∆y , ∆z

)
are displacements, and ΛMPC is the unknown scale factor. The last parameter (ΛMPC) plays a

role if scale of an MPC sensor would be different from scale of the model. It could be ignored if both scales
are equal. In overall, there will be a number of nCalib. = n× 10(IOP) + (n− 1) × 6(ROP) + 1(scale) =
16× n− 5 calibration parameters for an MPC with (n) projective camera; a multi projective image (MPI)
is geometrically defines by its corresponding MPC sensor and six EOPs.

2.3. Space Resection of Multi-Projective Images

The goal of the space resection is to find approximate locations of a given MPI with respect to a
3D frame under the conditions that at-least (3) image-object correspondences exist and localized in a
3D Cartesian framework. Space resection helps to orient a set of MPIs with respect to a given point set
(e.g., a calibration room). The orientations are finally adjusted through a BBA.

An alternative way to resect an MPI is to employ the coplanarity equation. Coplanarity condition
connects two normalized pinhole coordinates and image centers through a matrix called Essential,
which is a (3 × 3) matrix that is composed of three rotations and three translations as

E = [(X0)t]x·Rt, (3)
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where [(X0)t2]x is the matrix presentation of a cross product which is a 3× 3 matrix of the form
0 −

⌊
(X0) t2

⌋
3

⌊
(X0) t2

⌋
2⌊

(X0) t2

⌋
3 0 −

⌊
(X0) t2

⌋
1

−
⌊
(X0) t2

⌋
2

⌊
(X0) t2

⌋
1 0

 (4)

Essential matrix is estimated by the following equations(=
xt1

)T
·E(t1,t2)·

(=
xt2

)
= 0, (5)

where xt1 is normal image point at time (t1), and
=
xt2 is the calculated normal location of the same

3D point in a synthesized image. Space resection of an MPI is performed for each of its projective
images. At least 5–8 tie points are required based on the selected method (5-point [49], 6-point, 8-point,
or normalized 8-point [50]). Then a synthesized pair is formed. The synthesized image is localized such
that the resulted stereo pair becomes stable. Next, the retrieved position is translated into approximate
position of the parent MPI (X0i, wpki); finally, all positions are averaged to estimate the position and
orientation of the MPI

X0 =
∑

i
X0i, wpk =

∑
i
wpki. (6)

2.4. Relative Orientation between Two Multi-Projective Images

Finding ROPs between two MPIs is essential to independently construct a scene. ROPs between
two MPIs are expressed by six parameters out of which five are independent. Usually the largest
element of a stereo pair’s baseline is scaled to one. Three rotations and two displacements are finally
solved by relative orientation module. To estimate ROPs between two MPIs, a similar averaging
approach to the space resection has been chosen. Therefore, all image pairs between MPIs are oriented.
Then the resultant ROPs are transformed to the parent MPI and averaged.

In the process of MMS calibration, initial values of lever-arm and boresight misalignments are
estimated by independently compiling a local network of few shots, then connecting the local network
to the global frame of GNSS/IMU sensors.

2.5. Bundle Block Adjustment

BBA employs non-linear least-square adjustment method to minimize a cost function based on
residuals of observational equations. It finally expresses the uncertainties about the unknowns of an
MPC calibration as a covariance matrix. The MPC cost function is a combination of all observational
equations. It is expressed as the vector function

F
(
(f, PP, K, P, δ, λ )i=1:n, R(ζ,η,ψ)i=2:n

, ∆i=2:n, R(ω,φ,κ)t=t1:tm
, (X0)t=t1:tm

, X(1:nO), x(1:nI), la, bs
)
= 0, (7)

where, (f, PP, K, P, δ, λ )i=1:n are IOPs for projective cameras (1:n), R(ζ,η,ψ)i=2:n
, ∆i=2:n are structural

parameters regarding the MPC, R(ω,φ,κ)t=t1:tm
, (X0)t=t1:tm

are orientations and locations of image shots,
X(1:nO), x(1:nI) are position of object points and the corresponding image points, la and bs are lever-arm
vector and boresight misalignments respectively. To model the entire system, equations for image
observations, GNSS/IMU-observations, and GCPs are introduced.

Two observational equations are considered in the MPC’s BBA for each image tie points, as

xi j·(M3)t1 j

(
Xi − (X0)t1 j

)
+ (M1)t1 j

(
Xi − (X0)t1 j

)
= 0, (8)

yi j·(M3)t1 j

(
Xi − (X0)t1 j

)
+ (M2)t1 j

(
Xi − (X0)t1 j

)
= 0. (9)



Remote Sens. 2019, 11, 2778 7 of 22

In Equations (8) and (9),
(
xi j, yi j

)
are pinhole coordinates of object point (i) inside image ( j) (pinhole

camera, f = 1), (Mi)t1 j is the (ith) row of the rotation matrix Mt1 j ( jth projective camera [ j : 1− n] at time
t1), (X0)t1 j is location of jth projective camera at time t1, and Xi is 3D location of the corresponding
object point (i).

In order to combine observations of GNSS and IMU sensors to the BBA, a link between GNSS,
IMU and the MPC is established (Figure 1). A number of (6) additional parameters are introduced to
represent a shift (lever-arm), and orientations (boresight misalignments). The connection is formulated
by six non-linear equations (Equations (10) and (11)). The observational equation for lever- arm and
boresight misalignments are 

φ
λ
κ


(It)

−R((RC)I·(RCt)) = 0, (10)

(X0It) − (XCt) + (RCt)·(RC)
T
I ·(XC)I = 0, (11)

where


φ
λ
κ


(It)

are ‘observed’ Euler angles of the INS at time (It), (RC)I is the rotation matrix of an

MPC with respect to the INS local coordinate system, and RCt is rotation matrix of the MPC at time (t).
In Equation (11), X0It is observed position of INS at time (t), XCt is unknown position of the MPC at
time (t), and (XC)I is relative position of the camera with respect to the INS in the local coordinate
system of the INS. Here, R indicates the function that maps a rotation matrix into its corresponding
Euler angles.
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GCPs are contributed to the BBA by three observational equations

Xg −Xgo = 0, (12)

where Xg is unknown 3D position of a GCP, and Xgo is observed position.
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2.6. Panoramic Compilation

Creating a panorama for an MPC without image stitching is possible under the condition that
the MPC is calibrated (known IOPs and ROPs). Therefore, calibration data is sufficient to compile a
non-stitching panorama. The algorithm for building a panorama contains looping over a hypothetical
sphere or cylinder (optional projection system) that covers an MPI, then for each pixel in the final
panoramic compilation the algorithm finds a corresponding camera index (0-n) and an image location
(pix). For a better rendering result, an appropriate interpolation technique (bilinear or bicubic)
could be considered since the projection from the sphere (or cylinder) to projective images results in
subpixel positions. If the correspondence data is saved as a meta-data file (it may be called panoramic
correspondence map), then the final panorama will have geometric values. It is because of the fact that
collinearity condition between an object point, its corresponding image point, and perspective center of
a projective camera of an MPC is established. A second usage of the correspondence map is efficiently
compiling a panorama, since indexing is expected to be much quicker than direct calculation.

There are regions in the correspondence map that more than one choice of correct image is possible
for every point in the final panoramic compilation. It is because of the existence of overlaps between
adjacent cameras. A criterion needs to be considered to build a unique map, for example minimum
incident angle could be used.

Depending on the distance of a 3D object points to a panorama, discontinuity on edges is expected
to occur; it is because the projection center of different individual cameras does not match to the center
of the hypothetical sphere. Discontinuity is expected to be more severe for closer objects. Finally,
an important post-processing is the use of color blending on edges. It improves the quality of a
compiled panorama. Without color blending, sharp steps are expected to be observed on the edges
that pixel labels start to switch from one camera to another. Color blending softens those steps and
improves the color consistency of the final panorama.

3. Methods and Material

3.1. Mobile Mapping System

The MMS in this works comprises an MPC, a GNSS, and an IMU that are firmly installed on a
car’s roof. This section describes the experiments to assess the proposed method described in Section 2.
The proposed method was implemented in C++ and MATLAB languages and evaluated using a real
dataset from an MMS composed by a multi-camera LadyBug 5, and a navigation system installed on a
rigid aluminum truss structure on top of a Skoda Superb (Figure 2).
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The GNSS receiver used was a NovAtel PwrPak7, which together with IMU compiles a 
Synchronized Position Attitude Navigation (SPAN) system. PwrPak7 logged GPS and Glonass 
observations via NovAtel VEXXIS GNSS-850 satellite antenna. Sensor trajectory was computed by 
combining GNSS and IMU data with Waypoint Inertial Explorer software. Virtual GNSS base station 
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Figure 2. Ladybug 5+ (in front), NovAtel IMU-ISA-100C (black-and-white box in rear) and NovAtel
VEXXIS fiber optic gyros and temperature compensated Micro Electromechanical Systems (MEMS)
accelerometers. IMU measurements are used by the SPAN receiver to compute a blended GNSS+INS
position, velocity, and attitude solution at rates up to 200 Hz.
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Ladybug V.5 is an MPC with five side-looking cameras and one upward-looking camera.
Each individual camera contains a sensor of size 2464 × 2048 pix. Its focal length is 18 mm with sensor
size of (35.8 × 29.7 mm) with field of view of 89.3◦ ± 81′. Panoramas cover an area of 360◦ horizontally
by 145◦ vertically. Resolution of output panoramas is approximately 8k (7200 × 3600 pixels, aspect
ratio 2:1).

The GNSS receiver used was a NovAtel PwrPak7, which together with IMU compiles a
Synchronized Position Attitude Navigation (SPAN) system. PwrPak7 logged GPS and Glonass
observations via NovAtel VEXXIS GNSS-850 satellite antenna. Sensor trajectory was computed by
combining GNSS and IMU data with Waypoint Inertial Explorer software. Virtual GNSS base station
reference data was acquired from commercial Trimnet service. The maximum distance from trajectory
(Figure 3) to the base station was ~350 meters. The 3D RMSE for the GPS positions was 1.6 centimeters. 
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Figure 3. Orthophoto of central Inkoo area. Blue rectangle is the outdoor calibration dataset.
Red rectangles are check sites. Orange dots are locations of captured multi-images.

A NovAtel IMU-ISA-100C, manufactured by Northrop-Grumman Litef GMBH, was paired with
a NovAtel SPAN GNSS receiver. The IMU-ISA-100C is a near navigation grade sensor containing
GNSS-850 satellite antenna (in front of IMU) mounted on a truss structure on top of a Skoda passenger
car. NovAtel PwrPak7 GNSS receiver together with operating and logging laptop were inside the car.

3.2. MPC Calibration

FGI’s calibration room is an empty space with dimension of 519 × 189 × 356 cm3 that is equipped
with 215 CTs (Figure 4). 3D positions of all targets are a-priori known based on previous observations.
Images taken with a Canon EOS 6D camera (sensor 20 Megapixel, image size 5472 × 3648 pixels,
lens Canon EF 24 mm, focal length 20.6 mm) were used to accurately calculate 3D coordinates of the
targets [10] in the calibration room with bundle adjustment, before MPC calibration.
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Figure 4. FGI’s calibration room. (a) 3D location of coded targets (b) panorama of the room.

In the first step, FGI’s camera-calibration room was employed to calibrate the MPC. To do so,
3D positions of the CTs had been accurately estimated by employing a Canon EOS-6D camera achieving
a relative 3D positioning precision of std < 1 mm. The automatic target extraction included:

1. Employing adaptive thresholding using first-order statistics to roughly estimate the position of
blobs (accuracy of better than 2pixel);

2. Accurately fitting rotated ellipses to extracted blobs by least-square fitting (accuracy ≤ 0.1 pixel),
3. Clustering blobs;
4. Finding CTs from extracted clusters by employing structural signature of the CTs, and
5. Reading ID for each target.

The automatic CT detection was implemented in MATLAB. The standard deviation for image-point
observations was set as 0.1 pixel.

The estimated focal length of the Canon was 3156.10 pixels with a standard deviation of 0.04 pixels.
The principal point was estimated as (2752.37, 1509.36) pixels with standard deviation of 0.05 pixels.
Regarding each of the IOPs, a significance analysis is performed assessing the amount of distortion
that is corrected by freezing all the IOPs except for an underlying parameter (or set of parameters) on a
grid of 10 × 10 pixels. The largest distortion on the grid was chosen as significance value for a given
IOP. The significance values for radial distortions (set), tangential distortion (P1, P2, and P3), scale,
and shear were 69.2, 2.4, 1.0, 0.03, and 0.06 pixel respectively. The estimated standard deviations of
the CT points were 0.15, 0.03, and 0.02 mm in principal directions of 3D error ellipsoids respectively,
which indicates that our target accuracy was achieved.

In the second step, the same CTs were automatically extracted in individual images of the MPC
(LadyBug 5). Next, each MPI was resected (Section 2.3) using the calibration-room’s CTs, and finally,
the BBA was performed to optimize the sensor parameters of the MPC. In this processing, the CTs
coordinates based on the measurement by the Canon were kept fixed.

Two datasets of 26 and 53 MPIs were captured from the FGI’s calibration room to calibrate the
MPC. In the first dataset, the camera is attached to a horizontal slide, therefore each few images are
coplanar and at the same height level. In the second dataset, the camera is put on a tripod with two
different height levels. In total, 474 individual projective images have been captured; then, CTs were
automatically extracted in all individual images.
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3.3. MMS Calibration

The MMS calibration was carried out using outdoor dataset from Inkoo, which is a municipality
in southern Finland. A set of 8424 MPIs were captured by the LadyBug 5 camera for Inkoo harbour
area and two close-by regions. Most roads have been captured by the MMS in both directions.

The GCPs were measured using the Topcon Hiper HR RTK dual band receiver with an accuracy
within 5 mm + 0.5 ppm horizontally and 10 mm + 0.8 ppm vertically [1. source:TOPCON]. Nearest
base station was located in Metsähovi 28 km away from Inkoo, therefore accuracy is vertically 19.0 mm
and horizontally 32.4 mm, respectively.

The MMS calibration involved estimating relative parameters of the MPC with respect to the
GNSS and IMU (lever-arm and boresight miss-alignments). Observational Equations (10) and (11)
were added to BBA. Analytical partial derivatives of latter equations were considered for calculating
the Jacobian matrix. The calibrated MPC sensor was used to construct an outdoor case. The sensor was
kept fixed during the scene reconstruction except for its scale parameter. A number of six MPIs were
connected together by the relative orientation module (Section 2.4) to construct a local network (initial
network). Model coordinates of all 3D points were accurately determined with corresponding sub-pixel
re-projection error and added as observational equations. Few GCPs were observed in individual
images and added to the model to establish a link to the global coordinate system (Equation (6)).
Then, GNSS and IMU observations were added to the initial network. Lever-arm and boresight
was initialized from the initial network and finally optimized through the BBA. The MPC sensor
kept fixed during MMS calibration to avoid a singularity in the Jacobian matrix. In the optimization
process, locations, and orientations of MPIs, 3D positions of GCPs, and six parameters of lever-arm
and boresight were set free.

3.4. Performance Assessment

In order to assess the accuracy of the MMS calibration and georeferencing, seven check sites
approximately covering the area were selected (Figure 3). In each site, the GNSS and IMU readings of
the MMS were translated into MPI orientations that were converted into individual image’s orientation
and rotation by using MPC sensor calibration information from Step 1 (Section 3.2). Then image
positions of check points were observed in individual images; consequently, two sets of coordinates
were available for each cross-check site: 1—intersecting coordinates from image measurements and
collinearity equations; and 2—observed positions of check-points from GPS. The difference was
recorded along with the maximum intersecting angle of each 3D check point as a quality-control
indicator. It was expected that weaker interesting geometry would result higher object-space residuals.

4. Results

4.1. MPC Calibration

Indoor calibration of the MPC resulted in sub-pixel individual image accuracies (mean image
residual 0.4 pixel, std. 0.45 pixel). Moreover, internal structure of the final optimized MPC resembled
very well to the physical reality of the underlying MPC. Different height levels of MPIs resembled well
to the reality of the capturing configuration and played a role as a visual cross-checking. Undistorted
individual image, as depicted in Figure 5 had very large radial distortions. The MPC’s significance
matrix also showed a considerable value of 2183 pixel for radial distortion for camera number (1) that
was caused by the lens structure. Significance values for tangential distortions were relatively small
(<10 pixel). The calibrated IO parameters of individual cameras with their corresponding standard
deviation are given in Table 1. Most of the standard deviation values of camera 6 were higher than
average. One reason could be the weaker distribution of CTs on the ceiling in comparison to the
walls and the floors distributions. Scale and shear factors appeared meaningful in the BBA since their
optimized values were relatively bigger than the standard deviation values. Table 2 demonstrates the
calibrated structure of the LadyBug camera. The order of standard deviation values demonstrated
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an acceptable level of precision in the calibration process. In this table, the values related to the
first camera demonstrates a priori distribution of the camera 1’s structural parameters. In this table,
standard deviation values that are bigger than average are highlighted with a gray color.

Table 1. Calibrated interior orientation of individual cameras of the LadyBug camera.

Cam id. 1 2 3 4 5 6

F (px) 1247.63 1243.07 1242.20 1240.03 1245.66 1241.88
std. 0.04 0.07 0.05 0.04 0.03 0.07

PPx (px) 1217.37 1204.01 1219.65 1218.62 1230.57 1229.84
std. 0.01 0.08 0.07 0.04 0.04 0.10

PPy (px) 1036.31 1012.60 1024.03 1028.36 1036.77 1021.02
std. 0.01 0.11 0.07 0.05 0.05 0.10
K1 0.383946 0.371983 0.388319 0.380270 0.384972 0.388471
std. 2.00 × 10−4 4.00 × 10−4 3.00 × 10−4 2.00 × 10−4 2.00 × 10−4 3.00 × 10−4

K2 0.017540 0.035774 0.003023 0.023847 0.013512 0.003508
std. 5.00 × 10−4 8.00 × 10−4 6.00 × 10−4 4.00 × 10−4 4.00 × 10−4 6.00 × 10−4

K3 0.177268 0.166916 0.191546 0.175797 0.180382 0.187534
std. 3.00 × 10−4 6.00 × 10−4 4.00 × 10−4 3.00 × 10−4 2.00 × 10−4 4.00 × 10−4

P1 −4.8 × 10−4
−6.0 × 10−4

−6.3 × 10−4 1.9 × 10−4 7.8 × 10−4
−5.8 × 10−4

std. 1.0 × 10−5 1.0 × 10−5 1.0 × 10−5 1.0 × 10−5 1.0 × 10−5 2.0 × 10−5

P2 −1.9 × 10−4
−9.0 × 10−4 6.2 × 10−4 5.5 × 10−4 2.6 × 10−4 1.6 × 10−4

std. 1.1 × 10−5 1.9 × 10−5 1.4 × 10−5 9.0 × 10−6 1.0 × 10−5 1.8 × 10−5

δ −3.4 × 10−4
−1.7 × 10−4

−5.2 × 10−4
−2.7 × 10−4

−1.7 × 10−4
−7.8 × 10−4

std. 1.0 × 10−5 3.0 × 10−5 2.0 × 10−5 1.0 × 10−5 1.0 × 10−5 3.0 × 10−5

λ −3.0 × 10−5 3.3 × 10−5 7.5 × 10−5 4.7 × 10−5
−6.0 × 10−5 8.6 × 10−5

std. 7.0 × 10−6 1.0 × 10−6 9.0 × 10−6 5.0 × 10−6 5.0 × 10−6 1.0 × 10−6

Table 2. Calibrated structure of the LadyBug camera (orientations in degree and positions in (cm)).

Id. ζ◦ η◦ ψ◦ std. ζ◦ std. η◦ std. ψ◦

1 0 0 0 0.0005 0.0005 0.0005
2 71.96 359.70 359.81 0.005 0.001 0.004
3 143.92 359.66 0.13 0.003 0.003 0.000006
4 216.04 359.80 359.99 0.002 0.001 0.001
5 288.00 359.97 359.97 0.002 0.0005 0.002
6 29.63 89.80 150.45 0.63 0.003 0.63

∆x ∆y ∆z std. ∆x std. ∆y std. ∆z

1 0 0 0 0.002 0.002 0.002
2 0.0388 5.7022 4.1770 0.0022 0.0036 0.003
3 0.0156 3.5351 10.922 0.0021 0.0024 0.003
4 −0.0239 −3.5487 10.883 0.0016 0.0021 0.002
5 −0.0356 −5.7454 4.1450 0.0017 0.0025 0.002
6 −7.5553 −0.0293 5.9617 0.0041 0.0031 0.003

Figure 6 demonstrates absolute values of normalized cross-correlations between all free parameters
(IOPs and ROPs (structure)) of the camera 2 (indoor calibration). In this figure off-diagonal elements
are of high importance and need to be carefully treated in the adjustment to avoid singularity.
Main off-diagonal elements are marked by red rectangles. In this figure, radial distortions are the
first group of highly correlated parameters. This high correlation implies that the collective effect of
the group is important, therefore investigating an individual parameter in this group is irrelevant.
The second highly correlated group is ROPs {ζ and η}. This group has a strong correlation to PPx.
The last high correlation relates to ROP {ψ} that is highly correlated to PPy. Figure 7 demonstrates
absolute values of normalized cross-correlations between all free parameters of the MPC. This figure
demonstrates a slightly repeated pattern among cameras. Two diagonal parts of this figure are zero
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that are related to the structure of the first camera and lever-arm vector and boresight misalignment
that kept fixed during the indoor calibration. 
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the LadyBug camera.

4.2. Mobile Mapping System Calibration

Table 3 shows the calibrated values for the lever-arm vector and boresight misalignments and
their standard deviation values. As expected, standard deviation values were larger than structural
parameters (ROPs of the MPC). On average, 0.5-degree standard deviation were obtained for boresight
misalignments, and 2 cm for each component of lever-arm vector.

Table 3. Calibrated values for lever-arm vector and boresight misalignments.

Boresight (◦)
BSω BSφ BSκ std. BSω std. BSφ std. BSκ

−105.80 −41.41 69.95 0.53 0.11 0.45

Lever−arm (m) LAX LAY LAZ std. LAX std. LAY std. LAZ
−2.4189 −0.2824 0.7361 0.02 0.02 0.02

In the adjustment processing, on average 9 cm residuals were obtained for the GCPs (Table 4) on
the outdoor calibration site (Figure 8). All GCPs had at-least 6 intersecting rays. Table 5 shows the
differences between the image positions and orientations estimated by the BBA and observed by the
GNSS/IMU. On average, approximately 0.2◦ difference was observed between GNSS/IMU angles and
BBA outputs. For the directly measured positions, an average difference of 11.3, 2.8, 0.6 cm in the X, Y,
and Z coordinates, respectively, were observed.
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Figure 8. Configuration of the outdoor calibration dataset. (a) 3D project, (b) orthophoto overlaid with
image positions and GCPs.

Table 4. Residuals for the ground control points of the outdoor calibration dataset.

Point id.
Num.

X Y Z Length Intersect.

137 −1.6 9.1 2.2 9.5 6
138 6.2 5.0 3.1 8.6 6
139 12.6 −10.5 −2.4 16.5 6
140 −14.2 1.4 −0.6 14.3 6
141 −13.5 4.5 1.4 14.3 6
142 4.1 −7.5 0.1 8.5 6
143 3.0 −2.0 1.4 3.8 6

Mean −0.48 0 0.74 10.78
RMSE 9.31 6.55 1.71 4.10

Table 5. Differences between adjusted values from BBA and direct-georeferencing for the outdoor
calibration dataset.

Camera id. ∆(ω)◦ ∆(φ)◦ ∆(κ)◦ ∆(X0)cm ∆(Y0)cm ∆(Z0)cm

1 0.38 0.13 0.07 14.82 −4.11 −4.24
2 0.37 0.38 0.40 7.14 −1.58 −3.56
3 0.02 0.08 0.04 2.85 −0.61 −1.97
4 −0.42 −0.22 −0.15 −1.00 −1.48 −0.04
5 −0.17 −0.31 −0.32 −5.93 1.76 0.17
6 −0.19 −0.06 −0.03 −13.16 2.70 −0.09

Mean 0.26 0.20 0.17 7.48 2.04 1.68
RMSE 0.29 0.23 0.22 8.98 2.25 1.77

4.3. Accuracy Assessment

Figures 9 and 10 show the configuration of cross-check dataset (1) and (2) respectively and Tables 6
and 7 shows the errors for check-points, which are differences between their intersected and observed
values. On average, error of 5.6 cm and 1.4 cm was observed between intersected and observed
positions of check points for cross-check dataset (1) and (2), respectively. The RMSEs were 0.69 cm
and 0.18 cm, respectively. Relatively comparable GPS errors for close-by observations resulted to a
similarity between errors in 3D check points of a dataset.
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Table 6. Differences between observed and intersected position of check points in check1 dataset.

Point ID
(cm) Num.

X Y Z Length Intersect.

187 −4.526 −2.3048 0.4974 5.1034 6
188 −4.4479 −2.2805 0.5311 5.0265 5
189 −4.599 −2.3142 0.4967 5.1723 3
190 −4.5909 −2.3126 0.5021 5.165 3
191 −4.2558 −2.3015 0.5225 4.8664 6
193 −4.9979 −0.8523 0.3865 5.0848 14
183 −6.3937 −0.5021 0.4623 6.4301 3
184 −6.3916 −0.4969 0.4592 6.4273 3
185 −6.4107 −0.4484 0.4817 6.4444 3
186 −6.4102 −0.4492 0.4771 6.4436 3
192 −4.5299 −2.2095 0.4077 5.0565 4
184 −6.3916 −0.4969 0.4592 6.4273 3

Mean −5.32 −1.44 0.47 5.63
RMSE 0.91 0.87 0.04 0.67
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Table 7. Differences between observed and intersected position of check points in check2 dataset.

Point ID
(cm) Num.

X Y Z Length Intersect.

164 0.9102 0.7129 −0.5299 1.2718 12
165 1.0354 0.6624 −0.5199 1.3346 12
166 1.1804 0.6085 −0.5237 1.4275 12
167 1.3231 0.5529 −0.5126 1.5229 12
168 1.1808 0.7859 −0.4918 1.5013 10
169 1.2843 0.879 −0.4498 1.62 9
170 0.9248 0.1996 −0.4727 1.0576 10
171 1.0858 0.3109 −0.4796 1.227 9
172 1.2463 0.4695 −0.5275 1.4325 11
173 1.4003 0.4883 −0.52 1.5715 11

Mean 1.15 0.56 −0.50 5.63
RMSE 0.02 0.03 0.0007 0.02

Figure 11 plots sorted incident angles (degrees) with their corresponding errors. This plot
high-lights the effect of intersection-geometry’s strength on the quality of positioning. In this plot,
intersections of rays with maximum incident angle less than 20 degrees resulted in higher fluctuation in
3D-position inaccuracy. The inaccuracy in 3D positions was significantly improved when the incident
angles took values over 20 degree. A logical conclusion from this figure is that a stronger intersection
geometry is obtained as incident angles come closer to π2 .
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Figure 11. Sorted re-projection errors and their corresponding incident angles.

Figure 12a shows errors for 3D check point. Figure 12b shows the corresponding intersecting
angles. In Figure 12a, most errors were less than 7 cm. By comparing these two figures, a negative
correlation between incident angles and accuracy was obvious which was also concluded from Figure 11.
On average, 4.2 cm error was observed for all 3D check points with RMSE 3.6 cm.
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4.4. Panoramic Compilation

Panoramic images were compiled using the IOPs and ROPs. Figure 13 demonstrates footprints of
individual cameras on the final panoramic compilation as a contribution map of individual cameras.
This map demonstrates that each individual image covers a suitable amount of area in the final
panoramic compilation. It consequently confirms that the underlying MPC is well-designed. 
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5. Discussion 

In this work, we followed a similar technique as [11] in employing free-network calibration 
inside an indoor calibration room; however, we pushed this work in three directions. Firstly, our 
modified BBA model contains offset and misalignment with respect to the GNSS/IMU. Secondly, a 
non-stitching panorama was introduced along with a correspondence map which adds geometric 
values to the non-stitching panorama scheme. The new scheme improves the development of [51] by 
taking the systematic error of edges into equations. Thirdly, we demonstrated error propagations 
through a statistical model as standard deviation values of the parameters under-investigation.  
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Figure 13. Contribution and overlaps of all cameras pixels (1–6) in the final panoramic compilation.

The ‘minimum incident angle’ criterion is employed to create a unique correspondence map
(Figure 14) from the contribution map (Figure 13). The correspondence map connects every pixel in the
final panoramic compilation to a pixel in a camera. Therefore, a vector of 3 numbers (image id, x and y
in pixel) were saved for every pixel of the final panorama as the correspondence map. Approximately
7 minutes of computational time was required to build a correspondence map of 7200 × 3600 pixels;
then it was efficiently quick and straight-forward to compile any new panorama from individual images
(~2.1 sec.). Non-stitching panoramic compilation was performed by employing the correspondence
map and resulted into geometrically-accurate panoramas (Figure 15). Closer objects to the MPC
had, as expected, larger discontinuity over the edges than far objects. An edge in this context means
the boundary that pixel labels change. The discontinuity on edges has been considered by [51] as
systematic errors; however, by using the correspondence map this systematic error is totally irrelevant
and is completely eliminated and avoided.
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5. Discussion

In this work, we followed a similar technique as [11] in employing free-network calibration inside
an indoor calibration room; however, we pushed this work in three directions. Firstly, our modified
BBA model contains offset and misalignment with respect to the GNSS/IMU. Secondly, a non-stitching
panorama was introduced along with a correspondence map which adds geometric values to the
non-stitching panorama scheme. The new scheme improves the development of [51] by taking the
systematic error of edges into equations. Thirdly, we demonstrated error propagations through a
statistical model as standard deviation values of the parameters under-investigation.

A complete calibration scheme for a multi-camera mobile mapping system (MMS) was presented
to calibrate a multi projective camera (MPC) to GNSS and IMU. It was based on two steps: indoor
MPC calibration, and outdoor MMS calibration, which calibrated an MPC with respect to the GNSS
and IMU. Most of recent MPC calibration schemes are based on reducing the number of interior
orientation parameters (IOP) in order to avoid singularity. In this work, the singular situation was
addressed by employing a photogrammetric calibration room. Our modified bundle block adjustment
model considers offset and misalignment of an MPC with respect to the GNSS/IMU, which enables 3D
reconstruction using the MMS either in a direct georeferencing mode, or via integrated bundle block
adjustment. Furthermore, a non-stitching panoramic compilation scheme was introduced along with a
correspondence map which connects pixels of a compiled panorama to their correct position in the
MPC. The new scheme takes the systematic error of discontinuous edges into equations. We finally
demonstrated error propagations through a statistical model as standard deviation values of the
parameters under-investigation. The statistical modeling was proved as a helpful tool to propagate the
uncertainties from observations to unknowns based on a non-linear least-square model.
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The proposed calibration scheme was successfully demonstrated through five crosscheck datasets.
On average 4.2 cm 3D error residuals were observed for cross-check object points. This level of accuracy
highlights the usability of a multi-camera MMS in many surveying tasks. Standard deviation for
lever-arm vector and boresight misalignments were ~0.5 degree and ~2 cm, respectively. One reason
for relatively high uncertainties for lever-arm angles and boresight misalignments in comparison
to the lower uncertainties that resulted from the indoor calibration was related to the low number
of observational equations in the MMS adjustment process. Those uncertainties are expected to be
improved by employing more observations. Our results showed that the intersection geometry was an
important factor on 3D positioning. Our rigorous approach forms the basis for developing automated
processing of MMS datasets in practical applications. Our further research topics will include the
assessment of image-based point clouds in reconstructing different scenes, such as urban scenes and
road environments. Furthermore, autonomous object mapping based on the proposed technique is
one of our future research objectives.
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