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Abstract

Galactoglucomannan (GGM) is the main hemicellulose class in wood of coniferous trees and 

could be potentially utilized as a possible health-promoting substance for food and 

pharmaceutical industry. Our aim was to evaluate effects of orally administered GGM-rich extract 

from Norway spruce in a rat model of chronic prostatitis associated with lower urinary tract 

symptoms (LUTS). Prostatic inflammation and LUTS was induced in male rats using 

testosterone and 17β-estradiol exposure for 18 weeks. Rats were treated with 2% GGM 

dissolved in drinking water during weeks 13 to 18. Pelvic pain response, LUT function and 

histopathological evaluation of the prostate were assessed. The results show that hormonal 

exposure induced LUTS seen as decreased urine flow rate, increased bladder pressure, voiding 

times, bladder capacity and residual urine volumes. GGM had positive effects on urodynamical 

parameters by decreasing the basal bladder pressure, increasing the urine flow rate and volume, 

reducing the residual volume and increasing micturition intervals. GGM reduced the extent of 

the hormone exposure-induced prostatic inflammation. Increase of pelvic pain induced by 

hormone exposure was only slightly affected by GGM treatment. The results suggest that orally 

administered GGM may have potential usage for improving lower urinary tract function 

associated with chronic prostatic inflammation.

Key words: Galactoglucomannan; Lower Urinary Tract Symptoms, Prostatitis 
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1. Introduction

Hemicelluloses constitute a complex group of heterogeneous polysaccharides embedded 

in cell walls of trees. Acetylated galactoglucomannan (GGM) is the main water-soluble 

hemicellulose found abundantly in the wood of coniferous tree species such as Norway spruce 

(Picea abies) [1]. There are interesting findings showing that wood-derived GGM exerts health 

promoting effects and could possibly be utilized as health-promoting substance for food and 

pharmaceutical industry. GGM extract has shown to have immunomodulating and radical-

scavening [2] activities and prebiotic activities in vitro [3]. GGM oligosaccharides has been 

shown to have prebiotic activities in vitro [4] and in dog [5] and effects on increasing fermentation 

and immune responses in chicks [6]. GGM-derived oligosaccharides have also been showing to 

improve colonic health in Salmonella-infected broiler chicks [7]. Additionally, GGM extracted 

from Dendrobium huoshanense has been also shown to prevent selenium-induced liver damage 

and fibrosis in rats [8] and sulfated GGM has shown in vivo anticoagulant and antithrombotic 

activities [9].

The nonbacterial chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a 

common disease affecting men of all ages, and the incidence increases in men with age over 

65 [10]. There is increasing evidence supporting the idea that chronic prostatitis can eventually 

be the etiology to prostate cancer [11]. The symptoms of CP/CPPS are heterogeneous, mostly 

manifested as pain in the pelvic region as well as lower urinary tract symptoms (LUTS). 

Histopathologically, chronic inflammation is seen in the prostatic stroma, intraepithelial space 

and inside the acini [12]. The etiology of the CP/CPPS is unknown and multiple mechanisms 

have been proposed in the pathogenesis of prostatitis [13]. Increasing interest for treatment and 

prevention of CP/CPPS is directed on therapeutical usage of naturally occurring phytotherapical 

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168



4

compounds [14]. Studies using plant derived polysaccharides from citrus fruit [15], Lycium 

barbarum (Goji berry) [16] and Urtica fissa (Stinging nettle) [17] have shown to exert potential 

effects on experimental models of prostate cancer and benign prostate hyperplasia. Chronic 

prostatitis can be studied using preclinical models where gradual development of prostatic 

inflammation after sex hormone exposure is seen in adult male rats [18-25], resembling human 

chronic prostatic inflammation CP/CPPS. Additionally, hormonal exposure induces LUTS which 

has been shown to be associated with prostatic glandular inflammation when the testosterone 

to 17- estradiol ratio is high [22] [26] [27]. 

Since previous studies has shown potential of utilizing plant-derived polysaccharides 

against prostate-related diseases, our aim was to study whether softwood-derived 

polysaccharide compounds could be utilized in this concept.  We investigated for the first time 

the in vivo effects of the GGM-rich hemicellulose extract from Norway spruce on prostatic 

inflammation and associated changes on voiding and pain using a non-bacterial prostatic 

inflammation rat model. 

2. Materials and methods

2.1 Extraction of galactoglucomannan-rich hemicellulose extract

The extract (galactoglucomannan-rich hemicellulose extract, abbreviated in the text as 

GGM) was isolated from Norway spruce (Picea abies) using the following methods: spruce wood 

meal (< 2 mm) was extracted using a flow-through extractor with water at 170oC [28] [29] and 

further purified by precipitation in 85% ethanol yielding a heteropolysaccharide preparate with a 

molar mass in the range of 4-20 kD, with an average molar mass of 8.2 kD. The monosaccharide 

composition determined by acid methanolysis and gas chromatography [30] was galactose 7%, 
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glucose 15%, mannose 60% (i.e. total GGM 82%); arabinose 1%, 4-O-methylglucuronic acid 

2%, xylose 9% ( i.e. total xylans 12 %); rhamnose 0.3%, galacturonic acid 3.5% (i.e. total pectins 

4%). The product contained 0.6% acetyl groups, corresponding to an acetyl:mannose ratio of 

about 0.5.  

2.2 Experimental animals and study design

Adult male Wistar rats (RccHan:WIST) were obtained from Harlan Laboratories Inc. (the 

Netherlands) and housed pairwise in the animal facilities of Central Animal Laboratory of 

University of Turku in Macrolon Type III (800 cm2) cages. The animals were left to acclimate for 

7 days before any procedure, aspen chips (Tapvei Estonia Ltd, Estonia) were provided as 

bedding material, and soy-free rodent pellets (Harlan Diets 2016 global 16% protein rodent diet) 

and water was provided ad libitum. All animals were housed pairwise under a 12-h light-dark 

cycle and constant room temperature (± 3°C, humidity 55% ± 15%). The animal experiment was 

complying the EU Directive 2010/63/EU and ARRIVE guidelines for animal experiments and the 

study protocol (no: ESAVI/1455/04.10.02/2011) was approved by the National Animal 

Experiment Board of Finland. The rats were handled in accordance with the institutional animal 

care policies of the Central Animal Laboratory of University of Turku. The welfare of the animals 

was monitored daily during the study. The age of the animals was 11-12 weeks (weight 356 ± 

14 g) at the beginning of the study. The animals were stratified into groups based on body weight 

and treated as follows. Group 1: placebo pellet + vehicle (tap water); Group 2: Testosterone 

+17- estradiol pellets + vehicle (tap water) and Group 3: Testosterone+17- estradiol pellets + 

GGM (2% GGM solution in tap water). 
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Testosterone (T), 17- estradiol (E2) and corresponding placebo hormone implants were 

obtained from Innovative Research of America (IRA, FL, USA). Implants were 60-day releasing 

implants with a daily release of 830 g for T and 83 g for E2. Rats were anesthetized with 

isoflurane (3%, 200 mL/min, Piramal Healthcare Ltd, UK) and the pellets were inserted in 

subcutaneous pockets formed over the scapular area. Implants were replaced with identical new 

ones twice during the study (on treatment weeks 6 and 13). The total hormone exposure period 

was 18 weeks. The period of treatment with GGM was decided to start on week 13 based on 

preliminary studies showing that the inflammation in the prostate in the Wistar rats begins to 

develop more after 13 weeks of hormonal exposure. For the treatment period of 5 weeks 

(between study weeks 13 and 18) GGM was dissolved in tap water as a 2% solution and given 

to the T+E2+GGM group. Tap water was given to other two groups (placebo+vehicle and 

T+E2+vehicle). Access to drinking and food was ad libitum and the consumption was monitored 

for two weeks during the treatment period. 

2.3 Pelvic pain assessment

Referred hyperalgesia reflecting pain in pelvic area was assessed (modified from [31]) at 

study weeks 6, 13 and 18 using von Frey filaments (North Coast Medical Inc., CA). For the 

measurements, each animal was placed in a gridiron-floor cage and the area in the vicinity of 

the prostate was stimulated using the filaments and a positive response was shown as a sharp 

retraction of the abdomen, immediate licking or scratching of the area of filament stimulation or 

jumping. Withdrawal thresholds were measured in response to increasing pressure stimuli (7 

different filaments with a bending force ranging from 2 to 100 g) applied to the pelvic area. 

Response to each filament force was measured 10 times beginning from the lowest force 
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filament. The bending force of the filament to which the animal responded was taken as the 

baseline threshold to mechanical stimulus. The median response threshold was calculated from 

the median values of each 10 measurements.

2.4 Urodynamical measurements

At the end of the study (week 18) urodynamic measurements were performed. Rats were 

anesthetized with chloral hydrate i.p. (0.36 g/kg) for a basic anesthetic, and i.v. injections of 

urethane (0.32 g/kg, both Sigma Chemical Co. St. Louis, USA) was given to maintain anesthesia 

during the urodynamical measurements, if needed. The body temperature was kept constant by 

a thermostatically controlled animal blanket. The bladder and the distal part of urethra were 

exposed with a midline incision of the lower abdomen. In transvesical cystometry, a 20G i.v. 

cannula was inserted through the bladder apex into the lumen. The cannula was connected to 

an infusion pump (World Precision Instruments, Inc., Sarasota, USA) and to a pressure 

transducer (Statham, Hato Ray, Puerto Rico). Measurements were made with warm saline at an 

infusion rate of 10 mL/h. An ultrasonic flow probe was used for measurement of the urine flow 

rate from the distal part of urethra. The flow probe was connected to a flow meter (both Transonic 

Systems, Inc. Ithaca, NY, USA). The pressure transducer was connected to an amplifier (Grass 

Instruments Co. Quincy, MA, USA). The pressure and urine flow signals were transferred to a 

Biopac-system and continuous recording was made with Acq Knowledge 3.5.3 software (Biopac 

Systems Inc., Santa Barbara, CA, USA). The animals were sacrificed immediately under 

anesthesia after the urodynamical measurements using CO2 suffocation and neck dislocation. 

The following parameters were analyzed (blinded to treatment groups) from data obtained from 

the measurements: mean bladder pressure during micturition, basal bladder pressure between 
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micturitions, urine flow rate, bladder capacity, residual urine, voided volume, micturition time and 

micturition interval. 

2.5 Histopathological assessment of prostatic inflammation

After the urodynamical measurements and animal sacrifice the hormone-responsive 

organs prostate-urethra complex, seminal vesicles and pituitary were weighed and excised. 

Prostate-urethra samples were fixed in 10% neutral formalin solution for 18-20 hours and moved 

to 70% ethanol for storage. After dehydration, samples were embedded in paraffin and 5 m 

sections were cut out and stained with hematoxylin and eosin (H&E). Histopathological 

assessment was carried out on the H&E-stained prostate sections of each animal. From each 

block, four serial prostate sections were examined for inflammation: the number of perivascular, 

stromal/periglandular infiltrates and the number of the inflamed acini of dorsolateral prostate 

were counted blinded to treatment groups. The inflammation infiltrate was considered to be 

perivascular when more than ten inflammatory cells were found around the capillary and 

stromal/periglandular when cells were found in the prostatic stroma and periglandular space. 

The number of inflamed acini was counted when inflammation infiltrates were found inside the 

acini.

2.6 Statistical analysis

Statistical analyses were performed with SigmaStat (version 3.5, Systat Software Inc., 

Richmond, California, USA). Urodynamical data were analyzed using One-way ANOVA and 

Bonferroni t-test post-hoc test or non-parametric data Mann- Whitney Rank Sum Test and 

Dunn’s Method as post-hoc test. For analysis of inflammation area counts data from all treatment 
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groups were first pooled and arranged then into order from lowest to highest values. The data 

were then divided evenly into three even categories: 1) 0, 2) >0-2 and 3) >2-5 inflammation area 

counts for perivascular inflammation; 1) 0-<1, 2) 1-6 and 3) >6-17 for stromal inflammation area 

counts and 1) 0-1, 2) >1-30 and >30-49 for inflamed acini counts. The proportions of different 

categories between the treatment groups were then analyzed using Chi-Square proportion 

analysis. The data is represented as difference in proportions of three categories of inflamed 

counts for each treatment group relative to total animal number (100%) in each treatment group. 

Data of pelvic pain were analyzed using Two Way Repeated Measures ANOVA and Bonferroni 

t-test. P-values ≤ 0.05 were considered statistically significant. The final animal number 

(originally n=12/group, some animal loss due to technical issues) was as following: n= 11 for 

placebo+ vehicle group, n= 9 for T+E2+vehicle and n= 12 for T+E2+GGM group.

3. Results and discussion

In this study, we used a hormonally-induced non-bacterial prostatic inflammation Wistar 

rat model to investigate the effects of orally administered GGM-rich hemicellulose extract on 

prostatic inflammation and associated changes on voiding and pain. To our knowledge, this is 

the first study showing evidence of potential usage of wood-derived GGM-rich hemicellulose 

extract on attenuating chronic prostatic inflammation conditions.

3.1 Changes in animal and organ weights and food/water consumption

Hormone responsive organ weights were used as indicators for constant hormone 

release of the implanted pellets. The weight of seminal vesicles, prostate-urethra complex and 

pituitary gland were increased and the weight of the testicles decreased significantly due to 18-
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week hormonal treatment (Table 1). This is in line with previous studies done with rats [21] [32-

34] showing that estradiol and testosterone exposure induces similar changes to hormone 

responsive organs. GGM treatment did not affect the animal body weight or organ weights 

indicating no direct anti-estrogenic or –androgenic effects (Table 1).

Body weights decreased significantly due to the hormonal exposure. Animals with 

hormone exposure consumed significantly less nutrition than placebo ones when considering 

absolute diet values, but in proportion of relative consumption to animal body weights, they 

actually consumed more nutrition per kilogram per day than the placebo ones. The relative water 

consumption was also significantly increased due to hormonal exposure (Table 1). The 

increased consumption of food and water could be explained by the overall changes in energy 

metabolism induced by sex steroids [35-37]. 

Interestingly, GGM-treatment did not affect body weight but increased relative food 

consumption (Table 1). The water (i.e. 2% GGM solution) consumption also increased as well 

which was evident as both absolute and relative water consumption values. In our preliminary 

pilot study (unpublished data) there was no difference in the water consumption of GGM-

consuming rats compared to their control T+E2+vehicle group. The cause of the relative increase 

of food and water consumption due to GGM treatment in this study remains open. Animals 

showed no signs of change in overall wellbeing during the GGM treatment period or decrease 

in body weights. It is also notable that consumed diet and water was monitored when the animals 

were in their normal maintenance cages and not in metabolic cages, which can affect the total 

measured consumed amounts of diet and drinking water due to daily handling of the cages 

resulting in less precise results. 
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3.2 Alterations in LUT function

 Urodynamical measurement were performed to assess lower urinary tract symptoms 

(LUTS). The results show that T+E2- treatment in male Wistar rats induced altered voiding 

resembling LUTS. LUTS can be divided into storage symptoms such as altered bladder 

sensation and increased daytime frequency, voiding symptoms such as intermitted and slow 

urine stream, and postmicturition symptoms such as feeling of incomplete bladder emptying [38]. 

Common urodynamical symptoms associated with CPPS are increased bladder pressure, 

reduced urine flow rate and increased postvoid residual urine volume [39]. The mean bladder 

pressures (placebo+vehicle: 30.8 ±2.87 cmH2O; T+E2+vehicle: 35.1 ±3.52 cmH2O; T+E2+ GGM: 

33.1 ±2.08 cmH2O) during micturition did not statistically significantly differ between groups: (P= 

0.58). The basal bladder pressure during micturition and urine flow rate measured as both 

maximal and mean values were significantly lower and the micturition times were significantly 

prolonged in T+E2+vehicle group compared to placebo group (Fig. 1A-D). GGM significantly 

decreased the basal bladder pressure (Fig. 1A) and urine flow rates compared to vehicles (Fig. 

1B-C). T+E2+vehicle treatment increased significantly bladder capacity and residual volume 

compared with placebo group. GGM did not affect bladder capacity but reduced significantly 

residual urine volumes (Fig. 1E-F). The micturition intervals and voided volumes were not 

significantly affected by the hormonal treatment (Fig. 1G-H). There was a trend (P= 0.065) of 

longer micturition intervals in GGM-treated animals. Voided volumes were significantly increased 

in GGM-treated animals compared with T+E2+vehicle group (Fig 1H). Increase in the bladder 

weight i.e. bladder hypertrophy is an indication of obstructive voiding in rats [21] [22] [40]. 

Bladder weights were slightly increased in both T+E2+ vehicle -treated and T+E2+ GGM -treated 

animals compared to placebo group (Table 1). Taken together, GGM had positive effects on 
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LUTS by decreasing the basal bladder pressure, emptying the bladder more efficiently by 

increasing the urine stream rate and volume, thus also reducing the residual volume remaining 

in the bladder after voiding, which was reflected also as increased micturition intervals.

3.3 Impact on abdominal pain 

Pain response to stimuli using von Frey filaments was assessed to study abdominal pain. 

Chronic abdominal pain is often associated with prostatitis. It has been postulated that chronic 

prostate inflammation can cause irreversible changes in neurotransmission through various 

mechanisms leading to chronic pain [31] [41]. The pain response measurements showed that 

after six weeks of hormonal exposure the threshold of the animals for pain response was 

significantly decreased in both hormone-treated groups compared to placebo group (Fig. 1I). At 

the 13-week prior to the five-week treatment period the pain response of both hormone-exposed 

groups did not significantly differ from placebo anymore. At the end of the study at week 18 the 

pain threshold was significantly lower in the T+E2+vehicle but not in the T+E2+GGM group 

compared to the placebo + vehicle group. Thus, the pain response of GGM-treated group could 

be considered to be improved closer to the pain response situation of the placebo group. On the 

other hand, GGM treatment did not significantly improve the pain response compared neither to 

the 18 week time point against T+E2+vehicle or when comparing of the 13 week and 18 week 

time points inside the T+E2+GGM group (Fig. 1I). It is known that men with CP/CPPS including 

pelvic pain can have significant fluctuations in symptoms over time [42] and our results indicate 

that a similar situation in pain response of the rats were similarly fluctuating during the study. 

3.4 Changes is prostate inflammation
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Histopathologically, chronic inflammation is often seen in the prostatic stroma, 

intraepithelial space and inside the acini [12]. Our results show that hormone exposure induced 

significant prostatic inflammation seen as perivascular, stromal/glandular inflammation and as 

an increased number of inflamed acini (Fig. 2A, B and D-F). GGM significantly reduced the 

amounts of inflamed areas in stroma compared to T+E2+vehicle group (Fig. 2E). Only 27% of 

the counts of stromal inflammation in the T + E2 +GGM group belonged to the high score group 

(>6-17 inflamed area counts) and 73% to the middle score category (>1-6 inflamed area counts). 

The proportions of T+E2+vehicle were 87% and 13%, respectively. A similar change in the 

proportions of inflammation severity was seen in prostatic acini, i.e. 18% of the group counts 

were in the severe category (>30-49 area counts) and 81% in the middle score category (>1-30 

area counts), whereas T + E2 +vehicle proportions were 75% and 25%, respectively (Fig. 2F).

3.5 Discussion of possible actions of GGM

The causal relationships between the urodynamical measurements, pelvic pain and 

prostatic inflammation parameters remain open in light of the possible mechanism of action of 

GGM. There are however significant correlations between the measured parameters (Table 2). 

The observed decrease of severity of the inflammation in the prostatic lobe does unlikely explain 

per se the improvement of the urodynamical changes seen in this study. The mechanism of 

action remains to be discovered, but intriguing possibilities could be related to 

immunomodulating properties [2] or possible also probiotic-modifying properties [3] [4] [5] of 

galactoglucomannan. Fermentable carbohydrates have the ability to improve colonic health of 

both humans and animals. These carbohydrates are able to resist hydrolytic digestion and are 

fermented in the large bowel [43]. GGM could be considered as a fermentable carbohydrate and 
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is unlikely absorbed into the bloodstream as such because of the large molar mass on 

galactoglucomannan. Supporting our suggestion of an indirect mechanism of action is given by 

Faber et al. [4] who showed using an in vitro digestion model (to simulate gastric and small 

intestinal hydrolytic digestion) that GGM oligosaccharides extracted from softwood-derived 

molasses resisted hydrolytic digestion and were fermented as indicated by a decrease in pH, 

increased SCFA (short-chain fatty acids) production and beneficial microbial changes. In 

addition to the main hemicellulose fraction of the extract galactoglucomannan, which 

compromises 82% of the total fraction, the two other compartments of this extract, pectic 

polysaccharides (4%) and xylans (12%), may have a role on the biological effects of the extract 

in this study. Xylans are common hemicellulose compartments in plant cell walls among other 

hemicelluloses and pectins. Xylo-oligosaccharides has been shown to have antioxidative and 

prebiotic properties [44][45] and xylan-derived oligosaccharides from commonly consumed food 

stuff are generally considered as health-promoting dietary fibres [46]. Additionally, 

monosaccharide xylose from hardwood, the main sugar building block for xylan, has been used 

for bioproduction of xylitol, a natural alternative sweetener, from many plant sources including 

wood-derived xylans and exerts many health-promoting properties [47]. Additionally, pectin is a 

natural part of the human diet that also bypasses enzymatic digestion of the small intestine but 

is degraded by the microflora of the colon. Many commonly consumed fruits and vegetables 

such as apple, pear and citrus fruits contain notable amounts of pectin. Pectin has been linked 

to exert beneficial health effects on cholesterol and lipid metabolism, diabetes, intestinal 

infections, diarrhoea and even cancer [48]. In particularly, pectic polysaccharides has been 

shown to induce proliferation of B cells and secretion of cytokines and chemokines [49] [50] and 

possess immunomodulating activity against intestinal Peyer’s patch cells and macrophages [51] 
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[52]. Thus, it is an intriguing idea wherever modulation of immune response through the gut-

associated lymphoid tissues or other immune-related responses in an indirect manner would 

have a role on the prostatic inflammation and associated function of the lower urinary tract. 

Interestingly, there is some clinical evidence showing that changes in microbiota of the gut is 

associated with symptoms of Interstitial Cystitis / Bladder Pain Syndrome (IC/PBS) [53], a 

condition belonging together with CP/CPPS to a syndrome family Urologic Pelvic Pain Syndrome 

(UCPPS). It is also known that bladder and gut interact through neural links between pelvic 

organs modulating organs physiological function [54] and share common neuronal pathways 

[55] and there is evidence of bidirectional cross-sensitization of the colon and lower urinary tract 

[56]. Thus, it is an intriguing possibility that the beneficial actions of GGM in this study on prostate 

inflammation, LUT function and pelvic pain could be an indirect effect through colonic 

modulation. Further studies are needed to enlighten the mechanism of action of GGM. 

4. Conclusions

Orally administered Norway spruce-derived galactoglucomannan-rich hemicellulose 

extract showed beneficial effects on lower urinary tract function and inflammation severity 

associated with nonbacterial chronic prostatic inflammation in the rat. 
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Captions to illustrations

Fig. 1. Urodynamical parameters resembling function of the lower urinary tract: A) basal 

bladder pressure, B) maximal flow rate, C) mean flow rate, D) micturition time, E) bladder 

capacity, F) residual urine volume , G) micturition interval and H) voided volumes .  Statistical 

analyses were performed using One Way ANOVA for A, C, D and F-H. Kruskal-Walls ANOVA 

on Ranks for B and E against T+E2 + vehicle group. *** P= <0.001, *P<0.05, +P=0.065.  Median 

pain response threshold I) measured on study weeks 6, 13 and 18. Statistical significant 

differences ***= P<0.001, **=P<0.01 are against placebo + vehicle group. Data are represented 

as average values and SEM.

Fig. 2. Inflammation in the dorsolateral prostate lobes: Representative images showing 

prostatic acini and the stroma around the acini in A) placebo + vehicle group B) T+E2 + vehicle 

group and C) T+E2 + GGM group. No visible inflammation areas are present in the placebo-

group whereas infiltration of inflammatory cells are present in the T+E2 + vehicle group seen as 

(arrows in the picture) perivascular inflammation (PI), stromal inflammation (SI) and inflamed 

acini (IA). The severity of the prostatic inflammation seen as reduced inflammation areas were 

evident in T+E2 + GGM group (C). Proportions of inflamed areas in D) perivascular, E) 

stromal/periglandular and F) prostate acini in the dorsolateral prostate lobe. The data is shown 

as difference in proportions of three categories of inflammation area counts for each treatment 

group relative to total animal samples (100%) in each treatment group. Statistical significant 

differences shown in figures are against T+E2 + vehicle group. 
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Table 1. Animal weights, organ weights and food and water consumption 

Placebo 
+ veh

T+E2
+veh

T+ E2
+ GGM

P-value
T+E2+veh 

vs. placebo

P-value
T+E2+veh 

vs. 
T+E2+GGM

Start animal 
weight (g)

354 ±4.2 359 ±5.2 354 ±2.7 NS (KW) NS (KW)

End animal
 weight (g)

522 ±6.7 328 ±8.5 324 ±3.0 <0.05 (KW) NS (KW)

Kidney weight (10-1 g) 12.2 ±0.30 16.4 ±0.78 14.9 ±0.57 <0.001(A) NS (A)
Testis weight  (10-1 g) 18.9 ±0.72 8.7 ±0.72 8.5 ±0.48 <0.001(A) NS (A)

Seminal 
Vesicles weight (10-1 g)

2.6 ±0.11 5.9 ±0.28 5.4 ±0.24 <0.05 (KW) NS (KW)

Prostate-urethra
 Complex weight (10-1 g)

11.6 ±0.71 22.5 ±1.22 22.1 ±0.90 <0.0001 (A) NS (A)

Pituitary 
gland weight (10-2 g)

1.1 ±0.04 4.4 ±0.50 3.8 ±0.35 <0.05 (KW) NS (KW)

Bladder weight (10-1 g) 1.5 ±0.11 1.8 ±0.06 1.8 ±0.08 NS 0.069 (A) NS (A)
Diet consumption, 
absolute values (g)

23.4 ±0.36 16.4 ±0.24 17.3 ±0.12 <0.05 (KW) NS (KW)

Relative diet 
consumption/
animal weight (10-3 g/g)

46.3 ±0.91 50.7 ±1.34 53.8 ±0.41 <0.01 (A) 0.05 (A)

Absolut water 
consumption (mL

32.5 ±1.39 32.0 ±1.95 40.2 ±1.80 NS (A) <0.01 (A)

Relative water 
consumption/
animal weight (10-3mL/g)

64.2 ±2.89 97.3 ±4.60 125.0 ±5.80 <0.001 (A) <0.001 (A)

Values are represented as mean and SEM. Statistical analysis using either A= One Way ANOVA or KW= 
Kruskall Wallis ANOVA on Ranks.



Table 2. Correlations between urodynamical, inflammation and pelvic pain 
parameters.

18 wk 
pelvic pain
threshold

Perivascular 
inflammation

Stromal/ 
periglandular 
inflammation

No of 
inflamed 

acini
18 wk pelvic pain -0,477

0,009
-0,570
0,001

-0,517
0,004

Mean bladder pressure NS NS NS NS
Basal bladder pressure -0.436

0.01
0.550
0.002

0.652
0.002

0.649
<0.001

Max.  flow rate 0.661
<0.001

-0.691
<0.001

-0.747
<0.001

-0.721
<0.001

Mean flow rate 0.544
0.001

-0.648
<0.001

-0.673
<0.001

-0.662
<0.001

Micturition time -0.402
0.02

0.582
<0.001

0.553
0.002

0.531
0.003

Bladder capacity NS 0.682
<0.001

0.602
<0.001

     0.600
   <0.001

Residual urine volume -0.392
0.03

0.617
<0.001

0.654
<0.001

0.689
<0.001

Micturition interval NS NS         NS NS
Voided volume -0.409

0.02 NS NS NS

Spearman Rank Order Correlation analysis. Upper values in each cell: Correlation coefficient; lower 
values in each cell: P-values.



Abstract

Galactoglucomannan (GGM) is the main hemicellulose class in wood of coniferous trees 

and could be potentially utilized as a possible health-promoting substance for food and 

pharmaceutical industry. Our aim was to evaluate effects of orally administered GGM-rich 

extract from Norway spruce in a rat model of chronic prostatitis associated with lower urinary 

tract symptoms (LUTS). Prostatic inflammation and LUTS was induced in male rats using 

testosterone and 17β-estradiol exposure for 18 weeks. Rats were treated with 2% GGM 

dissolved in drinking water during weeks 13 to 18. Pelvic pain response, LUT function and 

histopathological evaluation of the prostate were assessed. The results show that hormonal 

exposure induced LUTS seen as decreased urine flow rate, increased bladder pressure, 

voiding times, bladder capacity and residual urine volumes. GGM had positive effects on 

urodynamical parameters by decreasing the basal bladder pressure, increasing the urine 

flow rate and volume, reducing the residual volume and increasing micturition intervals. 

GGM reduced the extent of the hormone exposure-induced prostatic inflammation. Increase 

of pelvic pain induced by hormone exposure was only slightly affected by GGM treatment. 

The results suggest that orally administered GGM may have potential usage for improving 

lower urinary tract function associated with chronic prostatic inflammation.


