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On the Interplay of Direct Topological

Factorizations and Cellular Automata Dynamics

on Beta-shifts

Johan Kopra

Department of Mathematics and Statistics, University of Turku

20014 University of Turku, Finland

Abstract

We consider the range of possible dynamics of cellular automata (CA)
on two-sided beta-shifts Sβ and its relation to direct topological factor-
izations. We show that any reversible CA F : Sβ → Sβ has an almost
equicontinuous direction whenever Sβ is not so�c. This has the corollary
that non-so�c beta-shifts are topologically direct prime, i.e. they are not
conjugate to direct topological factorizations X×Y of two nontrivial sub-
shifts X and Y . We also give a simple criterion to determine whether Snγ
is conjugate to Sn × Sγ for a given integer n ≥ 1 and a given real γ > 1
when Sγ is a subshift of �nite type. When Sγ is strictly so�c, we show
that such a conjugacy is not possible at least when γ is a quadratic Pisot
number of degree 2. We conclude by using direct factorizations to give a
new proof for the classi�cation of reversible multiplication automata on
beta-shifts with integral base and ask whether nontrivial multiplication
automata exist when the base is not an integer.

Keywords: Cellular automata; Beta-shifts; Sensitivity; Direct topological fac-
torizations; Multiplication automata.

1 Introduction

Let X ⊆ AZ be a one-dimensional subshift over a �nite symbol set A. A cellular
automaton (CA) is a function F : X → X de�ned by a local rule, and it endows
the space X with translation invariant dynamics given by local interactions.
It is natural to ask how the structure of the underlying subshift X a�ects the
range of possible topological dynamics that can be achieved by CA on X. One
approach to this is via the framework of directional dynamics of Sablik [29]. This
framework is concerned with the possible space-time diagrams of x ∈ X with
respect to F , in which successive iterations F t(x) are drawn on consecutive rows
(see Figure 1 for a typical space-time diagram of a con�guration with respect
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to the CA which shifts each symbol by one position to the left). Information
cannot cross the dashed gray line in the �gure so we say that the slope of this
line is an almost equicontinuous direction. On the other hand, a slope is called
a sensitive direction if information can cross over every line having that slope.

Figure 1: A space-time diagram of the binary shift map σ. White and black
squares correspond to digits 0 and 1 respectively. The dashed gray line shows
an almost equicontinuous direction.

It has been proven in Theorem 4.13 of [19] that every in�nite transitive so�c
subshift admits a reversible CA which is sensitive in all directions. On the other
hand, Theorem 6.10 of [19] shows that in the class of non-so�c S-gap shifts XS

(all of them are synchronized and many have the speci�cation property) every
reversible CA has an almost equicontinuous direction. It would be interesting
to extend the latter result to other natural classes of subshifts. The classical
study of Aut(X), the group of reversible CA on X, is mostly not related to our
line of inquiry. However, we highlight the result of [7] saying that Aut(X)/ 〈σ〉
is a periodic group if X is a transitive subshift that has subquadratic growth.
This implies for such X that every F ∈ Aut(X) has an almost equicontinuous
direction.

In this paper we consider two-sided beta-shifts, which form a naturally oc-
curring class of mixing coded subshifts. We show in Theorem 4.4 that if Sβ is a
non-so�c beta-shift, then every reversible CA on Sβ has an almost equicontinu-
ous direction. As an application we use this result to show in Theorem 5.1 that
non-so�c beta-shifts are topologically direct prime, i.e. they are not conjugate
to direct topological factorizations X × Y of two nontrivial subshifts X and Y ,
thus answering a problem suggested in the presentation [25].

The proof of Theorem 5.1 relies on the observation that whenever X and
Y are in�nite transitive subshifts, then X × Y has a very simple reversibe CA
with all directions sensitive: it just shifts information into opposite directions
in the X and Y components. Therefore the problem of determining whether
a given subshift is topologically direct prime is closely related to the study
of directional dynamics. In Section 5 we suggest a program of studying direct
topological factorizations of so�c beta-shifts and accompany this suggestion with
some preliminary remarks. In Subsection 5.1 we present a characterization of
integers n ≥ 1 and reals γ > 1 such that Snγ is conjugate to Sn × Sγ in the
case when Sγ is a subshift of �nite type. Such a characterization seems more
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di�cult to �nd in the case when Sγ is strictly so�c. In Subsection 5.2 we show
that Snγ is not conjugate to Sn × Sγ for strictly so�c Sγ at least when γ is a
Pisot number of degree 2.

In Section 6 we take a look at a class of CA called multiplication automata
that are naturally associated to beta-shifts. The classi�cation of all the pos-
sible multiplication automata is previously known on beta-shifts with integral
base [4]. We present an alternative proof of this classi�cation (at least in the
case of reversible multiplication CA) which makes more explicit use of the topo-
logical factorizations of the underlying beta-shift. It would be interesting to
extend this classi�cation to beta-shifts Sβ with nonintegral base.

This paper is an extended version of [18] published in the proceedings of
DLT 2020. Subsection 5.2 and Section 6 are new. The material in Section 6
(with the exception of Example 6.8) has previously appeared in the author's
doctoral dissertation [17].

2 Preliminaries

In this section we recall some preliminaries concerning symbolic dynamics and
topological dynamics in general. Good references to these topics are [20,23].

De�nition 2.1. If X is a compact metrizable topological space and T : X → X
is a continuous map, we say that (X,T ) is a (topological) dynamical system.

When there is no risk of confusion, we may identify the dynamical system
(X,T ) with the underlying space or the underlying map, so we may say that X
is a dynamical system or that T is a dynamical system.

De�nition 2.2. We write ψ : (X,T )→ (Y, S) whenever (X,T ) and (Y, S) are
dynamical systems and ψ : X → Y is a continuous map such that ψ ◦T = S ◦ψ
(this equality is known as the equivariance condition). Then we say that ψ is a
morphism. If ψ is injective, we say that ψ is an embedding. If ψ is surjective,
we say that ψ is a factor map and that (Y, S) is a factor of (X,T ) (via the map
ψ). If ψ is bijective, we say that ψ is a conjugacy and that (X,T ) and (Y, S)
are conjugate (via ψ).

A �nite set A containing at least two elements (letters) is called an alphabet.
In this paper the alphabet usually consists of numbers and thus for n ∈ N+ we
denote Σn = {0, 1, . . . , n − 1}. The set AZ of bi-in�nite sequences (con�gura-
tions) over A is called a full shift. The set AN is the set of one-way in�nite se-
quences over A. Formally any x ∈ AZ (resp. x ∈ AN) is a function Z→ A (resp.
N→ A) and the value of x at i ∈ Z is denoted by x[i]. It contains �nite, right-
in�nite and left-in�nite subsequences denoted by x[i, j] = x[i]x[i + 1] · · ·x[j],
x[i,∞] = x[i]x[i+ 1] · · · and x[−∞, i] = · · ·x[i− 1]x[i]. Occasionally we signify
the symbol at position zero in a con�guration x by a dot as follows:

x = · · ·x[−2]x[−1]x[0].x[1]x[2]x[3] · · · .
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A con�guration x ∈ AZ or x ∈ AN is periodic if there is a p ∈ N+ such that
x[i+ p] = x[i] for all i ∈ Z. Then we may also say that x is p-periodic or that x
has period p. If x is 1-periodic, we call it a constant con�guration. We say that
x is eventually periodic if there are p ∈ N+ and i0 ∈ Z such that x[i+ p] = x[i]
holds for all i ≥ i0.

A subword of x ∈ AZ is any �nite sequence x[i, j] where i, j ∈ Z, and
we interpret the sequence to be empty if j < i. Any �nite sequence w =
w[1]w[2] · · ·w[n] (also the empty sequence, which is denoted by ε), where w[i] ∈
A, is a word over A. Unless we consider a word w as a subword of some
con�guration, we start indexing the symbols of w from 1 as we have done here. If
w 6= ε, we say that w occurs in x at position i if x[i] · · ·x[i+n−1] = w[1] · · ·w[n].
The concatenation of a word or a left-in�nite sequence u with a word or a right-
in�nite sequence v is denoted by uv. A word u is a pre�x of a word or a
right-in�nite sequence x if there is a word or a right-in�nite sequence v such
that x = uv. Similarly, u is a su�x of a word or a left-in�nite sequence x if there
is a word or a left-in�nite sequence v such that x = vu. The set of all words over
A is denoted by A∗, and the set of non-empty words is A+ = A∗\{ε}. The set of
words of length n is denoted by An. For a word w ∈ A∗, |w| denotes its length,
i.e. |w| = n ⇐⇒ w ∈ An. For any word w ∈ A+ we denote by ∞w and w∞

the left- and right-in�nite sequences obtained by in�nite repetitions of the word
w. We denote by wZ ∈ AZ the con�guration de�ned by wZ[in, (i+ 1)n− 1] = w
(where n = |w|) for every i ∈ Z.

Any collection of words L ⊆ A∗ is called a language. For any S ⊆ AZ the
collection of words appearing as subwords of elements of S is the language of S,
denoted by L(S). For n ∈ N we denote Ln(S) = L(S) ∩ An. For any L ⊆ A∗,
the Kleene star of L is

L∗ = {w1 · · ·wn | n ≥ 0, wi ∈ L} ⊆ A∗,

i.e. L∗ is the set of all �nite concatenations of elements of L. If ε /∈ L, de�ne
L+ = L∗ \ {ε} and if ε ∈ L, de�ne L+ = L∗.

To consider topological dynamics on subsets of the full shifts, the sets AZ and
AN are endowed with the product topology (with respect to the discrete topology
on A). These are compact metrizable spaces. The shift map σ : AZ → AZ is
de�ned by σ(x)[i] = x[i + 1] for x ∈ AZ, i ∈ Z, and it is a homeomorphism.
Also in the one-sided case we de�ne σ : AN → AN by σ(x)[i] = x[i + 1]. Any
topologically closed nonempty subset X ⊆ AZ such that σ(X) = X is called
a subshift. A subshift X equipped with the map σ forms a dynamical system
and the elements of X can also be called points. Any w ∈ L(X) \ ε and i ∈ Z
determine a cylinder of X

CylX(w, i) = {x ∈ X | w occurs in x at position i}.

De�nition 2.3. We say that a subshift X is transitive (or irreducible in the
terminology of [23]) if for all words u, v ∈ L(X) there is w ∈ L(X) such that
uwv ∈ L(X). We say that X is mixing if for all u, v ∈ L(X) there is N ∈ N
such that for all n ≥ N there is w ∈ Ln(X) such that uwv ∈ L(X).
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De�nition 2.4. Let X ⊆ AZ and Y ⊆ BZ be subshifts. We say that a map
F : X → Y is a sliding block code fromX to Y (with memorym and anticipation
a for integers m ≤ a) if there exists a local rule f : Aa−m+1 → B such that
F (x)[i] = f(x[i+m], . . . , x[i], . . . , x[i+a]). If X = Y , we say that F is a cellular
automaton (CA). If we can choose m and a so that −m = a = r ≥ 0, we say
that F is a radius-r CA.

Note that both memory and anticipation can be either positive or negative.
Note also that if F has memory m and anticipation a with the associated local
rule f : Aa−m+1 → A, then F is also a radius-r CA for r = max{|m|, |a|}, with
possibly a di�erent local rule f ′ : A2r+1 → A.

The following observation of [12] characterizes sliding block codes as the
class of structure preserving transformations between subshifts. In particular,
there is a bijective sliding block code from one subshift to another if and only
if the two subshifts are conjugate.

Theorem 2.5 (Curtis-Hedlund-Lyndon). A map F : X → Y between subshifts
X and Y is a morphism between dynamical systems (X,σ) and (Y, σ) if and
only if it is a sliding block code.

Bijective CA are called reversible. It is known that the inverse map of a
reversible CA is also a CA. We denote by End(X) the monoid of CA on X and
by Aut(X) the group of reversible CA on X (the binary operation is function
composition).

The notions of almost equicontinuity and sensitivity can be de�ned for gen-
eral topological dynamical systems. We omit the topological de�nitions, because
for cellular automata on transitive subshifts there are combinatorial character-
izations for these notions using blocking words. We present these alternative
characterizations below.

De�nition 2.6. Let F : X → X be a radius-r CA and w ∈ L(X). We say that
w is a blocking word if there is an integer e with |w| ≥ e ≥ r+ 1 and an integer
p ∈ [0, |w| − e] such that

∀x, y ∈ CylX(w, 0),∀n ∈ N, Fn(x)[p, p+ e− 1] = Fn(y)[p, p+ e− 1].

The following is proved in Proposition 2.1 of [29].

Proposition 2.7. If X is a transitive subshift and F : X → X is a CA, then
F is almost equicontinuous if and only if it has a blocking word.

We say that a CA on a transitive subshift is sensitive if it is not almost
equicontinuous. The notion of sensitivity is re�ned by Sablik's framework of
directional dynamics [29].

De�nition 2.8. Let F : X → X be a cellular automaton and let p, q ∈ Z be
coprime integers, q > 0. Then p/q is a sensitive direction of F if σp ◦ F q is
sensitive. Similarly, p/q is an almost equicontinuous direction of F if σp ◦ F q is
almost equicontinuous.
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As indicated in the introduction, this de�nition is best understood via the
space-time diagram of x ∈ X with respect to F , in which successive iterations
F t(x) are drawn on consecutive rows (see Figure 1 for a typical space-time
diagram of a con�guration with respect to the shift map). By de�nition −1 =
(−1)/1 is an almost equicontinuous direction of σ : AZ → AZ because σ−1 ◦σ =
Id is almost equicontinuous. This is directly visible in the space-time diagram
of Figure 1, because it looks like the space-time diagram of the identity map
when it is followed along the dashed line. Note that the slope of the dashed
line is equal to −1 with respect to the vertical axis extending downwards in the
diagram.

The notions of subshifts of �nite type (SFT) and so�c subshifts are well
known and can be found in Chapters 2 and 3 of [23]. If a so�c subshift is not
an SFT, we say that it is strictly so�c. Any square matrix A with nonnegative
entries is an adjacency matrix of a directed graph with multiple edges. The set of
all bi-in�nite sequences of edges forming valid paths is an edge SFT (associated
to A), whose alphabet is the set of edges.

Some other classes of subshifts relevant to the study of beta-shifts are the
following.

De�nition 2.9. Given a subshift X, we say that a word w ∈ L(X) is synchro-
nizing if

∀u, v ∈ L(X) : uw,wv ∈ L(X) =⇒ uwv ∈ L(X).

We say that a transitive subshift X is synchronized if L(X) contains a synchro-
nizing word.

De�nition 2.10. A language L ⊆ A+ is a code if for all distinct u, v ∈ L it
holds that u is not a pre�x of v. A subshift X ⊆ AZ is a coded subshift (given
by a code L) if L(X) is the set of all subwords of elements of L∗.

All transitive so�c shifts are syncronized and all synchronized subshifts are
coded [8].

3 Beta-shifts

We recall some preliminaries on beta-shifts from Blanchard's paper [2] and from
Lothaire's book [24].

For ξ ∈ R we denote Frac (ξ) = ξ − bξc, for example Frac (1.2) = 0.2 and
Frac (1) = 0.

De�nition 3.1. For every real number β > 1 we de�ne a map Tβ : I → I,
where I = [0, 1] and Tβ(ξ) = Frac (βξ) for every ξ ∈ I.

De�nition 3.2. The β-expansion of a number ξ ∈ I is the sequence d(ξ, β) ∈
ΣN
bβc+1 where d(ξ, β)[i] =

⌊
βT i(ξ)

⌋
for i ∈ N.

Denote d(1, β) = d(β). By this convention d(2) = 2000 . . . If d(β) ends in
in�nitely many zeros, i.e. d(β) = d0 · · · dm0∞ for dm 6= 0, we say that d(β) is
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�nite, write d(β) = d0 · · · dm, and de�ne d∗(β) = (d0 · · · (dm − 1))∞. Otherwise
we let d∗(β) = d(β). Denote by Dβ the set of β-expansions of numbers from
[0, 1). It is the set of all in�nite concatenations of words from the code

Yβ = {d0d1 · · · dn−1b | n ∈ N, 0 ≤ b < dn}

where d(β) = d0d1d2 . . . . For example, Y2 = {0, 1}. Let Sβ be the coded subshift
given by the code Yβ . Since Sβ is coded, it also has a natural representation by
a deterministic automaton (not necessarily �nite) [3,30]. These representations
allow us to make pumping arguments similar to those that occur in the study
of so�c shifts and regular languages.

Lemma 3.3. The subshift Sβ is mixing.

Proof. Any u, v ∈ L(Sβ) are subwords of u1 · · ·un and v1 · · · vm respectively for
some n,m ∈ N+ and ui, vi ∈ Yβ . Because the code Yβ always contains the word
0, it follows that u1 · · ·un0iv1 · · · vm ∈ L(Sβ) for all i ∈ N and Sβ is mixing.

The subshift Sβ is so�c if and only if d(β) is eventually periodic and it is an
SFT if and only if d(β) is �nite.

There is a natural lexicographical ordering on ΣN
n which we denote by < and

≤. Using this we can alternatively characterize Sβ as

Sβ = {x ∈ ΣZ
bβc | x[i,∞] ≤ d∗(β) for all i ∈ Z}.

We call Sβ a beta-shift (with base β). When β > 1 is an integer, the equality
Sβ = ΣZ

β holds.

4 CA Dynamics on Beta-shifts

In this section we study the topological dynamics of reversible CA on beta-shifts,
and more precisely the possibility of them having no almost equicontinuous
directions. By Theorem 4.13 of [19] every in�nite transitive so�c subshift admits
a reversible CA which is sensitive in all directions, and in particular this holds
for so�c beta-shifts. In this section we see that this result does not extend to
the class of non-so�c beta-shifts.

We begin with a proposition showing that a CA on a non-so�c beta-shift has
to ��x the expansion of one in the preimage� in some sense. For that we also
need the following lemma.

Lemma 4.1. If x ∈ Sβ and N ∈ N is such that x[i,∞] 6= d(β) for all i ≥ N ,
then x[N,∞] = w1w2w3 . . . for some wj ∈ Yβ .

Proof. Because x[N,∞] < d(β), it follows that x[N,∞] has a pre�x of the form
w1 = d0d1 · · · dn−1b ∈ Yβ for some n ∈ N, b < dn. We can write x[N,∞] = w1x1
for some x1 ∈ ΣN

bβc. Because x1 is a su�x of x, then again from our assumption

it follows that x1 < d(β) and we can �nd a w2 ∈ Yβ which is a pre�x of x1. For
all j ∈ Z we similarly we �nd wj ∈ Yβ such that x[N,∞] = w1w2w3 . . . .
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Proposition 4.2. Let β > 1 be such that Sβ is not so�c, let F ∈ End(Sβ), let
x ∈ Sβ be such that x[0,∞] = d(β) and let y ∈ F−1(x). Then there is a unique
i ∈ Z such that y[i,∞] = d(β). Moreover, i does not depend on the choice of x
or y.

Proof. Let r ∈ N be such that F is a radius-r CA.
We �rst claim that i does not depend on the choice of x or y when it exists.

To see this, assume to the contrary that for j ∈ {1, 2} there exist xj ∈ Sβ with
xj [0,∞] = d(β), yj ∈ F−1(xj) and ij ∈ Z such that i1 < i2 and y1[i1,∞] =
d(β) = y2[i2,∞]. Then in particular for M = max{i2 − i1, i2} it holds that
y2[M,∞] = y2[M − i2 + i2,∞] = y1[M − i2 + i1,∞] and

d(β)[M − i2 + i1 + r,∞] = x1[M − i2 + i1 + r,∞] = F (y1)[M − i2 + i1 + r,∞]

= F (y2)[M + r,∞] = x2[M + r,∞] = d(β)[M + r,∞].

Then d(β) would be eventually periodic, contradicting the assumption that Sβ
is not so�c.

For the other claim, let us assume that for some x and y as in the assumption
of the proposition there is no i ∈ Z such that y[i,∞] = d(β). By Lemma 4.1 we
can write y[−r,∞] = w1w2w3 · · · for some wi ∈ Yβ .

Let ri be such that y[−r, ri] = w1 · · ·wi for all i ∈ N. Fix some j, k ∈ N such
that 0 ≤ rj < rk, |rk − rj | ≥ 2r and y[rj − r, rj + r] = y[rk − r, rk + r]. Because
x is not eventually periodic, it follows that x[rj + 1,∞] 6= x[rk + 1,∞].

Assume �rst that x[rj +1,∞] < x[rk+1,∞]. Because Sβ is coded, there is a
con�guration z ∈ Sβ such that z[−r,∞] = w1 · · ·wjwk+1wk+2 · · · , i.e. this su�x
can be found by removing the word wj+1 · · ·wk from the middle of y[−r,∞].
Then F (z) ∈ Sβ but F (z)[0,∞] = x[0, rj ]x[rk + 1,∞] > x[0, rj ]x[rj + 1,∞] =
d(β) contradicting one of the characterizations of Sβ .

Assume then alternatively that x[rj + 1,∞] > x[rk + 1,∞]. Because Sβ is
coded, there is a con�guration z ∈ Sβ such that

z[−r,∞] = w1 · · ·wj(wj+1 · · ·wk)(wj+1 · · ·wk)wk+1wk+2 · · · ,

i.e. this su�x can be found by repeating the occurrence of the word wj+1 · · ·wk
in the middle of y[−r,∞]. Then F (z) ∈ Sβ but

F (z)[0,∞] = x[0, rj ]x[rj + 1, rk]x[rj + 1, rk]x[rk + 1,∞]

= x[0, rj ]x[rj + 1, rk]x[rj + 1,∞] > x[0, rj ]x[rj + 1, rk]x[rk + 1,∞] = d(β)

contradicting again the characterization of Sβ .

To apply the previous proposition for a non-so�c shift Sβ and F ∈ End(Sβ),
there must exist at least some x, y ∈ Sβ such that x[0,∞] = d(β) and y ∈
F−1(x). This happens at least when F is surjective, in which case we take the
number i ∈ Z of the previous proposition and say that the intrinsic shift of F
is equal to i. If the intrinsic shift of F is equal to 0, we say that F is shiftless.

In the class of non-synchronized beta-shifts we get a very strong result on
surjective CA: they are all shift maps.
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Theorem 4.3. If Sβ is not synchronized, then all surjective CA in End(Sβ) are
powers of the shift map.

Proof. Let F ∈ End(Sβ) be an arbitrary surjective CA and let r ∈ N be some
radius of F . We may assume without loss of generality (by composing F with
a suitable power of the shift if necessary) that F is shiftless. We prove that
F = Id.

Assume to the contrary that F 6= Id, so there is x ∈ Sβ such that F (x)[0] 6=
x[0]. Let e = ∞0.d(β) and let z ∈ F−1(e) be arbitrary, so in particular z[0,∞] =
d(β) by Proposition 4.2. Since Sβ is not synchronized, it follows that every
word of L(Sβ) occurs in d(β) (as explained by Kwietniak in [21], attributed
to Bertrand-Mathis [1]). In particular it is possible to choose i ≥ r + 1 such
that σi(z)[−r, r] = x[−r, r] and F (x)[0] = F (σi(z))[0] = σi(z)[0] = x[0], a
contradiction.

Next we consider only reversible CA. They do not have to be shift maps in
the class of general non-so�c beta-shifts, and in fact the group Aut(X) contains
a copy of the free product of all �nite groups whenever X is an in�nite synchro-
nized subshift by Theorem 2.17 of [9]. Nevertheless Aut(Sβ) is constrained in
the sense of directional dynamics.

Theorem 4.4. If Sβ is not so�c and F ∈ Aut(Sβ) is shiftless then F admits a
blocking word. In particular all elements of Aut(Sβ) have an almost equicon-
tinuous direction.

Proof. Let r ∈ N+ be a radius of both F and F−1. Since d(β) is not eventually
periodic, it is easy to see (and is one formulation of the Morse-Hedlund theorem,
see e.g. Theorem 7.3 of [27]) that there is a word u ∈ Σ3r

bβc and symbols a < b

such that both ua and ub are subwords of d(β). Let p = p′ub (p, p′ ∈ L(Sβ)) be
some pre�x of d(β) ending in ub. We claim that p is blocking. More precisely we
will show that if x ∈ Sβ is such that x[0, |p| − 1] = p then F t(x)[0, |p| − 2] = p′u
for all t ∈ N.

Assume to the contrary that t ∈ N is the minimal number for which we have
F t(x)[0, |p| − 2] 6= p′u. We can �nd w, v, v′ ∈ L(Sβ) and c, d ∈ Σbβc (c < d)
so that u = wdv, |w| ≥ 2r (recall that |u| = 3r) and F t(x)[0, |p| − 2] = p′wcv′.
Indeed, F−1 is shiftless because F is, and therefore the pre�x p′w still remains
unchanged in F t(x)[0,∞].

Now we note that x could have been chosen so that some of its su�xes is
equal to 0∞ and in particular under this choice no su�x of F t(x) is equal to
d(β). Therefore, by Lemma 4.1 we can represent F t(x)[0,∞] = w1w2w3 . . .
where wi ∈ Yβ for all i ∈ N and in fact w1 = p′wc.

Now let q = q′ua (q, q′ ∈ L(Sβ)) be some pre�x of d(β) ending in ua. Then
also q′wd is a pre�x of d(β) and thus q′wc ∈ Yβ . Because Sβ is a coded subshift,
there is a con�guration y ∈ Sβ such that y[0,∞] = (q′wc)w2w3 . . . . For such y it
holds that F−t(y) ∈ Sβ but F−t(y)[0,∞] = q′(ub)x[|p|,∞] > d(β) contradicting
the characterization of Sβ .
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5 Topological Direct Primeness of Beta-shifts

We recall the terminology of Meyerovitch [26]. A direct topological factorization
of a subshift X is a subshift X1 × · · · ×Xn which is conjugate to X and where
each Xi is a subshift. We also say that each subshift Xi is a direct factor of X.
The subshift X is topologically direct prime if it does not admit a non-trivial
direct factorization, i.e. if every direct factorization contains one copy of X and
the other Xi in the factorization contain just one point.

Non-so�c beta-shifts turn out to be examples of topologically direct prime
dynamical systems. This is an application of Theorem 4.4.

Theorem 5.1. If Sβ is a non-so�c beta-shift then it is topologically direct
prime.

Proof. Assume to the contrary that there is a topological conjugacy φ : Sβ →
X × Y where X and Y are non-trivial direct factors of Sβ . The subshifts X
and Y are mixing because they are factors of the subshift Sβ which is mixing by
Lemma 3.3, and in particular both of them are in�nite, because a mixing �nite
subshift can only contain one point.

De�ne a reversible CA F : X × Y → X × Y by F (x, y) = (σ(x), σ−1(y)) for
all x ∈ X, y ∈ Y . Because X and Y are in�nite, it follows that F has no almost
equicontinuous directions, i.e. σr ◦ F s is sensitive for all coprime r and s such
that s > 0. Then de�ne G = φ−1 ◦ F ◦ φ : Sβ → Sβ . The map G is a reversible
CA on Sβ and furthermore (Sβ , G) and (X×Y, F ) are conjugate via the map φ.
By Theorem 4.4 the CA G has an almost equicontinuous direction, so we can
�x coprime r and s such that s > 0 for which σr ◦Gs is almost equicontinuous.
But σr ◦ Gs is conjugate to σr ◦ F s via the map φ, so σr ◦ F s is also almost
equicontinuous, a contradiction.

In general determining whether a given subshift is topologically direct prime
or not seems to be a di�cult problem. Lind gives su�cient conditions in [22] for
SFTs based on their entropies: for example any mixing SFT with entropy log p
for a prime number p is topologically direct prime. The paper [26] contains
results on multidimensional full shifts, multidimensional 3-colored chessboard
shifts and p-Dyck shifts with p a prime number.

In the class of beta-shifts the question of topological direct primeness remains
open in a countable number of cases.

Problem 5.2. Characterize the topologically direct prime so�c beta-shifts.

Example 5.3. If n > 1 is an integer, then Sn = ΣZ
n is topologically direct

prime if and only if n is a prime number. Namely, if n = pq for integers p, q ≥ 2,
then Sn is easily seen to be conjugate to Sp × Sq via a coordinatewise bijective
symbol map (just map (a1, a0) ∈ Σp × Σq to a1q + a0 ∈ Σn). The case when
n = p is a prime number follows by Lind's result because the entropy of ΣZ

p is
log p.
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In this example the existence of a direct factorization is characterized by
the existence of direct factorization into beta-shifts with integral base. There-
fore, considering the following problem might be a good point to start with
Problem 5.2.

Problem 5.4. Characterize the numbers n, γ > 1 such that n is an integer and
Snγ is conjugate to Sn × Sγ .

5.1 SFT beta-shifts

In this subsection, we consider Problem 5.4 in the case when Sγ is an SFT. We
start with a de�nition and a lemma stated in [2].

De�nition 5.5. Let n > 1 be an integer and w ∈ Σ∗n. We say that w is
lexicographically greater than all its shifts if w0∞ > σi(w0∞) for every i > 0.

Lemma 5.6 (Blanchard, [2]). Sβ is an SFT if and only if β > 1 is the unique
positive solution of some equation xd = ad−1x

d−1 + · · · + a0 where d ≥ 1,
ad−1, a0 ≥ 1 and ai ∈ N such that ad−1 · · · a0 is lexicographically greater than
all its shifts. Then d(β) = ad−1 · · · a0.

Proof. The polynomial equation is equivalent to 1 = ad−1x
−1 + · · · + a0x

−d,
which clearly has a unique positive solution. If β satis�es such an equation then
d(β) = ad−1 · · · a0 and Sβ is an SFT. On the other hand, if Sβ is an SFT, then
d(β) takes the form of a word ad−1 · · · a0 which is lexicographically greater than
all its shifts and β satis�es 1 = ad−1x

−1 + · · ·+ a0x
−d.

We also make the following simple observation.

Lemma 5.7. If the equation xd = ad−1x
d−1 + · · ·+ a0 has roots γ1, γ2, . . . , γd

(listed with multiplicity), then yd = nad−1y
d−1+· · ·+nda0 has roots nγ1, nγ2, . . . , nγd

(listed with multiplicity).

Proof. By multiplying both sides of xd = ad−1x
d−1 + · · · + a0 by nd and by

substituting y = nx we see that the roots of yd = nad−1y
d−1 + · · · + nda0 are

nγi. Because multiplying
∏
i(x− γi) = 0 by nd yields

∏
i(y − nγi) = 0, we also

see that the multiplicities of the roots γi and nγi are the same in their respective
equations.

For the following we also recall some facts on zeta functions. The zeta
function ζX(t) of a subshift X is a formal power series that encodes information
about the number of periodic con�gurations in X and it is a conjugacy invariant
of X (for precise de�nitions see Section 6.4 of [23]). Every SFT X is conjugate
to an edge SFT associated to a square matrix A. Let I be an index set and
let {µi ∈ C \ {0} | i ∈ I} be the collection of non-zero eigenvalues of A with
multiplicities: it is called the non-zero spectrum of X. It is known that then
ζX(t) =

∏
i∈I(1−µit)−1. The number of p-periodic con�gurations in X is equal

to
∑
i∈I µ

p
i for p ∈ N+. If Y is also an SFT with ζY (t) =

∏
j∈J(1− νjt)−1, then

the zeta function of X × Y is ζX(t)⊗ ζY (t) =
∏
i∈I,j∈J(1− µiνjt)−1 [22].
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Theorem 5.8. Let Sγ be an SFT with γ the unique positive solution of some
equation xd = ad−1x

d−1 + · · · + a0 where d ≥ 1, ad−1, a0 ≥ 1 and ai ≥ 0
such that ad−1 · · · a0 is lexicographically greater than all its shifts. If n ≥ 2 is
an integer such that also (nad−1) · · · (nda0) is lexicographically greater than all
its shifts, then Snγ is topologically conjugate to Sn × Sγ . The converse also
holds: if (nad−1) · · · (nda0) is not lexicographically greater than all its shifts,
then either Snγ is not an SFT or Snγ and Sn×Sγ have di�erent zeta functions.
In particular they are not conjugate.

Proof. We have d(γ) = ad−1 · · · a0. The roots of xd = ad−1x
d−1 + · · · + a0 are

γ1 = γ, γ2, . . . , γd (listed with multiplicity). By Lemma 5.7 the roots of yd =
nad−1y

d−1 + · · · + nda0 are nγi (listed with multiplicity) and nγ is the unique
positive solution. If (nad−1) · · · (nda0) is lexicographically greater than all its
shifts, then Snγ is an SFT with d(nγ) = nad−1 · · ·nda0. By Propositions 4.5
and 4.7 of [13] the shifts Sγ and Snγ are conjugate to the edge shifts XC and
XB respectively given by the matrices

C =


ad−1 1 0 · · · 0
ad−2 0 1 · · · 0
...

...
...

...
a0 0 0 · · · 0

 B =


nad−1 1 0 · · · 0
n2ad−2 0 1 · · · 0

...
...

...
...

nda0 0 0 · · · 0

 .

They are also the companion matrices of the polynomials xd−ad−1xd−1−· · ·−a0
and yd − nad−1y

d−1 − · · · − nda0, so the eigenvalues are the roots of these
polynomials and the zeta functions of Sγ and Snγ are

ζXC (t) =
∏
i

(1− γit)−1 and ζXB (t) =
∏
i

(1− nγit)−1.

In any case ζSn = (1 − nt)−1, so the zeta function of X = Sn × Sγ is
ζX(t) =

∏
i(1− nγit)−1, which is equal to ζXB .

We will construct a conjugacy between Sn × XC and XB . We will choose
the labels of the edges in XC and XB as in Figures 2 and 3. The labels in the
�gures range according to 0 ≤ ij < n and 0 ≤ kj < ad−j for 1 ≤ j ≤ d.

The labeling has been chosen in a way that suggests the correct choice of
the reversible sliding block code φ : Sn × XC → XB . For any x ∈ Sn × XC

we make the usual identi�cation x = (x1, x2) where x1 ∈ Sn, x2 ∈ XC and we
denote by π1(x) = x1, π2(x) = x2 the projecting maps. Then φ is de�ned by

φ(x)[i] =

 ∗j when π2(x)[i] = ∗j ,
(i1, i2, . . . , ij , kj) when π2(x)[i] = (j, kj)

and π1(x)[i− (j − 1), i] = i1i2 · · · ij

More concretely, any con�guration s ∈ Sn × XC can be represented as a bi-
in�nite concatenation of words x = · · ·w−2w−1w0w1w2 · · · such that for each
k ∈ Z the word π2(wk) is of the form ∗1 ∗2 · · · ∗j−1 (j, kj) for some 1 ≤ j ≤ d

12



1 2 · · · d

(1, k1)
∗1

(2, k2)

∗2 ∗d−1

(d, kd)

Figure 2: The choice of labels for the graph of XC .

1 2 · · · d

(i1, k1)
∗1

(i1, i2, k2)

∗2 ∗d−1

(i1, . . . , id, kd)

Figure 3: The choice of labels for the graph of XB .

and 0 ≤ kj ≤ n. If π1(wk) = i1i2 · · · ij and wk occurs in x at position i− (j−1),
then φ(x)[i− (j − 1), i] = ∗1 ∗2 · · · ∗j−1 (i1, i2, · · · , ij , kj). Essentially the map φ
just deposits all the information in π1(wk) to the far right in φ(x)[i− (j− 1), i].
Clearly this map is reversible.

For the converse, assume that the word (nad−1) · · · (nda0) is not lexico-
graphically greater than all its shifts and that Snγ is an SFT. Then nγ is the
unique positive solution of some equation xe = be−1x

e−1 + · · ·+ b0 where e ≥ 1,
be−1, b0 ≥ 1 and bi ≥ 0 such that be−1 · · · b0 is lexicographically greater than
all its shifts. As above, Snγ is conjugate to an edge shift Y given by a matrix
with eigenvalues β1, β2, . . . , βe which are also the roots of the corresponding
polynomial. By our assumption the polynomials xe − be−1xe−1 − · · · − b0 and
yd − nad−1yd−1 − · · · − nda0 are di�erent, so they have di�erent sets of roots
(with multiplicities taken into account) and

ζY (t) =
∏
j

(1− βit)−1 6=
∏
i

(1− nγit)−1 = ζX(t),

because C[t] is a unique factorization domain.

We conclude this subsection with an example concerning an SFT beta-shift
Sβ1β2

where the assumption of either β1 or β2 being an integer is dropped.
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Example 5.9. A beta-shift Sγ2 can be topologically direct prime even if Sγ
and Sγ2 are SFTs (and then in particular Sγ2 is not conjugate to Sγ × Sγ).
Denote by γ the unique positive root of x3 − x2 − x − 1. By Lemma 5.6 we
have d(γ) = 111 and in particular Sγ is an SFT. Denote β = γ2. Its minimal
polynomial is x3 − 3x2 − x− 1 and by Lemma 5.6 d(β) = 311, so Sβ is an SFT

and it is conjugate to the edge SFT given by the matrix A =
(

3 1 0
1 0 1
1 0 0

)
. It has

three distinct eigenvalues β0 = β, β1 and β2.
We claim that Sβ is topologically direct prime. To see this, assume to

the contrary that Sβ is topologically conjugate to X × Y where X and Y are
nontrivial direct factors for Sβ . Since Sβ is an SFT and mixing by Lemma 3.3,
it follows from Proposition 6 of [22] that X and Y are mixing SFTs and in
particular they are in�nite. The zeta functions of X and Y are of the form

ζX(t) =
∏
i

(1− µit)−1 and ζY (t) =
∏
j

(1− νjt)−1

for some µi, νj ∈ C \ {0}. The zeta function of Sβ is

ζSβ (t) = (1− βt)−1(1− β1t)−1(1− β2t)−1 =
∏
i,j

(1− µiνjt)−1.

Because C[t] is a unique factorization domain and because X and Y are non-
trivial SFTs, we may assume without loss of generality that ζX(t) = (1− µt)−1
and ζY (t) = (1 − ν1t)−1(1 − ν2t)−1(1 − ν3t)−1 for some µ, ν1, ν2, ν3 ∈ C \ {0}.
The quantities µ and ν1 + ν2 + ν3 are the numbers of 1-periodic points of X
and Y respectively and thus the number of 1-periodic points of Sβ is equal to
µ(ν1 + ν2 + ν3) = 3 where µ and ν1 + ν2 + ν3 are nonnegative integers. In
particular µ ∈ {1, 3}.

Assume �rst that µ = 1. Therefore X has the same zeta function as the full
shift over the one letter alphabet and X has just one periodic point. As a mixing
SFT X has periodic points dense so X only contains one point, contradicting
the nontriviality of X.

Assume then that µ = 3. Therefore X has the same zeta function as ΣZ
3 and

X has precisely 3n n-periodic points for all n ∈ N+. In particular the number
of 2-periodic points of Sβ is divisible by 32 = 9. On the other hand the number
of 2-periodic points of Sβ is equal to Tr(A2) = 11, a contradiction.

5.2 Some strictly so�c beta-shifts

Problem 5.4 remains open in the case when Sγ is strictly so�c. In this subsection
we make some progress in the strictly so�c case.

We begin with a proposition that relates the fractional part of γ to the
possibility of a conjugacy between Snγ and Sn × Sγ .

Proposition 5.10. Let γ > 1 and let n > 1 be an integer. If Frac (γ) ≥ 1
n ,

then Snγ has more constant con�gurations than Sn × Sγ . In particular, Snγ is
not conjugate to Sn × Sγ .
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Proof. We note that

bnγc = bn(bγc+ Frac (γ))c ≥ bn(bγc+
1

n
)c = nbγc+ 1 > nbγc.

The left hand side is the number of constant con�gurations of Snγ and the right
hand side is the number of constant con�gurations of Sn × Sγ .

The main result of this subsection is stated in terms of algebraic properties
of γ. We �rst present the relevant de�nitions.

De�nition 5.11. A number α is an algebraic integer of degree n if it is a root
of a monic polynomial f(x) with integer coe�cients that is irreducible over Q
(the minimal polynomial of α). The other roots of f(x) are called conjugates
of α. An algebraic integer α > 1 is a Perron number if all its conjugates have
absolute value strictly less than α and it is a Pisot number if all its conjugates
have absolute value strictly less than one.

It is known that if β is a Pisot number then Sβ is so�c, and if Sβ is so�c
then β is a Perron number. A full characterization of so�c beta-shifts Sβ based
on the algebraic properties of β is not known.

Lemma 5.12 (Lothaire, [10], Remark 7.2.23). If β > 1 has a real conjugate
strictly greater than 1, then Sβ is not so�c.

Lemma 5.13 (Frougny and Solomyak, [10]). The only Pisot numbers of de-
gree 2 are the maximal positive roots of the following polynomials with integer
coe�cients:

x2 − ax− b with a ≥ b ≥ 1 and

x2 − ax− b with a ≥ 3 and − a+ 2 ≤ b ≤ −1.

Lemma 5.14. Let γ = γ1 > 1 be a Pisot number of degree 2 with a conjugate
γ2. If Sγ is strictly so�c, then γ2 > 0.

Proof. Let x2 − ax − b be the minimal polynomial of γ. It is not possible
that a ≥ b ≥ 1, because then Sγ would be an SFT by Lemma 5.6. Then by
Lemma 5.13 we have that a ≥ 3 and b ≤ −1. Because γ1γ2 = −b ≥ 1 and
γ1 > 1, it follows that γ2 > 0.

Theorem 5.15. Let γ = γ1 > 1 be a Pisot number of degree 2 with conjugate
γ2 and let n > 1 be an integer. If Sγ is strictly so�c, then one of the following
hold.

• If the fractional part of γ1 is greater than 1/2, then Snγ has more constant
con�gurations than Sn × Sγ .

• If the fractional part of γ2 is greater than 1/2, then Snγ is not so�c.

In particular, Snγ is not conjugate to Sn × Sγ for any choice of n.
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Proof. Let γ1 = γ and let γ2 be the conjugate of γ1. Since Sγ is strictly so�c,
then γ2 > 0 by Lemma 5.14. If the minimal polynomial of γ is of the form
x2 − ax− b for a, b ∈ Z, then a = γ1 + γ2 is an integer and precisely one of the
numbers γ and γ2 has fractional part greater than 1/2. If Frac (γ) ≥ 1

2 , the �rst
bullet point follows from Proposition 5.10.

For the second case we note that the conjugate of nγ1 is equal to nγ2, because
nγi (i ∈ {1, 2}) are roots of the polynomial x2 − (na)x − n2b by Lemma 5.7.
Because the fractional part of the positive number γ2 is greater than 1/2, it
follows in particular that nγ2 > 1. Thus nγ is a Perron number with a real
conjugate > 1, so by Lemma 5.12 the subshift Snγ is not so�c.

6 Factorizations and Multiplication Automata

Further motivation to study direct factorizations of beta-shifts into other beta-
shifts comes from the so-called multiplication automata, which have been previ-
ously studied and applied in e.g. [4,5,11,15,16,28]. For any digit set Σn, when
x ∈ ΣZ

n is such that x[i] = 0 for all i < N for some integer N , we de�ne

realβ(x) =

∞∑
i=−∞

x[−i]βi.

Then, for α > 0 and β > 1, we denote by Πα,β : Sβ → Sβ the cellular automaton
such that realβ(Πα,β(x)) = α realβ(x) for every con�guration x ∈ Sβ such that
x[i] = 0 for all su�ciently small i, whenever such an automaton exists. We say
that Πα,β multiplies by α in base β.

In the case when β = n is an integer and n = pq for integers p, q ≥ 2, it is
known that the CA Πp,n exists. Indeed, as shown in [15], it is a memory 0 and
anticipation 1 sliding block code with the local rule gp,n : Σn×Σn → Σn de�ned
as follows. Digits a, b ∈ Σn are represented as a = a1q + a0 and b = b1q + b0,
where a0, b0 ∈ Σq and a1, b1 ∈ Σp: such representations always exist and they
are unique. Then

gp,n(a, b) = gp,n(a1q + a0, b1q + b0) = a0p+ b1.

The construction of Πp,n makes use of a direct topological factorization of
Sn into Sp × Sq in an essential way, which we elaborate in the following.

De�nition 6.1. A partial shift on a subshift X1 ×X2 is a CA τ : X1 ×X2 →
X1 × X2 de�ned by τ(x) = (σ(x1), x2) for all x = (x1, x2) where x1 ∈ X1

and x2 ∈ X2. More generally, if ψ : X → X1 × X2 is a conjugacy, we call
ψ−1 ◦ τ ◦ ψ : X → X a partial shift on the subshift X.

De�nition 6.2. A CA F : AZ → AZ is a partitioned CA if F = ρ ◦ τ where
ρ : AZ → AZ is a coordinatewise symbol permutation and τ is a partial shift on
AZ.
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On the alphabets Σn consisting of digits we de�ne a collection of canonical
partial shifts. For any p ∈ N dividing n let q ∈ N such that pq = n. Then we
can de�ne the bijection π : Σn → Σp×Σq by π(a) = (a1, a0) where a = a1q+a0
is the unique way to write a ∈ Σn so that a1 ∈ Σp and a0 ∈ Σq. If τ is de�ned
on (Σp × Σq)

Z by τ(x1, x2) = (σ(x1), x2) and if π is extended naturally to the
set ΣZ

n, we say that the map τp = π−1 ◦ τ ◦ π : ΣZ
n → ΣZ

n is the canonical p-shift
over n.

It is now easily seen, as noted in [15], that under this de�nition Πp,n : ΣZ
n →

ΣZ
n is a partitioned CA when p is a factor of n. Namely, if q ∈ N is such that

pq = n and if ρ : Σpq → Σpq is the map ρ(a1q + a0) = a0p + a1, we see by
comparison to the de�nition of the local rule gp,n that Πp,n = ρ ◦ τp.

Since Πp,n is a partitioned CA, it is reversible and has an inverse Π1/p,n. By
composing these types of automata for di�erent choices of p we see that Πp/q,n

exists whenever p and q are products of prime factors of n.
Multiplication automata Πα,n do not exist for all α > 0. Consider for exam-

ple multiplication by 3 in base 10 and assume that the hypothetical CA Π3,10

had radius r ≥ 1. If ξ1 = 0.333 · · · 33 ∈ R+ and ξ2 = 0.333 · · · 34 ∈ R+ are
numbers with r consecutive occurrences of the digit 3 in their base-10 represen-
tations, then 3 · ξ1 < 1 and 1 < 3 · ξ2 < 2, so the base-10 representations of 3 · ξ1
and 3 · ξ2 di�er to the left of the decimal point, contradicting the assumption
that the radius of Π3,10 is r. This is the main idea behind the proof of the
following theorem from [4].

Theorem 6.3 (Blanchard, Host, Maass [4]). The automaton Πα,n exists pre-
cisely when α = p/q where p and q are products of prime factors of n.

We can give an interesting alternative proof of Theorem 6.3 when we restrict
our attention to reversible CA. Our proof uses the natural factorizations of Sn
into products Sp × Sq for integral n, p and q. Indeed, any such factorizations
give rise to possible rates of information �ow that a given reversible CA can
exhibit, and it turns out that reversible CA multiplying by di�erent numbers
must transfer information at di�erent rates.

To measure the rate of information �ow we will use the group homomorphism
δ : Aut(Sn) → R+ de�ned in [14]. For F ∈ Aut(Sn) let r > 0 be a radius of
both F and F−1. The set of left stairs of F is

LF = {(x[−r, r − 1], F (x)[0, 2r − 1]) | x ∈ ΣZ
n}

(the reason for calling these �stairs� is apparent by Figure 4) and we then de�ne
δ(F ) = |LF |/n3r. The non-trivial facts that δ(F ) does not depend on the
choice of r and that δ is indeed a group homomorphism are shown in [14].
This homomorphism is an instance of a more general construction known as the
dimension representation which can be de�ned on Aut(X) for any SFT X, see.
e.g. Section 6 in [6].

We recall some basic properties of the map δ noted in [14]. It is easy to
verify that δ(σ) = n for the shift σ : Sn → Sn and δ(τp) = p for the p-shift
over n. Therefore it is natural to think of the map δ as measuring the rate of
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r r r

x

F (x)

x[−r] · · · x[r − 1]

F (x)[0] · · · F (x)[2r − 1]

Figure 4: A left stair found in a space-time diagram.

information �ow to the left that the given reversible CA gives rise to. If F has
�nite order, i.e. F t = Id for some t ∈ N+, then δ(F ) = 1: this is due to the
fact that 1 is the only �nite order element in the multiplicative group R+. Also
by [14] the set Im(δ) is equal to the multiplicative subgroup of R+ generated by
p1, . . . , pk where pi are the prime factors of n.

Lemma 6.4. Let p1, . . . , pk be the prime factors of n. For any α ∈ Im(δ) there
is a multiplication automaton Πα,n which is some product of multiplication
automata Πpi,n and their inverses and which satis�es δ(Πα,n) = α.

Proof. Since Im(δ) is generated by the prime factors of n, it is su�cient to prove
the lemma for α = p which is a prime factor of n. We have seen that Πp,n = ρ◦τp
where ρ is a symbol permutation and in particular it has �nite order. Since δ is
a homomorphism, it follows that δ(Πp,n) = δ(ρ)δ(τp) = 1 · p = p.

Lemma 6.5. If Πα,n is in the kernel of δ : Aut(Sn)→ R+, then α = 1.

Proof. Assume to the contrary that α 6= 1. We may assume without loss of
generality that α > 1 (by considering Π−1α,n instead of Πα,n if necessary). Let r
be a common radius of Πα,n and its inverse. By our assumption δ(Πα,n) = 1,
so by the de�nition of δ the set L = LF should contain n3r elements. We will
�nd a contradiction by concretely enumerating the left stairs.

Let ui ∈ Σrn (0 ≤ i < nr) be an enumeration of the elements of Σrn and let
vj ∈ Σ2r

n (0 ≤ j < n2r) be an enumeration of the elements of Σ2r
n . For all such

i, j de�ne yi,j ∈ ΣZ
n by yi,j [−r, 2r − 1] = uivj , yi,j [k] = 0 for k /∈ [−r, 2r − 1].

Let (wi,j , vj) be the left stair derived from the con�guration xi,j = Π−1α,n(yi,j)
(note that yi,j [0, 2r − 1] = vj by the de�nition of yi,j), so wi,j = xi,j [−r, r − 1].
This is depicted in Figure 5.

We �rst show that all the left stairs of the form (wi,j , vj) (0 ≤ i < nr,
0 ≤ j < n2r) are distinct. Let i, i′, j, j′ be such that (wi,j , vj) = (wi′,j′ , vj′).
From vj = vj′ it follows that j = j′ and it remains to show that i = i′.
Since Π−1α,n has radius r, from vj = vj′ it follows that xi,j [r,∞] = xi′,j [r,∞].
Since α > 1, from yi,j [−∞,−r − 1] = yi′,j [−∞,−r − 1] = ∞0 it follows that
xi,j [−∞,−r− 1] = xi′,j [−∞,−r− 1] = ∞0. Combining these observations with
wi,j = wi′,j it follows that xi,j = xi′,j . Applying Πα,n to this equality we get
yi,j = yi′,j , so in particular ui = ui′ and i = i′.
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We show that wi,j 6= (n − 1)2r for all choices of i and j. Assume to the
contrary that wi,j = (n− 1)2r for some i, j. Consider the con�guration x′ with
x′[−∞,−r − 1] = ∞0 and x′[−r,∞] = (n − 1)∞. Since α > 1 and realn(x′) =
nr+1, it follows that in the con�guration y′ = Πα,n(x′) we have y′[k] 6= 0 for
some k < −r. Since xi,j [−∞, r − 1] = x′[−∞, r − 1] and Πα,n has radius r, it
follows that yi,j [−∞,−1] = y′[−∞,−1] and in particular yi,j [k] 6= 0 for some
k < −r. This contradicts the de�nition of yi,j .

There exists a left stair of the form (w, v) where w = (n− 1)2r, and by the
previous paragraph it is di�erent from all the left stairs of the form (wi,j , vj)
(0 ≤ i < nr, 0 ≤ j < n2r). It follows that |L| ≥ n3r + 1, contradicting the
assumption δ(Πα,n) = 1.

xi,j · · · 000

yi,j · · · 000 000 · · ·

wi,j

ui vj

Figure 5: Left stairs of the form (wi,j , vj).

Theorem 6.6. All the reversible multiplication automata over Sn are precisely
of the form Πp/q,n where p and q are products of prime factors of n.

Proof. Earlier we noted that Πp/q,n exists whenever p and q are products of
prime factors of n. To see the other direction, let Πα′,n be an arbitrary reversible
multiplication automaton where α′ ∈ R+. By Lemma 6.4 there is α = p/q
where p and q are products of prime factors of n such that δ(Πα,n) = δ(Πα′,n).
Therefore δ(Πα/α′,n) = 1 and α′ = α by Lemma 6.5.

It would be interesting to generalize this classi�cation to beta-shifts with
nonintegral base β, or to just �nd examples of Πα,β that are not shift maps.

Problem 6.7. Can Πn,nγ exist for an integer n > 1 and a nonintegral γ > 0
when there exists a conjugacy between Snγ and Sn × Sγ?

The following example shows that this is not always possible.

Example 6.8. Let γ = 1 +
√

2 and β = 2γ. Since γ2 = 2γ + 1, we have β2 =
4β + 4 by Lemma 5.7 and d(β) = 44 by Lemma 5.6. We can use Theorem 5.8
to see that Sβ is topologically conjugate to S2 × Sγ . However, it turns out that
the CA Π2,β does not exist, because otherwise for x = . . . 000.222 . . . it holds
that realβ(Π2,β(x)) = 2 realβ(x) = realβ(. . . 000.444 . . . ). Since d(β) = 44,
it holds that realβ(. . . 000.444 . . . ) = realβ(. . . 001.010101 . . . ). Because y =
. . . 001.010101 · · · ∈ Sβ , it follows that Π2,β(x) = y. This is not possible because
as a CA Π2,β has to map constant con�gurations to constant con�gurations.
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