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1. Introduction

Coherent states have become a standard tool in quantum optics and many other areas

[1]. In this paper we are interested in their relation to positive operator valued measures

(POVMs). Every student of quantum mechanics learns some examples of positive

operator valued measures related to coherent states, perhaps even without hearing this

term. The most prominent example is the Q-function, first introduced by Husimi [2].

The coherent states in this case are the minimal uncertainty states of position and

momentum, and the related POVM is defined by an integral over the corresponding

rank-1 operators [3].

Another common example is the spin direction observable [4]. Suppose that we

choose a direction randomly and measure a spin component in that direction. We

repeat this procedure, and as a result we have implemented a measurement of the spin

direction. The corresponding POVM is related to SU(2)-coherent states [5].

In these two examples the coherent state structure of the POVMs involved is

transparent. One could think that these are very special examples and that POVMs can

have quite diverse structure. However, the canonical coherent states can be generalized

in various ways [6], and it turns out that any POVM arises from a set of generalized

coherent states.

The set of all POVMs with a fixed outcome set and taking values in a fixed Hilbert

space is convex. A mixture of two POVMs corresponds to a procedure where two

measurements are randomly alternated. An extremal POVM is free from this type of

randomization. Their importance has been emphasized e.g. in [7].

In this paper we present a correspondence between POVMs and sets of generalized

coherent states. We show how this structure leads to a useful characterization of

extremal POVMs. Various aspects of extermal POVMs have been studied e.g. in [8],

[9], [10], [11].

We start by fixing the notation and recalling some concepts in Section 2. In Section

3 we show that the POVM corresponding to the Husimi Q-function is extremal but

that there are also other extremal POVMs related to the Weyl-Heisenberg group. In

Section 4 we explain how every POVM arises from a set of generalized coherent states,

and in Section 5 we show the consequences of a covariance property under symmetry

transformations.

2. Preliminaries

In the following we will need several different vector spaces and they are all assumed

to be complex vector spaces. Throughout this article, H and M are separable Hilbert

spaces. For any Hilbert space H we let L(H), U(H), T (H), S(H) denote the set of

bounded, unitary, trace class, and density operators on H, respectively. Elements of

S(H) are identified with the states of a quantum system with the Hilbert space H. The

identity operator of a Hilbert space H is denoted by IH.
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Let (Ω,Σ) be a measurable space (i.e. Σ is a σ-algebra of subsets of a set Ω).

As usual, we define an empty sum to be 0, e.g.
∑0

k=1(. . .) := 0, N := {0, 1, . . .}, and

N∞ := N ∪ {∞}. A mapping M : Σ → L(H) is called operator valued measure if it is

(ultra)weakly σ-additive. We say that M is

• positive if M(X) ≥ 0 for all X ∈ Σ,

• normalized if M(Ω) = IH

• projection valued if M(X)2 = M(X)∗ = M(X) for all X ∈ Σ.

Commonly, a normalized projection valued measure is called a spectral measure.

Normalized positive operator valued measures (POVMs) are identified with

quantum observables, whereas normalized projection valued measures (PVMs) are called

sharp observables [3]. For any POVM M : Σ → L(H) and ρ ∈ T (H), we define a

complex measure ρM : Σ→ C by

ρM(X) := tr [ρM(X)] , X ∈ Σ . (1)

If ρ ∈ S(H) then ρM is a probability measure and it describes the statistics of a

measurement of M in the state ρ.

We denote by O(Σ, H) the set of all POVMs M : Σ → L(H). This set is convex;

if M1,M2 ∈ O(Σ, H), then tM1 + (1− t)M2 ∈ O(Σ, H) for every 0 < t < 1. An element

M ∈ O(Σ, H) is extremal if it cannot be written as a nontrivial convex decomposition,

i.e., if M = tM1 + (1 − t)M2 for 0 < t < 1, then M1 = M2 = M. From the physical

point of view extremal observables describe quantum measurements that are free from

any classical randomness, just in the same way as pure states describe preparation

procedures without classical randomness.

3. Covariant phase space observables

In this section we study covariant phase observables on the phase space R × R. We

identify R×R ' C and thus Ω = C and Σ is the Borel σ-algebra of C. The phase space

shifts are given by the unitary operators D(z), defined as

D(z) = eza
†−z̄a , (2)

where a†, a are the usual creation and annihilation operators on H = L2(R).

Let hn ∈ L2(R) be the nth normalized Hermite function for every n = 0, 1, 2, . . ..

They are eigenvectors of the number operator N := a†a and usually called number

states. Another important family of vector states are the (canonical) coherent states,

parametrized by the complex numbers z ∈ C and defined as

η0(x) := h0(x) =
1
4
√
π
e−x

2/2 , ηz := D(z)η0 . (3)

The vacuum state η0 = h0 is both a number state and a coherent state, but otherwise

these families of vector states are disjoint.
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Using the canonical coherent states we can define a function

Qϕ(z) := |〈ϕ|ηz〉|2 (4)

for every unit vector ϕ ∈ H, and this is known as the Q-function of a vector state ϕ.

Alternatively, we can write a POVM

M0(Z) :=

∫
Z

|ηz〉〈ηz|
d2z

π
=

∫
Z

D(z)|η0〉〈η0|D(z)∗
d2z

π
, Z ∈ Σ . (5)

Then

〈ϕ|M0(Z)ϕ〉 =

∫
Z

Qϕ(z)
d2z

π
(6)

and hence M0 describes the measurement of the Q-function.

More generally, for each density operator ρ we can define a POVM Mρ by

Mρ(Z) :=

∫
Z

D(z)ρD(z)∗
d2z

π
, Z ∈ Σ . (7)

These are called covariant phase space observables and their properties have been

analyzed in [12], [13]. A covariant phase space observable can be interpreted as joint

measurement of unsharp position and momentum observables [14], and each of them

can be implemented as a sequential measurement of an unsharp position measurement

followed by a momentum measurement [15].

Obviously, a covariant phase space observable Mρ can be extremal only if ρ is a one-

dimensional projection since otherwise the spectral decomposition of ρ gives a nontrivial

convex decomposition of Mρ into other covariant phase space observables. If ρ is a one-

dimensional projection, then Mρ is extremal in the set of all covariant phase space

observables. However, we are interested on the extremality in the set of all POVMs.

We start with some preliminary observations. Let ψ ∈ H be a unit vector and

|ψ〉〈ψ| the corresponding one-dimensional projection. We recall from [11] that a POVM

M|ψ〉〈ψ| is extremal if and only if, for every λ ∈ L∞(C), we have∫
C
λ(w)D(w)|ψ〉〈ψ|D(w)∗d2w = 0 =⇒ λ = 0 . (8)

For A ∈ L(H), we have 〈ηz|Aηz〉 = 0 for every z ∈ C if and only if A = 0 [16]. We thus

conclude the following.

Lemma 1. Let ψ ∈ H be a unit vector. A POVM M|ψ〉〈ψ| is extremal if and only if for

every λ ∈ L∞(C), we have∫
C
λ(w) |〈ηz|D(w)ψ〉|2 d2w = 0 ∀z ∈ C =⇒ λ = 0 . (9)

We will now utilize this criterion to see that some covariant phase space observables

are extremal and some are not. For each z ∈ C, we obtain∫
C
λ(w) |〈ηz|D(w)ψ〉|2 d2w

π
=

∫
C
λ(w) |〈ηz−w|ψ〉|2

d2w

π
= (λ ∗Qψ)(z) , (10)
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where λ in the last expression is a tempered distribution defined by the function

λ ∈ L∞(C) and ∗ is the convolution. (Note that Qψ is a smooth rapidly decreasing

function R2 → R, hence the convolution can be defined.)

The fact that M0 is extremal has been pointed out already in [17]. We can now

present a full characterization of extremal covariant phase space observables.

Theorem 1. Let ψ ∈ H be a unit vector. The following conditions are equivalent.

(i) The covariant phase space observable M|ψ〉〈ψ| is extremal in the set of all POVMs.

(ii) The Fourier transform of Qψ is everywhere nonzero.

(iii) 〈ψ|D(z)ψ〉 6= 0 for every z ∈ C.

Proof. (i)⇔(ii): The condition (λ ∗ Qψ)(z) = 0 for all z ∈ C equals Q̂ψλ̂ = 0 wherê
means the Fourier transform of a tempered distribution [18]. By Lemma 1 we conclude

that M|ψ〉〈ψ| is extremal if and only if Q̂ψλ̂ = 0, λ ∈ L∞(C), implies λ = 0. If Q̂ψ is

everywhere nonzero then Q̂ψλ̂ = 0 implies that λ̂ = 0 and hence λ = 0. Suppose then

that Q̂ψ(w) = 0 for some w ∈ C. By choosing λ(z) = exp[i(zw + zw)] one sees that

λ̂ proportional to a Dirac delta distribution concentrated on w and Q̂ψλ̂ = 0 yielding

a contradiction. (ii)⇔(iii): The Q-function is a Gaussian convolution of the Wigner

function. The Wigner function of a vector state ψ is the Fourier transform of the

function z 7→ 〈ψ|D(iz)ψ〉. Hence, the Fourier transform Qψ is everywhere nonzero if

and only if the function z 7→ 〈ψ|D(z)ψ〉 is everywhere nonzero.

As an easy consequence of Theorem 1 we see that all covariant phase space

observables related to coherent states are extremal. Namely, if ψ = ηw for some w ∈ C,

then

Qηw(z) = |〈ηz|ηw〉|2 = e−|w−z|
2

. (11)

Since Qηw is a Gaussian function, its Fourier transform is also Gaussian and therefore

everywhere nonzero. More generally, let ψ be a squeezed state, in which case ψ is a

Gaussian function. Then again Qψ is a Gaussian function, its Fourier transform is

Gaussian and thus everywhere nonzero. We conclude that M|ψ〉〈ψ| is extremal if ψ is a

squeezed state.

Let us then have examples of covariant phase space observables that are not

extremal even if they are extremal in the set of covariant phase space observables.

The Fourier transform of f ∈ L1(C) can be written in the form

f̂(w) =
1

π

∫
C
f(z)e−i(zw+zw)d2z =

1

2π

∫
R

∫
R
f
(
2−1/2(q + ip)

)
e−i(uq+vp)dqdp

where w = (u+ iv)/
√

2 and z = (q + ip)/
√

2. Thus, for

Qhn(z) =
e−|z|

2 |z|2n

n!
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we obtain

Q̂hn(w) = Ln
(
|w|2

)
e−|w|

2

where

Ln(t) :=
et

n!

dntne−t

dtn

is the nth Laguerre polynomial which has n (real) strictly positive roots. For example,

Q̂h1(w) = L1

(
|w|2

)
e−|w|

2

=
(
1− |w|2

)
e−|w|

2

so that Q̂h1(w) = 0 when |w| = 1.

We can also find a convex decomposition of M|h1〉〈h1|. For λ(z) = cos(z + z) one

gets ∫
C
λ(w) |〈ηz|D(w)h1〉|2 d2w =

∫
C

cos(w + w)e−|z−w|
2

|z − w|2 d2w = 0

so that we may write M|h1〉〈h1| = 1
2
M+ + 1

2
M− where the (unequal) POVMs M± are

defined by

M±(Z) :=
1

π

∫
Z

[
1± cos(z + z)

]
D(z)|h1〉〈h1|D(z)∗d2z , Z ∈ Σ .

Finally, we notice a connection of extremality to the informational completeness

[19]. A POVM M is informationally complete if ρM1 6= ρM2 for two states ρ1 6= ρ2. It was

proved in [20] that a covariant phase space observable Mρ is informationally complete if

tr [ρD(z)] 6= 0 for almost all z ∈ C. Hence, from Theorem 1 we conclude the following.

Corollary 1. Let ψ ∈ H be a unit vector. If the covariant phase space observable M|ψ〉〈ψ|
is extremal in the set of all POVMs, then it is informationally complete.

Obviously, a POVM can be extremal without being informationally complete. For

instance, any projection valued measure is extremal but not informationally complete.

4. Generalized coherent states for POVMs

As we have seen in Section 3, the extremality question for covariant phase space

observables turns out to be tractable due to their simple mathematical structure. Here

we show that a similar approach can be developed also in the general situation.

Let h = {hn}dimH
n=1 be an orthonormal basis of H and denote Vh := lin {hn}. Then

Vh is a dense subset in H. Let V ×h be the algebraic antidual of the vector space Vh.

Recall that V ×h can be identified with the linear space of formal series c =
∑dimH

n=1 cnhn
where cn’s are arbitrary complex numbers. Hence, Vh ⊆ H ⊆ V ×h .

For all ψ ∈ Vh and c ∈ V ×h , we denote their dual pairing by

〈ψ|c〉 :=
dimH∑
n=1

〈ψ|hn〉cn and 〈c|ψ〉 := 〈ψ|c〉 . (12)
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We say that a mapping

c : Ω→ V ×h , c(x) =
dimH∑
n=1

cn(x)hn

is (weak∗-)measurable if all its components x 7→ cn(x) are measurable. Note that, if

c : Ω → H ⊆ V ×h is weak∗-measurable then the maps x 7→ 〈ψ|c(x)〉 are measurable for

all ψ ∈ H.

We denote by
∫ ⊕

Ω
M(x)dµ(x) a direct integral Hilbert space where µ is a σ-finite

nonnegative measure on (Ω,Σ) and {M(x)}x∈Ω is a (µ-measurable) field of separable

Hilbert spaces. Recall that for any ψ ∈
∫ ⊕

Ω
M(x)dµ(x) one has ψ(x) ∈M(x) for all x ∈

Ω and ‖ψ‖2 =
∫

Ω
‖ψ(x)‖2

M(x)dµ(x). In addition, the mapping Ω 3 x 7→ dimM(x) ∈ N∞
is µ-measurable. For example, the Hilbert space L2

M(µ) of square µ-integrable functions

from Ω toM is of the direct integral form where now M(x) ≡M.

We denote by L∞(µ) the Abelian von Neumann algebra of µ-essentially bounded

complex functions on Ω, and for any f ∈ L∞(µ), we denote by f̃ the multiplicative (i.e.

diagonalizable) operator (f̃ψ)(x) := f(x)ψ(x) on
∫ ⊕

Ω
M(x)dµ(x). Especially, we have

the canonical spectral measure

Σ 3 X 7→ χ̃
X
∈ L

(∫ ⊕
Ω

M(x)dµ(x)
)
,

where χ
X

is the characteristic function of X ∈ Σ. A bounded operator D on∫ ⊕
Ω
M(x)dµ(x) is decomposable, i.e. D =

∫ ⊕
Ω
D(x)dµ(x), if D(x) ∈ L(Hn(x)) and

(Dψ)(x) = D(x)ψ(x) for µ-almost all x ∈ Ω and for all ψ ∈
∫ ⊕

Ω
M(x)dµ(x), and

‖D‖ = ess supx∈Ω‖D(x)‖ < ∞. Obviously, any f ∈ L∞(µ) defines a bounded

decomposable operator f̃ .

The results proved in [21, 11] can be now stated in the following form.

Theorem 2. Let M : Σ → L(H) be a POVM, µ : Σ → [0,∞] a σ-finite measure

such that M is absolutely continuous with respect to µ, and h be an orthonormal

basis of H. There exists a direct integral Hilbert space M⊕ ≡
∫ ⊕

Ω
M(x)dµ(x) (with

dimM(x) ≤ dimH) such that for all X ∈ Σ,

(i) M(X) = Y ∗χ̃
X
Y where Y =

∑dimH
m=1 |ψm〉〈hm| is an isometry and {ψm}dimH

m=1 is an

orthonormal set of M⊕ such that the set of linear combinations of vectors χ
X
ψm is

dense in M⊕ (a minimal Naimark dilation of M). Hence,

M(X) =
dimH∑
n,m=1

∫
X

〈ψn(x)|ψm(x)〉M(x)dµ(x) |hn〉〈hm| (weakly).

(ii) There are measurable maps dk : Ω → V ×h such that, for all x ∈ Ω, the vectors

dk(x) 6= 0, k ∈ ZdimM(x), are linearly independent, and

〈ϕ|M(X)ψ〉 =

∫
X

dimM(x)∑
k=1

〈ϕ|dk(x)〉〈dk(x)|ψ〉dµ(x), ϕ, ψ ∈ Vh,

(a minimal diagonalization of M).
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(iii) M is a spectral measure if and only if {ψm}dimH
m=1 is an orthonormal basis of M⊕.

Then Y is a unitary operator and M⊕ can be identified with H.

(iv) M is extremal if and only if for any decomposable operator D =
∫ ⊕

Ω
D(x)dµ(x) ∈

L
(
M⊕), the condition Y ∗DY = 0 implies D = 0.

Remark 1. As shown in [21, Section 6], Vh can be extended to a Banach space B such

that the vectors dk(x) in (2) of theorem 2 can be viewed as elements of the topological

antidual B× of B. Hence, throughout this article, one can replace Vh and V ×h with B
and B×, respectively. Especially, we have a triplet of Banach spaces B ⊆ H ⊆ B×.

Definition 1. ([11]) We say that YH ⊆M⊕ is an M-representation space. It is unique

up to a decomposable unitary map so that we may choose

M(x) = lin
{
hn
∣∣n ≤ dimM(x)

}
.

The elements of YH are called M-wave functions. The vectors dk(x) in (2) of theorem

2 are called generalized coherent states associated with the POVM M. If, for µ-almost

all x ∈ Ω, n(x) ∈ {0, r} where r ∈ N∞ we say that M is of a constant rank, and denote

rankM := r.

If a POVM M is of a constant rank then, by defining

Ωsupp :=
{
x ∈ Ω

∣∣ dimM(x) > 0
}
,

we can write

〈ϕ|M(X)ψ〉 =
rankM∑
k=1

∫
X∩Ωsupp

〈ϕ|dk(x)〉〈dk(x)|ψ〉dµ(x), ϕ, ψ ∈ Vh.

Notice that one can always define dk(x) := 0 for all k > dimM(x) so that one may let

the k–index in (2) of theorem 2 run from 1 to∞ and then take the summation out from

the integrand as above. Finally, we note that the relation between vectors dk(x) ∈ V ×h
and ψn(x) ∈M(x) can be chosen to be

〈dk(x)|hn〉 = 〈bk(x)|ψn(x)〉M(x) = 〈bk(x)|(Y hn)(x)〉M(x)

where x 7→ {bk(x)}dimM(x)
k=1 is a measurable field of orthonormal bases of

∫ ⊕
Ω
M(x)dµ(x).

Hence, by remark 1, when V ×h is replaced by B× we have

〈dk(x)|ψ〉 = 〈bk(x)|(Y ψ)(x)〉M(x) (13)

for µ-almost all x ∈ Ω and for all ψ ∈ B.

Remark 2. Let S be a (bounded or unbounded) selfadjoint operator on H and M its

spectral measure (defined on the Borel σ-algebra B(R) of R). As shown in [21], there

exists an orthonormal basis h of H such that SVh ⊆ Vh and, if S× : V ×h → V ×h is an

extension of S, one gets S×dk(x) = xdk(x) for µ–almost all x in the spectrum of S.

Hence, theorem 2 can be viewed as a generalization of Dirac formalism for POVMs and

we may call dimM(x) the multiplicity of a measurement outcome x ∈ Ω.
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5. Generalized coherent states for covariant POVMs

In the following we study a situation where a symmetry group G is a separable locally

compact unimodular group of type I. Examples of such groups are compact groups (e.g.

SU(n)), locally compact Abelian groups (e.g. Rn), connected semi-simple Lie groups

and nilpotent Lie groups (e.g. Heisenberg group) so that the usual symmetry groups

used in physics fall into this class.

The behavior of a POVM under the symmetry group determines to a large extent

its structure and this idea goes back to Mackey [22]. For simplicity, we assume that G

acts on itself from left, hence the value space of consider POVMs is G and the Borel

σ-algebra of G is denoted by ΣG. Our results on covariance systems is based on theory

developed in [23, 24, 25, 26].

Let V : G → U(H), g 7→ Vg, be a strongly continuous unitary representation of

G on a separable Hilbert space H. Recall that V is always decomposable, that is, H
can be represented as a direct integral of Hilbert spaces and the representation ‘maps a

fiber into the same fiber’. More specifically, we assume that

H =

∫ ⊕
Ĝ

H(λ)dν(λ), H(λ) = K(λ)⊗ L(λ), (14)

where Ĝ is the unitary dual of G, that is, for any λ ∈ Ĝ, the map g 7→ λg is an

irreducible representation acting in a Hilbert space K(λ) and L(λ) is the multiplicity

(Hilbert) space of λ. Moreover,

Vg =

∫ ⊕
Ĝ

Vg(λ)dν(λ), Vg(λ) := λg ⊗ IL(λ). (15)

It is necessary for the existence of a covariant POVM that the measure ν is absolutely

continuous with respect to the Plancherel measure and hence we may and will assume

that ν is the Plancherel measure on Ĝ associated with the Haar measure of G. We say

that a POVM M : ΣG → L(H) is covariant if

VgM(X)V ∗g = M(gX), g ∈ G, X ∈ ΣG .

For any separable Hilbert space M we define L2
M(G) := L2

M(µ) where µ : ΣG →
[0,∞] is a Haar measure of G denoted briefly by dµ(g) = dg. Let T : G →
U
(
L2
M(G)

)
, g 7→ Tg, be the strongly continuous unitary representation of G defined

by (
Tgψ

)
(g′) = ψ

(
g−1g′

)
, g, g′ ∈ G, ψ ∈ L2

M(G). (16)

We have Ṽgχ̃XṼ
∗
g = χ̃

gX
. Now (1) of theorem 2 can be replaced by the following

covariant version of a minimal Naimark dilation [23, Proposition 2].

Theorem 3. For any covariant POVM M, there exist a separable Hilbert spaceM (with

dimM ≤ dimH) such that, for all X ∈ ΣG, M(X) = Y ∗χ̃
X
Y where Y is an isometry

from H into L2
M(G) for which

Y Vg = TgY, g ∈ G,
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and the set
{
χ
X
Y ψ

∣∣X ∈ ΣG, ψ ∈ H
}

is total in L2
M(G).

Immediately we see that now
∫ ⊕

Ω
M(x)dµ(x) of Theorem 2 is L2

M(G) and thus any

covariant POVM is of constant rank. More specifically, rankM = dimM. Next we

determine the generalized coherent states dk(g) of theorem 2 for a covariant POVM M

with the isometry Y of Theorem 3.

By using the unitary Fourier-Plancherel transform F of the representation T and

defining W := FY , Ug := FTgF∗, and P(X) := F χ̃
X
F∗, we have

• M(X) = W ∗P(X)W, X ∈ ΣG,

• WVg = UgW, g ∈ G.

Since L2
M(G) ∼= L2(G) ⊗M we may write the Fourier-Plancherel transform F of the

form F = F0 ⊗ IM where F0 is the Fourier-Plancherel transform from L2(G) onto the

direct integral

K⊕HS =

∫ ⊕
Ĝ

[K(λ)⊗K(λ)∗]dν(λ),

where K(λ)∗ is the dual of K(λ) and, hence, K(λ)⊗K(λ)∗ is isomorphic to the Hilbert

space of Hilbert-Schmidt operators‖ on K(λ) and

H̃ := K⊕HS ⊗M = FL2
M(G) =

∫ ⊕
Ĝ

[K(λ)⊗K(λ)∗ ⊗M]︸ ︷︷ ︸
=: H̃(λ)

dν(λ).

Recall that, for each integrable ψ ∈ L2(G) one has (F0ψ)(λ) =
∫
G
λgψ(g)dg for (almost)

all λ ∈ Ĝ. In addition, (F∗0ϕ)(g) =
∫
Ĝ

tr
[
ϕ(λ)λ∗g

]
dν(λ) where ϕ ∈ K⊕HS is such that∫

Ĝ
‖ϕ(λ)‖trdν(λ) < ∞ and ‖ · ‖tr is the trace norm. Let {bk}dimM

k=1 be an orthonormal

basis ofM. Since any ϕ̃ ∈ H can be written in the form ϕ̃ =
∑dimM

k=1 ϕk⊗ bk, ϕk ∈ K⊕HS,

we may define

‖ϕ̃‖B̃ := ‖ϕ̃‖H̃ +

∫
Ĝ

√∑
k

‖ϕk(λ)‖2
trdν(λ)

and a Banach space B̃ :=
{
ϕ̃ ∈ H̃

∣∣ ‖ϕ̃‖B̃ <∞} which is dense in H̃.

It is easy to verify that, for

Ug :=

∫ ⊕
Ĝ

[λg ⊗ IK(λ)∗ ⊗ IM]dν(λ) ∈ U(H̃),

the condition UgF = FTg holds and the restriction Ug
∣∣
B̃ : B̃ → B̃ is continuous. Now

the isometry W : H → H̃ is decomposable, that is,

W =

∫ ⊕
Ĝ

[
IK(λ) ⊗W (λ)

]
dν(λ), (17)

‖ Via ϕ⊗ η∗ 7→ |η〉〈ϕ| where ϕ, η ∈ K(λ) and η∗ = 〈η| ∈ K(λ)∗.
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where W (λ) : L(λ)→ K(λ)∗ ⊗M is an isometry for ν-almost all λ ∈ Ĝ [26, Lemma 1]

and, for all g ∈ G,

WVg =

∫ ⊕
Ĝ

[
IK(λ) ⊗W (λ)

][
λg ⊗ IL(λ)

]
dν(λ)

=

∫ ⊕
Ĝ

[
λg ⊗ IK(λ)∗ ⊗ IM

][
IK(λ) ⊗W (λ)

]
dν(λ) = UgW.

In the spirit of remark 1, we define a Banach space

B :=
{
ψ ∈ H

∣∣∣Wψ ∈ B̃
}

equipped with the norm ‖ψ‖B := ‖Wψ‖B̃, ψ ∈ B, so that W
∣∣
B : B → B̃ is trivially

continuous. Now B is dense in H (and thus contains an orthonormal basis h of H) and,

for each g ∈ G, ‖Vgψ‖B = ‖ψ‖B for all ψ ∈ B, so that the restriction Vg
∣∣
B : B → B is

continuous.

Let k ∈ ZdimM, g ∈ G, and ψ ∈ B. Since Y Vg = TgY and Y = F∗W , according to

(13), we define

〈dk(g)|ψ〉 := 〈bk|(F∗WV ∗g ψ)(e)〉M
where e is the unit of G. Indeed, since Vg

∣∣
B : B → B and W

∣∣
B : B → B̃ are

continuous one needs only study innerproducts 〈bk|(F∗ϕ)(e)〉M where ϕ ∈ B̃: Let

ϕ =
∑dimM

k=1 ϕk ⊗ bk ∈ B̃ where ϕk ∈ K⊕HS are thus such that

‖ϕ‖B̃ =

√∑
k

∫
Ĝ

tr [ϕk(λ)∗ϕk(λ)] dν(λ) +

∫
Ĝ

√∑
k

‖ϕk(λ)‖2
trdν(λ) <∞.

Now 〈bk|(F∗ϕ)(e)〉M = (F∗0ϕk)(e) =
∫
Ĝ

tr [ϕk(λ)] dν(λ) so that∣∣〈bk|(F∗ϕ)(e)〉M
∣∣ ≤ ∫

Ĝ

|tr [ϕk(λ)] |dν(λ) ≤
∫
Ĝ

‖ϕk(λ)‖trdν(λ) ≤ ‖ϕ‖B̃

and, hence, the linear mappings B 3 ψ 7→ 〈dk(g)|ψ〉 ∈ C are continuous and their

conjugate (antilinear) maps dk(g) : B → C, ψ 7→ 〈ψ|dk(g)〉 := 〈dk(g)|ψ〉 belongs to B×.

To conclude, we have

Theorem 4. For any covariant POVM M there exist a dense Banach space B ⊆ H
for which Vg

∣∣
B : B → B is continuous for all g ∈ G and linearly independent vectors

dk ∈ B×, k ∈ ZrankM, such that

〈ϕ|M(X)ψ〉 =
rankM∑
k=1

∫
X

〈V ∗g ϕ|dk〉〈dk|V ∗g ψ〉dg, ϕ, ψ ∈ B, X ∈ ΣG

(a minimal covariant diagonalization of M).

From Theorem 2 we see that, if rankM <∞ one gets a simple characterization of

extremality in terms of coherent states: M is extremal if and only if, for any (essentially)

bounded µ-measurable functions λkl : Ω→ C,

rankM∑
k,l=1

∫
Ω

λkl(g)〈V ∗g ψ|dk〉〈dl|V ∗g ψ〉dg = 0, ψ ∈ B,
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implies λkl = 0 for all k, l. Next we consider an easy special case.

Example 1 (Abelian group). Assume that G is Abelian group. Now Ĝ is the dual

group consisting of characters λ : G → T with the (dual) Haar measure dλ. Hence

dν(λ) = dλ and, since any irreducible representation is one dimensional, K(λ) ∼= C,

one has H(λ) ∼= L(λ) in H =
∫ ⊕
Ĝ
H(λ)dλ. Moreover, g 7→ Vg =

∫ ⊕
Ĝ
Vg(λ)dλ where

Vg(λ)ψ(λ) = λ(g)ψ(λ) for dλ-almost all λ ∈ Ĝ. By using the Fourier-Plancherel

transform F : L2
M(G)→ L2

M(Ĝ) (i.e. (Fϕ)(λ) =
∫
G
λ(g)ϕ(g)dg) and a spectral measure

X 7→ P(X) = F χ̃
X
F∗, one gets for any covariant POVM M : ΣG → L(H) that

M(X) = W ∗P(X)W where the isometry W : H → H̃ ∼= L2
M(Ĝ) is decomposable (i.e.

W =
∫ ⊕

Λ
W (λ)dλ where the operators W (λ) : H(λ)→M are isometries). In addition,

‖ψ‖B =

√∫
Ĝ

‖ψ(λ)‖2
H(λ)dλ+

∫
Ĝ

‖ψ(λ)‖H(λ)dλ

and B =
{
ψ ∈ H

∣∣ ‖ψ‖B <∞}. Hence, for all ϕ, ψ ∈ B and X ∈ ΣG,

〈ϕ|M(X)ψ〉 = 〈Wϕ|P(X)Wψ〉

=

∫
X

∫
Ĝ

∫
Ĝ

λ(g)λ′(g)〈W (λ)ϕ(λ)|W (λ′)ψ(λ′)〉Mdλdλ′dg

=

∫
X

〈WV ∗g ϕ|WV ∗g ψ〉Mdg

where W : B → M, ψ 7→ Wψ := (F∗Wψ)(e) =
∫
Ĝ
W (λ)ψ(λ)dλ is linear and

continuous (since ‖Wψ‖M ≤ ‖ψ‖B). Since (Y ψ)(g) = WV ∗g ψ for all ψ ∈ B and

(almost) all g ∈ Ĝ and the set
{
χ
X
Y ψ

∣∣X ∈ ΣG, ψ ∈ H
}

is total in L2
M(G) one

sees that WB is total in M.

Let {bk}rankM
k=1 be an orthonormal basis of M. Using the fact that the restrictions

Vg
∣∣
B are continuous on B one can define, for all g ∈ G and k ≤ rankM, a continuous

linear map 〈dk(g)| : B → C by

〈dk(g)|ψ〉 := 〈bk|(F∗WV ∗g ψ)(e)〉M = 〈bk|WV ∗g ψ〉M, ψ ∈ B,

so that dk(g) ∈ B× where [dk(g)](ψ) ≡ 〈ψ|dk(g)〉 := 〈dk(g)|ψ〉 (see, remark 1). Note

that 〈dk(g)|ψ〉 = 〈bk|(Y ψ)(g)〉M (see, (13)) and 〈dk(g)|ψ〉 = 〈dk(e)|V ∗g ψ〉. To conclude,

we have a minimal diagonalization for M:

〈ϕ|M(X)ψ〉 =
rankM∑
k=1

∫
X

〈V ∗g ϕ|dk(e)〉〈dk(e)|V ∗g ψ〉dg, ϕ, ψ ∈ B.

For example, when G ∼= Rn (and hence Ĝ ∼= Rn) one has λ(g) = eiλ·g where we have

identified λ ∈ Ĝ and g ∈ G with λ ∈ Rn and g ∈ Rn, respectively. The Haar measures

dλ and dg are now the scaled n-dimensional Lebesgue measures dλ and (2π)−ndg,

respectively. Identifying G with the position space and choosing H(λ) ≡ Hs we get the
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covariant position observables M : ΣRn → L2
Hs

(Ĝ) of a nonrelativistic particle with a

spin s (i.e. 2s + 1 = dimHs) in the momentum space Ĝ. For the canonical position

observable Q, M = Hs, rankQ = 2s+ 1, W = IL2
Hs

(Ĝ), and

〈ϕ|Q(X)ψ〉 =

∫
X

∫
Ĝ

∫
Ĝ

ei(λ−λ
′)·g〈ϕ(λ)|ψ(λ′)〉Mdλdλ′

dg

(2π)n

=
2s+1∑
k=1

∫
X

∫
Ĝ

∫
Ĝ

ei(λ−λ
′)·g〈ϕ(λ)|bk〉M〈bk|ψ(λ′)〉Mdλdλ′

dg

(2π)n

=
2s+1∑
k=1

∫
X

〈ϕ|dk(g)〉〈dk(g)|ψ〉 dg

(2π)n
, ϕ, ψ ∈ B, X ∈ ΣG,

where the generalized coherent state dk(g) ∈ B× is defined by

〈dk(g)|ψ〉 =

∫
Ĝ

e−iλ·g〈bk|ψ(λ)〉Mdλ = 〈bk|(F∗ψ)(g)〉, ψ ∈ B.

In the position representation, 〈dk(g)| is the evaluation 〈bk|ϕ(g)〉 of 〈bk|ϕ〉 at the point g

which is well-defined, e.g., for the elements ϕ of the Schwarz space of rapidly decreasing

functions. Then ϕ 7→ ϕ(g) is just the (vector valued) Dirac δ-distribution at g. As a

spectral measure, Q is extremal.
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