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Abstract

Using ab initio calculations we investigated the surface energies of para-
magnetic Fe1−c−nCrcNin random alloys within the concentration range of
0.12 ≤ c ≤ 0.32 and 0.04 ≤ n ≤ 0.32. These alloys crystallize mainly in the
face centred cubic (fcc) structure and constitute the main building blocks of
austenitic stainless steels. It was shown that all alloys have the lowest surface
energies along the most close packed crystal orientation, namely the fcc (111)
surfaces. The amount of Ni seems to have little effect on the surface energy,
while almost all composition-driven change may be attributed to the changes
in the Cr content. Within the studied compositional range, the change of
the surface energy with the composition is of the order of 10%. Some phe-
nomena found for surface energy can be related to the magnetic structure
of surfaces. Using the total energy as a function of the concentration, the
effective chemical potentials in bulk and at the surface can be determined,
and from them, the surface segregation energies.
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1. Introduction

Stainless steels are the most widely used maintenance free and safe en-
gineering materials. They have superior strength, stiffness, toughness and
corrosion resistance in relation to their cost compared to other materials.
Surface energy is one of the defining qualities of Fe alloys, because it deter-
mines many important phenomena, such as crystal growth, adhesion between
metallic surfaces, growth of thin layers [1], and mechanical strength. Surface
energies of solids can not be directly measured; instead, the available “ex-
perimental” surface energies have been derived from liquid tension measure-
ments. Therefore theoretical studies on the subject are of vital importance
to the development of this field.

In this work, the surface energies of austenitic FeCrNi alloys (with varying
Cr and Ni concentrations) were calculated. The crystal structure of these
alloys was the face centered cubic (fcc) lattice. The two low index surfaces,
fcc(100) and fcc(111) were studied, because they are the most closely packed
ones, and thus the most likely candidates to have the lowest surface energy.

The minimum Cr amount in our study was chosen to be 12% (atomic %
is used throughout the report), given by the stainless requirement [2], and
the maximum 32%. Since almost all stainless steels contain at least some Ni,
we chose the lower limit of Ni to be 4% corresponding to some metastable
grades present e.g. in duplex steels. Since Ni also has a stabilizing effect on
the austenitic phase, we mimic the effect of all austenite stabilizers by Ni.
Therefore, we chose the upper limit for Ni to be as high as 32%, even though
such an amount of Ni is not commonly used in any commercial steel grades.

The paper is organized as follows: In section 2 the computational methods of
calculating the surface energies are introduced and discussed. In section 3 we
display the results, and finally, in chapter 4, the conclusions are presented.
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2. Methods

2.1. Surface energy

Cutting a solid body into two disrupts its bonds, and therefore consumes
energy. This additional energy fed into the system when the bonds are cut
is called the surface energy, and it is expressed as energy per surface area.
To acquire the surface energy via simulations, we considered two systems
per each composition (varying c and n in Fe1−c−nCrcNin), namely a slab sys-
tem and a bulk system. The slab system consisted of eight atomic layers,
separated by a vacuum of 4 atomic layers thickness. Both the width of the
slab and the width of the vacuum layer were chosen to be adequate for the
material to attain bulk-like behavior in the middle of the slab, and for the
surfaces to not be interfered by the repeated images (that is, they react as if
exposed to infinite void, not to a small crack). The exact coordinates used
for both the fcc(111) and fcc(100) case can be found as supplementary ma-
terial (online publication). The amount of “surplus energy” (surface energy)
in the system is the total energy of the slab system minus the energy of
the bulk system having the same amount of atoms as the slab system has.
Mathematically, the surface energy is expressed as

γ =
Eslab − n · Ebulk

2A
, (1)

where Eslab is the total energy of the slab system, n is the number of atoms in
the slab system, Ebulk is the energy per atom of the bulk system, and A is the
area of an interface in the slab supercell. The “2” in the denominator stands
for the two surfaces of the slab. It is worth mentioning here, that the surface
of any alloy consisting of two or more different chemical elements assumes a
certain surface chemical concentration profile which depends on the elements
of the alloy and the surface considered. They might form a dilute alloy, or
one of the elements might segregate to the surface, and the elements on the
surface can form islands of varying shapes and sizes. Such phenomena are
not considered here. Therefore, in the present study, the surfaces are in their
bulk concentrations. We determined the equilibrium lattice parameter for
each composition (that is, for each c and n in Fe1−c−nCrcNin) by performing
a series of total energy calculations with a varying lattice parameter value,
and then fitting a Morse equation of state to the ab initio total energies.
The obtained theoretical volume (lattice parameter) was then adopted in
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the slab calculations. The variation in the lattice parameter was very small
in the studied compositional range: the difference between smallest (3.6032
Å) and largest (3.6111 Å) value was 0.22%.

There are various ways one can use to define the bulk total energy, which
is then used as a reference energy when calculating the surface energies (de-
fined in Eq. 1). One possibility is to use as the bulk reference energy the
total energy difference between two slabs consisting of N+1 and N atomic
layers. Another solution is to use the same supercell (without vacuum layers)
to compute the bulk energy as the one used for the slab calculation. Finally,
one could limit the size of the slab to the minimum thickness and use the
separate bulk total energy in the calculation. In this case the error due to
the different sampling of the bulk and slab Brillouin zones can also be kept
at minimum. We adopted the third approach for our simulations. Moreover,
Florentini et al. [4]) showed that the difference in obtained surface energy
between the described methods is in the range of 1-2%. That accuracy is
enough for our purposes.

The convergence of the surface energies as a function of slab thickness was
not tested as a part of this work, but previous surface energy studies [3]
demonstrated that for the present close-packed surfaces 8 atomic layers give
converged results. Also, Florentini et al. [4]) showed that the obtained surface
energy value between the various methods discussed in the last paragraph
diverges with slab thickness, the methods being most consistent with each
other when slab thickness is between 6-8 layers.

2.2. Computational details

For an adequate simulation of paramagnetic alloy steels both the chem-
ical and magnetic disorder should be treated simultaneously [5]. In the
present application, we modeled the bulk Fe1−c−nCrcNin system by an al-
loy with randomly distributed chemical species and local magnetic moments,
i.e. by a four component random Fe↑(1−c−n)/2Fe

↓

(1−c−n)/2 CrcNin alloy. Here

the arrows represent the two magnetic moments oriented up (↑) and down
(↓). This disordered local moment (DLM) approach accurately describes
the effect of loss of the net magnetic moment above the transition temper-
ature [6]. Unlike in the bulk, the magnetic moments of Cr tend to split
near the surface. Thus, for the slab system, instead of the four compo-
nent alloy Fe↑(1−c−n)/2Fe

↓

(1−c−n)/2 CrcNin we have to use a six component alloy
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Fe↑(1−c−n)/2Fe
↓

(1−c−n)/2Cr
↑

c/2Cr
↓

c/2Ni
↑

n/2Ni
↓

n/2. We should mention that in the
paramagnetic state, the bulk and surface Ni atoms become polarized only if
one takes into account the thermal (longitudinal) spin fluctuations. This is
beyond the scope of the present work. On the other hand, Cr atoms show
a much stronger surface moment enhancement (already in elementary Cr;
[23]), which might explain why Cr has non-vanishing local magnetic moment
at the surface.

Here we exclusively considered homogeneous substitutionally disordered Fe-
CrNi alloys, without interstitials and precipitates. Also the effects of short
range order and relaxation effects were omitted. It is well known that in-
terstitial C and N have a strong effect on stabilizing the austenitic phase.
However, modeling the effect of interstitials from the first principles theory
is very cumbersome especially in the chemically and magnetically disordered
matrix. For this reason, we mimic the effect of all austenite stabilizers with
Ni, as mentioned earlier.

The most straightforward way to compute the total energy of a disordered al-
loy system would be to construct a large supercell with randomly distributed
solute atoms. However, in the case of an alloy with four or even six com-
ponents, the supercell would have to be huge, and thus calculations based
on that would cause noticeable computational cost. It is worth pointing out
that one would have to perform several such calculations for each compo-
sition in order to average over different configurations. There is, however,
a more novel way to calculate the total energies of random substitutional
alloys, with far smaller computational cost. In this study, we employed the
Coherent Potential Approximation (CPA) [7], in which the alloy components
are embedded in an effective medium, which is constructed in such a way
that it represents, on the average, the scattering properties of the alloy. In
the present application, we adopted the CPA implemented within the frame-
work of the Exact Muffin-Tin Orbitals (EMTO) method [8, 5].

The EMTOmethod is an improved screened Korringa-Kohn-Rostoker method
[9], where the one-electron potential is represented by large overlapping
muffin-tin potential spheres. By using overlapping spheres, the crystal poten-
tial can be described more accurately, when compared with the conventional
non overlapping muffin-tin approach [10, 11, 12].

5



The FeCrNi alloys form the basis of the austenitic stainless steels. These
alloys are paramagnetic at room temperature having sizable (disordered)
local magnetic moments. However, these theoretical local moments depend
sensitively on the volume. Soft-core calculations yield equilibrium volumes
which are substantially smaller than those observed in experiment. The ob-
vious reason for this discrepancy is the thermal expansion, which has been
neglected in the present theoretical study. The unusually large thermal ex-
pansion originates from the fact that the paramagnetic fcc Fe (and also the
present alloys) shows a magnetic transition near the equilibrium volume [13].
As a consequence, a straightforward soft-core calculation cannot capture the
proper magnetic state of the present alloys. (We should also mention that
both the local- and the gradient-level density functional approximations un-
derestimate the equilibrium volume of magnetic 3d metals and thus further
increase the above error.) One possibility to overcome this difficulty is to
perform frozen-core calculations, which yield larger equilibrium volumes and
thus better account for the paramagnetic state. This is why all our calcula-
tions have been performed within the frozen-core scheme.

All calculations in the present work were carried out using the generalized-
gradient approximation [14] for the exchange-correlation density functional.
The EMTO basis set included s, p, d, and f orbitals. The one-electron
equations were solved within the scalar-relativistic approximation. For each
composition and crystal lattice, the EMTO Green’s function was calculated
self-consistently for 16 complex energy points distributed exponentially on
a semi-circular contour, which included states within 1 Ry below the Fermi
level. In the one-center expansion of the full charge density, we adopted an
l-cutoff of 10 and the total energy was calculated using the Full Charge Den-
sity technique [11, 5, 16]. The k-points were distributed uniformly, using a
13× 13× 1 mesh in slab and a 17× 17× 17 mesh in bulk calculations [15].

3. Results and Discussion

3.1. Surface energies

Figure 1 shows the surface energy of the fcc(111) surface. As can be noted,
the amount of Ni has little effect on the surface energy, whereas increasing
the amount of chromium from 12% to 32% raises the surface energy from
around 2.7 J/m2 to 3.0 J/m2. Figure 2 shows the surface energy of the
fcc(100) surface. Compared to the case of the fcc(111) surface, the energy is
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somewhat higher in the whole composition range. As in the case of fcc(111),
the amount of Ni has far less effect on the surface energy than Cr.

4 8 12 16 20 24 28 32
Ni %
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24
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2.7 2.75 2.8 2.85 2.9 2.95 3

(111) Surface energy [J/m2]

Figure 1: Surface energy of FeCrNi(111). Spacing between contours is .05 J/m2.

Jun Yu et al. [1] simulated the surface energy of Fe23Cr6Ni3 using the
supercell approach, and obtained 2.08 J/m2 for the fcc(111) surface and 2.06
J/m2 for the fcc(100) surface. Our values for that composition are 2.8 J/m2

for fcc(111) and 3.1 J/m2 for fcc(100). The differences between our results
and those of Jun Yu et al. are explained by the fact that we use different
methods. Their approach utilizes the supercell method (this affects chemical
disorder), and also, their approach excludes any magnetic effects. We could
make a comparison to the estimated surface energy of pure Fe, obtained from
liquid surface tension measurements (around 2.4 J/m2 [17]), but since clean
Fe is bcc and ferromagnetic, whereas our case is an fcc paramagnetic system
and Jun Yu et al. worked with a non-magnetic fcc system, the comparison
is of little use. Punkkinen et al. [18, 19] simulated the surface energy of fer-
romagnetic bcc Fe using the supercell method, and obtained a value of 2.45
J/m2 for bcc(110). Jun Yu et al. got, employing the GGA-PBE approxima-
tion, 2.435 J/m2 for the relaxed bcc(100) surface, 2.370 for J/m2 the relaxed
bcc(110) surface, 3.239 J/m2 for the unrelaxed bcc(100) surface and 3.012
J/m2 for the unrelaxed bcc(110) surface. However, Punkkinen et al. did not
find any significant relaxation for bcc ferromagnetic Fe, in contrast to the
huge relaxations reported by Jun Yu et al.
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Figure 2: Surface energy of FeCrNi(100). Spacing between contours is .05 J/m2.

Clean Cr is paramagnetic, so it has nonzero magnetic moments both in the
bulk and in the surface. Aldén et al. [20, 21] have found, in their inves-
tigations on the surface energies of 3d transition metals in magnetic and
nonmagnetic state, that the surface energy of nonmagnetic fcc(111) Cr is
7% (15%) higher than the surface energy of magnetic fcc(111) Fe (magnetic
fcc(111) Ni). Their studies [21], as well as those of Punkkinen et al. [18],
also show that the spin polarization of Cr decreases the surface energy of
bcc(100) Cr by 20-30%.

We found (Table 1) that the magnetic moments of Cr are smaller in a FeCrNi
surface, than they are in a FeCr surface [22] or a clean Cr surface [21] (this
is true for both (111) and (100) surface orientations). This suggests that the
increasing of the surface energy of FeCrNi alloys with increasing Cr content is
related to the reduced magnetic moment of Cr at FeCrNi surfaces compared
to those of FeCr or clean Cr. This argument is supported further by noting
that the magnetic moments of Cr are smaller in the fcc(111) surface com-
pared to those in the fcc(100) surface, and correspondingly, the obtained Cr
enhancement of the surface energy is stronger for the fcc(111) surface than
for the fcc(100) surface (this is easily observed when looking at the surface
energy parametrization equations shown in subsection 3.4). The effect of Cr
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to increase the surface energy seems to be a rather robust effect in Fe-alloys
since adding Cr to ferritic FeCr alloys similarly increases the surface energy
of the (100) surface [22].

3.2. Surface magnetism

Magnetic moments of Fe and Cr versus layer depth are listed in table 1.
Magnetic moments of Ni are omitted from the table, as they are all zero.
The magnetic moments of Fe increase from their bulk values of around 1.6
µB to 2.5 µB for the (100) surface and to 2.2 µB for the (111) surface. These
findings are in line with those of Ohnishi et al. [24]. A peculiarity one no-
tices about the magnetic moments of Fe in this table is the fact that the 4th
layer values (the 4th layer represents bulk in this calculation, as 8 layers was
thought to be enough for convergence) are not the same for (100) and (111).
If 8 layers were enough for the magnetic behavior to converge to bulk values
in both cases, the values would be the same. This is also in line with the
findings of Ohnishi et al. [24]; they used a slab 7 atomic layers thick, and
noticed Friedel-type oscillations in the magnetic polarization throughout the
entire slab. The fact that our method does not allow atoms to move from
their theoretical lattice positions might also provide an explanation to this:
since any driving forces can not move the atoms, magnetic frustrations might
be formed. The 4th layer value for the (100) slab is very close to the one
acquired via a bulk calculation with this method, 1.65 µB. In the (111) case,
the magnetic moment deviates 6.7% from its bulk value.

As mentioned earlier, the magnetic moments of Cr were assumed not to
split in the central layers, and split only in the surface layer, and possibly
in the 2nd. This turned out to be the case. Kiejna et al. [25], as well as
Ropo et al. [22] arrived to a similar conclusion in their study of bcc FeCr
alloys. Kiejna et al. also studied how the magnetic moment of Cr changed
depending on the surface geometry, and arrived to the conclusion that when
Cr atoms have the largest number of bonds missing (because they reside
at the surface), magnetic moment is the largest, as seen also in our study
(Table 1).

3.3. Surface energy anisotropy

Figure 3 shows the surface energy of the (100) surface divided by that
of the (111). The higher the value, the more likely the material is to break
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(100) (111)
Surf Fe 2.54 2.16

Cr 2.32 1.04
2nd Fe 1.76 1.57

Cr 0 0
3rd Fe 1.66 1.54

Cr 0 0
4th Fe 1.67 1.54

Cr 0 0

Table 1: Magnetic polarization of Cr and Fe as a function of the distance from surface.
The numbers are reported in Bohr magnetons. Magnetic polarization changed very little
(almost not at all) in the entire concentration range studied. The reported values are at
composition: 16% Cr, 16 % Ni, rest Fe. Corresponding magnetic moment (using this same
method) for bulk is 1.65 µB .

along the alignment with lower surface energy. A value of 1 would mean that
both are equally likely. As we can see, the anisotropy does not change much
with concentration. Chromium has almost no effect on it at all, and with Ni
the change is only in the order of 1%. In a simple bond cutting model, the
surface energies for the three low-index fcc surfaces are roughly proportional
to the number of removed nearest neighbor atoms per surface area when the
surface is created. The anisotropy ratio given by the bond cutting model is
1.15, which is fairly close to our reported values.

Jun Yu et al. [1] acquired for Fe23Cr6Ni3 alloy, using the supercell approach,
a surface energy anisotropy dissimilar to ours. Our results indicate that the
fcc(111) surface is lower in energy in the entire concentration range studied;
however, their result was the opposite. The explanation for this discrepancy
might lie in the following factors: first of all, the surface chemical composition
Jun Yu et al. use is not the same for fcc(100) and fcc(111). Second, their
analysis excludes the effect of magnetism, which is reflected on the rather
imprecise values they got for equilibrium volume and bulk modulus. In our
case, the chemical compositions were exactly the same, and magnetic effects
were included (within the DLM scheme).
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Figure 3: Surface energy anisotropy: γ(100) / γ(111). Line separation is 0.002.

3.4. Parametrization of surface energy

By fitting a simple planar function of the form f(c, n) = ac+bn+d, where
n and c are the amounts of Ni and Cr in the alloy, respectively (in atomic
fractions), to the sets of points we used to plot Figs. 1-2, we can estimate how
the surface energy behaves as a function of c and n. The estimate functions
are as follows:

γ(111) = 1.279 · c −0.143 · n+ 2.588 [J/m2]

γ(100) = 1.042 · c −0.228 · n+ 2.926 [J/m2],

where the variables are within the limits (0.12 ≤ c ≤ 0.32, 0.04 ≤ n ≤ 0.32).

As we can see when comparing Figs 1 and 2, the amount of Ni has more
effect on the surface energy in the case of (100) surface as compared to the
(111) surface. That can also be clearly seen in the estimate functions when
comparing the coefficients of n in both cases. Also, the surface energy was
a bit higher in the whole composition range for the (100) surface, which can
again be seen when looking at the constant terms of the functions. The fact
that the amount of Cr affects the surface energy more than the amount of
Ni is obvious, looking at the coefficients of c and n.
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3.5. Surface segregation tendencies of alloy component

To support our study of surface energies we estimated the difference be-
tween the Cr and Ni chemical potentials (effective chemical potential) in the
bulk and in the (111) surface for a homogeneous FeCrNi alloy containing
20% Cr and 16% Ni. The effective chemical potential for each component is
defined by

∆µX=Cr,Ni
eff =

δE

δcX
, (2)

where ∆µX
eff , E and cX are effective chemical potential, energy per atom and

the concentration of component X, respectively. That is, the effective chem-
ical potential is the partial derivative of the free energy with respect to the
concentration. In our simulations, when the amount of Cr was changed, the
amount of Ni was held fixed, and vice versa.

The estimated effective chemical potentials are as follows. For Ni they are
∆µNi

eff,bulk = -35.283 Ry in the bulk, and ∆µNi
eff,surf = -35.303 Ry in the surface.

For Cr they are ∆µCr
eff,bulk = 23.199 Ry in the bulk and ∆µCr

eff,surf = 23.221 Ry
in the surface.

As surface segregation energies can be obtained by taking differences in ef-
fective chemical potential between bulk and surface, we see that Ni has a
tendency to segregate towards the surface (∆µNi

eff,surf −∆µNi
eff,bulk = -20mRy),

whereas for Cr it seems to be energetically more favourable to segregate to-
wards the bulk (∆µCr

eff,surf −∆µCr
eff,bulk = 22mRy). This is in agreement with

the trends we can see in Figs 1 and 2: with increasing Cr content the surface
energy increases, and with increasing Ni content the surface energy decreases.

As it is Cr that makes stainless steels stainless by forming a protective layer
to its surface, it might seem counterintuitive at first to realize that Cr tends
to segregate towards the bulk, and Ni to the surface. However, there is no
discrepancy here. Jussila et al. [26] studied the surface of FeCrNi by mea-
surements, and found that when annealed, Ni is enriched at the surface (in
accordance with our results) and due to higher affinity to oxygen it is Cr
oxide that is found at the surface, when the surface is brought to contact
with an oxygen containing atmosphere. Later also Fe oxide is found (due to
higher mobility of Fe ions).
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4. Conclusions

Our main result is the ab initio database of the surface energy versus
composition. Increasing the Cr content by one atomic percent while keeping
Ni content fixed increases the surface energy with approximately 11 mJ/m2.
On the other hand, increasing Ni content by one atomic per cent (Cr con-
tent fixed) decreases the surface energy with approximately 2 mJ/m2. The
enhancement of surface energy with increasing Cr content is shown to have,
at least to a certain degree, a magnetic origin.

The order of surface energy versus surface orientation is such, that the more
closely packed the surface is, the smaller is the surface energy (our ongoing
study shows that the same trend continues to the (110) surface). This is a
normal surface anisotropy, which is characteristic to most of the late tran-
sition metals. However, the fact that a single crystal alloy has as the most
stable surface the (111) facet, may not have any substantial implications to
the real alloys. In normal conditions, steels are never seen as a single crystal,
rather, they have a macro structure consisting of grains of varying sizes, each
with a different crystal alignment. If we imagine a real life situation of a steel
breaking, different grains will break along different crystal alignment planes,
and thus the most realistic candidate for the energy it takes to cleave a steel
bulk in a real situation is acquired by averaging several single grain surface
energies.
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