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Abstract
Aims/hypothesis We aimed to identify a sparse panel of biomarkers for improving the prediction of renal disease progression in
type 1 diabetes.
Methods We considered 859 individuals recruited from the Scottish Diabetes Research Network Type 1 Bioresource
(SDRNT1BIO) and 315 individuals from the Finnish Diabetic Nephropathy (FinnDiane) study. All had an entry eGFR between
30 and 75 ml min−1[1.73 m]−2, with those from FinnDiane being oversampled for albuminuria. A total of 297 circulating
biomarkers (30 proteins, 121 metabolites, 146 tryptic peptides) were measured in non-fasting serum samples using the
Luminex platform and LC electrospray tandem MS (LC-MS/MS). We investigated associations with final eGFR adjusted for
baseline eGFR and with rapid progression (a loss of more than 3 ml min−1[1.73 m]−2 year−1) using linear and logistic regression
models. Panels of biomarkers were identified using a penalised Bayesian approach, and their performance was evaluated through
10-fold cross-validation and compared with using clinical record data alone.
Results For final eGFR, 16 proteins and 30 metabolites or tryptic peptides showed significant association in SDRNT1BIO, and
nine proteins and five metabolites or tryptic peptides in FinnDiane, beyond age, sex, diabetes duration, study day eGFR and
length of follow-up (all at p < 10−4). The strongest associations were with CD27 antigen (CD27), kidney injurymolecule 1 (KIM-
1) and α1-microglobulin. Including the Luminex biomarkers on top of baseline covariates increased the r2 for prediction of final
eGFR from 0.47 to 0.58 in SDRNT1BIO and from 0.33 to 0.48 in FinnDiane. At least 75% of the increment in r2 was attributable
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to CD27 and KIM-1. However, using the weighted average of historical eGFR gave similar performance to biomarkers. The LC-
MS/MS platform performed less well.
Conclusions/interpretation Among a large set of associated biomarkers, a sparse panel of just CD27 and KIM-1 contains most of
the predictive information for eGFR progression. The increment in prediction beyond clinical data was modest but potentially
useful for oversampling individuals with rapid disease progression into clinical trials, especially where there is little information
on prior eGFR trajectories.
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Abbreviations
ACR Albumin/creatinine ratio
AUC Area under the receiver operating

characteristic curve
CD27 CD27 antigen
DBP Diastolic BP
DKD Diabetic kidney disease
ESRD End-stage renal disease
FinnDiane The Finnish Diabetic Nephropathy study
IQR Interquartile range
KIM-1 Kidney injury molecule 1
LC-MS/MS LC electrospray tandem MS
RRT Renal replacement therapy
SBP Systolic BP
SDRNT1BIO Scottish Diabetes Research Network

Type 1 Bioresource

TNF Tumour necrosis factor
TNFR Tumour necrosis factor receptor

Introduction

Diabetic kidney disease (DKD) is the cause of most renal
failure and impaired renal function in type 1 diabetes mellitus.
As such it is a major contributor to the reduced life span in
type 1 diabetes [1]. Accordingly, developing drugs to prevent
or reverse impaired renal function is an important goal.
However, there is wide variation in the rate of renal function
decline among those with type 1 diabetes with some people
being much more susceptible than others. This makes
conducting clinical trials of drugs challenging because, over
the typical trial follow-up time, the average loss in renal
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function is modest [2]. An improved ability to predict which
people with diabetes will progress most rapidly would facili-
tate oversampling of such people into clinical trials, thereby
improving trial power.

To this end there have been several large-scale investments
into developing biomarkers for renal disease progression in
diabetes. However, as we recently reviewed [3], while there
are many sporadic reports of single biomarkers, there have
been few systematic attempts to harness the potential of
high-dimensional biomarker assays for prediction.
Furthermore, many studies do not evaluate how well bio-
markers improve prediction on top of clinical record data.

In this study we aimed to identify circulating serum bio-
markers that are associated with progression of renal disease
in individuals with type 1 diabetes mellitus and to assess their
usefulness in a prediction setting when either limited or com-
prehensive sets of clinical characteristics are available. We
evaluated the same set of biomarkers in two different cohorts,
the Scottish Diabetes Research Network Type 1 Bioresource
(SDRNT1BIO) [4] and the Finnish Diabetic Nephropathy
study (FinnDiane) [5], to assess reproducibility and
generalisability of the results across a range of characteristics.
Moreover, we used two different technologies (Luminex and
LC electrospray tandem MS [LC-MS/MS]) to obtain a com-
prehensive coverage of both candidate and discovery bio-
markers for renal disease.

The objectives of this study were first, to determine the
association of each biomarker measured with eGFR achieved
at the end of follow-up and with rapid progression status in
both cohorts; and second, to select from these a parsimonious
panel of biomarkers that would be helpful in predicting renal
function decline in both cohorts.

Methods

Participants SDRNT1BIO [4] is a prospective cohort study
comprising 6127 people with a clinical diagnosis of type 1
diabetes mellitus, representing 25% of all adults with type 1
diabetes in Scotland, recruited between December 2010 and
November 2013. At recruitment, clinical measurements and a
blood sample were taken. From electronic healthcare records
we extracted routine health-related data at biosample date, or
the closest up to 18 months before. These were supplemented
by direct measures of eGFR and albuminuria from samples
collected at recruitment. For this study we selected 859 indi-
viduals with eGFR between 30 and 75 ml min−1 [1.73 m]−2 at
study biosample date and with at least three prospective eGFR
determinations over a period of at least 2 years or incident end-
stage renal disease (ESRD).

The FinnDiane study is a prospective nationwide multicentre
study comprising more than 8400 adults with type 1 diabetes
mellitus covering more than 15% of all the type 1 diabetic

individuals in Finland [5]. Individuals participated in the study
during a regular visit to their attending physician during which
detailed demographic and medical history data were collected
with standardised questionnaires. For this study, a subpopulation
of 315 participants studied between 1994 and 2011was included,
comprising those who at biosample date had an eGFR between
30 and 75 ml min−1 [1.73 m]−2 and who had micro- or
macroalbuminuria. Participants were also required to have an
eGFR measurement within half a year from the biosample date
and at least three prospective eGFR determinations over a time
period of at least 3 years. If the person developed ESRD, three
prospective eGFR measurements over a time period of at least
1 year was accepted.

In both studies participants were classified as normo-, micro-
or macroalbuminuric at baseline according to their albumin/
creatinine ratio (ACR) falling in the intervals 0–3.39 mg/mmol,
3.39–33.9 mg/mmol, or above 33.9 mg/mmol, based on two out
of three consecutive measurements before baseline.

Both studies were performed in accordance with the
Declaration of Helsinki; all participants gave their written con-
sent and the study protocol was approved by the local ethics
committees.

Renal outcomes eGFR was calculated with the CKD-EPI
equation [6] using serum and plasma creatinine values re-
trieved retrospectively and prospectively from medical re-
cords. In SDRNT1BIO, these excluded readings concurrent
with hospital admissions.

A summary measure of the historical eGFR was obtained
by computing a weighted average of all retrospective eGFR
records for each person, with weights inversely related to the
amount of time leading to the biosample date. Participants
with no retrospective eGFR data had their historical eGFR
imputed to study day eGFR.

Achieved eGFR was defined as the median eGFR reading
of the last 6 months of follow-up. Initiation of renal replace-
ment therapy (RRT) was considered to indicate an achieved
eGFR of 10 ml min−1 [1.73 m]−2 and all subsequent readings
were censored.

The decline of renal function was estimated by fitting a
simple linear regression model to the serial prospective
eGFR determinations of each person. A rapid progressors cat-
egory was defined by dichotomising prospective linear slopes
according to a threshold of an average loss of more than
3 ml min−1 [1.73 m]−2 year−1.

Biomarkers measured and analysed We measured a total of
297 biomarkers in non-fasting serum samples using: (1) the
Luminex platform at the CLIA certified Myriad RBM labora-
tory (Austin, Texas, USA) to assay 30 protein biomarkers; and
(2) LC-MS/MS at the WellChild laboratory (King’s College
London, UK) to capture 121 metabolites (including six ratios
between pairs of metabolites) and 146 tryptic peptides.
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A number of quality control steps were performed in each of
the two studies prior to the statistical analysis stage. This led to
excluding from the analyses biomarkers considered uninforma-
tive: those that reported over 98% of undetectable readings and
those that had more than 50% of their values missing at random
(19 and 8 in SDRNT1BIO, and 20 and 7 in FinnDiane, respec-
tively).We evaluated reproducibility of biomarkermeasurements
by computing intra-class correlations on duplicate samples from
a pilot study on a subset of participants (35 duplicate samples in
SDRNT1BIO, 25 in FinnDiane). According to this, we removed
biomarkers that had an intra-class correlation <0.4 (41 in
SDRNT1BIO and 59 in FinnDiane).

Serum samples were stored at −80°C in SDRNT1BIO and
−20°C in FinnDiane.Multiple freeze/thaw cycles and suboptimal
storage conditions are known to affect some biomarkers. In a
separate study we considered 16 FinnDiane sample aliquots
stored at −20°C and −80°C: this allowed us to identify which
biomarkers are susceptible to, and which are unaffected by, poor
storage conditions. Among the biomarkers that passed the quality
control steps above, 24 biomarkers were identified to be affected
by storage conditions and removed from further analyses in
FinnDiane, while they were still considered for SDRNT1BIO
in univariate analyses.

Overall, 191 biomarkers were analysed in SDRNT1BIO
(27 proteins, 81 metabolites and ratios, and 83 tryptic pep-
tides) and 167 biomarkers in FinnDiane (22 proteins, 63 me-
tabolites and ratios, and 82 tryptic peptides).

Within each study, left-censored values were imputed to
half the detection threshold; right-censored values (only pres-
ent for N-terminal prohormone of brain natriuretic peptide)
were imputed to the largest value reported; values missing at
random were imputed to the median.

Univariate analysis Biomarkers were evaluated independently
in linear and logistic regression models adjusted for age, sex,
diabetes duration, eGFR at biosample date and length of
follow-up (basic covariates). To incorporate more information
about past and current status of renal function, we also con-
sidered models containing ACR category and the weighted
average of historical eGFR and alongside the basic set of
covariates. We further adjusted models for BMI, systolic BP
(SBP), diastolic BP (DBP), HbA1c, HDL-cholesterol, total
cholesterol, smoking status, ACR category and weighted av-
erage of historical eGFR (full covariates). All continuous var-
iables were Gaussianised prior to fitting the models, and
standardised to zero mean and unit SD. Associations were
declared significant at p < 10−4, which is particularly conser-
vative even for the number of tests performed (Bonferroni-
corrected threshold would be 0.05/191 = 2.6 × 10−4).

Construction of sparse panels of biomarkers Only the bio-
markers with valid data in both studies were considered for
the purpose of the selection of a sparse panel of biomarkers

(22 from the Luminex platform and 145 from the LC-MS/MS
platform). The two biomarker sets were modelled indepen-
dently from each other. However, for comparison we also
generated panels of biomarkers using both platforms simulta-
neously, although a panel requiring two platforms would not
be cost effective or easily deployable in the clinical setting.

We adopted a Bayesian modelling approach based on hier-
archical shrinkage priors [7], in which the clinical covariates
used to control for confounding in the models were assigned a
Gaussian prior (which induces some shrinkage), while the
biomarkers were penalised through the horseshoe prior to pro-
mote sparsity [8, 9]. The hierarchical shrinkage approach was
implemented using the Stan Bayesian inference framework
[10]. See electronic supplementary material (ESM) Methods
for more details.

We evaluated the predictive performance of the biomarker
models on withdrawn data using 10-fold cross-validation, and
compared models including biomarkers to baseline
(unpenalised) models that only contain clinical covariates, al-
so fitted using Stan. For each set of baseline covariates used,
we reported the difference in log-likelihood (computed on the
test observations from 10-fold cross-validation, and expressed
in natural log units) between the model with biomarkers and
the model including only the clinical covariates. For linear
regression models we computed the r2 as the squared
Pearson correlation coefficient between observed and predict-
ed outcome. For logistic regression models, besides reporting
the area under the receiver operating characteristic curve
(AUC), we also presented the expected information for dis-
crimination Λ expressed in bits [11]. This is a better measure
of the incremental contribution of biomarkers to the predictive
performance, as it captures the amount of additional informa-
tion that they contain over and beyond the initial set of clinical
covariates (see ESMMethods for more details). Computations
were done with the R package wevid (version 0.6: https://
CRAN.R-project.org/package=wevid).

To recover a sparse model, we then applied a projection
approach according to which the high-dimensional posterior
draws of the model containing all biomarkers (full model) are
projected to lower-dimensional subspaces [12, 13] (see ESM
Methods for more details). This procedure allowed us to rank
the biomarkers in terms of importance. Each candidate model
was then evaluated in terms of their contribution to the pre-
dictive performance relative to the performance of the full
model, so that we could plot the relative explanatory power
obtained by biomarker panels of different sizes.

Results

Participant characteristics Table 1 reports the summary char-
acteristics for the two cohorts analysed.
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The length of follow-up was shorter in SDRNT1BIO as com-
pared with FinnDiane (5.2 vs 8.8 years), the former being a more
recently established cohort. FinnDiane participants were generally
at a more advanced stage of renal function decline, with starting
eGFR being lower despite their younger age, reflecting the fact
that these individuals were oversampled for albuminuria.
Similarly, the rate of progression of renal decline detectable during
follow-up differed between the two cohorts in terms of prospective
eGFR slopes (−0.83 vs −2.44 ml min−1 [1.73 m]−2 year−1 in
SDRNT1BIO and FinnDiane, respectively) and of rapid progres-
sion (22.6% vs 40.3%). ESM Table 1 shows the characteristics of
rapid progressors to non-progressors in each cohort. Of note, point
estimates for HbA1c and SBP are somewhat higher, and HDL-
cholesterol lower, in progressors than non-progressors in both
cohorts.

Biomarkers explored ESM Table 2 shows the full list of bio-
markers measured with median, interquartile range (IQR) and
range in each of the studies, and reason for removal of a

biomarker from the analysis. There are important distribution-
al differences in some of the biomarkers that may be due to
depletion caused by suboptimal storage conditions of the
FinnDiane samples, and may also reflect the more advanced
stage of kidney disease in FinnDiane.

Univariate associations When modelling achieved eGFR ad-
justed for age, sex, diabetes duration, eGFR and length of
follow-up, 46 and 14 biomarkers were statistically significant
in SDRNT1BIO and FinnDiane, respectively, and 12 were
significant in both. Table 2 shows remarkable consistency in
the strongest associations between the two cohorts, with
CD27 antigen (CD27) having the largest effect size in both
studies. Effect sizes in FinnDiane, where albuminuria rates
were higher, were generally larger than in SDRNT1BIO.
Consistent with this, there was some evidence that associa-
tions were stronger in those with above rather than below
median ACR in SDRNT1BIO (e.g. for CD27: β = −0.31 vs
−0.21, p = 0.021 for interaction).

Table 1 Cohort characteristics at baseline

Covariate SDRNT1BIO (n = 859) FinnDiane (n = 315) p valuea

Frequency/Median (IQR) MaR Frequency/Median (IQR) MaR

Age (years) 55.5 (46.1, 64.4) 0 46.3 (36.6, 52.5) 0 <1 × 10−16

Sex (female) (%) 56.8 0 44.8 0 2 × 10−4

Diabetes duration (years) 26.5 (17.4, 37.5) 0 31.9 (25.4, 37.9) 0 2 × 10−12

Length of follow-up (years) 5.2 (4.4, 5.7) 0 8.8 (5.9, 12.2) 0 <1 × 10−16

Start of follow-up (calendar year) 2012 (2011, 2012) 0 1999 (1998, 2001) 0 –

End of follow-up (calendar year) 2017 (2017, 2017) 0 2010 (2006, 2013) 0 –

eGFR (ml min−1 [1.73 m]−2) 72.0 (62.1, 84.5) 0 58.6 (45.7, 67.0) 0 <1 × 10−16

Achieved eGFR (ml min−1 [1.73 m]−2) 73.1 (58.6, 85.2) 0 29.9 (10.0, 55.9) 0 <1 × 10−16

Weighted average of historical eGFR (ml min−1 [1.73 m]−2) 81.2 (70.6, 91.4) 32 64.8 (52.4, 76.7) 108 <1 × 10−16

ACR (mg/mmol) 0.5 (0.3, 1.9) 21 25.0 (7.6, 69.5) 56 8 × 10−15

ACR category (normo/micro/macro)b (%) 81.4/10.5/5.7 21 0/27.3/72.7 0 <1 × 10−16

Prospective eGFR slope (ml min−1 [1.73 m]−2 year−1) −0.8 (−2.8, 0.7) 0 −2.4 (−4.4, −1.0) 0 3 × 10−13

Rapid progressors (slope < −3) (%) 22.6 0 40.3 0 2 × 10−09

HbA1c (mmol/mol) 68.0 (60.0, 79.0) 0 71.6 (62.8, 82.5) 2 1 × 10−02

HbA1c (%) 8.4 (7.6, 9.4) 0 8.7 (7.9, 9.7) 2 1 × 10−02

BMI (kg/m2) 27.2 (24.6, 30.5) 3 25.7 (23.2, 28.2) 2 1 × 10−09

HDL-cholesterol (mmol/l) 1.6 (1.3, 1.9) 19 0.9 (0.7, 1.1) 0 <1 × 10−16

Total cholesterol (mmol/l) 4.5 (3.9, 5.1) 6 5.1 (4.5, 5.7) 0 <1 × 10−16

SBP (mmHg) 134.0 (122.0, 146.0) 0 144.5 (131.0, 158.0) 4 6 × 10−14

DBP (mmHg) 74.0 (68.0, 80.0) 0 80.0 (72.5, 89.0) 4 <1 × 10−16

Ever smoker (%) 64.5 0 52.1 23 1 × 10−02

On any anti-hypertensive treatment (%) 61.7 0 94.3 3 <1 × 10−16

On ACE or ARB (%) 56.5 0 86.0 3 <1 × 10−16

We report median and IQR for continuous variables, and frequency for categorical variables
a p value is for the difference in means or proportions between the two cohorts
b For the ACR category we compared normoalbuminuric to all others

ARB, angiotensin II receptor blocker; MaR, number of observations missing at random
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Table 2 Associations of each biomarker (considered separately) with achieved eGFR from linear regression models adjusted for age, sex, duration of
diabetes, study day eGFR and length of follow-up

Biomarker SDRNT1BIO FinnDiane

β coefficient (95% CI) p value β coefficient (95% CI) p value

Luminex proteins

CD27 antigen −0.31 (−0.36, −0.26) 7 × 10−30 −0.43 (−0.55, −0.32) 1 × 10−13

KIM-1 −0.26 (−0.31, −0.21) 2 × 10−24 −0.34 (−0.44, −0.25) 2 × 10−11

β2-microglobulin −0.28 (−0.34, −0.23) 4 × 10−22 −0.33 (−0.44, −0.21) 9 × 10−08

α1-microglobulin −0.28 (−0.33, −0.23) 2 × 10−25 −0.31 (−0.41, −0.20) 1 × 10−08

Cystatin-C −0.30 (−0.36, −0.24) 1 × 10−21 −0.24 (−0.36, −0.13) 6 × 10−05

Thrombomodulin −0.28 (−0.34, −0.23) 3 × 10−24 −0.30 (−0.41, −0.20) 3 × 10−08

TNFR1 −0.24 (−0.29, −0.19) 5 × 10−19 −0.29 (−0.39, −0.18) 2 × 10−07

Osteopontin −0.17 (−0.23, −0.12) 3 × 10−11 −0.24 (−0.34, −0.14) 8 × 10−06

IL-2 receptor α −0.22 (−0.27, −0.17) 4 × 10−17 −0.18 (−0.28, −0.08) 3 × 10−04

Osteoprotegerin −0.14 (−0.20, −0.09) 8 × 10−07 −0.22 (−0.32, −0.12) 3 × 10−05

Fibroblast growth factor 21 −0.15 (−0.20, −0.11) 9 × 10−10 −0.19 (−0.29, −0.09) 1 × 10−04

IGF-binding protein 7 −0.12 (−0.17, −0.07) 8 × 10−06 −0.18 (−0.28, −0.08) 5 × 10−04

N-terminal prohormone of brain natriuretic peptide −0.18 (−0.23, −0.12) 3 × 10−10 −0.02 (−0.12, 0.08) 7 × 10−01

Tissue inhibitor of metalloproteinases 1 −0.13 (−0.18, −0.08) 4 × 10−07 −0.18 (−0.27, −0.09) 2 × 10−04

Tamm–Horsfall urinary glycoprotein 0.15 (0.09, 0.20) 8 × 10−08 0.17 (0.08, 0.27) 6 × 10−04

Trefoil factor 3 −0.15 (−0.20, −0.09) 1 × 10−07 Not tested

LC-MS/MS metabolites

Free sialic acid −0.28 (−0.34, −0.23) 1 × 10−21 −0.32 (−0.44, −0.20) 5 × 10−07

SDMA −0.20 (−0.26, −0.14) 1 × 10−10 −0.30 (−0.42, −0.18) 2 × 10−06

3-Methyl-histidine −0.17 (−0.24, −0.11) 7 × 10−08 −0.24 (−0.36, −0.13) 3 × 10−05

Tryptophan/kynurenine 0.22 (0.17, 0.28) 4 × 10−15 0.16 (0.05, 0.27) 4 × 10−03

SDMA/ADMA −0.12 (−0.18, −0.06) 2 × 10−05 −0.20 (−0.31, −0.09) 6 × 10−04

Free cystine −0.17 (−0.23, −0.11) 2 × 10−09 Not tested

TMAO −0.15 (−0.20, −0.09) 1 × 10−07 −0.17 (−0.28, −0.07) 1 × 10−03

C4DC methylmalonyl/C5OH −0.15 (−0.21, −0.09) 1 × 10−06 −0.16 (−0.27, −0.05) 4 × 10−03

Tryptophan 0.16 (0.12, 0.21) 7 × 10−11 Not tested

C5DC (glutaryl) carnitine −0.13 (−0.18, −0.07) 6 × 10−06 −0.14 (−0.25, −0.03) 2× 10−02

Methionine 0.14 (0.09, 0.19) 1 × 10−08 Not tested

C4 carnitine −0.13 (−0.18, −0.08) 3 × 10−06 Not tested

C2 carnitine −0.12 (−0.17, −0.07) 8 × 10−06 Not tested

C3DC malonyl/3OHB −0.12 (−0.17, −0.07) 4 × 10−06 −0.10 (−0.19, −0.01) 3 × 10−02

Citrulline −0.11 (−0.16, −0.05) 7 × 10−05 −0.10 (−0.20, 0.00) 5 × 10−02

Threonine 0.11 (0.06, 0.16) 2 × 10−05 0.06 (−0.03, 0.15) 2 × 10−01

Hydroxyproline −0.10 (−0.15, −0.05) 9 × 10−05 −0.09 (−0.19, 0.00) 6 × 10−02

Neopterin −0.10 (−0.15, −0.05) 9 × 10−05 −0.10 (−0.19, −0.00) 5 × 10−02

LC-MS/MS tryptic peptides

Retinal-binding protein 2 (575.8/695.3) 0.09 (0.03, 0.14) 1 × 10−03 0.20 (0.11, 0.29) 2 × 10−05

Hyaluronan-binding protein 2 (575.2/901.5) 0.04 (−0.02, 0.09) 2 × 10−01 0.19 (0.10, 0.28) 5 × 10−05

Extracellular glycoprotein lacritin (481.3/501.3) 0.13 (0.08, 0.18) 1 × 10−07 0.16 (0.07, 0.25) 9 × 10−04

Albumin T70 (501.2/587.5) 0.14 (0.09, 0.19) 1 × 10−08 0.04 (−0.06, 0.13) 4 × 10−01

Angiotensin II (349.8/136.1) 0.14 (0.09, 0.19) 1 × 10−07 0.04 (−0.05, 0.14) 4 × 10−01

Cellular repressor of E1A-stimulated genes 1 (575.8/704.4) 0.10 (0.05, 0.15) 4 × 10−05 0.14 (0.04, 0.23) 4 × 10−03

Chromogranin A (488.2/775.4) −0.14 (−0.19, −0.09) 2 × 10−08 −0.02 (−0.12, 0.07) 6 × 10−01

Albumin T6 (575.4/937.4) 0.13 (0.08, 0.18) 2 × 10−07 0.12 (0.03, 0.22) 1 × 10−02

ApoC-III (598.8/854.4) −0.12 (−0.17, −0.07) 2 × 10−06 −0.07 (−0.17, 0.03) 2 × 10−01
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When these models were further adjusted for ACR at base-
line, the coefficients were reduced somewhat, but the top as-
sociations all remained highly significant (ESM Table 3).
After adjusting models for the full set of clinical covariates,
the largest effect sizes were slightly reduced mainly due to the
addition of the weighted average of historical eGFR to the set
of covariates, but nine Luminex proteins and four LC-MS/MS
measured peptides or metabolites remained significantly asso-
ciated with final eGFR (ESM Table 4).

Considering the binary outcome of rapid progression, as-
sociations were much weaker and fewer were significant

(Table 3), but the rank ordering of the associations was similar
to that using final eGFR as the outcome.

Panels of biomarkers Table 4 summarises the cross-validated
predictive performance of the linear regression models for
prediction of achieved eGFR using all the biomarkers with
penalty parameters on top of various clinical covariates. On
top of age, sex, diabetes duration, baseline eGFR and length of
follow-up, the biomarkers from each of the platforms yielded
only modest increments in prediction of final eGFR. The
Luminex platform gave a similar increment in performance

Table 3 Associations of each biomarker (considered separately) with rapid progression from logistic regression models adjusted for age, sex, duration
of diabetes, study day eGFR and length of follow-up

Biomarker SDRNT1BIO FinnDiane

OR (95% CI) p value OR (95% CI) p value

Luminex proteins

KIM-1 1.82 (1.52, 2.17) 4 × 10−11 2.11 (1.52, 3.00) 2 × 10−05

CD27 antigen 1.65 (1.38, 1.99) 9 × 10−08 1.89 (1.33, 2.71) 4 × 10−04

TNFR1 1.89 (1.54, 2.33) 2 × 10−09 1.26 (0.93, 1.73) 1 × 10−01

α1-microglobulin 1.86 (1.51, 2.31) 1 × 10−08 1.76 (1.28, 2.47) 7 × 10−04

Thrombomodulin 1.82 (1.50, 2.22) 2 × 10−09 1.72 (1.26, 2.38) 7 × 10−04

β2-microglobulin 1.51 (1.25, 1.85) 3 × 10−05 1.73 (1.20, 2.56) 4 × 10−03

Cystatin-C 1.70 (1.37, 2.14) 3 × 10−06 1.44 (1.02, 2.05) 4 × 10−02

IL-2 receptor α 1.60 (1.34, 1.91) 2 × 10−07 1.27 (0.95, 1.70) 1 × 10−01

N-terminal prohormone of brain natriuretic peptide 1.50 (1.24, 1.82) 4 × 10−05 1.09 (0.83, 1.43) 5 × 10−01

LC-MS/MS metabolites

Free sialic acid 1.63 (1.33, 2.00) 4 × 10−06 1.51 (1.05, 2.20) 3 × 10−02

Tryptophan/kynurenine 0.67 (0.55, 0.82) 7 × 10−05 0.93 (0.68, 1.26) 6 × 10−01

Threonine 0.68 (0.57, 0.80) 8 × 10−06 0.80 (0.61, 1.03) 8 × 10−02

Methionine 0.69 (0.58, 0.82) 4 × 10−05 Not tested

Tryptophan 0.69 (0.58, 0.82) 4 × 10−05 Not tested

ORs are per unit of SD of Gaussianised biomarker

Biomarkers with p < 10-4 in at least one study are reported, ordered by largest effect size across the two studies

Not tested: the biomarker was not tested for association as it was affected by storage conditions

Table 2 (continued)

Biomarker SDRNT1BIO FinnDiane

β coefficient (95% CI) p value β coefficient (95% CI) p value

Complement C3 (673.4/646.4) −0.12 (−0.17, −0.07) 4 × 10−06 0.04 (−0.05, 0.13) 4 × 10−01

Albumin T34 (441.0/680.5) 0.11 (0.06, 0.16) 7 × 10−06 0.06 (−0.03, 0.16) 2 × 10−01

Haptoglobin (490.5/562.6) −0.11 (−0.16, −0.06) 2 × 10−05 0.01 (−0.09, 0.10) 9 × 10−01

Heparin cofactor II (514.8/814.4) −0.10 (−0.15, −0.05) 6 × 10−05 −0.07 (−0.16, 0.03) 2 × 10−01

Peroxidase (492.6/703.3) −0.10 (−0.15, −0.05) 4 × 10−05 −0.03 (−0.12, 0.06) 5 × 10−01

Regression coefficients are per unit of SD of Gaussianised biomarker

Biomarkers with p < 10-4 in at least one study are reported, ordered by largest effect size across the two studies

Not tested: the biomarker was not tested for association as it was affected by storage conditions

ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine; TMAO, trimethylamine-N-oxide
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to the LC-MS/MS platform in SDRNT1BIO and somewhat
greater performance in FinnDiane. The r2 increased from 0.47
to 0.58 in SDRNT1BIO, and from 0.33 to 0.48 in FinnDiane
when adding the Luminex panel to a model containing age,
sex, diabetes duration, eGFR and length of follow-up.

Similarly, as shown in the AUC data in Table 5, biomarkers
from both platforms modestly incremented the prediction of
rapid progression of renal disease independently of age, sex,
diabetes duration, eGFR and length of follow-up. Both the
base model without biomarkers and the model including bio-
markers were more predictive in FinnDiane. This is possibly
because of longer follow-up and the more advanced stage of
renal decline of their participants. Using the metric of expect-
ed information for discrimination rather than AUC, the con-
clusions are similar, i.e. that the biomarkers provide onlymod-
est additional predictive information on top of clinical covar-
iates. For example, the addition of both panels to the set of

basic covariates provides 0.3 and 0.4 extra bits of information
for the prediction of rapid progression in SDRNT1BIO and
FinnDiane, respectively. Note that the expected information
for discrimination metric shows that the increment in predic-
tion of rapid progression with biomarkers in FinnDiane is
similar or slightly greater than in SDRNT1BIO, consistent
with the generally stronger univariate associations. See discus-
sion for further consideration of what the expected informa-
tion for discrimination shows that an AUC does not.

By applying the forward selection projection approach, we
determined a ranking of the biomarkers within each platform
(ESM Table 5). Figure 1 displays the ranking of the first three
biomarkers for the two platforms considered separately and
jointly, when predicting achieved eGFR in models adjusted
for basic clinical covariates. This shows that, in general, the
gains in explanatory power flatten out after the first few bio-
markers are added to the initial set of clinical covariates.

Table 4 Cross-validated perfor-
mance of models for prediction of
achieved eGFR

SDRNT1BIO FinnDiane

Basic covariates Full covariates Basic covariates Full covariates

Platform Diff. logLik r2 Diff. logLik r2 Diff. logLik r2 Diff. logLik r2

Baseline – 0.47 – 0.63 – 0.33 – 0.45

Luminex 86.3 0.58 24.1 0.65 34.5 0.48 14.7 0.50

LC-MS/MS 91.8 0.58 24.7 0.65 23.5 0.43 8.4 0.47

Both platforms 103.2 0.60 29.4 0.65 36.3 0.48 16.5 0.50

Baseline models contain only either basic or full clinical covariates

Basic clinical covariates: age, sex, diabetes duration, study day eGFR, length of follow-up

Full clinical covariates: age, sex, diabetes duration, study day eGFR, length of follow-up, categorical ACR, BMI,
DBP, SBP, HbA1c, HDL-cholesterol, total cholesterol, smoking status, weighted average of historical eGFR

Differences in test log-likelihood (using natural logarithms) are reported with respect to the baseline model

Diff., difference; logLik, log-likelihood

Table 5 Cross-validated performance of models for prediction of rapid progression

Platform SDRNT1BIO FinnDiane

Basic covariates Full covariates Basic covariates Full covariates

Diff. logLik AUC Λ Diff. logLik AUC Λ Diff. logLik AUC Λ Diff. logLik AUC Λ

Baseline – 0.51 0 – 0.61 0.3 – 0.70 0.6 – 0.78 1.3

Luminex 25.4 0.65 0.3 6.2 0.64 0.4 8.8 0.74 0.9 0.3 0.78 1.4

LC-MS/MS 12.2 0.60 0.2 1.2 0.62 0.3 5.2 0.72 0.9 −0.6 0.78 1.6

Both platforms 22.1 0.63 0.3 3.8 0.63 0.4 7.8 0.73 1 −0.1 0.78 1.8

Baseline models contain only either basic or full clinical covariates

Basic clinical covariates: age, sex, diabetes duration, study day eGFR, length of follow-up

Full clinical covariates: age, sex, diabetes duration, study day eGFR, length of follow-up, categorical ACR, BMI, DBP, SBP, HbA1c, HDL-cholesterol,
total cholesterol, smoking status, weighted average of historical eGFR

Differences in test log-likelihood (using natural logarithms) are reported with respect to the baseline model

The expected information for discrimination Λ is reported in bits

Diff., difference; logLik, log-likelihood
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Indeed, for the Luminex platform, 75% of the explanatory
power is produced by CD27 and kidney injury molecule 1
(KIM-1) in both cohorts.

To consider whether the increment in prediction obtained
with these biomarkers would be of practical use, we calculated
the enrichment in the rate of rapid progression that would be
obtained if the biomarkers were measured in potential entrants
to a trial with characteristics similar to the cohort participants.
By oversampling into the trial according to varying percentile
cut-offs for the risk score from models with and without bio-
markers, we could produce the curves of Fig. 2. For example,
if the most extreme 25% of participants for biomarkers were
oversampled then the expected incidence of rapid progression
would go from about 23% to 35% in SDRNT1BIO. By con-
trast in FinnDiane, where most participants were already al-
buminuric and rapid progression rates are higher, the enrich-
ment would be less, going from 63% to 73%.

Discussion

The key findings from this study were that, despite a large
number of the biomarkers evaluated showing highly signifi-
cant associations with eGFR and its decline: (1) the marginal
increment in prediction using these biomarkers panels is mod-
est; (2) almost all of the predictive information can be obtained
using just two biomarkers (CD27 and KIM-1); and (3) using
weighted historical eGFR and albuminuria gives similar pre-
diction performance to using the biomarkers. Nonetheless, in
some clinical trial settings where historical records are not
available, oversampling those with the highest levels of
CD27 and KIM-1 may be useful for stratification into the trial.

Our data emphasise that, while identifying biomarkers that
are associated with eGFR and its decline is rather straightfor-
ward, building a biomarker panel is not as simple as consid-
ering the top few strongly associated biomarkers. The creation
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Fig. 1 Contribution of biomarker
sets to prediction of achieved
eGFRwhen starting from amodel
containing only age, sex, diabetes
duration, study day eGFR and
length of follow-up (basic
covariates) in SDRNT1BIO (a, c,
e) and FinnDiane (b, d, f). The
sets of biomarkers added were: (a,
b) Luminex platform; (c, d) LC-
MS/MS platform; (e, f); both
platforms together. Note that for
(c) to (f) the plotting of the curve
was interrupted after 25
biomarkers: by definition, the
curve would gradually converge
to 1 with the addition of all
remaining biomarkers. The names
of the ten highest ranking
biomarkers in each setting are
provided in ESM Table 5. Alb
T70, albumin T70; B2M, β-2-
microglobulin, Cys-C, cystatin C,
HSP60, heat-shock protein
60 kDa; Sial, free sialic acid; THP,
Tamm–Horsfall urinary
glycoprotein; Trp/Kyn,
tryptophan/kynurenine
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of biomarker sets that are jointly predictive needs to take ac-
count of the correlation between the biomarkers. When this is
donewe can see that almost all the gains in prediction are from
just a few biomarkers, here CD27 and KIM-1.

In the SUMMIT study (Surrogate Markers for Micro-and
Macrovascular Hard Endpoints for Innovative Diabetes
Tools), we have previously shown that KIM-1 was the most
useful of a wide range of biomarkers associated with eGFR
loss in type 2 diabetes [14]. KIM-1 is expressed on the apical
membrane of kidney proximal tubule cells. It is well
established as a urinary marker of acute kidney injury.
Serum KIM-1 has previously been reported to predict eGFR
decline and incidence of ESRD in type 1 diabetes [15, 16].
Furthermore, a Mendelian randomisation approach utilising
genetic data to infer causality suggested that urinary KIM-1
would be a causal risk factor for decline in eGFR [17].
However, it remains an open question whether it is a causal
biomarker or not.

CD27 is a member of the tumour necrosis factor (TNF)
receptor superfamily and is required for the maintenance of
T cell immunity. We are not aware of previous reports of
CD27 in DKD. However, other members of this superfamily
(TNF receptor [TNFR]1 and TNFR2) have previously been
reported as biomarkers of eGFR decline by us and others in
type 2 diabetes [18, 19] and type 1 diabetes [20]. While cir-
culating levels of CD27 correlate with structural renal abnor-
malities [18] and while there is considerable evidence for a
role of the immune system and inflammation in DKD, wheth-
er these associations of members of the TNF receptor super-
family with DKD are causal or secondary to altered filtration
remains unclear.

A key strength of our study was the deliberate use of two
cohorts with differing characteristics and rates of disease. The

SDRNT1BIO cohort was not oversampled for albuminuria
but the FinnDiane cohort set used was. Accordingly, for sim-
ilar starting eGFR, the rate of progression in FinnDiane was
higher. In general, biomarker associations with final eGFR
were stronger among those with albuminuria and the incre-
ment in prediction gainedwith biomarkers was slightly greater
in the FinnDiane cohort. The differing storage conditions in
the two cohorts (−80°C with no freeze/thaw cycles in
SDRNT1BIO and −20°C in FinnDiane) allowed us to exam-
ine which of these biomarkers are highly sensitive to
storage—an important consideration for their practical de-
ployment in clinical settings.

Another key strength of our study is the use of advanced
statistical methods that avoid over-optimistic assessments of
prediction. These include cross-validation and use of penalty
parameters that account for the high number of analytes being
evaluated.We also introduce here a newmeasure of prediction
performance—the expected information for discrimination.
See [11] for the full derivation and discussion of this measure,
but an important advantage is that it scales linearly so one can
directly compare the increment in prediction gained from two
differing base levels. As shown in Table 5, the AUC increases
from 0.51 to 0.63 with both biomarker platforms in
SDRNT1BIO, but from 0.70 to 0.73 in FinnDiane. Although
the reader might be misled into thinking the increment in
prediction is therefore greater in SDRNT1BIO, in fact the
increase in information that is needed to increase an AUC
from the higher starting point of 0.70 to 0.73 (0.4 bits) is
actually slightly greater than that needed to increase an AUC
from 0.51 to 0.63 (0.3 bits). The reason is that, although not
commonly appreciated, in fact the AUC does not scale linear-
ly and one cannot compare the absolute increment in AUC
from two differing base levels.
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bFig. 2 Expected cumulative
incidence of rapid progression if a
clinical trial was enriched with the
top percentile of possible
participants according to their risk
score in SDRNT1BIO (a) and
FinnDiane (b). The baseline
model contained only age, sex,
diabetes duration, study day
eGFR and length of follow-up
(red line) or a model augmented
with CD27 and KIM-1 (blue
line). The observed event rate is
represented by the horizontal
dashed line
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Another important strength of our study is our transparency
with regard to showing the effect of adjustment for baseline
characteristics and for historical eGFR data. As we recently
reviewed [3], many reports of biomarker usefulness are
overstated because the marginal gain in prediction beyond
baseline and historical eGFR are not reported. In both cohorts
examined, the contribution of the biomarkers became much
less important when a full set of covariates are used in the
model, a result that reflects what was observed in earlier
high-dimensional biomarker studies [14, 19]. Of course, while
in a clinical setting current and historical measurements are
available, these may not be readily accessible in other situa-
tions, such as in the screening phase of a clinical trial. In the
latter case it may be hard to capture more than the basic set of
clinical covariates used in our study. Accordingly, we have
provided enrichment plots to give a sense of the potential
use of biomarkers in such a context. The increments in pre-
diction we have found are such that a sparse panel of KIM-1
and CD27 is unlikely to be of use in clinical decision making.
However, an important point to appreciate is that even a small
enrichment of event rate in trials can be worthwhile in terms of
sample size, power and resulting cost.

A limitation of our study is the relatively short follow-up and
low progression rates in SDRNT1BIO. However, we emphasise
that this cohort is representative of the current reality of progres-
sion rates in those with stage 2 and 3 DKD in type 1 diabetes.
Furthermore, the follow-up time is similar to the length of many
trials allowing the challenge of demonstrating drug effects, and
the need to oversample those with most progression to be clearly
understood. The effect of this shorter follow-up time is that the
observed slope and rapid progressor status are less stable and
subject to more misclassification in SDRNT1BIO, which will
make associations tend more towards the null. Accordingly the
biomarker outcome associations were less strong in
SDRNT1BIO. However, this lesser progression would not intro-
duce false positive associations. Another limitation is that we
have evaluated the marginal improvement in prediction with
biomarkers on top of baseline eGFR for predicting final eGFR.
However eGFR itself is an imperfect measure of actual GFR
[21]. Where measurements are noisy, increments in prediction
with biomarkers may be more than would occur if GFR were
directly measured. However, since in most settings where bio-
markers might be used GFR is not directly measured, it is the
increment on eGFR that is most relevant. Another limitation is
that we were not able to assess incremental prediction on top of
the validated Kidney Failure Risk equation as data on calcium
and phosphate levels were not available inmost participants [22].

Conclusions

In summary, despite extensive investigation of a wide range of
biomarkers, we can demonstrate only modest increments in

prediction of future eGFR. The increment is of a magnitude
that may be of use in some trial settings but not in clinical
decision making. It remains possible, of course, that other
biomarkers, or the same biomarkers assayed on other plat-
forms, might achieve greater performance. We hope that the
methodological approach we have adopted and illustrated in
this work will be useful to others exploring the use of high-
dimensional biomarker platforms in a prediction setting.
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