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Genetic risk for autoimmunity is associated with
distinct changes in the human gut microbiome
Jordan T. Russell 1, Luiz F.W. Roesch 2, Malin Ördberg 3, Jorma Ilonen4, Mark A. Atkinson 5,6,

Desmond A. Schatz6, Eric W. Triplett 1 & Johnny Ludvigsson3

Susceptibility to many human autoimmune diseases is under strong genetic control by class II

human leukocyte antigen (HLA) allele combinations. These genes remain by far the greatest

risk factors in the development of type 1 diabetes and celiac disease. Despite this, little is

known about HLA influences on the composition of the human gut microbiome, a potential

source of environmental influence on disease. Here, using a general population cohort from

the All Babies in Southeast Sweden study, we report that genetic risk for developing type 1

diabetes autoimmunity is associated with distinct changes in the gut microbiome. Both the

core microbiome and beta diversity differ with HLA risk group and genotype. In addition,

protective HLA haplotypes are associated with bacterial genera Intestinibacter and Romboutsia.

Thus, general population cohorts are valuable in identifying potential environmental triggers

or protective factors for autoimmune diseases that may otherwise be masked by strong

genetic control.
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Type 1 diabetes mellitus (T1D) is an autoimmune disorder
characterized by the destruction of insulin-producing ß-
cells in the pancreas, resulting in a life-long dependence on

exogenous insulin. T1D development is thought to be driven by
both genetic and environmental influences, as genetic suscept-
ibility alone is not enough to cause disease1. Environmental fac-
tors are considered to be important in triggering the onset of
disease development in genetically susceptible individuals; how-
ever, identifying universal triggers remains a challenge1,2.

Genetic risk factors for T1D have been identified in over 50
diverse genetic loci but the greatest genetic determinant of T1D
remains the human leukocyte antigen (HLA) region3. HLA genes
are highly polymorphic, resulting in sequence variations that have
been shown to be both detrimental (e.g., HLA-DR3, DQB1*0201
and HLA-DR4, DQB1*0302) and protective (e.g., HLA-DR2,
DQB1*0602) with regard to T1D susceptibility4. These poly-
morphisms result in distinct changes to the class II major his-
tocompatibility complex (MHC) at the amino acid level, thereby
altering the structure and peptide-binding capabilities of the
molecule and thus, the presentation of antigens5. HLA poly-
morphisms could therefore be a driving force in controlling
immune responses to microbes in the gut, a proposed environ-
mental risk factor of T1D development6.

The effect that MHC class II variation has on gut microbiome
composition has been explored previously in mice6–8. For
example, Kubinak et al. were able to demonstrate that the
inability to present class II antigens led to distinct changes in gut
microbial composition and structure, namely a decrease in Lac-
tobacillus species and an enrichment of segmented filamentous
bacteria8. More pertinently, they showed that gut microbial
communities of the congenic mice were distinct based on MHC II
polymorphisms that control T follicular helper cell influence on
antibody response to commensal bacteria and that the effect of
these polymorphisms was most potent at the mucosal interface of
the gut vs. the feces8. Furthermore, results obtained by Silverman
et al. showed that protection against insulitis in NOD mice
transgenic for the missing MHC II Eα gene promoter led to
distinct changes in the gut microbial community, and the pro-
tective effect was reliant on both the genotype and the gut
community but not exclusively one or the other6. It is therefore
feasible that MHC II genotype is important in not only shaping
the bacterial community in the gut, but also in how the genetic
and environmental components interact within the host leading
to progression of or protection from autoimmune disease.

The intestinal microbiome has attracted a great deal of interest
as a potential environmental component of T1D, as it is known to
interact with and influence the immune system of the host9–11.
Many previous and ongoing studies have aimed to identify
organisms within the gut that may play a role in either the
development or prevention of T1D12–15. Importantly, those
efforts focused only on subjects at high genetic risk for T1D. In
the Finnish Type 1 Diabetes Prediction and Prevention (DIPP)
study, a high abundance of Bacteroides dorei preceded T1D
autoimmunity by several months12. In the German BABYDIET
study, no associations were found between anti-islet auto-
immunity and bacterial diversity or composition16, while analysis
of bacterial co-occurrence networks revealed an association with
butyrate production in controls17. In the multinational Envir-
onmental Determinants of Diabetes in the Young (TEDDY)
study, only a few weak bacterial associations with T1D auto-
immunity were identified18,19.

Given that mostly weak bacterial associations with T1D auto-
immunity have been observed in high T1D genetic risk cohorts,
the question arose whether genetic risk alone imparts a dysbiosis
of the microbiome and thus, whether any effect HLA may have
on the microbiome may be masked in a high genetic risk cohort.

Here, a microbiome analysis of stool samples from the ABIS
general population cohort shows the effect of HLA alleles on the
human gut microbiome composition. Bacterial taxa negatively
and positively associated with genetic risk for type 1 diabetes are
identified.

Results
Description of cohort and study design. The ABIS cohort has
enrolled 17,055 newborn babies from Southeast Sweden born
between 1 October 1997 and 1 October 1999. All mothers of
babies born during this time period were invited to participate.
This cohort serves as a large biobank of biological specimens
obtained longitudinally from the enrolled children at birth, 1 year,
2–3 years, and 5–6 years of age. Collected samples types include
blood, urine, stool and hair. In addition, parents of enrolled
children completed questionnaires including information on
duration of breastfeeding, antibiotic use, diet, etc. Many of the
children enrolled also had their HLA genotype determined. The
aim of the ABIS cohort, in part, is to identify the importance of
environmental factors in autoimmune diseases (e.g. type 1 dia-
betes) and how genetic and environmental factors may interact in
such diseases.

In the present study, we used high-throughput 16S rRNA
sequencing to assess the microbiome of stool collected at 1 year of
age from ABIS children. This time point was chosen due to the
proximity in timing for development of T1D autoimmunity.
Because HLA genotype data was available for only some of the
children at the time of analysis, 403 individual 1-year stool
samples were used. Associations between the 16S data and HLA
genotype information for these children were made using
multiple common statistical methods. Additionally, culturing
methods were used to asses stool bacterial viability.

HLA genetic risk explains microbiome variation. Rarefaction
curves for the observed number of amplicon sequencing variants
(ASVs) and the Shannon alpha diversity index show that the
chosen depth of 10,000 reads per sample was sufficient to
represent the diversity of unique sequences in each sample
(Fig. 1a, b). Shannon diversity was not significantly different
overall among the genetic risk groups (Kruskal–Wallis, p-value=
0.4906), nor through pairwise comparisons between groups
(Fig. 1c). The lack of difference in diversity between risk groups
suggests that HLA does not have an effect on gut bacterial
diversity. Antibiotic use (yes/no) within the first year (PERMA-
NOVA: R2= 0.00522; F Model= 1.0526; p-value= 0.285),
duration of exclusive breastfeeding (PERMANOVA: df= 10;
R2= 0.0241; F Model= 0.97047; p-value= 0.6), mode of delivery
(PERMANOVA: R2= 0.00504; F Model= 1.015, p-value=
0.395) and gender (PERMANOVA: R2= 0.00242; F Model=
0.97412; p-value= 0.529) did not have significant effects on gut
bacterial composition at 1 year of age. Also, antibiotic use within
1 month prior to sample collection (n= 30) did not significantly
impact gut bacterial composition (PERMANOVA: R2= 0.00282;
F.Model= 1.1386; p-value= 0.168). Out of the total 403 subjects
analyzed, 43 were still at least partially breastfed at the time of the
1-year sample collection. Gut microbiome composition was sig-
nificantly impacted by breastfeeding status at the time of stool
sample collection (PERMANOVA: R2= 0.00966; F.Model= 3.92;
p-value= 0.001). Because breastfeeding status at the time of
sample collection could be a confounding variable, this was
corrected or accounted for in all subsequent analyses.

HLA risk for T1D was able to explain significant differences in
gut microbiome composition (PERMANOVA: R2= 0.0097; F
Model= 1.3088, p-value= 0.01, distance metric: binomial). Pair-
wise comparisons between each group showed that all but the
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high vs. increased and decreased vs. neutral group comparisons
were significantly different after correction for false discovery rate
(FDR) (Table 1). Note that both high and increased risk groups
are comprised of DR3 and/or DR4 haplotypes without protective
haplotypes. Similarly, the decreased and neutral risk groups
include at least one protective haplotype. Thus, similar groups in
terms of haplotype makeup and risk do not significantly differ in
gut bacterial composition. Additionally, the R2 values of these
comparisons show a gradient trend in the amount of variation
explained by risk groups at opposite ends of the risk spectrum.
For example, the greatest amount of variation is explained
between the high and decreased risk groups (R2= 0.00923),
followed by the high and neutral risk groups (R2= 0.00824), then
the high and increased risk groups (R2= 0.00805). Because HLA
risk explains little of the variation in the model, this suggests that
the effect HLA has on the gut microbiome is modest and likely
specific toward certain taxa. Also, comparisons between the
highest risk subjects consistently explained the most amount of
variation. This suggests that the risk-associated haplotypes
together are more strongly driving compositional changes within
the gut, whereas those without risk haplotypes or with at least one
protective haplotype tend to be more similar in bacterial gut
composition.

The PERMANOVA test is dependent upon distances of
dissimilarity between samples. Previous work has shown that
the choice of distance metric can have a drastic effect on the test
result20. This is because different metrics test different hypoth-
eses. Here the binomial distance measure was used as an
improved alternative to the Bray–Curtis index. Other commonly
used metrics applied to 16S rRNA amplicon data include
Bray–Curtis and Jaccard. Bray–Curtis is considered quantitative,
because it is mainly sensitive to highly abundant species, whereas

Jaccard is qualitative and considers the overlap of community
members regardless of their relative abundances. The binomial
distance metric is also quantitative but, unlike Bray–Curtis,
includes joint absences, allowing pairs of samples missing the
same ASV to appear more similar21. Differences in gut
communities between risk groups were not significant using the
Bray–Curtis distance (PERMANOVA: R2= 0.00757; F Model=
1.0445; p-value= 0.43), but significant differences were observed
with the Jaccard distance (PERMANOVA: R2= 0.00893, F
Model= 1.2257, p-value= 0.007). This suggests that the abun-
dance of the bacterial ASVs observed may not be significantly
influenced by HLA genetics. However, the presence or absence of
certain bacteria are likely influenced by HLA as differences in
community member overlap varies significantly by genetic risk.

An assumption of the PERMANOVA test is that all groups
compared have similar variance (homogeneity of variance
assumption), particularly in cases of uneven sampling between
groups22. Beta dispersion was calculated based on genetic risk
category adjusted for sampling bias, and an ANOVA was applied
to test whether the average distance to the median variance was
significantly different between groups. The result of the ANOVA
showed that average distance to the median variance between
groups was not significantly different (F value= 0.3928; p-value
= 0.7583). Also, a Tukey HSD test showed that pair-wise tests of
the variance assumption are not significant. Therefore, signifi-
cance testing through PERMANOVA is not expected to be
influenced by uneven dispersion among groups.

Amplicon sequence variants associate with HLA genetic risk.
Because there are significant differences in microbiome compo-
sition between genetic risk groups, bacteria associated with
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Fig. 1 No significant difference in microbial alpha diversity between genetic risk groups. a, b Rarefaction curves were generated based on both the number
of unique amplicon sequencing variants (a) and the Shannon diversity index measure (b) for each sample. c Violin box plots and pairwise statistical
comparison (Wilcoxon test) between alpha diversities among genetic risk groups. P-values for each comparison are depicted above the boxplots of the
groups being compared. For statistical testing, n= 403 independent stool samples. Boxplot medians (center lines); interquartile ranges (box ranges);
whisker ranges: Decreased= 2.795; 2.335–3.262; 0.210–4.155, Neutral= 2.798; 2.226–3.299; 0.345–4.156, Increased= 2.915; 2.425–3.362; 1.015–4.160,
High= 2.983; 2.545–3.353; 0.871–3.851. Source data for Fig. 1c are provided in the source data file
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genetic risk across the entire dataset were identified. Using Linear
discriminant analysis Effect Size (LEfSe) after grouping ASVs at
the genus level, significant associations between high risk subjects
and members of the Saccharimonadaceae family were identified
(Fig. 2a, b). Additionally, the family Erysipelotrichaceae was
associated with subjects at increased genetic risk (Fig. 2a, c).
Interestingly, two genera of the family Peptostreptococcaceae,
specifically Intestinibacter and Romboutsia, were associated with
neutral risk HLA (Fig. 2a, d). Differential feature plots show that
the taxa described above have higher average relative abundance
in their associated risk group than any other group (Fig. 2b–d).
Overall, taxa found to be associated with a particular risk group
through LEfSe had higher average relative abundance in their
associated risk group. Because subjects at neutral risk often have
either DR3 or DR4 plus at least one protective haplotype, the
protective haplotypes may be important for this association,
though no associations with the decreased risk group were
observed in the entire dataset level with LEfSe.

DESeq2 was used to find ASVs associated with genetic risk
through pair-wise comparisons (Table 2). Again, Intestinibacter
and Romboutsia were found to be associated with neutral risk
compared with the high-risk group. Comparing the high (DR3/
DR4 only) vs. decreased risk groups revealed that Intestinibacter
and Romboutsia were also associated with decreased risk. This
suggests that DR3 and DR4 together have a greater impact on the
association of these ASVs than either haplotype alone (as in the
increased risk group), and that the presence of protective
haplotypes may also be important for their presence and/or
abundance. Also, when comparing the increased vs. neutral
groups, Bifidobacterium was associated with neutral risk with a
relatively high base mean compared to other associated ASVs
found by DESeq2, suggesting this ASV was more abundant across
all samples compared to other identified significant ASVs. Even
though Escherichia/Shigella members were shared within both the
neutral and increased risk groups, they represent unique ASVs
and therefore, have the potential to be unique strains. Klebisella

and Veillonella ASVs were consistently associated with high risk
(DR3/4) (Table 2).

DESeq2 was also able to identify bacterial ASVs associated with
particular HLA genotypes or haplotypes (e.g., heterozygous DR3/
DR4, or genotypes positive for DR3 or DR4 without protective
haplotypes). Intestinibacter and Romboutsia were associated with
the DR3 positive increased risk genotype over the DR3/DR4
group. However, neither ASV was associated when comparing
DR4 positive with DR3 positive increased risk genotypes,
suggesting that the high-risk heterozygous genotype may be
exerting a selective pressure against these bacteria. Interestingly,
when comparing genotypes where DR3 or DR4 positive
haplotype is associated with a protective haplotype, these two
ASVs are associated with the absence of DR3 and at the same
time, are also not associated with DR4. Because different
haplotype combinations will lead to varying degrees of antigen-
binding affinity, associations between HLA genotype and bacteria
within the gut are likely to be genotype-specific. This is evident in
that either having or lacking a protective haplotype in combina-
tion with DR3 associates with a different group of gut flora.

Prevalence analysis reveals trends by limiting noise. Amplicon
16S data is sparse and therefore populated with numerous low or
zero counts for ASVs that are rarely seen. These rare taxa could
be considered noise, as they may not be relevant to the biological
question because they appear in very few subjects. To limit this
noise, we filtered these data using a method that considers ASV
prevalence. ASVs were filtered at 5% increments for the entire
dataset (Table 3). A prevalence cutoff of 45% was chosen to assess
those ASVs which were present in nearly half of all individuals
analyzed. Higher prevalence cutoffs, up to 75%, could be obtained
for the full dataset at the cost of additional ASVs. This filtering
resulted in clear separation by PCoA between genetic risk groups
that could not be observed from the raw dataset, where more
distinct clusters form between ASVs prevalent in 45% of each risk

Table 1 Risk groups that are significantly different by PERMANOVA

Df SumsOfSqs MeanSqs F Model R2 P value P adjusted Significance

Binomial
Risk_group 3 20755 6918.4 1.3088 0.0097 0.01 – *
High vs. Decreased – – – 1.5698 0.00923 0.005 0.017 *
High vs. Increased – – – 1.0236 0.00805 0.383 0.402
High vs. Neutral – – – 1.354 0.00824 0.035 0.042 *
Increased vs. Decreased – – – 1.3248 0.00554 0.035 0.038 *
Increased vs. Neutral – – – 1.5178 0.00649 0.004 0.011 *
Decreased vs. Neutral – – – 1.0601 0.00385 0.304 0.311
Bray–Curtis
Risk_group 3 1.169 0.38973 1.0445 0.00757 0.43 –
High vs. Decreased – – – 1.1425 0.00657 0.204 0.225
High vs. Increased – – – 0.6467 0.00499 0.964 0.973
High vs. Neutral – – – 0.9827 0.00583 0.46 0.467
Increased vs. Decreased – – – 1.3912 0.00569 0.066 0.077
Increased vs. Neutral – – – 0.9212 0.00385 0.56 0.587
Decreased vs. Neutral – – – 1.0117 0.00358 0.398 0.423
Jaccard (binary)
Risk_group 3 1.372 0.45718 1.2257 0.00893 0.007 – *
High vs. Decreased – – – 1.4114 0.00816 0.003 0.011 *
High vs. Increased – – – 1.0449 0.00806 0.271 0.286
High vs. Neutral – – – 1.3679 0.00816 0.012 0.016 *
Increased vs. Decreased – – – 1.2179 0.00501 0.041 0.047 *
Increased vs. Neutral – – – 1.3952 0.00586 0.002 0.008 *
Decreased vs. Neutral – – – 0.9719 0.00346 0.551 0.555

PERMANOVA results after testing for significant differences in inter-subject distances using three metrics: Binomial, Bray–Curtis and Jaccard (n= 403 individual stool samples). Breastfeeding status at
the time of sample collection was corrected for in the PERMANOVA model design. SumsOfSqs and MeanSqs refer to Sums of Squares and Mean Squares, respectively
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group (Fig. 3), regardless of whether those samples from parti-
cipants still breastfeeding at the time of sample collection were
included (Fig. 3a) or not (Fig. 3b). In other words, those ASVs
that are present more frequently (in at least 45% of subjects in
this dataset) make up distinct patterns of composition depending
on HLA-driven genetic risk for T1D.

Considering only those ASVs that are present in at least 45% of
subjects in each risk group, 40 unique ASVs remain from the total
4450 ASVs in the raw dataset. Of the 40 total ASVs, 14 are
prevalent among all risk groups, yet the other 16 are shared
among 2 or 3 groups, while others still are unique to only one
group (Fig. 4). Though, at the genus level, some taxa are shared,
these organisms are represented by unique sequences and should
therefore be considered unique organisms. In support of the
differential abundance results, ASVs that are members of
Intestinibacter and Romboutsia are most prevalent in the neutral
and decreased HLA-risk groups. This provides further evidence
that protective HLA haplotypes may be important for shaping the
composition of bacteria in the human gut. Interestingly, an ASV
belonging to the Bifidobacterium genus was prevalent among all
risk groups. However, another Bifidobacterium ASV was
prevalent just among high and increased risk subjects, while yet
another was unique to just those at neutral risk. This highlights
the importance of pairing ASV-level sequence resolution with
prevalence, since the distinction among these unique sequences
would be overshadowed by rare sequences and overlooked at the
taxonomic rather than the single nucleotide variant level.

Geographical clustering identifies bacterial hotspots. Geo-
graphy explains a significant amount of variation between

subjects’ gut microbiomes in ABIS (PERMANOVA: R2=
0.03651; F Model= 1.3503; p-value= 0.001). Differences in
geography can include underlying covariates such as diet and
other lifestyle factors, and the effects of these factors can be
exacerbated with increasing geographical distance23. Although
the ABIS cohort benefits from geography confined to southeast
Sweden, the significant impact that geographical factors have on
subjects’ gut microbiomes is still evident through PERMANOVA.
To limit this impact, towns were divided into three distinct
clusters: the northeastern region (Linköping and Norrköping),
the central region (Jönköping, Nässjö, Gislaved and Värnamo),
and the southern region (Kalmar and Karlskrona). The towns
within these regions were chosen for clustering based on their
geographical proximity and because they provide the largest
number of samples in the dataset, including many of those from
high-risk subjects.

This geographical clustering, paired with differential abun-
dance and prevalence analysis, allowed us to determine at
which sites associations within the entire dataset were likely to
have originated. LEfSe was again able to identify taxa associated
with genetic risk at each cluster and overall among the clusters
(Fig. 5). The LEfSe results show that among all clusters,
Intestinibacter remains associated with neutral risk. Further-
more, this association was identified in the northeastern region
while Romboutsia was associated with decreased risk in this
region. In the southern region, Romboutsia was associated with
neutral risk while Intestinibacter was associated with decreased
risk. DESeq2 results also confirm that ASVs belonging to
Intestinibacter and Romboutsia were associated with neutral
and decreased HLA groups in the northeastern and southern
regions.
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Fig. 2 Specific taxa are associated with genetic risk. a LEfSe biomarker discovery results for the entire dataset (n= 403 individual stool samples).
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design. Source data are provided in the source data file
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Prevalence filtering was also applied to each geographical
region separately by the same prevalence level used for the entire
dataset (45%). The prevalence filtered regions show distinct
patterns of separation by HLA risk group through PCoA (Fig. 6).
Variation among the most prevalent ASVs by risk group is most
considerable in the Southern region, though overlap with these
ASVs can be seen between the high/increased and decreased/
neutral risk groups, respectively. In the Northeastern region,
overlap between gut bacterial communities is more consistent
across all risk groups. Meanwhile, in the Central region, a high
degree of overlap exists between all risk groups aside from the
highest risk, which are substantially separated, indicating that the
variation in community overlap among the most prevalent
bacteria in this risk group is strong, regardless of breastfeeding
status (Fig. 6d). In other words, each genetic risk group comprises
a distinct combination of ASVs that are present in most of the
participants at each risk level. This would suggest that the ASVs
forming these highly prevalent clusters are those most influenced
by host HLA genotype, posing a potential mechanism of selection
toward those bacteria in the gut.

Bifidobacteria viable after storage at −80 °C for 19 years.
Sample integrity is an important consideration when working
with samples that have been stored for decades. Here, we assessed

Table 2 DESeq2 supports LEfSe results at the ASV level

Pair-wise base mean Log2 fold change lfcSE stat p value p adjusted Genus

High 33.90 11.12 2.85 3.90 9.74E-05 0.0093 Klebsiella
16.16 23.66 5.92 4.00 9.74E-05 0.0067 Veillonella*
2.59 23.04 5.92 3.89 9.93E-05 0.009345 Veillonella*

Decreased 68.40 −2.89 0.84 −3.45 0.0005576 0.03653 Romboutsia
40.17 −4.74 1.24 −3.83 0.000128 0.011178 Enterococcus
36.80 −3.37 0.75 −4.49 7.13E-06 0.001006 Intestinibacter

High 91.95 19.79 5.84 3.39 0.0007063 0.023203 Veillonella*
33.90 9.69 2.87 3.37 0.0007523 0.024312 Klebsiella
16.16 35.34 5.97 5.92 3.14E-09 5.95E-07 Veillonella*

Neutral 68.40 −2.88 0.84 −3.40 0.0006627 0.021951 Romboutsia
40.17 –4.42 1.25 −3.55 0.0003914 0.013917 Enteroccocus
36.80 −3.86 0.76 −5.10 3.43E-07 4.40E-05 Intestinibacter

High 91.95 23.27 5.98 3.89 9.97E-05 0.003386 Veillonella
33.90 11.17 2.94 3.79 0.0001484 0.00458 Klebsiella
17.77 13.94 4.43 3.15 0.0016554 0.035626 Phascolarctobacterium

Increased 40.17 −4.61 1.27 −3.62 0.0002916 0.007681 Enterococcus
20.27 −2.43 0.64 −3.81 0.0001388 0.004329 Lachnoclostridium
17.55 −2.33 0.63 −3.72 0.0002009 0.005902 Erysipelatoclostridium

Increased 9.15 30.00 3.85 7.78 7.03E-15 3.26E-12 Escherichia/Shigella*
6.86 16.40 3.86 4.25 2.10E-05 0.000638 Escherichia/Shigella*
5.84 9.63 2.42 3.98 6.90E-05 0.002038 Bacteroides

Decreased 19.75 −19.63 3.86 −5.09 3.53E-07 2.00E-05 Veillonella
13.36 −29.79 3.86 −7.72 1.12E-14 4.15E-12 Megasphaera
6.97 −6.55 1.70 −3.85 0.0001173 0.003287 Klebsiella

Increased 14.13 7.69 1.71 4.49 6.96E-06 0.000299 Citrobacter
5.84 10.89 2.44 4.47 8.00E-06 0.00034 Bacteroides
3.06 27.04 3.89 6.95 3.61E-12 3.02E-10 Escherichia/Shigella

Neutral 267.32 −2.30 0.68 −3.39 0.0007071 0.026723 Bifidobacterium
19.75 −16.58 3.89 −4.26 2.01E-05 0.000822 Veillonella
6.97 −7.24 1.71 −4.23 2.38E-05 0.000964 Klebsiella

Neutral 9.15 18.37 3.56 5.16 2.48E-07 3.18E-05 Escherichia/Shigella*
6.86 15.09 3.56 4.24 2.24E-05 0.001983 Escherichia/Shigella*
5.81 14.73 3.56 4.14 3.50E-05 0.002961 Anaeroglobus

Decreased 13.36 −28.66 3.56 −8.05 8.41E-16 8.83E-13 Megasphaera
6.20 −12.57 3.56 −3.53 0.0004112 0.02818 Sarcina
2.59 −27.94 3.56 −7.84 4.33E-15 3.45E-12 Veillonella

The top three ASVs by base mean from each group in the pair-wise comparison are listed and described taxonomically at the genus level (n= 403 individual stool samples). Genera indicated with an
asterisk (*) represent bacteria shared at the taxonomic level but are actually unique sequences. Breastfeeding status at the time of sample collection was corrected for in the DESeq2 model design.
Source data are provided in the source data file

Table 3 Prevalence filtering focuses analysis on most
shared ASVs

Prevalence
cutoff (%)

Out of bag
error rate

ASV count Number of
sequences

0 0.691 4450 7610000
5 0.45544554 532 3572138
10 0.18316832 262 3274985
15 0.19306931 183 3091195
20 0.13861386 138 2842684
25 0.10148515 107 2588149
30 0.10148515 85 2351261
35 0.09158416 70 2110874
40 0.07920792 49 1808389
45 0.0470297 40 1499585
50 0.13366337 28 1242599
55 0.25742574 23 1196297
60 0.16584158 16 1087380
65 0.13613861 13 1010804
70 0.34405941 8 930300
75 0.14108911 7 860687

Results of calculating prevalence levels for the entire dataset (n= 403 individual stool samples)
in 5% increments. A prevalence cutoff of 45% was chosen to focus on the most commonly
shared set of 40 ASV sequences
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the viability of −80 °C frozen stool samples through isolation of
non-spore forming, facultative anaerobic strains of Bifidobacter-
ium. Members of the Bifidobacterium genus are considered
relatively sensitive to long-term storage conditions, since they are
non-spore forming and are sensitive to oxygen exposure.
Nevertheless, strains of two Bifidobacterium species, B. breve and
B. longum, were isolated from a stool sample stored at −80 °C for
19 years using media selective for the genus.

Discussion
HLA gene alleles appear to have a significant effect on the bac-
terial composition of the late infant gut based on our findings
from children in the ABIS cohort. This effect is important because
of the many implications with how genetic pre-disposition to

autoimmune disorders might determine environmental factors,
such as the microbiome, that ultimately may lead to disease
progression. In the case of T1D, this is the first time to our
knowledge that HLA genetic risk for developing autoimmunity
has been associated with distinct changes in the gut microbiome
in a general population human cohort. Beyond just genetic risk
for T1D, our results implicate specific HLA genotypes with dis-
tinct changes in members of the gut community, which highlights
an important understanding of the interaction and influence of
host genetics on the human microbiome. How HLA genetics
might lead to environmental triggers for autoimmune disease
originating in the gut deserves further investigation on many
fronts.

The greatest advantage to the ABIS cohort is its general
population design. Because the general population is sampled and
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not just those at high genetic risk for T1D, HLA associations with
the gut microbiome can be tested across a spectrum of genotypes.
High genetic risk for autoimmunity likely obscures potential
effects from the environment that can be identified by inclusion
of all genetic types as we see with ABIS. Additionally, geography
is known to be a potent source of variation between subjects13.
Like the DIPP cohort in Finland, ABIS benefits from a relatively
confined geographic sampling design restricted to southeast
Sweden12. Unlike other studies which have historically relied on
operational taxonomic unit (otu) clustering analysis, this work
has benefited from higher sequence resolution through the use of
ASVs24. At the ASV level, sequences may share the same tax-
onomy at the genus or species levels while being distinct at the
sequence level. This implies that bacteria of the same name may
actually be functionally distinct within or between subject groups
and should be treated as such. In addition, taking into account the
prevalence of each ASV within risk groups has allowed us to
identify potentially important bacteria in the gut that would have
been overlooked by examining an entire dataset with all its noise.

Recent findings from the TEDDY study show that develop-
ment of insulin autoantibodies (IAA)-only is associated with
DR3/4 and DR4/4 HLA genotypes around 1 year of age, while
development of glutamic acid decarboxylase autoantibodies
(GADA)-only is associated with DR3/325. In addition, previous
work in Finland has shown that insulinoma associated antigen-2
autoantibodies (IA-2A)-only is associated with (DR4)-DQA1*03-
DQB1*030226. This would suggest that the development of
autoimmunity is directly impacted by host HLA genetics. How-
ever, the results presented here also implicate HLA with specific
changes in gut bacterial composition relative to DR3/4 hetero-
zygosity and genotypes positive for either DR3 or DR4. Therefore,

the question persists whether the association between HLA and
the route of autoimmunity is primarily genetic or is caused by
secondary changes in the bacterial gut environment that are
mediated by genetic risk. Nevertheless, these findings contribute
to our understanding of the interaction between environmental
exposures in the gut and host genetics in disease development.

Both differential abundance and prevalence analysis indicate
that two members of the family Peptostreptococcaceae, Intesti-
nibacter and Romboutsia, are consistently associated with lower
genetic risk HLA genotypes compared to DR3/DR4. Not only
does this hint at a potential for conserved functions, which may
be beneficial in preventing T1D, but also the possibility of a
conserved bacterial antigen recognized by higher risk genotypes
that leads to the depletion of these taxa in the gut. This selection
would be afforded by polymorphisms in the antigen-binding
groove of the class II MHC molecule that will ultimately alter the
binding affinity of the MHC molecule toward a subset of bacterial
antigens. Effects of MHC polymorphism on the binding of bac-
terial superantigens or toxins, non-processed molecules binding
to non-conventional binding sites of MHC and TCR molecules,
has also been observed5. Many studies have implicated class II
MHC genetics in the shaping of the gut microbiome6–8,27.
However, this work was done using animal models including
mainly transgenic mice. Thus, the results presented here show
that HLA genotype is linked to unique changes in the human gut
microbiome in a general population cohort.

Members of the order Clostridiales have recently undergone
reclassification in the light of phenotypic and phylogenetic data28.
Intestinibacter bartlettii, formerly Clostridium bartlettii, was
reclassified at the same time the genus Romboutsia was described
(with the isolation of Romboutsia ilealis)29,30. I. bartlettii is the
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only species currently in the Intestinibacter genus after its
reclassification from Clostridium and is yet to be represented by a
single complete genome sequence in a public database. Little has
been described about Intestinibacter spp. other than a decreased
abundance associated with administration of metformin (a type 2
diabetes (T2D) drug) and a negative correlation with insulin
resistance in T2D31,32. The association of Intestinibacter with
lower genetic risk for autoimmunity requires further work to
understand what role these organisms play in the gut and how
they may be selected against by high-risk HLA.

Probiotics have great potential as a means to modulate changes
in the host microbiome to prevent or ameliorate a number of
different diseases including T1D autoimmunity. Both mouse and
rat models have implicated lactic acid bacteria (e.g. Lactobacillus
spp.) as potential probiotics for the prevention of T1D33,34.
Administration of a multi-species probiotic (including Lactoba-
cilli) has been shown to be beneficial in treating acute pancreatitis
in a rat model by reducing both bacterial translocation to the
pancreas and bacterial overgrowth of potential pathogens in the
duodenum35,36. Probiotic administration was associated with an
increase in abundance of a new bacterial phylotype referred to as
CRIB (commensal rat ileum bacterium) which was later described
as Romboutsia ilealis30,37. The increased abundance of R. ilealis
was also associated with lower plasma levels of pro-inflammatory
cytokines37. As the authors speculate, it is possible that the
administration of the probiotic mixture worked indirectly by

stimulating the growth of R. ilealis in the ileum. A study con-
ducted in mice demonstrated that colonization with certain
Clostridia led to decreased mucosal erosion and increased IL-10
producing regulatory T cell accumulation in the colon. These
functions within the host could be important in preventing the
development of autoimmunity. The role Romboutsia plays in
mediating these effects is unknown.

The effects HLA genetics have on shaping the host microbiome
could be important for other autoimmune diseases besides T1D
where HLA is the main genetic component. Like T1D, much of
the genetic risk for developing celiac disease autoimmunity
(CDA) is conferred by the class II HLA region38. Similarly,
environmental influences are thought to be important as not all
those who are genetically susceptible develop the disease upon
exposure to dietary gluten, the main trigger of CDA. Unlike T1D,
the greatest genetic risk for developing CDA is attributable to the
(DR3)-DQA1*05-DQB1*02 haplotype39. Because the level of
genetic risk for CDA and T1D differ by HLA genotype, in
addition to differences in the localization of the pathology (small
intestine in CDA vs. pancreas in T1D), the etiology of the two
diseases likely vary. Still, shaping of the host intestinal micro-
biome through an HLA mechanism could play an important role
in not just T1D but in CDA and other autoimmune disorders.

The association between HLA risk alleles for T1D and the gut
microbiome is shown here using a general population cohort
from southeastern Sweden. Three methods were used to
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consistently identify specific bacterial taxa and 16S rRNA
sequences (ASVs) associated with genetic risk. These results have
implications that go far beyond the gut microbiome. They suggest
that HLA alleles can shape the subject’s ability to interact with the
environment. Thus, HLA risk alleles can mask potentially co-
occurring environmental influences so strongly that environ-
mental effects can be difficult to observe in the those T1D cohorts
designed to include only subjects at high genetic risk for T1D.
Indeed, previous studies exploring the effects of other environ-
mental factors such as vitamin D, breast feeding duration, pro-
biotic use, gluten introduction and virus infection may also be
masked by increased genetic risk. Only a large, general population
study may be able to evaluate the full impact of these environ-
mental influences and their interactions with genetic risk for T1D.

The All Babies in Southeast Sweden (ABIS) cohort is ideal for
investigating the influence of HLA genetic risk on the micro-
biome since it was designed to survey the general population,
making up a diverse range of HLA genotypes. The information
gained from this type of cohort furthers our understanding of
how HLA genetic risk drives changes in the gut microbiome and
how genetics may be “setting the stage” for environmental trig-
gers that ultimately lead to T1D autoimmunity. Furthermore, the
results obtained in this study can likely be extended to investigate
other autoimmune diseases where HLA serves as the primary
genetic risk factor.

Methods
Sample collection. This study is based on the ABIS cohort (All Babies in Southeast
Sweden), a prospective population-based cohort study including all children born
in southeast Sweden during the period 1 October 1997–1 October 1999. The
parents gave their informed consent after oral and written information and pos-
sibility of obtaining information via video film. Participating mothers completed
questionnaires both at birth and at 1 year of age for the infant and diaries were kept
during the first year of life40. Information collected in the questionnaires and
diaries include, but are not limited to, antibiotic use, duration of breast feeding,
and more.

Stool samples were collected from the diaper of the infant by use of a sterile
spatula and tube provided by the WellBaby Clinic. The sample tubes were labeled
with a unique subject identifier and frozen immediately after collection, either at
the infant’s home or at the clinic. Samples collected at home were transported
frozen, using freeze clamps, to the WellBaby Clinic. After arrival at the clinic, the
samples were stored dry at −80 °C. All 403 stool samples used in this analysis were
collected at 1 year of age, and each subject is represented by a single one-year
sample.

Institutional Review Board approvals. The ABIS-study has ethical approvals
from the Research Ethics Committees of the Faculty of Health Science at Linköping
University, Sweden, Ref. 1997/96287 and 2003/03-092 and the Medical Faculty of
Lund University, Sweden (Dnr 99227, Dnr 99321). All parents of the children in
the ABIS-study gave their informed consent after careful oral and written infor-
mation in addition to video film presentation. The microbiome analysis performed
at the University of Florida was approved by the University of Florida’s Institu-
tional Review Board as an exempt study assigned as IRB201800903.

HLA genotyping. HLA-DR/DQ genotypes associated with risk and protection
were defined using typing for HLA-DQB1 and informative -DQA1 and DRB1
alleles for deducing presence of common European HLA-DR-DQ haplotypes
variously associated with disease risk using sequence specific hybridization with
lanthanide labelled oligonucleotide probes41,42. To enable the comparison of dif-
ferent levels of HLA risk for developing T1D autoimmunity, subjects with available
HLA genotype data were placed into one of four categories of risk based on their
HLA genotype. Subjects at the highest genetic risk for developing autoimmunity
are represented by a single HLA genotype in this dataset, consisting of both
increased risk-associated haplotypes: (DR3)-DQA1*05-DQB1*02 and (DR4)-
DQA1*03-DQB1*0302 (DR3/4). In contrast, those at lowest risk are denoted by the
absence of these haplotypes and the presence of one or two of protective haplotypes
(DR15)-DQB1*0602, (DR13)-DQB1*0603, (DR5)-DQA1*05-DQB1*0301 and
(DR7)-DQA1*0201-DQB1*0303. Subjects having either (DR3)-DQA1*05-
DQB1*02 or (DR4)-DQA1*03-DQB1*0302 without presence of protective haplo-
types were defined to be at increased risk. Those with (DR3)-DQA1*05-DQB1*02
or (DR4)-DQB1*0302 and one of the protective haplotypes and those without any
risk or protective haplotypes are at neutral genetic risk. A subset of subject char-
acteristics for the samples used in this work is described in Supplementary Table 1.

HLA genotype information for the subjects included in this study is provided in the
source data file.

DNA Extraction and 16S rRNA barcoded PCR. DNA from each sample was
extracted from ~200 mg of stool12, using the E.Z.N.A Stool Extraction Kit following
the manufacturer’s protocol (Omega Bio-tek, Doraville, CA). Samples were ran-
domized to prevent the introduction of bias during extraction and blank negative
controls were introduced alongside the samples to verify the absence of con-
tamination in the extraction kit components. DNA used for subsequent PCR was
quantified and assessed for purity using a Nanodrop spectrophotometer (Thermo
Scientific, Wilmington, DE). Previously used custom barcoded primers 341F and
806R, targeting the V3-V4 variable regions of the 16S rRNA gene, were employed
and PCR amplification was carried out with the following modifications. Briefly, 50
nanograms of extracted DNA was used as template in a final reaction volume of
50 μl containing 25 μl of 2X GoTaq Colorless Master Mix (Promega, Madison, WI),
10 μM of each primer, 0.1 μg/μl BSA, brought to final volume with nuclease free
water. The following cycling conditions were used for amplification: initial dena-
turation at 95 °C for 2 min, followed by 30 cycles of 95 °C for 20 s, 61 °C for 30 s,
72 °C for 30 s, and a final elongation step of 72 °C for 5 min. All PCR reactions were
run on 1% agarose gels to verify correct amplification and purified using the E.Z.N.
A Cycle Pure kit per the manufacturer’s instructions (Omega Bio-tek, Doraville,
CA). The purified PCR products were then quantified using the 1X dsDNA High
Sensitivity kit with a Qubit 2.0 fluorometer (Invitrogen, Life Technologies Inc.,
Carlsbad, CA). An equal mass of amplicons from each sample were pooled and
sequenced on the Illumina MiSeq platform (ICBR, Gainesville, FL).

V3-V4 16S sequencing using Illumina Miseq 2 × 300bp. Five Illumina MiSeq
flow cells were used to generate 67 gigabases of nucleotide sequencing data for
965 samples. Sequencing read pre-processing, including merging and demulti-
plexing, was done using scripts available through Qiime v1.9.143. Forward and
reverse sequencing reads were merged based on overlap to generate single reads
using fastq-join https://github.com/ExpressionAnalysis/ea-utils. The joined reads
were analyzed for quality using FastQC https://github.com/s-andrews/FastQC. The
forward primer sequence used during PCR was trimmed using the fastx_trimmer
tool available in the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). The
reads were then labelled according to 11-base barcodes located at the 3′ end of the
read. Finally, the labelled reads were demultiplexed into separate FASTQ files by
sample ID.

Sequencing read processing into amplicon sequencing variants. Demultiplexed
sequences were further processed into amplicon sequencing variants (ASVs) using
the DADA2 software package available in R44 (https://www.R-project.org). Briefly,
the demultiplexed FASTQ files were visually assessed for quality via the “plot-
QualityProfile” function. Read quality dropped sharply beyond 400 nucleotides and
the reads were truncated to this length. The truncated reads were also filtered to
allow for no ambiguous nucleotides (N), a maximum expected error rate of 2,
further truncation after encountering a base with Q-score 2 and the removal of
PhiX reads. Chimeric sequences were filtered using the consensus method and
taxonomy was assigned using the SILVA_v132 training set45–48. The resulting ASV
table was used to analyze the composition of the stool microbiome using the
phyloseq package49.

Further filtering removed samples with fewer than 1000 reads and samples with
no subject genotype information. The remaining samples were rarefied to an even
sequencing depth of 10,000 reads per sample, a sufficient sequencing depth verified
through rarefaction curves. After filtering, 603 of the total 965 samples with HLA
genotype data remained for analysis. Because not all genetic risk groups are
represented in every town sampled, only those towns with at least one subject from
each risk group were retained, resulting in 403 samples for analysis. The number of
subjects in each risk group category are described in Supplementary Table 1.

Statistical analysis of stool microbiome. Differentially abundant ASVs between
the genetic risk groups were determined using DESeq2 and LEfSe50,51. Alpha
diversity (including plots) were calculated using the Microbiome R package (http://
microbiome.github.com/microbiome). The Microbiome package was also used to
calculate and filter by ASV prevalence. Differences in microbiome composition by
genetic risk and other covariates were tested for using the permutational multi-
variate analysis of variance (PERMANOVA) test through the “adonis” function in
the vegan R package (https://github.com/vegandevs/vegan). All PERMANOVA
tests were performed with the default 999 permutations. PERMANOVA was used
to test for significant differences in distance dissimilarity on a number of covariates
including duration of breastfeeding, breastfeeding status at sample collection,
antibiotic usage in the first year and within one month of sample collection (yes/
no), mode of delivery and gender. The vegan package was also used for assessing
multivariate homogeneity of variance (beta dispersion) between sampling groups
using PERMDISP2. For calculating presence/absence metrics such as Jaccard, the
“binary= TRUE” option was set. P-value results from statistical testing were
corrected for false discovery rate (FDR) using the Benjamin–Hochberg (B–H)
method52. Principal coordinate analysis (PCoA) plots, including the calculated 95%
confidence ellipses, were generated using the ggplot2 R package53.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11460-x

10 NATURE COMMUNICATIONS |         (2019) 10:3621 | https://doi.org/10.1038/s41467-019-11460-x | www.nature.com/naturecommunications

https://github.com/ExpressionAnalysis/ea-utils
https://github.com/s-andrews/FastQC
http://hannonlab.cshl.edu/fastx_toolkit
https://www.R-project.org
http://microbiome.github.com/microbiome
http://microbiome.github.com/microbiome
https://github.com/vegandevs/vegan
www.nature.com/naturecommunications


Culturing and identification of ASV isolates. Aliquots of stool were stored at
−80 °C prior to DNA extraction to culture bacteria of interest, such as those
associated with health and low genetic risk. Samples showing the highest relative
abundance of significant Bifidobacterium ASVs were serially diluted in 1X phos-
phate buffered saline and plated on pre-reduced Modified Bifidobacterium Agar
(Becton, Dickinson and Company) without the addition of lactulose. Individual
colonies were isolated from the two lowest dilution plates and culture stocks were
stored in a 15% glycerol solution at −80 °C. DNA from each isolate was extracted
using the E.Z.N.A Bacterial DNA kit (Omega Bio-tek, Doraville, CA) and the full
length 16 S rRNA gene sequence was amplified by PCR using universal primers 27F
and 1492R54. The resulting PCR products were Sanger sequenced to determine the
identity of the isolates (Eton Bioscience, Inc., San Diego, CA). Resulting sequences
were compared to the GenBank nucleotide database for identification using
BLAST55.

Data availability
The paired-end 16S raw sequencing data generated in this study is available through the
NCBI Sequence Read Archive under BioProject PRJNA510423. The source data
underlying Figs. 1c, 2, 5 and Table 2 are provided as a source data file. Also, the HLA
genotypes and associated sample metadata used for statistical comparison are available in
the source data file.
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