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Abstract
Allogeneic haematopoietic stem cell transplantation currently represents the primary potentially curative treatment for
cancers of the blood and bone marrow. While relapse occurs in approximately 30% of patients, few risk-modifying genetic
variants have been identified. The present study evaluates the predictive potential of patient genetics on relapse risk in a
genome-wide manner. We studied 151 graft recipients with HLA-matched sibling donors by sequencing the whole-exome,
active immunoregulatory regions, and the full MHC region. To assess the predictive capability and contributions of SNPs
and INDELs, we employed machine learning and a feature selection approach in a cross-validation framework to discover
the most informative variants while controlling against overfitting. Our results show that germline genetic polymorphisms in
patients entail a significant contribution to relapse risk, as judged by the predictive performance of the model (AUC= 0.72
[95% CI: 0.63–0.81]). Furthermore, the top contributing variants were predictive in two independent replication cohorts
(n= 258 and n= 125) from the same population. The results can help elucidate relapse mechanisms and suggest novel
therapeutic targets. A computational genomic model could provide a step toward individualized prognostic risk assessment,
particularly when accompanied by other data modalities.

Introduction

Survival after allogeneic haematopoietic stem cell trans-
plantation (allo-HSCT) as a treatment for malignancies of
the blood and haematopoietic system is severely limited by
relapse to the primary disease which occurs in approxi-
mately 30% of the patients depending on indication and
stage of disease [1, 2]. The anti-neoplastic activity of

grafted donor lymphocytes in the graft-versus-leukemia
(GvL) effect is restrained by tumor immune evasion and
immunosuppressive prophylactic medication necessitated
by the lethal graft-versus-host disease (GvHD) [3, 4]. While
the alloimmunity capacity of the graft is mainly governed
by genetic matching of the human leukocyte antigen (HLA)
loci [5], other germline genetic factors are also shown to
contibute to rejection and GvL, most notably minor histo-
compatibility antigens [6, 7], donor-recipient mismatches in
frequent gene deletions [8], as well as donor polymorphisms
outside the HLA in genes regulating, e.g., immune response
[9, 10]. Furthermore, particularly in the case of acute
myeloid leukemia (AML), relapse risk is alleviated by
donor haplotypes harboring higher numbers of activating
killer-cell immunoglobulin-like receptors [11–13]. How-
ever, apart from the fundamental alloimmunity mechan-
isms, the significance of patient genetics to relapse remains
to be studied in detail [14].

Defining the genetic architecture of complex traits has
been pioneered by genome-wide association studies
(GWASs). The GWAS approach considers the statistical
significance of allele frequencies one locus at a time,
accepting only p-values surpassing the genome-level
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correction for multiple testing, i.e., approximately 5 × 10–8

[15]. While adequately powered GWASs have discovered
several important variants associated with multifactorial
disorders and other complex phenotypes [16], the approach
is not designed for predictive analysis as such. However,
given the genetic component underlying many diseases
including cancer [17], genetic information has the potential
to improve and inform clinical decision making. In this
regard, predictive genomics has been suggested to be of
higher clinical value than simple associated markers [18].
As a way of complementing the classical GWAS approach,
models relying on feature selection and machine learning
methods aiming to identify a subset of variants with optimal
predictive value have been developed and employed
[19–22]. In combination with resampling statistics, these
techniques allow modeling the effects of multiple variants
together, deriving a genetic risk score with empirical error
estimate and mining for potential synergistic functional
interactions between variants and other factors.

In the present study, we have addressed the contribution
of common germline single-nucleotide polymorphisms
(SNPs) and small insertions and deletions (INDELs) to
patient relapse risk by carrying out genome-wide sequen-
cing of active immunoregulatory regions, the whole-exome
and the full MHC region on 151 allo-HSCT recipients with
HLA-matched sibling donors. To identify genetic variants
affecting relapse susceptibility, we employ a machine
learning approach by performing feature selection, Random
forest classification model fitting, and evaluation of the
predictive performance of the model through cross-
validation. To further validate our approach, we test the
predictive capability of the top variants in two independent
cohorts of 258 and 125 sibling HSCT recipients from the
same population.

Patients and methods

Acquisition of patient samples

The study cohort was originally composed of 161 HSCT
patients with an HLA-matched sibling donor. Of the
patients, 160 had relapse status information available, and
151 were diagnosed with a malignant disease. Relapse was
defined as the recurrence of disease detected by clinical or
molecular methods, thus both hematological and molecular
relapses were taken into account. Detection of disease at
any time point after HSCT was classified as relapse. The
general characteristics of the study cohort are presented in
Table 1. In summary, 48 recipients underwent allo-HSCT at
Helsinki University Hospital during the years 2006–2011,
and 113 recipients underwent allo-HSCT at Turku Uni-
versity Central Hospital during the years 2001–2015. The

sibling pairs were matched with regard to the HLA-A,
HLA-B, HLA-C, and HLA-DRB1 loci. The study was
approved by the Ethics Committees of Helsinki University
Central Hospital and Turku University Central Hospital,
and the Finnish National Supervisory Authority for Welfare

Table 1 General characteristics of the discovery patient cohort

Clinical parameter Value

Recipient age in years, median (range) 51 (3–70)

Donor age in years, median (range) 49 (7–72)

Donor-recipient gender,
n (%)

Male-male 47 (29)

Male-female 45 (28)

Female-female 34 (21)

Female-male 35 (22)

Diagnosis, n (%) Acute myeloid leukemia 55 (34)

Acute lymphoblastic
leukemia

23 (14)

Acute leukemia 3 (1)

Chronic lymphocytic
leukemia

8 (4)

Chronic myelomonocytic
leukemia

3 (1)

Chronic myeloid leukemia 3 (1)

Plasma cell leukemia 1 (1)

T-cell prolymphocytic
leukemia

1 (1)

Non-Hodgkin’s lymphoma 9 (6)

Hodgkin’s lymphoma 5 (3)

Follicular lymphoma 1 (1)

Mantle cell lymphoma 1 (1)

Diffuse large B-cell
lymphoma

1 (1)

Multiple myeloma 12 (7)

Myeloma 10 (6)

Myelodysplastic syndrome 10 (6)

Myelofibrosis 4 (2)

Mastocytosis 1 (1)

Chronic granulomatous
disease

1 (1)

Aplastic anemiaa 9 (6)

Stem cell source, n (%) Bone marrow 38 (24)

Peripheral blood 121 (76)

Conditioning regimen, n
(%)

Myeloablative 104 (65)

Reduced intensity
conditioning

57 (35)

CMV positive 113 (78)

aGvDH grades III–IV, n (%) 16 (10)

cGvHD, extensive, n (%) 52 (34)

Relapse, n (%) 49 (31)

aGvHD acute GVHD, cGvHD chronic GvHD, CMV cytomegalovirus,
GvHD graft-versus-host disease
aAnemia diagnoses were omitted from analysis
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and Health. Additional details are provided in the Supple-
mentary Methods.

Genotyping

The discovery cohort was sequenced using a custom capture
panel targeting the whole-exome, the full MHC region, and
immune cell regulatory regions [23]. Quality filtering of the
raw genotypes was performed by using the GATK best
practices protocol [24] and thereafter comparing duplicated
samples for overall genotype similarity at different DP and
GQ parameter hard cutoff thresholds (Supplementary
Fig. 1). The first Finnish independent replication cohorts
was genotyped with Illumina Immunochip v1 (IC) and the
Spanish cohort with Immunoarray v2.0 as described pre-
viously [25]. The second independent Finnish replication
cohort was genotyped with Immunoarray v2.0 platform and
was otherwise similarly processed as the first one. Addi-
tional details are available in the Supplementary Methods.

Predictive model

A first round of variant selection was performed with a
logistic regression association test against relapse status
using Plink v1.90b3u/v1.90b4.1 (www.cog-genomics.org/
plink/1.9/) [26] with donor age, diagnosis, and graft type as
covariates. Variants reaching a p-value < 0.001 were selec-
ted as inputs for the Random forest [27] classification model
implemented in R software v3.3.3 library ranger v0.7.0
[28]. Both variant selection and Random forest model fitting
were performed through leave-one-out cross-validation
(LOOCV), and the prediction error estimate was calcu-
lated based on prediction of relapse status of samples left
out from model fitting in each LOOCV fold (Fig. 1). The
best predictive variants were selected using the importance

metric of the Random forest model collected from the
LOOCV folds and a permutation-based test. One-sided
Mann–Whitney test and bootstrapped confidence intervals
for the AUC were used for evaluating the predictive per-
formance. Analysis of individual diagnoses and other
additional details are available in the Supplementary
Methods.

Variant annotation

Colocalization of the top predictive variants with genes was
examined using the ENSEMBL GRCh37 database. The list
of genes associating with the top variants (Table 2) was
queried against a number of public cancer gene databanks
and annotated with the ToppGene (https://toppgene.cchmc.
org/) [29] and PANTHER (http://pantherdb.org/tools) [30]
annotation tools. Enrichment at FDR level < 0.05 was
considered significant. Additional details are available in
the Supplementary Methods.

Replication

To evaluate the top SNPs with independent sets of patients,
cohorts of 258 and 125 Finnish and 265 Spanish HSCT
patients with a sibling donor genotyped with microarray
platform were analyzed by fitting a Random forest model
through LOOCV. None of these patients were included in
the primary discovery cohort. The Spanish and the first
Finnish cohorts have been described previously in detail
[25]. The second Finnish cohort of 125 patients is described
in the Supplementary Methods. The available SNPs in the
first Finnish replication cohort in the order of numbers of
missing genotypes are given in Supplementary Table 1.
Additional details are available in the Supplementary
Methods.

Fig. 1 Schematic representation of the study setup. a Leave-one-out
cross-validation (LOOCV) for feature selection and classification
model fitting. Each sample is systematically left out in each fold.
Prediction error estimates are based on left out samples (blue). b The

analysis procedure within each LOOCV fold includes a first round of
feature selection with a logistic regression association test followed by
fitting a Random forest classification model on variants below an
initial association p-value threshold
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Code availability

Code implenting the variant selection and model fitting via
cross-validation is publicly available in GitHub (https://
github.com/FRCBS/HSCT-relapse-model).

Results

Sequencing and variant calling

Samples from 161 recipients of haematopoietic stem cell
transplantations were sequenced using a custom sequencing
panel pipeline, encompassing the whole-exome, immune
cell regulatory regions, and the full MHC segment. The

pipeline yielded a median on-target coverage of 27.5× per
sample. The GATK DepthOfCoverage tool applied to
sample BAM files yielded a mean of 32.75 with standard
deviation of 6.97 across all samples. The final quality fil-
tering step was performed using a hard cutoff for the GQ
parameter based on comparison of duplicates; the impact of
varying GQ values on the similarity of duplicated samples
is shown in Supplementary Fig. 1. At GQ > 18, the mean
similarity was approximately 99%, resulting in an average
of 32% of the candidate variants being discarded (Supple-
mentary Fig. 1). Altogether, the quality filtered data con-
tained 470,135 variants, of which 405,502 were SNPs,
68,721 were INDELs, and 2626 were others. After
removing non-biallelic variants, a total of 437,679 variants
was left.

Table 2 The top predictive variants and their associated genes

Chromosome Positiona SNP ID REF ALT ALT frequency ENSEMBL gene ID Gene symbol

1 228929158 rs4140409 C T 0.675496689 NA NA

1 228940615 rs241304 A G 0.619205298 NA NA

1 230244458 rs910500 A G 0.440397351 ENSG00000143641 GALNT2

1 230245900 rs11585739 T C 0.470198675 ENSG00000143641 GALNT2

1 230294715 rs4846913 C A 0.506622517 ENSG00000143641 GALNT2

2 61070652 rs1432297 G A 0.516556291 ENSG00000228414 FLJ16341

2 61072183 rs35194171 T A 0.539735099 ENSG00000228414 FLJ16341

2 61072567 rs35741374 C T 0.543046358 ENSG00000228414 FLJ16341

2 61075111 rs1177205 A T 0.456953642 ENSG00000228414 FLJ16341

2 61075189 rs1177206 C T 0.460264901 ENSG00000228414 FLJ16341

2 61075209 rs1177207 G A 0.456953642 ENSG00000228414 FLJ16341

2 61075765 rs750026 T C 0.463576159 ENSG00000228414 FLJ16341

2 61075987 rs750027 C G 0.456953642 ENSG00000228414 FLJ16341

2 61080482 rs842625 G A 0.456953642 ENSG00000228414 FLJ16341

2 61085723 rs842631 C T 0.460264901 ENSG00000228414 FLJ16341

2 240674948 rs11678404 C T 0.271523179 NA NA

4 68311813 rs373609666 T TACCGCCACCGCC 0.205298013 ENSG00000250075 RP11–584P21.2

6 3424481 rs9405201 C T 0.32781457 ENSG00000137266 SLC22A23

6 3433318 rs17309827 T G 0.400662252 ENSG00000137266 SLC22A23

6 3433713 rs9392492 G GA 0.301324503 ENSG00000137266 SLC22A23

6 37789321 rs10456096 G A 0.347682119 ENSG00000156639 ZFAND3

8 22865320 rs2430815 T G 0.781456954 ENSG00000008853 RHOBTB2

8 81278885 rs12543811 G A 0.586092715 NA NA

10 64379326 rs2393904 C T 0.387417219 ENSG00000138311 ZNF365

11 7720426 rs4367936 C A 0.42384106 ENSG00000183378 OVCH2

11 30438948 rs492604 C T 0.463576159 ENSG00000066382 MPPED2

13 77589725 rs599115 A C 0.582781457 ENSG00000005812 FBXL3

16 56368689 rs1065375 C T 0.5 ENSG00000087258 GNAO1

19 20735272 rs7251976 T C 0.440397351 ENSG00000237440 ZNF737

20 61342535 rs35927656 T C 0.374172185 ENSG00000101188 NTSR1

22 26168558 rs3848858 A G 0.298013245 ENSG00000133454 MYO18B

aChromosome position refers to GRCh37
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Covariate analysis

The genetic principal components were analyzed according
to the variance explained by them; the eigenvalues reached
a stable level at component five (Supplementary Fig. 2), and
thus the first five components were included in the analysis.
Correlation analysis between the covariates showed that
batch and genetic principal components 1, 3, and 4 were
intercorrelated with absolute Pearson’s coefficients ranging
from 0.29 to 0.88 (Supplementary Fig. 3). Since the batches
were from two different hospitals from different geo-
graphical locations, principal components 1, 3, and 4 likely
reflected differing genetic backgrounds in the population.
Donor and recipient ages had a correlation of 0.8. Fur-
thermore, subject sex and donor-recipient sex direction of
the transplant were associated, with absolute Pearson’s
coefficients ranging from 0.49 to 0.65. After removing
collinear variables (i.e., batch, recipient age, and transplant
direction), the remaining variables were tested for associa-
tion with relapse status. Out of these, diagnosis, graft type,
donor age, and principal component 5 each had a nominally
significant association (p-value < 0.1) with relapse status
(Supplementary Table 1). Detailed analysis of PC5 revealed
that its top loadings were solely from variants in the MHC
region in chromosome 6, and thus were unlikely to indicate
differences in the population structure. Finally, donor age,
graft type, and diagnosis were included as covariates for
association tests in the first round of variant selection with
genetic association tests.

Predictive performance

The predictive performance of the model was estimated by
comparing the distributions of LOOCV predictions between
relapsed and non-relapsed groups, and by calculating the
ROC/AUC values. The SNP/INDEL variant-based predic-
tions with the Random forest model yielded a p-value of
8.45e-6 and an AUC of 0.717 (95% CI: 0.629–0.805)
(Fig. 2a). The odds ratio of correct prediction was
approximately 4 (Fig. 2a). When clinical covariates were
included together with the genetic variants, a prediction
performance p-value of 4.00e-6 and an AUC of 0.725 (95%
CI: 0.638–0.8118) were obtained. When only the clinical
covariates and PCs, without the genetic variants, were used
for modeling, a prediction performance p-value of 0.0075
and an AUC of 0.623 (95% CI: 0.521–0.725) were
obtained.

An independent cohort of 258 patients genotyped with
the Immunochip platform [25] was used to evaluate the top
predictors identified in the primary cohort. Altogether, 21
SNP/INDEL variants mapping to 8 different genes were
found on the IC after genotype imputation (Supplementary
Table 2). In 11 of these variants, the genotype was missing

from at least one sample, ranging between 1 and 151 sam-
ples depending on the variant (Supplementary Table 2).
Since a sample had to be removed if it had a missing
genotype in any variant, inclusion of variants with missing
values resulted in leaving increasingly more samples out.
The numbers of variants and samples left after allowing for
different numbers of missing values are given in Supple-
mentary Table 3. The included variants were evaluated by
fitting a Random forest classifier model via LOOCV. The
prediction estimate yielded a p-value of 1.05e-06 and an
AUC value of 0.681 (95% CI: 0.616–0.745) when variants
with no missing values were included (Fig. 2b). When
raising the threshold for the number of allowed missing
values, the number of variants that could be included
increased, but the prediction performance deteriorated in
accordance with the number of missing values (Fig. 2b).
Allowing for variants with less than 10 missing values
yielded a prediction p-value of 0.004 and an AUC of 0.606
(95% CI: 0.528–0.683). Including variants with less than 50
missing values, the prediction p-value was 0.0036 and AUC
0.607 (95% CI: 0.530–0.684). Allowing for variants with
less than 80 missing values yielded a prediction p-value of
0.226 and an AUC of 0.544 (95% CI: 0.432–0.657). We
also tested replication in a cohort of 265 Spanish patients,
but we did not obtain statistically significant results (data
not shown).

A second Finnish cohort of 125 patients genotyped with
the Immunoarray platform was analyzed to further evaluate
the predictive capacity of the top variants in the Finnish
population. To avoid the removal of samples due to missing
data, probabilistic estimates of genotypes of imputed mar-
kers were used. The imputation quality filtering was
implemented by applying standard deviation thresholds of
<0.3 and <0.2, leaving 20 and 23 variants for analysis,
respectively. The LOOCV modeling of data from the two
quality thresholds yielded prediction p-values of 0.00137
and 0.00569, and AUC values of 0.659 (95% CI:
0.561–0.7575) and 0.6345 (95% CI: 0.5346–0.7345),
respectively (Fig. 2c). Additional details are available in
the Supplementary Material.

Variant ranking and annotation

To evaluate which genes or genetic markers contributed
most to the prediction, the variable importance metric
values over the LOOCV folds were correlated against a
permutation-based ranking metric from the whole dataset
and plotted (Supplementary Figs. 4, 5). The correlation
between the two ranking metrics was 0.91. The best pre-
dictors selected based on permutation and LOOCV impor-
tance are given in Table 2.

The genes colocalizing with the top predictive variants
were functionally characterized by mining public

Genomic prediction of relapse in recipients of allogeneic haematopoietic stem cell transplantation



databanks. Gene expression values in blood cancer cell
lines and presence in cancer gene databases were deter-
mined (Supplementary Fig. 6a, Supplementary Table 4).
Furthermore, a statistically significant representation of
the genes in PubMed articles produced 50 significant
results (Supplementary Fig. 6b, Supplementary Table 5).
Finally, the genes with their significant (FDR < 0.05)

interaction partners were tested for enrichment in
Gene Ontology Biological Process functional categories.
The results show that calcium signaling, epidermal growth
factor, MAP kinase, and G-protein signaling were the
pathways or functional groups with the highest fold
enrichment values (Supplementary Fig. 6c, Supplementary
Table 6).
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Fig. 2 Estimated predictive performance of the model. The results
from a the discovery dataset, and b–c the replication datasets. The left-
hand side panels show the prediction value distributions over the
LOOCV folds for the actual relapsed and non-relapsed groups by the
Random forest classification model. The middle panels show the
prediction ROC curves and AUC values. In a, the solid black ROC
curve indicates the genetic model, the dashed gray curve indicates the
model with principal components, and clinical and genetic variables,
and the dotted purple curve shows the result using principal

components and clinical data only. In b, the dashed green curve and
the dotted blue curve show the results for allowing variants with <11
and <81 missing values, respectively. In c, the black curve and the
dotted green curve show the results for higher (<0.3) and lower (<0.2)
imputed genotype quality filtering stringencies, respectively. The
right-hand side panels in a–c show the odds ratio for the correct
prediction (y-axis) along the prediction model output values (x-axis).
The p-values are calculated with one-sided Mann–Whitney test. The
statistical power of the AUC is calculated at alpha level 0.01
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Analysis of individual diagnoses

Predictive analysis of AML patients as a separate group
yielded a p-value of 0.000993 and an AUC of 0.767 (95%
CI: 0.618–0.916) (Supplementary Fig. 7a). Replication of
AML group in the Finnish cohort using eight top SNPs
available on Immunochip yielded a p-value of 0.0721 and
an AUC of 0.616 (95% CI: 0.469–0.764) (Supplementary
Fig. 7b). Factorization of the full discovery cohort into
diagnosis components showed that AUC varied between
0.613 and 1.00 depending on diagnosis (Supplementary
Fig. 8). Additional details are available in the Supplemen-
tary Material.

Discussion

The present study modeled the occurrence of relapse after
allo-HSCT using genomic sequencing data in a predictive
machine learning classification framework aiming to
establish the level to which germline genetic variability in
patients allows prediction of their relapse status. The prin-
cipal finding of our analysis was that there is a statistically
significant, albeit moderate, predictive relation between
genetics and relapse occurrence, suggesting that common
germline variability carries a risk for relapse in the allo-
HSCT setting. Despite the relatively small sample size of
our primary discovery cohort, the top SNP/INDEL variants
also had predictive capacity in two independent sets of
patients genotyped with microarray, testifying to their
generalizability in the study population. However, the
replication was limited to the polymorphisms shared
between the two genotyping platforms. Inclusion of variants
with missing genotype values reduced the predictive per-
formance most likely owing to genotype imputation
uncertainty. Moreover, failure to replicate the top variants in
a different population could be due to differences in linkage
disequilibrium structure, genetic background modifying
variant effects, or treatment protocols.

The machine learning approach employed in this study is
non-parametric and does not require the variables to be
independent [27], making it suitable for modeling variants
in linkage disequilibrium or otherwise correlated. Con-
sistently with other studies on predictive genomics [21, 31],
variants discovered through the machine learning approach
do not necessarily surpass the univariate genome-wide level
of significance of classical GWAS and could therefore help
uncover hidden heritability [32] since the estimated genetic
variance of many complex traits is mostly explained by a
large number of common polymorphisms [33].

Treatment-related mortality can mask relapse occurrence,
and consequently an underlying assumption in our analysis
was that relapse is independent from death to, e.g., aGvHD

or infection. Further, the diagnostically heterogeneous
population in our study also implies that the results may be
more representative of the most common diseases (i.e.,
AML and ALL) than others. However, the heterogeneity
did not significantly manifest in the predictive performance
as different diagnoses had relatively similar AUC values.
This is consistent with our approach that aimed to identify
variants independent of diagnosis in the discovery dataset.

In agreement with the used targeted sequencing
approach, a majority of the top predictive variants mapped
within genes, presenting potential candidates for studies on
the molecular mechanisms of leukemia, drug development,
relapse, and allo-HSCT. Together with their proteome
interaction partners, the genes broadly represented ontolo-
gies involved in signaling of cell proliferation, differentia-
tion, and apoptosis. Pathways such as MAPK and EGF
together with G-protein and calcium secondary messenger
signaling link various external stimuli to cellular growth and
survival processes [34–37]. The remaining intergenic or
non-coding RNA variants lacking specific annotation may
still have regulatory roles in related processes [38]. How-
ever, as the current study was not to designed to address
hypotheses on function, further research is required to
clarify these questions. MHC region variants did not have
significant predictive value, and HLA mismatching was not
considered here due to extensive HLA matching between
the sibling pairs.

Our results also showed that incorporating clinical and
genetic PCA variables into the model improved predictive
performance only marginally, and omitting the selected
SNPs from the model led to markedly inferior predictive
performance. This outcome likewise supports the relevance
of genetic information for explaining the variation in sus-
ceptibility to relapse and is consistent with evidence of a
genetic component underlying the risk for many common
cancers [17]. To augment the genetic model, integrating
different “omics” modalities such as somatic de novo
mutations [39, 40], and transcriptomic [41], epigenetic
[42, 43], and miRNA [44, 45] profiles could conceivably
help achieve a predictive capability that adds substantial
value to clinical decision making [40]. Furthermore, inte-
grated modeling of the relationship between genetic var-
iance, downstream molecular functions, and clinical
endpoints is required to further understand how tumor
phenotypes develop and acquire treatment-resistant
properties.

In conclusion, the results presented here demonstrate the
contribution of germline genetic variation to relapse
occurrence in the allo-HSCT setting. However, further
studies in different allo-HSCT populations, conditioning
regimens, and other treatment factors are warranted. In the
near future, the development of predictive models encom-
passing genomic and other molecular information hold the
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potential for improved clinical decision making and treat-
ment optimization while helping reveal the molecular
mechanisms underlying leukemic phenotypes.
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