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Abstract

We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael
numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x1/5 when
x is large enough (depending on m).
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1. Introduction

Fermat’s little theorem states that p divides bp − b for all integers b whenever p is
prime. Composite numbers which satisfy this property are known as Carmichael
numbers, named after R. D. Carmichael who began an in-depth study of them around
1910. The first Carmichael number is 561, and Carmichael suggested that perhaps
there are infinitely many of them. This conjecture was finally proved in 1994 by Alford
et al. [2] who even managed to show that there are at least x2/7 Carmichael numbers up
to x for any large enough x. This lower bound has been improved by Harman [10, 11]
to xα with α slightly larger than 1/3.

It would be interesting to know if Carmichael numbers have similar distributional
properties with primes. Two most natural questions are probably distribution in
intervals and distribution in arithmetic progressions. Concerning the first question,
it is not even known whether there is a Carmichael number between x and 2x for every
large enough x.

Banks and Pomerance [5] recently studied the second question. They remarked
that, for any m, proofs in [2, 10, 11] can be adapted to prove infinitude of Carmichael
numbers that are 1 mod m, whereas one does not even know that there exists an m for
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which there are infinitely many Carmichael numbers that are not 1 mod m. Banks and
Pomerance [5] themselves gave a conditional proof that any arithmetic progression
a mod m with (a, m) = 1 contains infinitely many Carmichael numbers; they had to
assume a conjecture on the least prime in an arithmetic progression, more precisely
that for certain ξ and any (b, d) = 1 there exists a prime p� d1+ξ/log log d such that
p ≡ b mod d. This conjecture is of course far away from the best available bound
p� d5.18 [13].

Here we will be able to give an unconditional proof in the case where a is a quadratic
residue mod m.

T 1. Let (a, m) = 1 and assume that a is a quadratic residue mod m. Then
there are infinitely many Carmichael numbers in the arithmetic progression a mod m.
Indeed the number of them up to x is at least x1/5 when x is large enough (depending
on m).

This of course in particular implies that for any m for which there is an element
in (Z/mZ)∗ of multiplicative order greater than 2, there must indeed be infinitely
many Carmichael numbers .1 mod m. This condition holds for any m which does
not divide 24.

It probably is possible to improve the lower bound in the theorem, perhaps up to
Harman’s 1/3, but here we wish to keep matters as simple as we can.

A convenient way to characterise Carmichael numbers is Korselt’s elementary
criterion which states that an integer n satisfies Fermat’s property for every base b if
and only if n is square-free and p − 1 | n − 1 for every prime p | n. We will employ the
same strategy as in [2] which has its roots in Erdős’s original heuristic [9]. The basic
idea is to construct an integer L for which there are many primes p for which p − 1 | L.
Suppose now that some product of these primes, say C = p1 · · · pk, is 1 mod L. Then
C is a Carmichael number by Korselt’s criterion: each pi − 1 | L |C − 1.

The extra trouble we have here is that we have to find such products C that have the
additional property C ≡ a mod m. Banks and Pomerance [5] handled this additional
requirement by instead finding C ≡ 1 mod Lm and a prime p0 ≡ a mod m such that
p0C is also a Carmichael number (a similar idea was apparently independently present
in [6]). However, in order to choose such C and p0, they needed the above-mentioned
conjecture. Here we will instead directly find C ≡ a mod m through bringing in the
Baker–Schmidt theorem [4]. A defect of our method is that it only works for quadratic
residue a, the reason for which will be explained in the end of the paper.

2. Preliminary results

In this section we provide lemmas needed in the proof of the theorem and try to
describe how they fit into the brief proof sketch given in the introduction.

The number L mentioned in the introduction will be chosen to be a product of
certain primes q for which q − 1 has only small prime factors. With such a choice
the maximal order of an element in (Z/LZ)∗ is relatively small, which will make
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finding C easier. Obviously we have to first show that such primes q even exist.
Writing P(n) for the largest prime factor of n and

πb,d(x, y) = |{ 12 x ≤ p ≤ x : p ≡ b mod d and P(p − 1) ≤ y}|,

we can prove the following lemma.

L 2. Let b and d be fixed coprime integers with d > 0. For any α > 1/2, there
exist γ(α) > 0 and x1(α, d) such that

πb,d(x, xα) ≥ γ(α)
x

φ(d) log x

for all x ≥ x1(α, d).

P. We can clearly assume that α < 2/3. Choose a positive ε = ε(α) < α − 1/2.
Now if p ≤ x is such that p = 1 + qk for some prime q ∈ [x1−α, x1/2−ε], then
P(p − 1) ≤ xα. Each p has at most two such representations. Hence

πb,d(x, xα) ≥
1
2

∑
x1−α<q<x1/2−ε

q∈P

∑
x/2≤p≤x

p≡1 mod q
p≡b mod d

1.

Since (q, d) = 1 when x is large enough, the congruence conditions can be combined
into a single congruence mod dq, so, by the Bombieri–Vinogradov theorem,

πb,d(x, xα) ≥
1 + o(1)

2φ(d)

∑
x1−α<q<x1/2−ε

q∈P

x
2φ(q) log x

+ O(x(log x)−10)

≥
1
8

log
( 1

2 − ε

1 − α

)
·

x
φ(d) log x

for every large enough x. �

Stronger results in the case d = 1 have appeared in the literature, the strongest
one [3] working in the range α > 0.2961 (albeit with a slightly weaker lower bound).
We do not attempt to generalise these results to suit our needs but use this weaker
result to keep our argument as transparent as possible.

For a given large L we cannot actually show that there are many primes p for
which p − 1 | L. However, it is possible to show that there must be a relatively small
k for which k | p − 1 | kL for many primes p. The following lemma is a straight-
forward generalisation of [2, Theorem 3.1] (see also [1, Proposition 1.5] for a similar
generalisation with slightly different assumptions).

L 3. Let B < 5/12 and let b and d be coprime integers with d ≥ 1. Then there exist
positive constants c0(B) and x0(B, d) such that the following holds. If x ≥ x0(B, d)
and if L is a square-free integer which is coprime to d, not divisible by any prime
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exceeding x(1−B)/2 and for which
∑

p|L 1/p ≤ (1 − B)/40, then there exists a positive
integer k ≤ x1−B such that (k, L) = 1 and

|{l | L : kl + 1 = p ∈ P, p ≤ x and p ≡ b mod d}| ≥
c0(B)

φ(d) log x
|{l | L : 1 ≤ l ≤ xB}|.

Next we turn to generating products which are 1 mod L. For this we need some
notation. For a finite (multiplicative) abelian group G, let n(G) denote the length of the
longest sequence of (not necessarily distinct) elements of G for which no nonempty
subsequence has product the identity. Further, let λ(G) be the maximum order of
the elements of G. It is easy to see that λ(G) ≤ n(G) ≤ |G|. An important ingredient
in [2] was the following better upper bound for n(G) due to van Emde Boas and
Kruyswijk [8] and Meshulam [12].

L 4. One has

n(G) ≤ λ(G)
(
1 + log

|G|
λ(G)

)
.

In order to get quantitative results, one needs to know how many identity products
there are. To this end one can use the following combinatorial consequence of the
previous lemma [2, Proposition 1.2].

L 5. Let G be a finite abelian group and let r > t > n(G) be integers. Then any
sequence of r elements of G contains at least

(
r
t

)
/
(

r
n(G)

)
subsequences of length at most

t and at least t − n(G), whose product is the identity.

However, as we want our product to be a mod m we are not solely interested in
subsequences with product identity but want our products to equal a certain other
element of a group. One cannot have a direct generalisation of Lemma 4 with the
identity just replaced by any element of G—if a sequence is contained in a subgroup,
only elements of that subgroup appear as products. However, there is a generalisation
which takes this into account: Baker and Schmidt [4] bound n(B) using a different
method which gives a kind of uniform distribution result. From [4, Proposition 1] and
Lemma 5 we can easily deduce the following lemma.

L 6. For any multiplicative abelian group G write

s(G) = d5λ(G)2Ω(|G|) log(3λ(G)Ω(|G|))e.

Let A be a sequence of length n consisting of nonidentity elements of G. Then there
exists a nontrivial subgroup H ≤G such that:

(i) if n ≥ s(G), then, for every h ∈ H, A ∩ H has a subsequence whose product is h;
(ii) if t is an integer such that s(G) < t < n − n(G), then, for every h ∈ H, A has at

least
(

n−n(G)
t−n(G)

)
/
(

n
n(G)

)
distinct subsequences of length at most t and at least t − n(G)

whose product is h.
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P. The first part follows immediately from [4, Proposition 1] by changing from
additive to multiplicative setting. Therefore we only have to show that H which
satisfies (i) also satisfies (ii). To prove this we can use Lemma 5 after some
preparations that resemble the beginning of the proof of that lemma in [2].

Let h ∈ H. Then by (i), there is a subsequence R whose product is h. Let
U be the longest such subsequence, with length u, say. Then u ≥ n − n(G) since
otherwise, by Lemma 4, A \ U contains a subsequence whose product is 1 and this
subsequence could be appended to U to increase its size. Let t′ = u − t + n(G). Then
t′ ≥ n − t > n(G) and t′ < u − s(G) + n(G) < u, so by Lemma 5 the sequence U contains(

u
t′

)/( u
n(G)

)
=

(
u

t − n(G)

)/( u
n(G)

)
≥

(
n − n(G)
t − n(G)

)/( n
n(G)

)
distinct subsequences of length at most t′ and at least t′ − n(G) whose product is the
identity. When any such subsequence is removed from U we obtain a subsequence of
A with desired properties, and the claim follows. �

3. Proof of Theorem 1

Let θ < 2, B < 5/12 and let y be a large positive parameter. Note that the bounds for
θ and B come from Lemmas 2 and 3. Let

Q = {q ∈ P ∩ ( 1
2 yθ, yθ) : q ≡ −1 mod φ(m) and P(q − 1) ≤ y}.

Notice that when y is large enough, (q, m) = 1 for every q ∈ Q. By Lemma 2 and a
trivial estimate,

γ(1/θ)
yθ

φ(φ(m)) log yθ
≤ |Q| ≤

yθ

log yθ

for all sufficiently large y. Let

L =
∏
q∈Q

q and x = ey1+δ

for some small positive constant δ.
By our assumption that a is a quadratic residue mod m, there exists a0 such that

a2
0 ≡ a mod m. Applying Lemma 3 and arguing as in [2, Proof of Theorem 4.1], we

can find an integer k ≤ x1−B coprime to L for which the set

P = {p ≤ x : p = dk + 1 for some d | L and p ≡ a0 mod m} (1)

has cardinality at least x1/5+1/500 when δ is small enough. Taking P′ = P \ Q,

|P′| ≥ x1/5+1/1000 = e( 1
5 + 1

1000 )y1+δ

.

Next we borrow some notation from [5]. Let N be the set of integers n such
that gcd(n, Lm) = 1 and n ≡ 1 mod k (in particular P′ ⊂ N). Let G be the subgroup
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of (Z/kLZ)∗ × (Z/mZ)∗ consisting of pairs (α, β) with α ≡ 1 mod k, and define
Ψ : N →G to be the natural map which takes each integer n ∈ N to the pair

Ψ(n) = (n mod kL, n mod m).

If now S ⊂ P′, |S| > 1 and nS =
∏

p∈S p is such that Ψ(n) = (1, a), then nS is a
Carmichael number and nS ≡ a mod m. Indeed, for any p | nS we have p ∈ P′, so
that p − 1 | kL | n − 1, which implies that nS is a Carmichael number by Korselt’s
criterion.

Our last task is to find such subsets S. To this end we will use Lemma 6. Notice
that, for sufficiently large y and with our choice of G,

λ(G) ≤ φ(m) lcm
p|L

[p − 1] ≤ φ(m)
∏
p≤y

yθ ≤ φ(m)(yθ)y/ log y ≤ e2θy,

log |G| ≤ log(Lm) ≤ 2|Q| log(yθ) ≤ 2yθ

and

Ω(|G|) = Ω(φ(L)φ(m)) ≤ 2 log(Lm) ≤ 4yθ,

so that, by Lemmas 4 and 6,

n(G) ≤ e3θy and s(G) ≤ e5θy.

We can think of p ∈ P′ as elements of G through the map Ψ. Let r ∈ N be such that

r ≡

0 mod λ((Z/LZ)∗)

2 mod φ(m).

Such r exists since

gcd(λ((Z/LZ)∗), φ(m)) = gcd
(
lcm
q∈Q

[q − 1], φ(m)
)

= lcm
q∈Q

[gcd(q − 1, φ(m))] = 2 (2)

by definition of Q.
Now apply Lemma 6 to the sequence (Ψ(p))p∈P′ . This lemma asserts that the

subgroup H from the lemma contains some member of the sequence, so that at least
one Ψ(p) with p ∈ P′ must be in H. Thus H contains Ψ(pr) = (1, a2

0) = (1, a), so that
Lemma 6 shows that a desired set S exists.

To get the quantitative bound, we use part (ii) of Lemma 6 with t = ey1+δ/2
. We find

that the number of Carmichael numbers nS ≤ xt that are a mod m is at least(
|P′| − n(G)

t − n(G)

) /(
|P′|

n(G)

)
≥

(
|P′| − n(G)

t − n(G)

)t−n(G) /
|P′|n(G) ≥ |P′|t(1−o(1)) ≥ xt/5

which finishes the proof of Theorem 1. �
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One naturally asks whether the argument can be extended to the case where a is
a quadratic nonresidue. Arguing as here but replacing the nonexisting a0 in (1) by a
(or any root of a), we would need r mod φ(m) to be odd but r mod λ((Z/LZ)∗) to be
even, which is impossible because of (2). Of course one could allow more different
residue classes mod m in (1), but this does not completely remove the problem. Going
back to the proof of our Lemma 6(i) in [4], one sees that it would be enough to
show that (extended) P′ cannot be ‘almost contained’ in a subgroup which does
not contain (0, a). This seems very likely but difficult to prove. Thinking of G as
⊕q∈Q(Z/φ(q)Z) ⊕ (Z/φ(m)Z), an example of a troublesome large subgroup would be

{
(a1, . . . , a|Q|+1) ∈

⊕
q∈Q

(Z/φ(q)Z) ⊕ (Z/φ(m)Z) :
|Q|+1∑
i=1

ai ≡ 0 mod 2
}
.

Ekstrom et al. [7] have developed the arguments in [2, 5, 6] further to give a
conditional proof of the infinitude of elliptic Carmichael numbers. Unfortunately our
methods do not seem to be directly helpful in that problem.
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