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Shallow rivers provide important habitat for various aquatic and terrestrial species. The bathymetry of such en-
vironments is, however, difficult tomeasure as devices and approaches have been traditionally developedmainly
for deeper waters. This study addresses the mapping of shallow water bathymetry with high spatial resolution
and accuracy by comparing three remote sensing (RS) approaches: one based on echo sounding (active RS)
and two on photogrammetry (passive RS): bathymetric Structure from Motion (SfM) and optical modelling.
The tests were conducted on a 500 m long and ~30 m wide reach of sand-bedded meandering river: (1) during
a rising spring flood (Q= 10–15m3/s) withmedium turbidity and highwater color and; (2) during autumn low
discharge (Q = 4 m3/s) with low turbidity and color. Each method was used to create bathymetric models. The
models were compared with high precision field measurements with a mean point spacing of 0.86 m. Echo
sounding provided themost accurate (ME~−0.02m) and precise (SDE=±0.08m) bathymetricmodels despite
the high degree of interpolation needed. However, the echo sounding-based models were spatially restricted to
areas deeper than 0.2 m and no small scale bathymetric variability was captured. The quality of the bathymetric
SfM was highly sensitive to flow turbidity and color and therefore depth. However, bathymetric SfM suffers less
from substrate variability, turbulent flow or large stones and cobbles on the river bed than optical modelling.
Color and depth did affect optical model performance, but clearly less than the bathymetric SfM. The optical
model accuracy improved in autumn with lower water color and turbidity (ME = −0.05) compared to spring
(ME=−0.12). Correlations between the measured and modelled depth values (r= 0.96) and the models pre-
cision (SDE= 0.09–0.11) were close to those achieved with echo sounding. Shadows caused by riparian vegeta-
tion restricted the spatial extent of the optical models.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In mapping fluvial environments, methods for collecting bathymet-
ric data have not developed as rapidly as general topographic measure-
ment techniques. This has led to a situation where dry areas of river
environments aremappedwithmuch higher detail compared to under-
water areas. Some bathymetric approaches suffer from either poor spa-
tial resolution or precision, or are not applicable in very shallow areas.
The bathymetry of shallow rivers is especially complicated to measure
as bathymetric measurement devices (e.g., echo sounders) have been
primarily designed for the measurement of deeper waters (Dietrich,
2017). Zones of shallow flow, which are common in many rivers, have
an important and distinct ecological and geomorphological function
(e.g., riffles). They may also provide important and unique habitats for
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various aquatic and terrestrial species. Thus, surveying shallow areas
with high detail (e.g., sub-bedform scale) is essential for understanding
the fluvial, morphological, and related ecological processes of thewhole
river environment.

In recent years, fluvial geomorphologists have used and developed
several techniques to measure and model bathymetry of shallow
water areas. Conventionally, terrestrial approaches such as differential
GPS (Brasington et al., 2000) or total station survey (Lane et al., 1994;
Milne and Sear, 1997; Koljonen et al., 2012) and more recently green
wavelength LiDAR, (Kinzel et al., 2013), and echo-sounding methods
(Guerrero and Lamberti, 2011; Kasvi et al., 2017b) have been used.
Each approach has its strengths and weaknesses. RTK-GPS (Real Time
Kinematic Global Positioning System) and total stations provide accu-
rate datawith high precision, but they commonly involve a trade-off be-
tween spatial extent and spatial resolution, leading to a discontinuous
picture of the river bed and possibly to an incorrect interpretation of
phenomenon such as erosion and deposition volumes (Lane et al.,
1994; Westaway et al., 2001). These techniques also require physical
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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contactwith the river bed,which restricts their usage to safelywadeable
areas. Physical contact with the river bed may also disturb the original
topography as well as habitat features, such as fish spawning locations.

Echo-sounding is an active remote sensing method that transmits
sound pulses toward the bed of a water body and calculates the depth
of water based on the travelling time of the sound pulse and speed of
sound in water. It was originally developed for marine applications but
has been applied in inland waters for many decades (Dost and
Mannaerts, 2008). Modern side-scan sonars, operating at high frequen-
cies (N500 kHz) and producing high-resolution images (b0.1 m pixels)
(Powers et al., 2015) are efficient but only applicable in relatively deep
water (~N0.8 m) (e.g., Kaeser et al., 2013). ADCPs (Acoustic Doppler Cur-
rent Profilers) equippedwith echo soundersmay be convenient for use in
shallowwaters, especially when operated using remotely-controlled sys-
tems (Flener et al., 2015; Kasvi et al., 2017b). Their advantage, especially
compared to differential GPS, total station and side-scan sonar, is that
they are able to measure both shallow and deep areas. They also provide
information on flow velocity that a purely depth-measuring instrument
does not. For very shallow depths (b0.2 m), however, side-lobe interfer-
ence may disturb depth measurement (Yorke and Oberg, 2002). These
devices do not have side-scan abilities and thus the associated spatial res-
olution is much poorer as compared with side-scan sonars and is directly
dependent on the time available for the measurement campaign. There-
fore, the quality of an ADCP-based, high-resolution bathymetric model
is also dependent on the selected interpolation method.

With an attempt to increase the efficiency of bathymetric mapping,
airborne bathymetric laser (ALB) scanners, originally designed for coastal
andmarine surveys, have also been used in fluvial environments (Hillade
and Raff, 2008; Kinzel et al., 2013, 2007). Bathymetric LiDAR is a laser-
based active remote sensing system that operates in the green and
infra-red region of the electromagnetic spectrum. Recently, topo-
bathymetric LiDARs have been used to map the entire stream network
with the Experimental Advanced Airborne Research LiDAR (EAARL) ap-
proach (e.g., McKean et al., 2009; Wright et al., 2016; Tonina et al.,
2018). The EAARL allows for rapid survey of large areas (tens of kilome-
ters) over a wide range of water depths in clear water (0 to 44 m based
on Tonina et al. (2018)). For various reasons, however, bathymetric
LiDAR has not thus far become a popular bathymetric mapping approach
among fluvial geomorphologists. First, it commonly requires an aerial
view, helicopter or plane-borne,which is expensive and reducesuser con-
trol over survey timing and frequency. In addition, various environmental
factors, such as water clarity, vegetation and water surface waves, affect
the transmission of the laser pulse through the water and thus influence
the strength and shape of the return pulse (Guenther, 2007). Shallow
depths have also been reported as a challenge for bathymetric LiDAR,
due to the difficulty of separating water surface, water column, and bot-
tom reflections from each other (Kinzel et al., 2007). Tonina et al.
(2018), however, recently presented some promising results for EAARL
surveys of shallow areas, but they did not present detailed analysis of
the EAARL performance on those areas. The flying altitude, and conse-
quently the laser footprint, ultimately restrict the spatial resolution of
the data; in a recent study, Tonina et al. (2018) achieved point densities
between 0.49 and 1.26 points/m2 and the LiDAR footprint was 0.2 m
with a flying altitude of 300 m. Mounting bathymetric LiDAR on un-
manned airborne vehicles (ULS) (see RIEGL, 2018) increases the spatial
resolution. The first experiments with bathymetric ULS in a shallow
water survey (see Mandlburger et al., 2016) reported bathymetric
data with a 0.1 m spatial resolution and a laser footprint of 3.5 cm,
which are very promising results. Due to the high cost, it is not yet
widely used in scientific applications.

Through-water photogrammetry offers an alternative for detailed
airborne mapping (Shintani and Fonstad, 2017). Provided the stream
bed is visible in the imagery, sufficient texture remains in the imagery
for stereo-matching to work, and the imagery is close to nadir
(i.e., airborne), then it is possible to apply two media photogrammetric
methods to quantify stream bathymetry (Westaway et al., 2000, 2001).
However, these methods suffer from the same problem as bathymetric
LiDAR as they traditionally required image acquisition by photogram-
metric grade cameras mounted on planes or helicopters. In the
wake of the increasing availability of cheap UAVs equipped with
photogrammetrically-calibrated sensors, and developments in multi-
view stereo photogrammetry that facilitate the calibration of non-
calibrated sensors (specifically Structure-from-Motion, SfM), photo-
grammetric approaches have been increasingly used by fluvial geomor-
phologists (Javernick et al., 2014; Micheletti et al., 2015a, 2015b; Kasvi
et al., 2017a; Shintani and Fonstad, 2017). SfM is relatively cheap and
may also allow a higher spatial resolution as compared to the approaches
presented thus far. It is based on visible light waves and is thus a passive
remote sensing method. The resolution of aerial photogrammetry based
methods is based theoretically on the image's pixel resolution on the
ground, which in turn is a function of the UAV flying height, and the res-
olution of the CCD (charge coupled device) array of the sensor mounted
on the UAV. This gives the user control over the resolution of the survey.
As with other methods, there remains a trade-off between spatial extent
and spatial resolution, but it is generally possible to obtain much higher
resolutions (e.g., b0.05 m) over much larger areas than with other
methods.

Crucially, more recentwork has adapted SfMmethods for the case of
two media photogrammetry (Woodget et al., 2015; Dietrich, 2017;
Shintani and Fonstad, 2017). Dietrich (2017) presented an approach
in which the problem arising from the refraction of light when it enters
the water body from the air has been eliminated through an iterative
correction. Shintani and Fonstad (2017) used in situ referencemeasure-
ments to create a site-specific refraction-correction factor to resolve the
same problem. That said, issues remain regarding the extent to which it
is possible to obtain reliable calibration of these sensors, especially if dis-
tortions in the acquired topographic surfaces are to be avoided (James
and Robson, 2014; Carbonneau and Dietrich, 2017).

Optical modelling (also referred as the spectral depth approach or
optical-empirical modelling) is long established for the measurement
of shallow stream-bed bathymetry (Gilvear et al., 1995; Winterbottom
and Gilvear, 1997; Westaway et al., 2003; Legleiter et al., 2004;
Carbonneau et al., 2006; Marcus and Fonstad, 2008; Lane et al., 2010;
Flener et al., 2013; Legleiter, 2016; Shintani and Fonstad, 2017). It
rests upon the principle that light is absorbed as it passes through the
water column and the form of this absorption follows a negative expo-
nential function (i.e., Beer's law) (Carbonneau et al., 2006). The depth
may be calculated based on single spectral band (blue, green or
red) or using a (log-transformed) ratio of two bands (Williams et al.,
2014). The band-ratio approaches are especially useful in areas with
varying bottom substrates. Different spectral bands experience different
attenuations and a change in bottom albedo affects two bands similarly,
while a change in depth has a greater effect on the bandwith greater at-
tenuation (e.g., Legleiter et al., 2004). Thus, the ratio values are more
sensitive to depth than substrate variations (Dierssen et al., 2003;
Stumpf et al., 2003). The form of the depth-reflectance relationship
needs calibration and the calibration may not be constant as a function
of either space (e.g., changes in bottom reflectance) or time (e.g., if the
turbidity of the water column changes) (Flener, 2013; Williams et al.,
2014; Tamminga et al., 2015). Themethod has proved to be particularly
interestingwhere classical photogrammetry fails because of poor image
texture, but can still provide some bathymetric points, which can then
be used to calibrate imagery, opening up the possibility of acquiring ba-
thymetry fromhistorical imagery (Lane et al., 2010). Themeasurements
can also be disturbed by the refraction of the light between two media
if the images are not close to nadir. Water surface roughness and the
vegetation on the river banks may also inhibit the light entering the
water column. Shintani and Fonstad (2017) compared the ability of
bathymetric SfM and optical modelling approaches to extract water
depth in a gravel-bed river with shallow clear water. Their study
highlighted the need for further research on the accuracy and feasibility
of approaches used to produce bathymetric data.



182 E. Kasvi et al. / Geomorphology 333 (2019) 180–197
Given the above review, it is clear that a number of factors will im-
pact the choice of survey method, and these are both scientific and
logistical. The characteristics of the study site, such as the size, depth,
and water quality will limit which options are feasible. Aerial photo-
grammetry is not suitable for turbid waters where the bed is not visible.
Echo sounding is difficult to apply to sites that are impossible to access
by car or boat. The price of equipmentmay vary from tens of thousands
of dollars (ADCP and remote controlled mini-boat) to just a couple
of thousand dollars (a drone equipped with digital camera). Remote
sensing seems to offer an appealing alternative but this method also
needs ground calibration (whether of the optical models, or of the
sensors used to acquire the imagery). Effective application of remote
sensing methods may also need particular skills required to produce
the bathymetricmodel and thismay affect the choice of themost appro-
priate method.
Fig. 1. (a) The Pulmanki River flows in sub-arctic Finland. The studied catchment is a part of the
of Lake Pulmanki. (c) The sand-bedded study reach has a varying bed profile with mid- and po
To develop good practice in shallow river bathymetric survey, here
we compare three promising remote sensing approaches to map shal-
low river bathymetry with a high resolution. We use: (1) bathymetric
SfM; (2) a remote controlled ADCP equipped with an echo sounder;
and (3) opticalmodelling; to create 1mand0.05m resolution bathymet-
ric models for a sand-bedded meandering river containing pools and
bars. We map and model the study area both during rising spring flood
with higher turbidity and hence higher water color (June 2017) and
during autumn low discharge and low turbidity and color (September
2017).We compare the resultant nine bathymetricmodelswith accurate
field-based validation measurements of VRS-GNSS (virtual reference
station global navigation satellite system) and ADCP. We discuss the
strengths and weaknesses of the approaches and evaluate the effect of
spatial resolution, depth, turbidity and color on the feasibility of each
method.
Tana catchment. (b) The study reach is ameandering part of the Pulmanki River, upstream
int-bars.



Table 1
Water quality in the study reach during the field campaigns.

3–5 June 7 Sept

Discharge (m3/s) 10–15 4
Color (mg/l Pt) 55–60 35
Turbidity (FTU) 2 0
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2. Study area description

The study area is located in sub-arctic Finland (Fig. 1a and b). It is a
500 m reach of the meandering Pulmanki River (Fig. 1c). The Pulmanki
River is a meandering river with a sand bed (D50 ~0.2 to 2mm) and dis-
charge varying between 3 and 70 m3. Stones and cobbles are found
around riffles and deeper parts art the outer banks beyond the bend
apices. Typical of arctic and sub-arctic rivers, the Pulmanki River experi-
ences annual snow-melt related springfloods that increase the turbidity
of the normally clear water for some time. The study reach consists of a
meander bend and a straight reach (Fig. 1c). Bedload and suspended
load transport occur throughout the year, and increase along with
spring flood discharges.

3. Methods

The field campaigns were performed during rising flood dis-
charge (10–15 m3/s) on the 3–5 June and low discharge (4 m3/s)
on 7 September. During the survey of 3–5 June, water level change
rose 0.2 m.

3.1. Water quality measurements

Water quality measurements were performed during both field
campaigns using 257.5 ml water samples taken from the study site
using a depth-integrated water sampler (Table 1). The color (mg/l Pt)
and turbidity (FTU) were analyzed in the laboratory with an YSI 9500
Photometer and the total suspended solids (TSS) was determined
using vacuum filtering. The SSC (suspended sediment concentration)
was ~6 mg/l on 3 June 2017, which suggests that the flood peak
suspended load level (typically ~200 mg/l) was not yet reached, but
the SSC still remained close to the low discharge level (Kasvi et al.,
2013). Secchi depth was measured but not achieved. To determine
the color, the sample was filtered to remove suspended solids before
analysis. The color of water was expressed using the platinum/cobalt
color scale (Pt/Co scale). Each unit is equivalent to the color produced
by 1 mg/l platinum in the form of chloroplatinic acid in the presence
of 2 mg/l cobaltous chloride hexahydrate. These units are identical
Table 2
Data collected for the 1 × 1 m and 0.05 × 0.05 m bathymetric models. DSM = Digital Surface M

Spring 2017 (mid-flow)

SfM_S_1m

Source data Orthomosaic 1
Original cell size 0.034 m
Original point density 865 points/m2

ADCP_S_1m

Source data 3880 echo sounding points
VRS-GNSS measurements

Original point density 0.63 points/m2

Optical_S_1m

Source data Orthomosaic 1
Calibration data 48 RTK-GNSS points

91 echo sounding points
Original cell size 0.034 m
Original point density 865 points/m2
with ‘Hazen’ units, which have been traditionally used to express results
from the visual estimation of water color (YSI Inc., 2010). The turbidity
analyses included filtration of one sample through a GF/B filter. This
filtered sample was applied as a blank sample. The 10 ml unfiltered
sample was then analyzed against this filtered blank sample. The color
was analyzed by applying deionized water as the blank sample, and
the filtered actual sample was analyzed against it.

Next, we created six bathymetric models (1–6) at 1 × 1m resolution
and three (4b-6b) at 0.05 × 0.05 m resolution over the study area
(Table 2). The models 1–3 describe the spring time (3–5 June) bathym-
etry andmodels 4–6b the autumn (7 September) bathymetry. The three
high resolution models (i.e., 0.05 × 0.05 m) were created based on the
autumn data only, as the orthomosaic for the autumn was considered
of better quality.

3.2. Bathymetric data collection

3.2.1. Drone-based aerial imagery
Two sets of aerial photographs were collected from the study area

using a DJI Phantom 4 (DJI, 2019) in order to create georeferenced
orthomosaics 1 (spring) and 2 (autumn) over the area. The Phantom 4
has a 12 megapixel camera with an aspherical lens with a 94° field of
view (FOV) and 35 mm equivalent focal length of 20 mm. The device
has an integrated low quality GNSS. The image collection procedures
in 3 June and 7 Sept were similar. First, the ground control points
(30 and 21 GCPs in the spring and autumn, respectively) were installed
to cover the whole survey area as evenly as possible and their exact lo-
cationsweremeasured usingVRS-GNSS for geo-referencing purposes. It
has been shown that multiple flight altitudes should diminish the prob-
ability of systematic error such as doming (Carbonneau and Dietrich,
2017) and thus three sets of images were collected; one at 90 m
(nadir), one at 70m (nadir) and one at 50 m (off-nadir, 30° off vertical)
above the ground. Two flight lines, i.e., back and forth, were flown at
each altitude, flying first along the right bank and then back along the
left bank of the river. Time lapse imaging was used and the interval
was set as 2 sec. Despite flying along the banks, each flight line covered
the whole submerged channel area (width of the channel ~20–30 m
during both measurement dates). Thus, the overlapping coverage of
the aerial imagery was excellent. After creating orthomosaics 1 and 2
(see Figs. 2 and 3) they were used to create six bathymetric models:
orthomosaic 1 was used to create SfM_S_1m (1 m resolution bathy-
metric SfM for spring) and Optical_S_1m (1 m resolution optical
model for spring), while orthomosaic 2 was used for SfM_A_1m and
SfM_A_0.05 m (1 m and 0.05 m resolution bathymetric SfM for
autumn), and for Optical_A_1m and Optical_A_0.05 m (1 m and 0.05 m
resolution optical models for autumn) (Table 2).
odel (see Section 3.2).

Autumn 2017 (low-flow)

SfM_A_1m
SfM_A_0.05 m
Source data Orthomosaic 2
Original cell size 0.028 m
Original point density 1275 points/m2

ADCP_A_1m
ADCP_A_0.05
Source data 3525 echo sounding points

Differential GPS measurements
Original point density 1.3 points/m2

Optical_A_1m
Optical_A_0.05 m
Source data Orthomosaic 2
Calibration data 48 RTK-GNSS points

91 echo sounding points
Original cell size 0.028 m
Original point density 1275 points/m2



Fig. 2.Orthomosaics and the calibration and validation points for the spring. The yellow calibration points (CS 1, 3, 4 and 5)were used in building Optical_S_1m. The red validation points
(CS 2 and 6) were used to validate all of the spring models.
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3.2.2. Echo sounding with ADCP
Echo sounding-based bathymetry datawere collected using an ADCP

(Sontek RiverSurveyor M9 and S5) attached to a remote controlled
mini-boat on 5 June (M9) and with a kayak on 7 September (S5) over
the study area. Thus, the spring ADCP data were measured two days
after the drone flights and validation data measurements. Meanwhile,
thewater level had risen 0.2m. The issue of thedata being fromdifferent
dates is acknowledged in the analysis as the river bedmay have evolved
and the inundated area may have been slightly larger during the ADCP
survey compared to other data. With the RiverSurveyor M9 and S5 the
flow depth is recorded by a vertically-oriented echo sounder operated
at 0.5 MHz and 1 MHz, respectively. The manufacturer reports a depth
measurement accuracy of 1% for both M9 and S5 sensors (Sontek,
2016). The position of the spring depth points was measured using
VRS-GNSS (Trimble R10), but in the autumn only the ADCP's differential
GPS (dGPS) was used. The VRS-GNSS system enables more precise loca-
tion (horizontal accuracy b0.05 m) of the measurements, compared to
the dGPS (horizontal accuracy of sub-meter scale, Sontek, 2016).
As the spring measurement was not performed at the same time as
the flights and the reference measurements, we were able to use the
VRS-GNSS in the wider measurement campaign. During the autumn
field campaign, the ADCP measurements were performed simulta-
neously with rest of the data gathering, and so the VRS-GNSS was not
available for the time-intensive ADCP measurement. The VRS signals
depend on an internet connection, and especially in remote areas such
as our study area, problems with connections occur. Receiving the VRS
signal may take considerable amounts of time. The accuracy of the
dGPSwas tested: a stationarymeasurementof 10minwas used to quan-
tify coordinate variations at a fixed point. The maximum differences
from the mean x, y coordinate values were 0.08 m and 0.23 m and the
standard deviations were ± 0.04 m and ± 0.10 m.

Both the ADCP and VRS-GNSS measurements were recorded with
1 Hz frequency and the density of the depth soundings depended on
the boat speed. The achieved point densities were 0.63 and 1.3 points
m−2 in the spring and the autumn, respectively. The lower point density
in the spring was mainly caused by the large areas of shallow but inun-
dated point bars, which were too shallow (b0.2 m) for the ADCP depth
measurements. In the autumn, the point bars were exposed due to the
lower water surface elevation and the main channel was mostly deep
enough for the ADCP measurements and thus higher point density
over the surveyed area was achieved. The RS mini-boat system is de-
scribed in detail by Kasvi et al. (2017b).

3.2.3. Calibration and validation data
Calibration and validation data were collected along six cross sec-

tions using both VRS-GNSS (shallow areas) and ADCP (Riversurveyor
M9, areas over 1.2 m in depth) in the spring (Fig. 2) and the autumn
(Fig. 3). The VRS-GNSS measurements were collected by walking from
the shallow inner bank of the bends toward the outer bank until the
water was too deep for the VRS-GNSS measurements (1.2 m). ADCP



Fig. 3. Orthomosaics and the calibration and validation points for autumn. The yellow calibration points (CS1, 3 and 5) were used in building the optical models of the autumn. The red
validation points (CS2 and 6) were used to validate all of the autumn models.
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measurementswere used to continue the cross section across thewhole
river to the outer bank. ADCP data were collected using the remote con-
trolled boat equipped with the ADCP device and VRS-GNSS. The time
available to complete the calibration and validation measurements
was limited as these data were collected simultaneously with the
drone flights to avoid the changes in river bed and water level during
the surveys. Furthermore, the crew taking reference measurements
needed to stay out of the water when the drone passed by. Cross sec-
tions 1, 3, 4 and 5 were used to calibrate the optical models. In total,
48 VRS-GNSS and 91 ADCP calibration measurements with an average
point spacing of 0.86 m were collected in the spring and the autumn
for that purpose. Cross sections 2 and 6 were used to validate each
bathymetric model. In total, 93 and 54 validation measurements were
collected in the spring and autumn, respectively.

3.3. Bathymetric data processing

3.3.1. Aerial images: creating orthomosaics and DSMs
Two orthomosaics and DSMs were created using SfM photogram-

metry, which is based on matching features in multiple overlapping



Table 3
The quality details of the calibration, bundle adjustment and georeferencing of
orthomosaics 1 and 2.

Orthomosaic 1 3 June Orthomosaic 2 7 Sept

Average ground sampling
distance (m)

0.034 0.028

Median of key points per image 27,585 37,411
Total number of images 1270 1746
Images calibrated (%) 98 98
Number of GCPs 30 21
Mean reprojection error (pixels) 0.216 0.19
Relative difference between initial
and optimized camera
parameters (%)

2.11 2.47

Mean RMS error of GCPs (m) 0.035 0.039
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images acquired from multiple viewpoints (James and Robson, 2012;
Westoby et al., 2012). The SfMmethod determines the camera position,
orientation, lens distortions and focal length automatically using a bun-
dle adjustment. Orthomosaics and DSMs were created for both spring
(orthomosaic 1, DSM 1) and autumn (orthomosaic 2, DSM 2). The pro-
cessing of image sets for the spring and autumn was identical. The
orthomosaics and DSMs were created and georeferenced in the com-
mercially available Pix4D software package. The general steps of the
SfM procedure can be found in, for example, Micheletti et al. (2015a).
In total, 30 and 21 GCPs were used for the spring and autumn, respec-
tively. The number of overlapping images was five or more for the
whole study area in both spring and autumn. The orthomosaic quality
is summarised in Table 3.

3.3.2. Echo sounding data
For the echo sounding data of 5 June, the accurate locations of

the echo-sounding points were calculated based on post-processed
VRS-GNSS measurements. Post-processing was done with virtual cor-
rection data provided by the Finnish virtual reference station network,
which allows horizontal precision of ±0.05 m. Echo soundings and
VRS-GNSS values were combined based on UTC time stamps of the
VRS-GNSS and the ADCP's internal dGPS. As only the ADCP's internal
dGPS was used on 7 September, no pre-processing was needed for the
bathymetry points.
Fig. 4. Bathymetric models of 1 m resolution for spring 20
3.4. Bathymetric modelling

3.4.1. SfM-based bathymetric modelling
The SfM-based bathymetric models for the spring (SfM_S_1m) and

autumn (SfM_A_1m and SfM_A_0.05 m) were created using the ap-
proach presented by Dietrich (2017) based on Westaway et al. (2001).
In this approach, the problem arising from the refraction of light when
it enters a water body (refractive index = 1.337, (Harvey et al.,
1998)) from the air (refractive index = 1.0) is dealt with using an iter-
ativemulti-camera refraction correction. The correction is calculated for
each point-camera combination of points falling in the inundated area.
The approach solves for the actual depth of the water body based on
the refractive indexes of air and water, angle of the refraction, angle
of incidence from the stream bed to the air/water interface and the ap-
parent depth based on the DSM and water-surface elevation. The cor-
rection algorithm requires the orthomosaic, DSM and a water-surface
elevation model restricted to the inundated area, and corrected camera
positionswith pitch and roll. Based on the camera position and the FOV,
the points in the point cloud that are visible to the camera can be calcu-
lated and all of the point-camera combinations defined. A full technical
description of the approach can be found in Dietrich (2017). According
to his study, the approach is capable of producing bathymetric datasets
with accuracies of ~0.02% of the flying height and precisions of ~0.1% of
the flying height in ideal conditions.

In this study, the inundated area was defined by measuring the
water edgewith VRS-GNSS in the field. The same datawere used to cre-
ate a raster describing thewater-surface elevation of the study area. The
water level stayed stable (±2 cm) during the survey. The orthomosaic
and DSM were clipped to include only the wetted area. The camera
positions and orientations (i.e., pitch and roll) based on the calculations
in Pix4D, were further used to calculate the angles of incidence and re-
fraction. The resulting point clouds, containing the depth points with
horizontal location in the same spatial resolution as the input data
(see Table 3), were interpolated to 1mand 0.05m resolution bathymet-
ric rasters using kriging (see Fig. 4a for the SfM_S_1m, Fig. 5a for
SfM_A_1m, and Fig. 5d for SfM_A_0.05 m).

Subsequently, the models were filtered using a Chauvenet-type
criterion to identify data outliers (e.g., Micheletti et al., 2015b). The
approach attempts to find outliers (i.e., erroneous/clearly deviating
pixels) by comparing the depth values of each pixel with the measured
17. (a) SfM_S_1m. (b) ADCP_S_1m. (c) Optical_S_1m.



Fig. 5. Bathymetric models of 1 m resolution for autumn 2017. (a) SfM_A_1m. (b) ADCP_A_1m. (c) Optical_A_1m.
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standard deviation of the surrounding data. Each pixel value (Z) in the
bathymetric rasters (SFM_S_1m, SfM_A_1m and SfM_A_0.05 m) was
evaluated and considered as an outlier if:

Z−Z
�
�

�
�N1:96σ z ð1Þ

where Z is the pixel value at the center of a circle-shaped neighbor with
mean elevation Z and standard deviation σz, both calculated excluding
the point of interest. The radius of the circle was 3 m and 1 m for the
1 m and 0.05 m resolution models, respectively. Any cell center falling
inside the circle was included in the processing. As a consequence of
the filtering, 2.2%, 1.8% and 1.3% of the pixels were removed from
models SfM_S_1m, SfM_A_1m and SfM_A_0.05 m, respectively. The
outliers were not used in the quality assessment.

3.4.2. ADCP-based bathymetric modelling
The echo-sounding points from spring and autumn,with the x and y

coordinates, were interpolated to 1 m (ADCP_S_1m and ADCP_A_1m)
and 0.05 m (ADCP_A_0.05 m) resolution bathymetric rasters using the
ordinary Kriging interpolation method (see Fig. 4b for ADCP_S_1m
and Fig. 5b for ADCP_A_1m). A spherical semivariogram model and a
search radius of 12 points was used in the interpolation. Due to
the higher discharge and water level in the spring compared to the
autumn, ADCP_S_1m had slightly larger spatial coverage compared to
ADCP_A_1m and ADCP_A_0.05 m. The spatial coverages of the models
were defined based on the point measurements by digitizing the area
along the points closest to the banks.

3.4.3. Optical bathymetric modelling
Both single-band and band-ratio approaches were tested. The band-

ratio approaches in Experiment 3 ofWilliams et al. (2014)were applied,
but a single-band (red) linear transformwas used for the depth calcula-
tions as it provided the best correlation. The approach applied was orig-
inally developed by Lyzenga (1981), but modified by Flener (2013). The
Lyzenga approach attempts to isolate the depth signal in the aerial
image and linearize the relationship between observed brightness and
depth. For this, it determines the radiance of a location where the
water is deep enough for the river bed not to influence on the radiance.
This is called deep-water radiance (Lsi) and it is then subtracted from
the radiance of each pixel. The natural logarithm of the resulting value
gives a Lyzenga number, Xi, which is then calculated for each band
(red, green and blue):

Xi ¼ ln Li−Lsið Þ ð2Þ

where Li is the digital number of the pixel in the same band. The model
equation is determined by applying a regression curve of the Xi values to
the calibration depth measurements. However, calculating the deep-
water radiance requires that there are image pixels where the river
bed is not visible. Thus, Flener (2013) modified the Lyzenga (1981) al-
gorithm to estimate the Lsi in shallow riverswhere it cannot be retrieved
from the imagery as the flow is everywhere too shallow. In his study, he
found that there is no difference between the model including the esti-
mated Lsi and the one assuming it to be negligible. Therefore, in this
study, we applied the optical model based on Lyzenga's (1981) work
but we neglected the Lsi following Flener's (2013) work.

First, we digitized the model areas on the orthomosaics 1 and 2 so
that they contained no dry areas or shadows caused by tree canopies
and vegetation, as those affect the pixel brightness and cause error in
the regression curve. Next, the clipped orthomosaics were resampled
to diminish the noise caused by ripples on the river bed: orthomosaic
1 was resampled to a 1 m and orthomosaic 2 to 1 m and 0.05 m resolu-
tion images. The new pixel values were based on nearest neighbor. We
calculated the Xr (Lyzenga number for the red band) for each pixel in
the images as follows:

Xr ¼ ln Lrð Þ ð3Þ

where Lr is the digital number of the pixel in the red band. For those
pixels with existing calibration depth measurements, we regressed



Table 4
Statistical characteristics describing the quality of the bathymetric models 1-6b. Correlations marked with red color are not statistically significant. ME = mean error, MAE = mean
absolute error, SDE = standard deviation of error.

Model r R2 ME (m) MAE (m) Min. error (m) Max. Error (m) SDE (m) n

Spring SfM_S_1m 0.75 0.56 1.37 1.46 −0.59 15.76 ±2.88 77
ADCP_S_1m 0.97 0.94 −0.02 0.07 −0.29 0.23 ±0.08 93
Optical_S_1m 0.96 0.92 −0.12 0.13 −0.27 0.34 ±0.09 93

Autumn SfM_A_1m −0.10 0.01 −0.30 0.30 −2.41 −0.05 ±0.50 54
ADCP_A_1m 0.98 0.96 −0.01 0.05 −0.23 0.24 ±0.07 52
Optical_A_1m 0.96 0.92 −0.05 0.09 −0.26 0.18 ±0.11 47
SfM_A_0.05 m 0.01 0.00 −0.31 0.31 −3.00 −0.03 ±0.56 54
ADCP_A_0.05 m 0.98 0.96 −0.02 0.05 −0.24 0.24 ±0.07 52
Optical_A_0.05 m 0.96 0.92 −0.06 0.09 −0.26 0.09 ±0.10 47
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the Xr values against the depth (D) values. In total, 131 (spring) and
127 (autumn) calibration points were used with depth variations of
0.04–1.66m (spring) and 0.02–1.80m (autumn). The regression results
obtained were:

Ds ¼ −1:8845Xrs þ 9:4133 ð4Þ

Da ¼ −0:9108Xra þ 4:6439 ð5Þ

Da2 ¼ −0:9597Xra2 þ 4:8509 ð6Þ

where Xrs, Xra, and Xra2 are the Xr values of spring 1m, autumn 1m and
autumn 0.05m orthomosaics, respectively. Eqs. (4)–(6) were then used
to model depth for each pixel in the images based on the Xr values. The
modelled depth values were used to create 1 m (Optical_S_1m and
Optical_A_1m) and 0.05m (Optical_A_0.05mb) resolution bathymetric
raster models.

3.5. Quality assessment of the bathymetric models

To investigate bathymetric quality, we compared the depth values of
eachmodelwith the point type validation data of cross sections 2, 4 and
6 in the spring (Fig. 2) and 2 and 6 in the autumn (Fig. 3).We compared
themodels against the whole validation dataset to analyze the accuracy
and precision of each model (Table 4, Figs. 6 and 7). To assess the accu-
racy, we calculated the mean error (ME) and mean absolute error
(MAE), and to assess precision we calculated the minimum and maxi-
mum errors and the standard deviation of error (SDE) (Westaway
et al., 2001). We also calculated the correlation coefficient (r) and R2.
To investigate the effect of depth on data point quality, the measured
depth values were plotted against the modelled depth values as well
as the absolute modelling error of that point (Figs. 6 and 7). The points
with a modelled depth error b0.2 m were highlighted with orange.
Based on visual interpretation, three error clusters were identified. To
find explanations of the reasons for identified error clusters and the lo-
cation of the errors in the study area, themeasured andmodelled values
were plotted on the validation cross sections (Fig. 8) and the pointswith
modelling errors larger than 0.2 m were visualized on an orthomosaic
(Fig. 9). The error statistics were calculated separately also for each
cross section and dataset (Table 6).

4. Results

4.1. Qualitative assessment

The bathymetric models were created for the spring and autumn as
their hydrological conditions are usually different. The actual difference
was lower than expected (10 m3/s versus 4 m3/s), although the dis-
charge rose rapidly after the 3 June survey (to 72 m3/s by 9 June). As
the water quality measurements suggest (Table 1), the water was
much clearer and the visibility of the river bed in the aerial photographs
was better in the autumn (Fig. 3) compared to the spring (Fig. 2).
This is also evident in comparing SfM_S_1m (spring - Fig. 4a) and
SfM_A_1m (autumn - Fig. 5a), based on the bathymetric structure
from motion. SfM_S_1m is noisy and the deep parts closer to outer
bank seem to be poorly modelled. However, the poorly modelled up-
stream part of SfM_S_1m is not explained by deep water. On the basis
of visual interpretation, the models based on ADCP data and optical
modelling differ much less from each other, and their coherence sug-
gests that they are both likely to be more reliable. The other striking
difference between the models is their spatial extents. Especially in
the autumn (ADCP_A_1mandADCP_A_0.05m) themodels are spatially
restricted because of the difficulties of ADCP survey of very shallow
zones (Fig. 5). The shallowest part of the study area, almost the entire
point bar head, is executed from the model.

The point density of theOrthomosaic 2 (autumn)was 1275 points/m2,
which is notably higher compared to the ADCP point density
(1.3 points/m2). The formation of the ADCP-based 0.05 m bathymetric
model (ADCP_A_0.05 m) required heavy interpolation, contrary to the
photogrammetric models (SfM_A_0.05 m and Optical_A_0.05 m).
Fig. 6 illustrates the bathymetric variability in the river bed captured
by orthomosaic 2 and the extent to which the models can pick up the
finer resolution bathymetric information. The bathymetric variability
is evident in the orthomosaic (Fig. 6a). The bedforms are especially
clear at the upstreampart of the bend (Fig. 6i),while at the downstream
part, the bed structure is smoother (Fig. 6e). As expected, SfM_A_0.05m
and Optical_A_0.05 m show much more bathymetric variability com-
pared to ADCP_A_0.05 m. The ripples, evident in Fig. 6i, are only
reproduced by Optical_A_0.05 m (Fig. 6l). Also, SfM_A_0.05 m shows
bathymetric variability, which does not represent the bedforms effec-
tively (Fig. 6j). The bathymetric variability of the 0.05 m resolution
models evident in Fig. 6, are illustrated also in Fig. 7: the vertical profiles
of SfM_A_0.05 m and ADCP_A_0.05 m are much smoother compared to
Optical_A_0.05m. It is also evident, based on Fig. 7, that the small-scale
bed structures are not reproduced by the validation data.

4.2. Quantitative assessment

As the visual interpretation of SfM_S_1m and SfM_A_1m suggested
that SfM_S_1m had poorer quality in terms of the error statistics, even
though the correlation of 0.68 was statistically significant (Table 4).
SfM_S_1m had the largest ME (1.03 m) and MAE (1.37 m) of all the
models. The maximum error was as high as 15.75 m. This suggests
that the filtering of outliers in the SfMmodels may not have been suffi-
cient. The increase of the model resolution in autumn did not apprecia-
bly impact the SfM model (Models 4 and 4b) statistics. All of the errors
in SfM_A_1m and SfM_A_0.05 m were negative. Interestingly though,
the SDE of SfM_A_0.05 m (±0.56 m) was slightly poorer than that of
SfM_A_1m (±0.50 m). In spring, ADCP_S_1m and Optical_S_1m were
similarly precise, having very similar SDEs, even though ADCP_S_1m
was clearly more accurate (ME = −0.02 and −0.12 for ADCP_S_1m
and Optical_S_1m). The same phenomenon was noticeable but not as
clear in the autumn with the ADCP-based and optical models. Thus,
the ADCP-based models were accurate but not as precise, the error



Fig. 6.Othomosaic and the bathymetricmodels of 0.05m resolution for autumn2017. (a–d) the entire area of interest. The red rectangles delineate the inspectionwindows at downstream
(DS) and upstream (US) part of the bend. (e–h) The inspection windows at the downstream part of the bend. (i–l) The inspection windows at the upstream part of the bend.
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magnitudes ranged approximately between −0.25 and 0.25 on each
ADCP-based model.

Generally, the ADCP-basedmodels were accurate and had good cor-
relations with the validation data points. The mean errors were
−0.02 m,−0.01 m and −0.02 m for models ADCP_S_1m, ADCP_A_1m
and ADCP_A_0.05 m, respectively. The difference between ADCP_S_1m
and ADCP_A_1m ismost probably explained by the higher point density
of the autumn data (1.3 points m−2) compared to spring (0.63 points
m−2). Furthermore, the increased resolution in the autumn from 1 m
inADCP_A_1m to 0.05m inADCP_A_0.05mslightly decreased the accu-
racy of the model. Correlations were 0.97 or higher in each case.

The optical model errors for autumn were negatively biased
(Table 4). The clearest effect of increasing the model resolution was
found in the optical model: the maximum error in Optical_A_0.05 m
is only half the magnitude compared to Optical_A_1m. Otherwise
the statistics of Optical_A_1m and Optical_A_0.05 m do not differ
much. In general, the optical models for autumn were more accurate
(ME = −0.05 m and −0.06 m for Optical_A_1m and Optical_A_0.05 m
respectively) compared to the spring optical model (ME = -0.12 m)
even though the correlations were the same for each optical model
(0.96). The accuracy was also slightly poorer compared to the ADCP-
based models, although this might be compensated by the fact that
Optical_S_1m and Optical_A_1m provide continuous topographic
coverage at a higher density, thus reducing errors associated with sam-
pling density.

4.3. Effect of depth on the model validity

Visual appraisal revealed that in spring, SfM_S_1m did perform sub-
stantially better for depths b0.8 m compared to deeper areas, where
errors up to 1200% appeared (depths around 1–1.2 m, Fig. 8a and d,
error cluster #1). However, the filtering did not remove these points.



Fig. 7. Cross-sectional data for the 0.05 m resolution bathymetric models (SfM_A_0.05 m, ADCP_A_0.05 m and Optical_A_0.05 m) for autumn 2017. The depth values are extracted in
0.05 m resolution. (a) Cross section 2. (b) Cross section 6.
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Therefore, the model was manually filtered further: the modelled
depths on areas deeper than 0.8 m were removed from the valida-
tion point locations of SfM_S_1m and SfM_A_1m. Points with nega-
tive modelled depth values also were removed as they were clearly
erroneous. Table 5 represents the statistics of the manually-filtered
SfM data. In total, 48% and 24% were removed from the spring and
autumn data points, respectively. In both models, approximately 10%
of the validation comparison points were negative. Only a few points
with negative modelled depth values were located in areas with
b0.8 m depth (Figs. 8 and 9). Thus, the implications of removing the
negative values for mapping are not marked. The filtering diminished
the ME from 1.37 m to 0.11 m and SDE from ±2.88 m to ±0.26 m for
SfM_S_1m. The ADCP_S_1m produced only a few points where the
errorwas N0.2m (Fig. 8b). The errorswere randomand therewas no in-
dication of a depth-dependence of the errors (Fig. 8e). The errors of
Optical_S_1m were equally distributed across the depths present and
no depth-dependence was evident (Fig. 8c and f).

SfM-based SfM_A_1m (Fig. 9a) performed better compared to
SfM_S_1m (Fig. 8a) as the ME and SDE suggested (Table 4). A cluster
of errors appeared around depths of 0.5 m (Fig. 9a and d, error clus-
ter #2). There are also some points located in the deepest areas of the
river (depths 1 to 1.4 m), that had negative depth values in SfM_A_1m
(Fig. 9a and d, error cluster #3). In the error cluster #3, errors of up to
190% occurred. These negative values explain the negative correlation
of SfM_A_1m. Even though a less clear depth-dependence is present
in the errors of SfM_A_1m compared to SfM_S_1m, excluding the
depths over 0.8 m and the negative modelled depths diminished the
ME from −0.30 m to −0.15 m and the SDE from ±0.50 to ±0.09 for
SfM_A_1m (Table 5).

Models ADCP_A_1m and ADCP_A_0.05 m, as the correlations sug-
gested, performed well (Fig. 9b). Only a few errors appeared in the
very shallow (depths b0.2 m) areas and also in the deepest areas
(depths around 1.4 m). The shallow area errors are explained by the
fact that the ADCP is incapable of measuring depths under 0.2 m. As
with ADCP_S_1m, all of the modelling errors of ADCP_A_1m were
b0.25 m. Also Optical_A_1m performed well with no clear depth-
dependent error clusters (Fig. 9c and f).
4.4. Spatial patterns of error

In spring, in cross section 2, SfM_S_1m had mostly over-estimated
the depth values in areas with depths N0.5 m (Fig. 10a). The correlation
between the modelled and measured depths was 0.58 (Table 5).
SfM_S_1m had better correlation with the measured data in cross sec-
tion 6 (r = 0.72) but Fig. 10b shows that error magnitudes were of
the order of several meters on the deeper part of the section. Also, the
accuracy and precision of SfM_S_1mwas notably better in cross section
2 (ME = 0.13 m, SDE = ±0.34 m) compared to cross section 6 (ME =
3.2 m, SDE = ±4.03 m). The largest errors of SfM_S_1m were found in
both cross sections 2 and 6, in areas deeper than 1m, near the right bank
of the river (Fig. 10a and b, 11a and b). This area is alsowhere error clus-
ter #1 appeared (Fig. 11a and c). By looking at Fig. 11a and c it is clear
that these are where the river bed is poorly visible in the orthoimages.
However, fewer such deep points were present in cross section 2.

ADCP_S_1m and Optical_S_1m slightly under-estimated the depth
values in both cross sections (Fig. 10a and b). The correlations of
ADCP_S_1m were 0.94 and 0.99 in cross section 2 and 6, respectively
(Table 6). For Optical_S_1m, the corresponding correlations were 0.93
and 0.99. Thus, on the basis of correlation, the ADCP and Optical
model produced very similar results. They were also similarly precise:
the SDE was ±0.08 m and ±0.07 m for ADCP_S_1m and ±0.09 m
and ±0.07 m for Optical_S_1m in cross sections 2 and 6, respectively.
Accuracy showed larger variations: ME was −0.03 m and 0.00 m for
ADCP_S_1m and −0.08 m and −0.17 m for Optical_S_1m in cross sec-
tions 2 and 6, respectively. The errors were mostly between −0.3 m
and 0.3 m for both models. The poorer accuracy of Optical_S_1m is em-
phasized in cross section 6 with a correlation of 0.99 and ME of
−0.17 m. In cross section 2, the ADCP data fails to reproduce the pool
approximately 13m from the left bank (Fig. 10). Instead of being amea-
surement error, this is most probably a consequence of the difference
in the survey date, as the pool may have filled up after the validation
measurements were taken.

In the autumn, SfM_A_1munder-estimated the depth values in cross
section 2 by about 0.1 to 0.2 m (Fig. 10c). The most notable errors oc-
curred with a sudden increase in depth at 20 m from the left bank,



Fig. 8. (a–c) Springmeasured depths plotted againstmodelled depth for the 1m resolutionmodels (a) SfM_S_1m, (b) ADCP_S_1m, and (c) Optical_S_1m. The orange plots describemodel
values that fall within 0.2 m of the validation depth measurements. (d–f) Spring measured depth plotted against the absolute error of the modelled depth value for (d) SfM_S_1m,
(e) ADCP_S_1m, and (f) Optical_S_1m.
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where errors up to 60% were found. This is also the location of an error
cluster #2 (Fig. 11b). The correlationwas 0.8 (Table 6). Formost of cross
section 6, SfM_A_1m reproduced the measured depth values well
(Fig. 10d). However, for depths over 1 m the modelled values had
very large errors showing positive values, which also caused the corre-
lation not to be statistically significant (error cluster #3) (Figs. 10d
and 11d). Again, the river-bed texture was poorly visible in those
areas. Thus, the correlation coefficient was not a reliable indicator of
the general performance of the SfM_A_1m in cross section 6. Also the
other statistics indicate that the modelled values for areas deeper than
1 m should have been considered as outliers: despite the visually good
performance of the SfM_A_1m for depths under 1 m in cross section 6,
the ME was −0.44 m and SDE was ±0.71 m (Table 6). The deepest
part of cross section 2 was just slightly over 0.6 m and no such
error cluster appeared (Fig. 10c). Increasing the resolution from 1 m
(SfM_A_1m) to 0.05 m (SfM_A_0.05 m) did not impact the model per-
formance according to the statistics (Table 6), but this is probably be-
cause the density of the validation data was not sufficient to capture
the scales of variation in topography in the higher resolution model.

Both ADCP_A_1m and Optical_A_1m produced good results for au-
tumn in both cross sections (Fig. 10, Table 6). The correlations for
ADCP_A_1mwere 0.97 and 0.98 for cross sections 2 and 6, respectively
(Table 6). Corresponding values for Optical_A_1m were 0.93 and 0.96.
The largest errors of ADCP_A_1m (ADCP) were located in the shallow
areas of cross section 6 (Fig. 10d). Some spatial differences are also no-
ticeable when comparing the statistics of ADCP_A_1m in Tables 4 and 5:
the precision was poorer for cross section 6 (SDE=±0.1 m) compared
to cross section 2 (±0.04 m) (Table 6). The spatial extent of the
Optical_A_1m was restricted in cross section 6 due to the shadows of
the tree canopies (see Fig. 5a and f) and the depth values were under
estimated in rest of the section (Fig. 10d). The statistics of Table 6
show that the Optical_A_1m functioned considerably better in cross
section 2 compared to cross section 6 in terms of accuracy: the ME for
cross section 2 is 0.02 m while in cross section 6 it is−0.14 m. A slight
improvement in correlation, ME and SDE appeared from Optical_A_1m
to Optical_A_0.05 m, especially in cross section 2.

5. Discussion

Small-scale bathymetric structures, which are geomorphologically
important, are often neglected in bathymetric mapping due to the low
spatial resolution that traditional survey methods provide. As it was
clear that our 1 m resolution models inevitably produce errors when
compared with point validation data, 0.05 m models were also pro-
duced. The ADCP point density is directly related to the time spentmap-
ping and often the survey time is restricted by changing water level,
rapidly changing river bed, daylight, or the limited time of the work
force. The resolution of the othoimages that the photogrammetric



Fig. 9. (a–c) Autumn measured depths plotted against modelled depth for the 1 m resolution models (a) SfM_S_1m, (b) ADCP_S_1m, and (c) Optical_S_1m. The orange plots describe
model values that fall within 0.2 m of the validation depth measurements. (d–f) Spring measured depth plotted against the absolute error of the modelled depth value for
(d) SfM_S_1m, (e) ADCP_S_1m, and (f) Optical_S_1m.
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models were based onwas higher than 0.05mwhile the ADCP data had
notably lower resolution and thus even more interpolation was needed
to produce the 0.05 m resolution model of ADCP data. The 0.05 m reso-
lution is more comparable with topographic surveys of non-inundated
areas where point densities of a few centimeters are normal (Kasvi
et al., 2017a). In our study, the validation data were sparser (point den-
sity between 0.3 and 1.3 m) compared to the 0.05m resolution models.
Table 5
Statistical characteristics describing the quality of the Models 1 and 4 on depths b0.8 m
and with all the negative modelled depths removed.

r R2 ME
(m)

MAE
(m)

Min. error
(m)

Max. error
(m)

SDE
(m)

n

SfM_S_1m 0.71 0.51 0.11 0.21 −0.36 0.71 ±0.26 53.00
SfM_A_1m 0.86 0.73 −0.15 0.15 −0.52 −0.05 ±0.09 41.00
Therefore, the capability of the models to reproduce the small-scale
bathymetric variability was investigated visually.

As the echo sounder was unable to measure depths b0.2 m, the
errors of the echo sounding-based models were mostly located in the
shallow areas and the spatial extent of the models here was restricted.
Nevertheless, the echo sounding produced the most accurate (maxi-
mum ME = −0.02 m) and precise (SDE = ±0.08 m or less) models
in both spring and autumn. Increasing the model resolution in the au-
tumn from 1m to 0.05 m required heavier interpolation that, however,
did not significantly affect the accuracy (ME) of the ADCP based model
(ME changed from −0.01 m to −0.02 m). Our results suggest that the
interpolation method used (kriging) functioned well in the study site,
which may result from the relatively smooth river bed with only few
sudden changes in elevation or cobbles complicating the bed structure.
However, as the validation data were also of a low resolution (point
density between 0.3 and 1.3 m), it is important to note that how well



Fig. 10.Validation cross sections 2 and 6 from spring (a and b) and autumn (c and d) for the 1m resolutionmodels. Note that in autumn, the trees cast shadowson thewater surface so that
the optical bathymetric model area did not reach the left bank near cross section 6. That is why the optical model validation data points start at 5 m from the shore.
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kriging picks up the small-scale bathymetric variability is not revealed
in the error statistics. From visual interpretation, these small-scale
bed structures, such as ripples, which were clearly visible in the
orthomosaics, were not reproduced in the ADCP-based models at all.
The low resolution of the data explains, at least partly, the fact that
even though the high-flow ADCP data were gathered two days later
than the validation data (during which the water level rose 0.2 m),
the errors were of the same magnitude compared to the autumn data,
indicating that over this period no major bed-level changes have
occurred.

In addition to the resolution of the collected dataset and the applied
interpolationmethod, the accuracy and precision of the echo sounding-
based model depends also on the accuracy of the depth measurement
itself and the quality of the GNSS measurement. In our study, the low-
flow ADCP data were georeferenced based on a dGPS instead of a high
accuracy VRS-GNSS. Based on our accuracy analysis, the dGPS signal de-
viates spatially from the mean by a maximum of 0.23 m. Such an error
would have implications for data quality, especially for the 0.05 m reso-
lution model. However, our results showed very few differences in
the accuracies and precisions between the ADCP-based models using
VRS-GNSS and dGPS. Furthermore, achieving a spatially continuous
and equally dense dataset would require automatically controlled posi-
tioning. Otherwise the point spacing will be random and dependent on
the person controlling the device, as in our study. As expected, no asso-
ciation of model accuracy/precision and water color/turbidity in
the case of the ADCP was found. It must also be noted that the inability
of ADCP to measure very shallow areas is not visible in the error statis-
tics, as the device does not produce any data on those areas. Further,
the density of ADCP sampling was substantially lower than the rate
of change of bathymetry evident in aerial images (e.g., Fig. 11b),
which is a major disadvantage of the kind of echo sounding used here.
Multi-beam echo sounding (MBES)may be a valuable alternative, espe-
cially micro-MBES that may work in depths as shallow as 0.50 m
(e.g., EdgeTech, 2017). The ADCP device equippedwith GPS and remote
controlled platform is clearly the most expensive and time consuming
of the measurement approaches we used.

Less expensive and less time consuming bathymetric SfM does not
require reference measurements from the river bed (Dietrich, 2017).
However, for georeferencing themosaic at high precision, a high quality
GNSS is needed, which also benefits from measurement of the wetted
perimeter. All in all, our modelling results were poorer compared to
Dietrich's (2017) test in a reach of the White River, which had depths
across a range comparable to our study (from 0 to ~1.5 m) and bed
sediment raging from fine sand to cobbles, similar to the Pulmanki
River. According to his study, the approach is capable of producing
bathymetric datasets with accuracies of ~0.02% of the flying height
and precisions of ~0.1% of the flying height in ideal conditions, which
provide a significant improvement in the accuracy and precision for
bathymetric SfM datasets compared to Westaway et al. (2003) and
Woodget et al. (2015).

In our study both accuracy and precision of the bathymetric SfM im-
proved notably with decreased water color and turbidity in autumn,



Fig. 11. Over 0.2 m errors of the 1 m resolution models on map. (a) Cross section 2, spring. (b) Cross section 2, autumn. (c) Cross section 6, spring. (d) Cross section 6, autumn.

Table 6
Statistics of the model performance in cross sections 2 and 6. ME = mean error, MAE
= mean absolute error, SDE = standard deviation of error. Correlation marked with red
color is not statistically significant.

r R2 ME
(m)

MAE
(m)

Min.
error
(m)

Max.
Error
(m)

SDE
(m)

n

Spring
SfM_S_1m CS2 0.58 0.34 0.13 0.27 −1.35 0.72 ±0.34 54

CS6 0.72 0.53 3.20 2.98 −1.45 15.8 ±4.03 37
ADCP_S_1m CS2 0.94 0.89 −0.03 0.06 −0.23 0.29 ±0.08 56

CS6 0.99 0.97 0.00 0.07 −0.18 0.11 ±0.07 37
Optical_S_1m CS2 0.93 0.86 −0.08 0.10 −0.33 0.27 ±0.09 56

CS6 0.99 0.98 −0.17 0.17 −0.34 −0.01 ±0.07 37

Autumn
SfM_A_1m CS2 0.80 0.63 −0.18 0.18 −0.52 −0.07 ±0.09 29

CS6 −0.33 0.11 −0.44 0.44 −2.41 0.05 ±0.71 25
ADCP_A_1m CS2 0.97 0.93 −0.02 0.03 −0.09 0.07 ±0.04 27

CS6 0.98 0.95 −0.01 0.07 −0.23 0.24 ±0.10 25
Optical_A_1m CS2 0.93 0.87 0.02 0.05 −0.13 0.18 ±0.07 29

CS6 0.96 0.92 −0.14 0.15 −0.26 0.08 ±0.08 18
SfM_A_0.05 m CS2 0.78 0.61 −0.18 0.18 −0.48 −0.04 ±0.09 29

CS6 −0.18 0.03 −0.39 0.39 −3.00 −0.03 ±0.76 25
ADCP_A_0.05 m CS2 0.96 0.93 −0.02 0.03 −0.13 0.07 ±0.04 27

CS6 0.98 0.96 −0.01 0.06 −0.24 0.24 ±0.09 25
Optical_A_0.05 m CS2 0.95 0.89 −0.01 0.05 −0.13 0.09 ±0.06 29

CS6 0.97 0.94 −0.14 0.15 −0.26 0.08 ±0.08 18
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which is not surprising as this will influence the level of texture re-
corded on the imagery. During our springfield campaign, the conditions
were rather poor for bathymetric SfM even though Secchi depth was
not achieved. The relative accuracy of the model was 1.5% of the flying
height and the precision was 3.9% of the flying height (calculated for
70 m flying height) (according to James and Robson, 2012). During
the more favorable conditions in September, the relative accuracy was
0.4% of the flying height and the precision was 0.7% of the flying height,
still not as good as the results reported in Dietrich (2017).

The sources of error in bathymetric SfM include georeferencing
errors, noise in the point cloud (originating from the SfM process) and
water surface elevation errors (Dietrich, 2017). The SfM reconstruction
process itself may cause random noise, especially in areas with low tex-
ture (Fonstad et al., 2013). The light wave is also affected by the water
turbidity and color. In spring, higher accuracy and precision were
achieved in cross section 2 (ME = 0.13 m, SDE = ±0.34 m) compared
to cross section 6 (ME= 3.2 m, SDE =±4.03 m). Visual interpretation
suggests that the river bed in cross section 2 has more texture (ripples)
thatmight have enhanced the SfMprocedure. In general, the bed profile
in our study site was relatively smooth. Dietrich (2017) also found that
the modelling error was at some locations associated with areas in the
original SfM point cloud with higher roughness. However, he did not
find this to be associated with under-prediction of the depth or even
existence of river bedforms. The quality of the bathymetric SfM was
also clearly dependent on depth; errors increased in areas with depths
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of N0.8m. Removing areas deeper than 0.8m and the negativemodelled
depths diminished the ME from 1.37 m to 0.11 m, and the SDE from
±2.88 m to ±0.26 m in spring. This may have been a consequence
of exceeding the maximum detectable depth, i.e., the river bed was
not visible for the camera anymore or the river bed texture was lost at
greater depths with high turbidity. The results of Dietrich (2017) did
not show such a clear error-depth dependence. However, we deduced
that even though the turbidity or color was not mentioned in his
study, it is probable that those values were higher during our survey
compared to his. This would explain the poorer performance of the
SfM model, especially on spring, as the river bed texture was poorly
visible in areas with large errors. Thus, the conditions at the study site
cannot be considered as “ideal”.

Further, our statistical and visual investigation suggested that the er-
rors in SfM models were rather systematic in nature and the modelled
depths were either positively or negatively biased, which is typical for
photogrammetric approaches (e.g., Westaway et al., 2001). In spring,
the depth values were mostly over-estimated and in autumn under-
estimated. This also suggests that the prevailing circumstances, such
as the water color, turbidity, light and bedmaterial affect themodelling
results and taking these factors into account could enhance the model
performance. Shintani and Fonstad (2017) used bathymetric SfM with
a site specific refraction index instead of the constant freshwater refrac-
tion index (1.337). They calculated the site specific index by deriving
a linear regression between in situ depth measurements and the
modelled depth values. In their study, the site specific correction ap-
proach provided the best results (compared to constant refraction
index and optical modelling approaches) even though the method
also had systematic error. They also removed more modelled points
by manual filtering: they excluded areas with extreme shadow, white
water, low photograph overlap or ‘negative actual depths’. In our
study, we used automatic filtering, which apparently did not remove
the low quality data points well enough, but on the other hand it was
objective and consistent. Finally, the effectiveness of the bathymetric
correction is strongly sensitive to modelling of the water surface and
this may lead to the kind of systematic error recorded here.

By contrast, Shintani and Fonstad (2017) found that optical model-
ling did not produce good results from their study site, which contains
local variations in substrate colors, surface turbulence and large
amounts of shadow between cobbles and gravels, all leading to varying
reflectance values independent on depth. It is well known that themain
disadvantages of optical modelling are related to water turbidity,
shadows, varying light conditions during the measurements, and het-
erogeneous river bed material (Flener, 2013; Tamminga et al., 2014;
Williams et al., 2014). In this study, we removed the areas shadowed
by tree canopies in order to avoid these errors. These areaswere located
close to shorelines and restricted the model coverage to some degree.
Based on our experience, low sun angles limit the usage of optical
modelling especially in high latitude environments, and the modelling
should be performed close to midday, if possible, in other latitudes as
well. Furthermore, sun glint may cause errors, which were not present
in our data (e.g., Overstreet and Legleiter, 2017). Correlations between
the measured and modelled depth values were 0.96 both in spring
and autumn. The autumn models (ME = −0.05) were more accurate
compared to the spring model (ME = −0.12), suggesting that the
turbidity and color have disturbed model performance in spring. Com-
pared to the ADCP, the optical model produced very similar correlations
and precisions in both spring and autumn. However, a visual investiga-
tion showed that the small-scale bedformswere clearly better described
by the 0.05 m optical models compared to 0.05 m ADCP model. This is
an important result, as the validation data were not dense enough to
enable these properties to be present in error statistics.

Opticalmodelling produced some systematic errorswith no clear as-
sociation with depth or site-specific factors. The optical models errors
were 0.14% of the flying height in spring and 0.07% in autumn, of the
same order of magnitude as those of Flener et al. (2013), who used
Lyzenga's model on the same river reach to model the bathymetry at
0.05 m resolution. Their models relative accuracies were approximately
between 0.1 and 0.17% of the flying height. Based on our results and
the comparisons with previous studies it seems that optical modelling
provides a feasible and cost-efficient approach for high resolution
bathymetric modelling of shallow water, but it requires a smooth river
bed with no surface turbulence, cobbles and gravels. The errors in opti-
cal bathymetric values, causedby river bed substrate variability,was not
a problem in our study area. However, theymay be overcome by using a
band-ratio instead of a single-band approach (e.g., Legleiter et al., 2004;
Williams et al., 2014). Tests in this study did not find support for such a
conclusion. On the other hand, optical modelling is not as sensitive to
water color and turbidity as the bathymetric SfM approach.

6. Conclusions

Bathymetry is one of themost important measurable features when
studying underwater river environments. In this study we have tested
three promising remote sensing methods to survey shallow water
bathymetry with high resolution. Remote sensing techniques are favor-
able for bathymetric mapping as they don't disturb the water body or
the river bed and are rather rapid to execute. We modelled a 500 m
reach (only 100 m reach with ADCP) of a meandering river, ~30 m in
width, during a rising spring flood (Q = 10–15 m3/s) with high color,
and during autumn low discharge (Q = 4 m3/s) with low turbidity
and color. We applied echo sounding and two photogrammetry-based
methods: bathymetric SfM and optical modelling. In spring we created
a 1 m resolution model, and in autumn both 1 m and 0.05 m resolution
models. We compared the resultant nine bathymetric models with
93 and 54 measured points with depths between 0 m and 1.5 m in the
spring and autumn, respectively. The following conclusions can be
made.

First, ADCP-based echo sounding provided the most accurate
(ME ~ −0.02 m) and precise (SDE b ±0.08 m) bathymetric models
when compared to validation data with an average point spacing of
0.86 m. The modelled values correlated well (r = ~0.97) with the
validation points. The modelling errors varied between −0.25 m and
+0.25 m. Flow turbidity, color or depth, riparian vegetation and
weather conditions did not affect the measurements. Our study site
has a relatively smooth river bed with only~ few sudden changes in
bathymetry and no stones and cobbles, which probably enabled a suc-
cessful interpolation of the ADCP measurements with point density of
0.63–1.3 points/m2. However, the high-level interpolation, which was
required to create the 0.05 m resolution ADCP model, was not able to
reproduce the small-scale bathymetric variability that was visually
evident in the orthomosaics. Our validation data were probably not
dense enough to reproduce those bedforms and thus this issue was
not detectable in our error statistics, only visually appreciable. The qual-
ity of an ADCP-based high-resolution bathymetric model is highly de-
pendent on the selected interpolation method. The main limitations of
ADCP are its low spatial resolution, inability to measure depths b0.2 m
(which also severely limited the spatial extent of our surveys), and
its labor-intensiveness. Thus, ADCP is not suitable for mapping large
areas or areas with large proportion of very shallowwater in high reso-
lution. It should not be applied when small-scale bedforms are of inter-
est. It is also by far themost expensive of the approaches that we tested.

Second, the quality of the bathymetric SfM was highly sensitive
to flow turbidity and color: ME declined from 1.37 m to −0.3 m, and
SDE from ±2.88 m to ±0.5 m from spring to autumn, respectively.
Due to the turbidity, the quality of the model was clearly dependent
on depth; errors increased notably in areas with depths N0.8 m and in
areas where the bed structure was not clearly visible. Removing areas
deeper than 0.8 m and the negative modelled depths diminished
the ME from 1.37 m to 0.11 m, and the SDE from ±2.88 m to ±0.26 m
in spring. Our results and the literature review indicate that the bathy-
metric SfM requires, in addition to clear water, a clearly visible bed
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with enough structure, as shown to be crucial in classical photogram-
metric mapping of stream bathymetry (Lane et al., 2010). It is possible
that the smooth sandy bed in our study site did not provide enough
structure for the SfM process to work properly, especially when visi-
bility was poor. On the other hand, bathymetric SfM does not suffer
as much as optical modelling from substrate variability, turbulent flow
or large stones and cobbles on the river bed. The effect of depth, color
and turbidity, and other site specific factors on the bathymetric SfM
needs further research.

Third, our study area was suitable for optical modelling: substrate
color was consistent, the river bed was smooth with no large stones
and cobbles and the flow was not turbulent. In many ecologically im-
portant areas such as floodplains with high vegetation density or fish
spawning areas with turbulent flow and bed structure, optical model-
ling would suffer from reflectance variation that does not depend on
the depth. Color and depth did affect the optical models functionality
to some extent, but clearly less than the bathymetric SfM. The errors
were 0.14% of the flying height in spring and 0.07% in autumn. Model
accuracy improved in autumn with lower water color and turbidity
(ME = −0.05 m) compared to spring (ME = −0.12 m). Correlations
between the measured and modelled depth values (r = 0.96) and the
model's precision (SDE=±0.09–0.11 m) were close to those achieved
with echo sounding. Shadows caused by riparian vegetation restricted
the spatial extent of the optical models.

While techniques tomeasure andmodel bathymetry have improved
continuously, there is still no approach that allows ready mapping
of shallow water areas with high accuracy, precision and resolution.
However, a sophisticated choice of the approach taking into account
site-specific characteristics will improve the results. In many cases, a
combination of several methods should provide the most feasible sur-
vey approach.
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