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Abstract. We prove interior Hessian estimates in the setting of weighted Or-
licz spaces for viscosity solutions of fully nonlinear, uniformly elliptic equations

F (D2u, x) = f(x) in B1

under asymptotic assumptions on the nonlinear operator F. The results are
further extended to fully nonlinear, asymptotically elliptic equations.

1. Introduction

In this paper, we consider the following fully nonlinear equation

(1.1) F (D2u, x) = f(x) in B1,

in which the nonlinearity F = F (X,x) : S(n)×B1 → R is a Carathéodory function
(that is, F (·, x) is continuous for a.e. x ∈ B1 and F (X, ·) is measurable for all
X ∈ S(n)), where S(n) denotes the set of n × n real symmetric matrices. We
assume that the operator F is uniformly elliptic with ellipticity constants λ,Λ, that
is, there exist constants λ and Λ with 0 < λ ≤ Λ <∞ such that

λ‖Y ‖ ≤ F (X + Y, x)− F (X,x) ≤ Λ‖Y ‖
for all X,Y ∈ S(n), Y ≥ 0 and almost all x ∈ B1, where ‖Y ‖ := sup|x|=1 |Y x|.

In the seminal paper [8], Caffarelli established interior W 2,p a priori estimates for
viscosity solutions to (1.1) for all p > n, provided that the homogeneous, constant-
coefficient equation F (D2u) = 0 has C1,1 a priori estimates. His works have
brought about a significant development in the study of regularity theory for fully
nonlinear equations, and in particular, Lp regularity theory for viscosity solutions
to (1.1) has been extensively studied, see for instance [3, 4, 16, 38, 43, 45]. We
are concerned with interior regularity for viscosity solutions of (1.1) under asymp-
totic assumptions on the nonlinearity F. In the recent paper [38], Pimentel and
Teixeira derived W 2,p estimates with p > n for the constant-coefficient equations
F (D2u) = f(x) under the condition of asymptotic convexity imposed on the oper-
ator F, and also extended those estimates to (1.1) under Hölder type continuity of
the coefficients in the Ln sense.

The purpose of the present paper is to obtain Hessian estimates for (1.1) in
the framework of weight Orlicz spaces, extending the results of [38]. The Hessian
integrability of solutions to (1.1) is linked closely to the behavior of the nonlinear
operator F (X,x) near infinity with respect to X ∈ S(n). In this regard, in order

2010 Mathematics Subject Classification. Primary 35J60; Secondary 35B65, 46E30.
Key words and phrases. Fully nonlinear equation; viscosity solution; regularity theory; Muck-

enhoupt weight; weighted Orlicz space.

1



2 MIKYOUNG LEE

to deal with such an asymptotic property on F, we adopt the idea of [38] by taking
the notion of the recession operator F ? associated with F, which is given by

F ?(X,x) := lim
µ→0

µF (µ−1X,x).

More precisely, under the assumptions that the recession operator F ? satisfies a
small oscillation condition in the integral sense with respect to x and the homoge-
neous, constant-coefficient equation F ?(D2v) = 0 has C1,1 a priori estimates, we
prove that for f ∈ LΨ

w(B1), any viscosity solution u to (1.1) belongs to the weighted
Orlicz Sobolev space W 2,Ψ

w (B 1
2
) satisfying the estimate

(1.2) ‖u‖W 2,Ψ
w (B 1

2
) ≤ c

(
‖f‖LΨ

w(B1) + ‖u‖nL∞(B1)

)
for N -function Ψ and Muckenhoupt weight w, where the constant c is independent
of f and u. We point out that suitable additional conditions which will be described
later should be required on both Ψ and w for ensuring the validity of (1.2). Es-

pecially, (1.2) can be reduced to the W 2,p estimates in [38] if we take Ψ(t) = t
p
n

and the trivial weight w ≡ 1. Furthermore, we extend the weighted Orlicz esti-
mates (1.2) to a more general equation than (1.1), namely, F (D2u,Du, u, x) = f,
provided that the nonlinear operator F satisfies the appropriate structure condi-
tion (cf. Theorem 6.2). On the other hand, similar regularity estimates have been
obtained in the very recent paper [3] under the convexity of the operator F with
respect to D2u. In view of weakening the convexity condition on F , our works also
can be regarded as a sort of these extensions.

Our proof is based on the approach of Caffarelli [8]. We employ the perturba-
tion technique by taking into account regularity available for the solutions to the
homogeneous, constant-coefficient equation F ?(D2u, x0) = 0 instead of the original
operator F. Particularly, the geometric tangential method presented in [38] helps to
connect between the regularity theory of F and the one of F ?. Suitable properties
of the N -functions and Muckenhoupt weights are needed in order to manage char-
acteristics of weighted Orlicz spaces considered here. Our approach basically relies
upon properties of the Hardy-Littlewood maximal function, and in particular, the
index characterization of the weights in the reflexive Orlicz spaces for which the
maximal function is bounded in the weighted Orlicz spaces. These properties play
a central role on the key step in deriving power decay estimates for the upper level
set of Hessian of solutions to (1.1).

We further discuss the validity of our result for asymptotically elliptic operator
F (X,x) which has a more general behavior near infinity with respect to X. Much
research has been done on such asymptotically regular problems, for instance, in [6,
13, 21, 34, 40]. Very recently, Byun, Oh and Wang [7] proved global W 2,p estimates
for the asymptotically elliptic problem. They made use of a transformation from
the given asymptotically elliptic operator, which is neither uniformly elliptic nor
convex, into the appropriate uniformly elliptic operator which is uniformly convex.
Following their idea, we treat the case of asymptotically elliptic equations, thus
extending the regularity results of [7] to the setting of weighted Orlicz spaces and
relaxing the convexity condition on the uniformly elliptic operator.

The remainder of this paper is organized as follows. In Section 2, we state
our main result (Theorem 2.4) after recalling some basic notions and properties
concerning weighted Orlicz spaces. In Section 3, we provide the approximation
lemma and introduce the basic tools that are used in the proof of Theorem 2.4.
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Section 4 contains the detail proof of the interior W 2,p estimates in [38, Theorem
6.1]. The proof of our main theorem (Theorem 2.4) is presented in Section 5. We
further extend to a more general equation in Section 6. In Section 7, we state and
prove the regularity for the fully nonlinear, asymptotically elliptic equations as an
outgrowth of Theorem 2.4.

2. Main result

2.1. Weighted Orlicz space. In order to deal with the weighted Orlicz space,
we need to introduce the concept of an N -function and its properties. A function
Φ: [0,∞) → [0,∞] is said to be an N -function if it is convex, continuous and
increasing, and satisfies that Φ(0) = 0, Φ(t) > 0 for all t > 0,

lim
t→∞

Φ(t) = +∞, and lim
t→0+

Φ(t)

t
= lim
t→∞

t

Φ(t)
= 0.

We say that Φ satisfies ∆2-condition (Φ ∈ ∆2) if there exists a constant κ1 > 1
such that

Φ(2t) ≤ κ1Φ(t) for all t > 0,

and that Φ satisfies ∇2-condition (Φ ∈ ∇2) if there exists a constant κ2 > 1 such
that

Φ(t) ≤ 1

2κ2
Φ(κ2t) for all t > 0.

Furthermore, Φ is said to satisfy ∆2 ∩ ∇2-condition (Φ ∈ ∆2 ∩ ∇2) if Φ satisfies
both the ∆2-condition and the ∇2-condition.

Let U be a bounded domain in Rn with n ≥ 2. Consider a weight w, namely, a
locally integrable function w on Rn that takes values in (0,∞) almost everywhere.
Given an N -function Φ satisfying ∆2 ∩ ∇2-condition, the weighted Orlicz space
LΦ
w(U) is defined as the set of all Lebesgue measurable functions g on U such that∫

U

Φ (|g(x)|)w(x) dx < +∞.

In particular, since Φ ∈ ∆2 ∩ ∇2, this weighted Orlicz space LΦ
w(U) becomes a

reflexive Banach space under the following Luxemburg norm

‖g‖LΦ
w(U) = inf

{
s > 0 :

∫
U

Φ

(
|g(x)|
s

)
w(x) dx ≤ 1

}
.

Moreover, the weighted Orlicz Sobolev space W 2,Φ
w (U) is defined as the set of all

functions g in LΦ
w(U) with weak derivatives Dαg ∈ LΦ

w(U) for |α| ≤ 2, and its norm
is given by

‖g‖W 2,Φ
w (U) := ‖g‖LΦ

w(U) + ‖Dg‖LΦ
w(U) + ‖D2g‖LΦ

w(U).

Throughout this paper, we will assume that the N -function Φ satisfies ∆2 ∩∇2-
condition. This condition is required for regularity results for solutions to PDEs
and variational problems, for instance, in [1, 2, 5, 17, 25, 27, 37], as well as the
study of free boundary problems and the construction of fractional Orlicz spaces,
for instance, in [19, 35, 36]. A typical example of the N -function Φ satisfying the
∆2 ∩ ∇2-condition is Φ(t) = tq with q > 1. In this case, the weighted Orlicz space
LΦ
w(U) and the weighted Orlicz Sobolev space W 2,Φ

w (U) coincide with the weighted
Lebesgue space Lqw(U) and the weighted Sobolev space W 2,q

w (U), respectively. In
other words, the spaces LΦ

w(U) and W 2,Φ
w (U) generalize the spaces Lqw(U) and
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W 2,q
w (U), respectively, in the sense that the power function tq in the definition

of the spaces Lqw(U) and W 2,q
w (U) is replaced by a more general convex function,

N -function Φ. In addition, when w ≡ 1 and Φ(t) = tq with q > 1, it is clear
that the spaces LΦ

w(U) and W 2,Φ
w (U) are equivalent to the classical Lebesgue space

Lq(U) and the classical Sobolev space W 2,q(U), respectively. We refer the reader
to [31, 32, 39] for further properties of N -functions and weighted Orlicz spaces.

2.2. Assumption on a weight w. A weight w is called an Aq (Muckenhoupt)
weight with 1 < q <∞, denoted by w ∈ Aq, if

[w]q := sup
B⊂Rn

(∫
−
B

w(x) dx

)(∫
−
B

w(x)
−1
q−1 dx

)q−1

<∞,

where the supremum is taken over all balls B ⊂ Rn. We identify the weight w with
the measure

w(E) =

∫
E

w(x) dx

for the Lebesgue measurable set E ⊂ Rn. The Aq weights are invariant under
translation, dilation and multiplication by a positive scalar. Each Aq-weight has
the doubling property and monotonicity, i.e, Aq1 ⊂ Aq2 for q1 ≤ q2. Furthermore,
the Aq weight has the self-improving property which means that if w ∈ Aq, then
w ∈ Aq−ε̃ for some small constant ε̃ = ε̃(n, q, [w]q) > 0. One more significant
property of the Aq-weights is following:

Lemma 2.1. Let w ∈ Aq where 1 < q <∞. Let D be a measurable subset of a ball
B ⊂ Rn. There exist two positive constants s1, s2 depending only on n, q and [w]q
such that

[w]−1
q

(
|D|
|B|

)q
≤ w(D)

w(B)
≤ s1

(
|D|
|B|

)s2
.

We refer to [23, 42, 44] for further properties of Aq weights including the proof
of Lemma 2.1.

Given the N -function Φ satisfying Φ ∈ ∆2∩∇2-condition, our principal assump-
tion on the weight w is that w belongs to the Ai(Φ) class, where i(Φ) is the lower
index of Φ given by

i(Φ) = lim
ν→0+

log(hΦ(ν))

log ν
= sup

0<ν<1

log(hΦ(ν))

log ν
,

with

hΦ(ν) = sup
t>0

Φ(νt)

Φ(t)
for ν > 0.

It is worth pointing out that this assumption guarantees the boundedness of the
Hardy-Littlewood maximal function in the corresponding weighted Orlicz space;
see Lemma 3.3 for more details. On the other hand, under the ∆2 ∩ ∇2-condition
of Φ, we notice that there exist two constants γ1, γ2 with 1 < γ1 ≤ γ2 < ∞ such
that

(2.1) c−1 min{νγ1 , νγ2}Φ(t) ≤ Φ(νt) ≤ c max{νγ1 , νγ2}Φ(t) for ν, t ≥ 0,

where the constant c is independent of ν and t (see [24, 27, 31]), and that

(2.2)

∫
U

Φ

(
|g(x)|
‖g‖LΦ

w(U)

)
w(x) dx = 1,
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for nonzero function g ∈ LΦ
w(U) (see [32, formula (9.22)]). Then using (2.1) and

(2.2), it can be seen that

(2.3) ‖g‖LΦ
w(U) − 1 ≤

∫
U

Φ(|g(x)|)w(x) dx ≤ c
(
‖g‖γ2

LΦ
w(U)

+ 1
)

where the constant c > 1 is independent of g (see [32]). We also note that inclusions
between weighted Orlicz spaces and weighted Lebesgue spaces hold as follows:

L∞(U) ⊂ Lγ2
w (U) ⊂ LΦ

w(U) ⊂ Lγ1
w (U) ⊂ L1(U).

We further remark that i(Φ) is equal to the supremum of those γ1 satisfying
the above inequality (2.1) with ν ≥ 1, and then it is clear that i(Φ) > 1 (or also
see [20]). In the case that Φ(t) = tq with q > 1, it is obvious that Ai(Φ) weights
coincide with Aq weights.

2.3. Main result. Before stating our main result, we introduce some notation.
We write Br(y) for the open ball in Rn centered at y ∈ Rn with radius r > 0. We
also denote Qr(y) as the open cube in Rn centered at y = (y1, . . . , yn) ∈ Rn with
side-length r > 0, i.e.,

Qr(y) :=

n∏
i=1

(
yi −

r

2
, yi +

r

2

)
.

For simplicity, we set Br ≡ Br(0) and Qr ≡ Qr(0). In addition, we write

(g)U :=

∫
−
U

g(x) dx =
1

|U |

∫
U

g(x) dx

for a locally integrable function g : U → R with a bounded set U ⊂ Rn, where |U |
is the n-dimensional Lebesgue measure of U. From now on, the letter c denotes a
positive universal constant that may vary at each appearance.

We recall the definition of viscosity solutions which will be treated throughout
this paper. Let U be a bounded domain in Rn with n ≥ 2. For a measurable
function f : U → R, let us consider the fully nonlinear equations of the form

(2.4) F (D2u, x) = f(x) in U,

where F = F (X,x) is a Carathéodory function defined on S(n)× U.

Definition 2.2. Let q > n
2 and assume that f ∈ Lqloc(U). We say that u ∈ C(U)

is an Lq-viscosity solution of (2.4) if the following two conditions are satisfied:

(i) for all ϕ ∈W 2,q
loc (U), whenever ε > 0, O ⊂ U is open and

F
(
D2ϕ(x), x

)
≤ f(x)− ε a.e. in O,

u− ϕ cannot have a local maximum in O,
(ii) for all ϕ ∈W 2,q

loc (U), whenever ε > 0, O ⊂ U is open and

F
(
D2ϕ(x), x

)
≥ f(x) + ε a.e. in O,

u− ϕ cannot have a local minimum in O.

Under the assumption that F and f are continuous in all variables, u ∈ C(U) is
said to be a C-viscosity solution of (2.4) if the test function ϕ belongs to C2(U)
in Definition 6.1. Note that C-viscosity solutions of (2.4) are Lq-viscosity solutions
whenever F and f are continuous in all variables, see [10, Proposition 2.9]. We refer
to [9, 10, 14, 15] and also the references therein for further properties of viscosity
solutions to (2.4).



6 MIKYOUNG LEE

Remark 2.3. By virtue of the self improving property of N -function Φ, we note
that if Φ ∈ ∆2 ∩∇2 and w ∈ Ai(Φ), L

Φ
w(U) is continuously embedded in Lq̃(U) for

some constant q̃ = q̃(Φ, w) with 1 < q̃ < i(Φ), see [3, Lemma 2.5] for its proof. In
this way, the notion of Lq̃ n-viscosity solutions can be treated for the main problem
(1.1) provided that |f |n ∈ LΦ

w(B1). Hereafter, we let γ := q̃ n.

As mentioned before, we shall employ the recession operator F ? associated with
the nonlinear operator F which is given by

F ?(X,x) := lim
µ→0

Fµ(X,x)

assuming its existence for any X ∈ S(n) and x ∈ B1, where we denote Fµ(X,x) :=
µF (µ−1X,x) for any µ > 0. It can be easily checked that Fµ and F ? are uniformly
elliptic with the same ellipticity constants as F. We refer to [38, 41] for an overview
for the recession operator F ?. In addition, let us point out that very recently the
use of the recession operator has been extended to the context of fully nonlinear
parabolic problems by Castillo and Pimentel in [12].

In this paper, we suppose that the recession function F ? associated with the
original operator F exists, and F ?(D2v, x0) = 0 has C1,1 interior estimates with
constant c? for any x0 ∈ B1, that is, for any v0 ∈ C(∂B1) there exists a C-viscosity
solution v ∈ C2(B1) ∩ C(B1) of{

F ?(D2v, x0) = 0 in B1,
v = v0 on ∂B1,

with

‖v‖C1,1(B1/2) ≤ c?‖v0‖L∞(∂B1)

for some universal constant c? > 0. We remark that if F ?(X,x) has the uniform
convexity with respect to X, the Evans-Krylov C2,α regularity theorem (cf. [18, 33]
or Chapter 6 in [9]) yields that F ?(D2v, x0) = 0 has C1,1 interior estimates.

Without loss of generality, we further assume that F (0, ·) ≡ 0 in B1. Indeed, this
assumption is not essential because Eq.(1.1) can be written as

F̃ (D2u, x) := F (D2u, x)− F (0, x) = f(x)− F (0, x)

and then it is obvious that F̃ (0, ·) ≡ 0 in B1.
For any x, y ∈ U, we denote

(2.5) βG(x, y) := sup
X∈S(n)\{0}

|G(X,x)−G(X, y)|
‖X‖

which will be utilized for measuring the oscillation of the operator G = G(X,x) :
S(n) × U → R with respect to x. We then notice that βF (x, y) = βFµ(x, y) and
βF?(x, y) ≤ βF (x, y).

The main theorem of this paper is following:

Theorem 2.4 (Main Theorem). Assume that Φ is an N -function satisfying ∆2 ∩
∇2-condition and w ∈ Ai(Φ). Let u be an Lγ-viscosity solution to (1.1), where

γ is defined in Remark 2.3. Suppose that F ?(X,x) exists and F ?(D2v, x0) = 0
has C1,1 interior estimates with constant c? for any x0 ∈ B1. Assume further
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that f ∈ LΨ
w(B1) with Ψ(t) := Φ(tn). Then there exists a positive constant δ =

δ(n, λ,Λ,Φ, w, c?) such that if(∫
−
Br(x0)

βF?(x, x0)n dx

)1/n

≤ δ

for any ball Br(x0) ⊂ B1 with r > 0, then we have u ∈W 2,Ψ
w (B 1

2
) with the estimate

‖u‖W 2,Ψ
w (B 1

2
) ≤ c

(
‖f‖LΨ

w(B1) + ‖u‖nL∞(B1)

)
(2.6)

for some c = c(n, λ,Λ,Φ, w, c?) > 0, where

‖u‖W 2,Ψ
w (B 1

2
) := ‖|u|n‖LΦ

w(B 1
2

) + ‖|Du|n‖LΦ
w(B 1

2
) + ‖|D2u|n‖LΦ

w(B 1
2

).

Remark 2.5. Recall that the space BMO (bounded mean oscillation) can be
defined to be the collection of all locally integrable function g in Rn such that

(2.7) ‖g‖BMO := sup
B⊂Rn

‖(g − (g)B)χB‖L1

‖χB‖L1

<∞,

where the supremum is taken over all balls B in Rn. It is well known that f ∈ L∞
cannot imply D2u ∈ L∞ for the fully nonlinear equations (1.1) in general, even for
poisson equations. However, it is possible to replace L∞ space by BMO space from
the regularity results in [38, Theorem 7.1] (also see [11]) that can be regarded as an
endpoint case of Lp estimates. As a generalization of such estimates, we can further
consider the BMO type estimates in the framework of weighted Orlicz spaces LΦ

w,
namely that f ∈ BMOLΦ

w
(B1) implies D2u ∈ BMOLΦ

w
(B 1

2
) with

(2.8) ‖D2u‖BMOLΦ
w

(B 1
2

) ≤ c
(
‖f‖BMOLΦ

w
(B1) + ‖u‖L∞(B1)

)
,

under the same hypotheses of Theorem 2.4. Here the space BMOLΦ
w

(U) is defined
to be the collection of all locally integrable functions g on Rn such that

‖g‖BMOLΦ
w

(U) := sup
B⊂U

‖(g − (g)B)χB‖LΦ
w(U)

‖χB‖LΦ
w(U)

<∞,

where the supremum is taken over all balls B in a bounded domain U ⊂ Rn. Due
to [26, Theorem 2.3], it turns out that BMO is equal to BMOLΦ

w
because of the

boundedness of the maximal function on the weighted Orlicz space LΦ
w under our

main assumption that w ∈ Ai(Φ) with Φ ∈ ∆2 ∩ ∇2 (cf. Lemma 3.3). Moreover,
from the famous John-Nirenberg inequality in [28], note that the space BMO is
equivalent to the space BMOLp which is defined in (2.7) with Lp-norm instead of
L1-norm. Therefore, the estimates (2.8) can be easily obtained from the results in
[12, Theorem 7.1] and [38, Theorem 7.1].

On the other hand, the John-Nirenberg inequality in [28] implies that the BMO
space is contained in the Orlicz space Lexp generated by an N -function with expo-
nential growth which does not satisfy ∆2-condition. Besides, the L∞ space is close
to the Orlicz space generated by an N -function not satisfying ∆2-condition. There-
fore the natural question arises whether Hessian estimates like (2.8) for (1.1) hold

in the framework of Orlicz spaces LΦ̃ or weighted Orlicz spaces LΦ̃
w (with Φ̃ /∈ ∆2)

such that L∞ ↪→ LΦ̃ ↪→ BMO ↪→ Lexp. This will be our next project in the near
future.
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3. Preliminaries

We first present the approximation lemma which will play an essential role in
proving our main result, Theorem 2.4, since our approach is based on the pertur-
bation argument following the idea of Caffarelli [8].

Lemma 3.1. Let u be a C-viscosity solution of

Fµ(D2u, x) = f(x) in B8
√
n

with ‖u‖L∞(B8
√
n) ≤ 1. Assume that F ?(D2ψ, 0) = 0 has C1,1 interior estimates

with constant c?. For any ε > 0, there exists a small δ = δ(ε, n, λ,Λ) > 0 such that
if

µ < δ and ‖f‖Ln(B8
√
n), ‖βF?(·, 0)‖Ln(B7

√
n) ≤ δ,

then for any solution v ∈ C2(B6
√
n) of{

F ?(D2v, 0) = 0 in B7
√
n,

v = u on ∂B7
√
n,

we have
‖u− v‖L∞(B6

√
n) ≤ ε.

Proof. We argue by contradiction. Suppose that the lemma is not true. Then there
exist ε0 > 0, {F k}∞k=1, {uk}∞k=1, {fk}∞k=1 and {µk}∞k=1 such that

F kµk(D2uk, x) := µkF
k(µ−1

k D2uk, x) = fk(x) in B8
√
n

with

(3.1) µk <
1

k
, ‖fk‖Ln(B8

√
n) ≤

1

k
, ‖β(Fk)?(·, 0)‖Ln(B7

√
n) ≤

1

k
,

and

(3.2) ‖uk − vk‖L∞(B6
√
n) > ε0

for the solution vk ∈ C2(B6
√
n) to{

(F k)?(D2vk, 0) = 0 in B7
√
n,

vk = uk on ∂B7
√
n.

By the standard Hölder regularity theory (cf. [9, Proposition 4.10]), we note
that uk ∈ Cα1(B7

√
n) with

‖uk‖Cα1 (B7
√
n) ≤ c

(
‖fk‖Ln(B8

√
n) + ‖uk‖L∞(B8

√
n)

)
≤ c

(
1

k
+ 1

)
≤ 2c

for some α1 ∈ (0, 1). Then there exists a subsequence of {uk}∞k=1 which is still

denoted by {uk}∞k=1, and a function u∞ ∈ Cα2(B7
√
n) such that

uk −→ u∞ locally in Cα2(B7
√
n)

for some 0 < α2 < α1. Moreover, applying [9, Proposition 4.13], we obtain that

vk ∈ C
α1
2 (B7

√
n) with

‖vk‖
C
α1
2 (B7

√
n)
≤ c‖uk‖Cα1 (∂B7

√
n) ≤ 2c.

Then there there exists a subsequence of {vk}∞k=1 which is still denoted by {vk}∞k=1,

and a function v∞ ∈ Cα3(B7
√
n) such that

vk −→ v∞ locally in Cα3(B7
√
n)
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for some 0 < α3 <
α1

2 . It is obvious that fk → 0 as k →∞. From [38, Lemma 4.1]
along with (3.1), it follows that for any ε̃ > 0, there exists N = N(ε̃) > 0 such that

|F kµ`(X,x)− (F k)?(X,x)| ≤ ε̃ (1 + ‖X‖)

for every X ∈ S(n), x ∈ B7
√
n and every k ≥ 1, whenever ` ≥ N. In addition, since

(F k)? are uniformly elliptic operators, one can check that (F k)?(·, 0) converges
uniformly to G(·, 0) on compact sets of S(n), for some uniformly elliptic operator
G : S(n) −→ R. Then it is clear that v∞ is a C-viscosity solution of

(3.3)

{
G(D2v∞, 0) = 0 in B7

√
n,

v∞ = u∞ on ∂B7
√
n.

We note that for any ϕ ∈ C2(B8
√
n),

|F kµk(D2ϕ(x), x)− fk(x)−G(D2ϕ(x), 0)|
≤ |F kµk(D2ϕ(x), x)− F kµk(D2ϕ(x), 0)|+ |fk(x)|

+|F kµk(D2ϕ(x), 0)− (F k)?(D2ϕ(x), 0)|+ |(F k)?(D2ϕ(x), 0)−G(D2ϕ(x), 0)|

≤

(
sup

X∈S(n)

|F kµk(X,x)− F kµk(X, 0)|
‖X‖+ 1

)(
‖D2ϕ‖+ 1

)
+ |fk(x)|

+|F kµk(D2ϕ(x), 0)− (F k)?(D2ϕ(x), 0)|+ |(F k)?(D2ϕ(x), 0)−G(D2ϕ(x), 0)|.

Here, we deduce that∫
B7
√
n

(
sup

X∈S(n)

|F kµk(X,x)− F kµk(X, 0)|
‖X‖+ 1

)n
dx

≤ c(n)

{∫
B7
√
n

(
sup

X∈S(n)

|F kµk(X,x)− (F k)?(X,x)|
‖X‖+ 1

)n
dx

+

∫
B7
√
n

(
sup

X∈S(n)

|(F k)?(X, 0)− F kµk(X, 0)|
‖X‖+ 1

)n
dx

+

∫
B7
√
n

(
sup

X∈S(n)

|(F k)?(X,x)− (F k)?(X, 0)|
‖X‖+ 1

)n
dx

}

≤ c(n)

∫
B7
√
n

(
sup

X∈S(n)

|F kµk(X,x)− (F k)?(X,x)|
‖X‖+ 1

)n
dx

+ c(n)

{
sup

X∈S(n)

|(F k)?(X, 0)− F kµk(X, 0)|n

(‖X‖+ 1)n
+ ‖β(Fk)?(x, 0)‖nLn(B7

√
n)

}
.

Therefore the Ln-norm of the right-hand side of (3.4) goes to 0 as k → ∞. By
using the similar argument in the proof of [43, Lemma 2.3], we then apply [43,
Lemma 1.7] (or [10, Theorem 3.8]) to obtain that u∞ is a C-viscosity solution of
(3.3). We notice that the solution u∞ belongs to C2(B6

√
n), since G(D2ψ, 0) has

C1,1 interior estimates as (F k)?(D2ψ, 0). Hence, from the uniqueness of solutions
of (3.3) in [10, Theorem 2.10], we conclude v∞ = u∞, which is a contradiction to
(3.2). This completes the proof. �
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Let U be an open bounded set in Rn and M be a positive constant. A concave
paraboloid P with opening M is given by

(3.4) P (x) = l0 + l(x)− M

2
|x|2,

where M is a positive constant, l0 is a constant and l is a linear function. If M is
replaced by −M in (3.4), P is called a convex paraboloid with opening M. Consider
a continuous function u : U → R. We define

GM (u, U) :=

{
x0 ∈ U :

there is a concave paraboloid P with opening M such
that P (x0) = u(x0) and P (x) ≤ u(x) for any x ∈ U

}
and AM (u, U) := U \ GM (u, U). We also define GM (u, U) and AM (u, U) in the same
way as GM (u, U) and AM (u, U) respectively, by using convex paraboloids instead
of concave paraboloids. We denote

GM (u, U) := GM (u, U) ∩ GM (u, U) and AM (u, U) := AM (u, U) ∩ AM (u, U).

Given a function u ∈ C(U), we define

Θ(u, U)(x) := sup{Θ(u, U)(x),Θ(u, U)(x)},
where

Θ(u, U)(x) := inf{M > 0: x ∈ GM (u, U)},
Θ(u, U)(x) := inf{M > 0: x ∈ GM (u, U)}.

The following lemma is the modified version of Proposition 1.1 in [9] which will
be used for proving our main theorem; see [3, Lemma 3.4] for its proof and more
details.

Lemma 3.2. Assume that Φ is an N -function satisfying ∆2 ∩ ∇2-condition and
w ∈ Ai(Φ). Let u be a continuous function in a bounded domain U ⊂ Rn. For a
number r > 0, we denote

Θ(u, r)(x) := Θ(u, U ∩Br(x))(x) for x ∈ U.
If Θ(u, r) ∈ LΦ

w(U), then we have D2u ∈ LΦ
w(U) and

‖D2u‖LΦ
w(U) ≤ 8‖Θ(u, r)‖LΦ

w(U).

One of the main tools for proving the main result is the Hardy-Littlewood max-
imal function which is defined on the Lebesgue space L1

loc(Rn) by

Mg(y) = sup
r>0

∫
−
Br(y)

|g(x)| dx

at each point y ∈ Rn, and for a locally integrable function g : Rn → R. We will use
the fundamental properties of the Hardy-Littlewood maximal function as follows:

(a) (strong p− p estimate)

‖Mg‖Lp(Rn) ≤ c‖g‖Lp(Rn) for 1 < p ≤ ∞,
where a constant c > 0 depends only on n and p.

(b) (weak 1− 1 estimate)

|{x ∈ Rn :Mg(x) ≥ t}| ≤ c

t
‖g‖L1(Rn) for all t > 0,

where a constant c > 0 depends only on n.

We also need the boundedness of the maximal function M on the weighted Orlicz
spaces; see [30] and [31, Theorem 2.1.1] for its proof and more details.
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Lemma 3.3. Let Φ be an N -function satisfying ∆2 ∩∇2-condition and w ∈ Ai(Φ).
Then∫

Rn
Φ(|g(x)|)w(x) dx ≤

∫
Rn

Φ (Mg(x))w(x) dx ≤ c
∫
Rn

Φ(|g(x)|)w(x) dx

holds for all g ∈ LΦ
w(Rn), where a constant c > 0 is independent of g .

The following Lemma comes from classical measure theory and basic properties
of the N -function Φ; see [5, Lemma 4.6] for its proof and more details.

Lemma 3.4. Let Φ be an N -function satisfying ∆2 ∩ ∇2-condition and suppose
w ∈ Aq for some 1 < q < ∞. Let η > 0 and M > 1 be constants. Then for any
nonnegative measurable function g in U, we have that

g ∈ LΦ
w(U) if and only if S :=

∑
j≥1

Φ(M j)w
(
{x ∈ U : g(x) > ηM j}

)
<∞

and moreover,
1

c
S ≤

∫
U

Φ(|g(x)|)w(x) dx ≤ c (w(U) + S),

where c > 0 is a constant depending only on η,M,Φ and [w]q.

We end this section by introducing a corollary of the Calderón-Zygmund decom-
position that will be used later; see [9, Lemma 4.2] for its proof and more details.

Lemma 3.5. Let ε ∈ (0, 1), and set D and E as measurable sets with D ⊂ E ⊂ Q1

such that

(i) |D| ≤ ε, and

(ii) for every dyadic cube Q such that |D ∩Q| > ε|Q|, Q̃ ⊂ E,

where Q̃ is the predecessor of Q. Then |D| ≤ ε|E|.

Here, Q̃ is called the predecessor of Q if Q is one of the 2n cubes obtained from
dividing Q̃.

4. W 2,p estimates

In this section, we obtain the a priori interior W 2,p regularity estimates for the
viscosity solutions of (1.1), slightly relaxing the conditions imposed on the operator
F ? in [38, Theorem 6.1].

Theorem 4.1. Let u be an Lp-viscosity solution of (1.1) with n < p <∞. Suppose
that F ?(X,x) exists and F ?(D2v, x0) = 0 has C1,1 interior estimates with constant
c? for any x0 ∈ B1. Assume further that F (0, ·) ≡ 0 in B1 and f ∈ Lp(B1). Then
there exists a positive constant δ = δ(n, λ,Λ, p, c?) such that if

(4.1)

(∫
−
Br(x0)

βF?(x, x0)n dx

)1/n

≤ δ

for any ball Br(x0) ⊂ B1 with r > 0, then we have u ∈W 2,p(B 1
2
) with the estimate

(4.2) ‖u‖W 2,p(B 1
2

) ≤ c
(
‖f‖Lp(B1) + ‖u‖L∞(B1)

)
for some c = c(n, λ,Λ, p, c?) > 0.
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Remark 4.2. The regularity results in Theorem 4.1 can be extended to a more
general equations of the form F (D2u,Du, u, x) = f, under an appropriate structure
condition on the nonlinearity F by using the same argument as in the proof of [12,
Theorem 1.1] (also see [43, Theorem 3.1]). As mentioned before, we will deal with
these results in the setting of weighted Orlicz spaces in Section 6.

The proof of [38, Theorem 6.1] was described briefly, and so we will give the
proof of Theorem 4.1 in more detail. Besides, a series of lemmas appeared in the
process of its proof will be needed for proving our main result in the next section.

Lemma 4.3. Let ε ∈ (0, 1) and Ω ⊂ Rn be a bounded domain with B8
√
n ⊂

Ω. Let u ∈ C(Ω) be a C-viscosity solution to Fµ(D2u, x) = f(x) in B8
√
n with

‖u‖L∞(B8
√
n) ≤ 1 and −|x|2 ≤ u(x) ≤ |x|2 in Ω\B6

√
n, assuming that F and f are

continuous in all variables. Suppose that F ?(X,x) exists and F ?(D2v, 0) = 0 has
C1,1 interior estimates with constant c?. Then there exists δ = δ(n, λ,Λ, c?, ε) > 0
such that if

µ < δ and ‖f‖Ln(B8
√
n), ‖βF?(·, 0)‖Ln(B7

√
n) ≤ δ,

then we have that

|GM (u,Ω) ∩Q1| ≥ 1− ε
where M = M(n, c?) > 1.

Proof. The proof is similar to that of [9, Lemma 7.10], taking into account the
approximation lemma, Lemma 3.1, in place of [9, Lemma 7.9] (also see [8]). �

Lemma 4.4. Let ε ∈ (0, 1). Under the same assumptions as in Lemma 4.3,
G1(u,Ω) ∩Q3 6= ∅ implies

|GM (u,Ω) ∩Q1| ≥ 1− ε

with M and δ as in Lemma 4.3 (also see [8]).

Proof. The proof is similar to that of [9, Lemma 7.11] (also see [8]) applying the
above Lemma 4.3 instead of [9, Lemma 7.10].

�

Using Lemma 3.5, we derive the following power decay estimates.

Lemma 4.5. Let Ω be a bounded domain with B8
√
n ⊂ Ω. Consider a C-viscosity

solution u ∈ C(Ω) of Fµ(D2u, x) = f(x) in B8
√
n with ‖u‖L∞(B8

√
n) ≤ 1, assuming

that F and f are continuous in all variables. Suppose that F ?(X,x) exists and
F ?(D2v, x0) = 0 has C1,1 interior estimates with constant c? for any x0 ∈ B8

√
n.

For any ε ∈ (0, 1), there exist M = M(n, c?) > 1 and δ = δ(n, λ,Λ, c?, ε) > 0 such
that if µ < δ, ‖f‖Ln(B8

√
n) ≤ δ and(∫
−
Br(x0)

βF?(x, x0)n dx

)1/n

≤ δ

for any ball Br(x0) ⊂ B8
√
n with r > 0, then extending f by zero outside B8

√
n, for

j = 0, 1, 2, . . . , we have∣∣AMj+1(u,B8
√
n) ∩Q1

∣∣
≤ ε

∣∣(AMj (u,B8
√
n) ∩Q1

)
∪
{
x ∈ Q1 : M(fn)(x) ≥ (ηM i)n

}∣∣(4.3)
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for some constant η = η(n, λ,Λ, c?, ε) > 0. Furthermore, we have that

(4.4)
∣∣AMj (u,B8

√
n) ∩Q1

∣∣ ≤ εj +

j−1∑
i=0

εj−i
∣∣{x ∈ Q1 : M(fn)(x) ≥ (ηM i)n

}∣∣
for some constant η = η(n, λ,Λ, c?, ε) > 0.

Proof. Let ε ∈ (0, 1) be given. Here, we take δ to be a positive constant small enough
so that Lemma 4.3 and Lemma 4.4 can be applied. Using the same argument as in
the proof of [9, Lemma 7.12] (or see [38, Lemma 5.3]), we can obtain the desired
estimates (4.3). More precisely, we will employ Lemma 3.5 with

D := AMj+1(u,B8
√
n) ∩Q1,

E :=
(
AMj (u,B8

√
n) ∩Q1

)
∪
{
x ∈ Q1 : M(fn)(x) ≥ (ηM i)n

}
for j = 0, 1, 2, . . . . We first note that |u(x)| ≤ 1 ≤ |x|2 for any x ∈ B8

√
n\B6

√
n.

Moreover, it is clear that ‖βF?(·, 0)‖Ln(B7
√
n) ≤ c(n) δ. Then Lemma 4.3 gives that∣∣GMj+1(u,B8

√
n) ∩Q1

∣∣ ≥ ∣∣GM (u,B8
√
n) ∩Q1

∣∣ ≥ (1− ε)|Q1|

which implies that |D| =
∣∣AMj+1(u,B8

√
n) ∩Q1

∣∣ < ε |Q1| = ε.
In order to apply Lemma 3.5, it remains to show the condition (ii), i.e., for any

dyadic cube Q of Q1 such that

(4.5) |D ∩Q| > ε|Q|,

we have that Q̃ ⊂ E. To do this, letting Q = Q 1

2i
(x0) for some i ≥ 0 and x0 ∈ Q1,

we suppose that Q̃ 6⊂ E. Then there exists x1 ∈ Q̃ such that

x1 ∈ Q̃ ∩ GMj (u,B8
√
n) and M(fn)(x1) ≤ (ηM i)n.

We define ũ(y) := 4i

Mj u
(
x0 + 1

2i y
)

and let Ω̃ be the image of Ω under transformation

x = x0 + 1
2i y. Note that B8

√
n ⊂ Ω̃ from the fact that B 8

√
n

2i
(x0) ⊂ B8

√
n. Then we

observe that ũ is a viscosity solution of

F̃µ(D2ũ(y), y) = f̃(y) in B8
√
n

where

F̃µ(X, y) :=
1

M j
Fµ

(
X,x0 +

1

2i
y

)
and f̃(y) =

1

M j
f

(
x0 +

1

2i
y

)
.

Using the same way as in the proof of [9, Lemma 7.12] (or see [38, Lemma 5.3]),
one can check that all the assumptions of Lemma 4.4 with the nonlinear operator
F replaced by F̃ are satisfied. In particular, since B 7

√
n

2i
(x0) ⊂ B8

√
n, we infer that

‖βF̃?(·, 0)‖Ln(B7
√
n) ≤

2in
∣∣∣∣B 7

√
n

2i
(x0)

∣∣∣∣ ∫−
B 7
√
n

2i

(x0)

βF?(x, x0)n dx


1
n

≤ c(n)δ.

Therefore Lemma 4.4 yields that∣∣∣GM (ũ, Ω̃) ∩Q1

∣∣∣ ≥ (1− ε)|Q1|,

which means

|D ∩Q| =
∣∣AMj+1(u,B8

√
n) ∩Q

∣∣ < ε|Q|.
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This contradiction of (4.5) leads us to verify the condition (ii) of Lemma 3.5.
Consequently, Lemma 3.5 gives the desired estimates (4.3). Furthermore, by

iterating the estimates (4.3), we ultimately obtain (4.4).
�

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. By the same approximation procedure as in the proof of
[43, Theorem 3.1], it suffices to derive the interior W 2,p estimates for C-viscosity
solutions u of (1.1) provided that F and f are continuous in all variables.

For x0 ∈ B 1
2
, we set

K := ρ−n/pδ−1‖f‖Lp(B8ρ
√
n(x0)) + ρ−2‖u‖L∞(B8ρ

√
n(x0)),

where ρ ∈
(

0, 1
16
√
n

)
is a small constant which will be determined later and δ =

δ(n, λ,Λ, c?, ε) ∈ (0, 1) is the same as in Lemma 4.5. Here, ε will also be determined
later. Defining v(y) = µ

ρ2Ku(ρy + x0), we observe that v is a viscosity solution to

Gµ
(
D2v(y), y

)
= g(y) in B8

√
n,

where

Gµ (X, y) = µG
(
µ−1X, y

)
:=

µ

K
F
(
Kµ−1X, ρy + x0

)
, g(y) =

µ

K
f (ρy + x0)

for µ := δ
2 < δ. Then we have that

‖v‖L∞(B8
√
n) =

µ

ρ2K
‖u‖L∞(B8ρ

√
n(x0)) < µ < δ ≤ 1,

and

‖g‖Lp(B8
√
n) =

µ

ρn/pK
‖f‖Lp(B8ρ

√
n(x0)) ≤ µ δ < δ2

which implies that

‖g‖Ln(B8
√
n) ≤ c(n)‖g‖Lp(B8

√
n) ≤ c(n)δ2

by using Hölder inequality since n < p < ∞. It is clear that Gµ(0, ·) ≡ 0 in B8
√
n.

It is easy to check that G and Gµ have the same ellipticity constants λ and Λ as F.
By the definition of G, i.e. G(X, y) := 1

KF (KX, ρy + x0), we see that

G?(X, y) := lim
µ→0

Gµ(X, y) =
1

K
F ?(KX, ρy + x0),

which implies that βG?(y, y0) = βF?(ρ y + x0, ρ y0 + x0). Then we have that(∫
−
Br(y0)

βG?(y, y0)n dy

) 1
n

=

(∫
−
Bρr(ρy0+x0)

βF?(x, ρy0 + x0)n dx

) 1
n

≤ δ

for any Br(y0) ⊂ B8
√
n with r > 0, by applying (4.1) from the fact that Bρr(ρy0 +

x0) ⊂ B1. Furthermore, one can easily check that G?(D2v, y0) = 0 has C1,1 interior
estimates for any y0 ∈ B8

√
n. Then all the hypotheses of Lemma 4.5 are fullfiled,

and hence, Lemma 4.5 yields that

(4.6)
∣∣AMj (v,B8

√
n) ∩Q1

∣∣ ≤ εj +

j−1∑
i=0

εj−i
∣∣{y ∈ Q1 : M(gn)(y) ≥ (ηM i)n

}∣∣
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for some constants M = M(n, c?) > 1 and η = η(n, λ,Λ, c?, ε) > 0. Since gn ∈
Lp/n(B8

√
n), it follows that M(gn) ∈ Lp/n(B8

√
n) with

‖M(gn)‖Lp/n(B8
√
n) ≤ c‖g‖nLp(B8

√
n) < c δ2n < c,

by virtue of the strong p−p estimate of the maximal function. Therefore according
to [9, Lemma 7.3], we obtain that∑

j≥0

Mpj
∣∣{y ∈ Q1 : M(gn)(y) ≥ (ηM j)n

}∣∣ ≤ c.
Then combining this estimates with (4.6), we derive that∑

j≥1

Mpj
∣∣AMj (v,B8

√
n) ∩Q1

∣∣
≤
∑
j≥1

Mpjεj +
∑
j≥1

Mpj

j−1∑
i=0

εj−i
∣∣{y ∈ Q1 : M(gn)(y) ≥ (ηM i)n

}∣∣
=
∑
j≥1

(Mpε)j +

∑
l≥1

(Mpε)l

∑
j≥0

Mpj
∣∣{y ∈ Q1 : M(gn)(y) ≥ (ηM j)n

}∣∣
≤
∑
j≥1

2−j (1 + c) ≤ c,(4.7)

by taking ε small enough such that Mpε ≤ 1
2 . Here, δ is also determined.

From the definition of Θ, together with (4.7), we discover that∑
j≥1

Mpj
∣∣∣{x ∈ B 1

2
: Θ(v,B 1

2
)(x) > M j}

∣∣∣
≤
∑
j≥1

Mpj
∣∣∣AMj (v,B 1

2
)
∣∣∣ ≤∑

j≥1

Mpj
∣∣AMj (v,B8

√
n) ∩Q1

∣∣ ≤ c
for some constant c = c(n, λ,Λ, p) > 0, which yields that

‖Θ(v,B 1
2
)‖Lp(B 1

2
) ≤ c

by applying [9, Lemma 7.3]. Hence, by virtue of [9, Proposition 1.1], we conclude
that

‖D2v‖Lp(B 1
2

) ≤ c.

Therefore we get that for any x0 ∈ B 1
2
,

‖D2u‖Lp(B ρ
2

(x0)) ≤ c ρn/pδ−1
(
ρ−n/pδ−1‖f‖Lp(B8ρ

√
n(x0)) + ρ−2‖u‖L∞(B8ρ

√
n(x0))

)
,

for some c = c(n, λ,Λ, p, c?) > 0, since we let µ = δ
2 .

By the standard covering argument, we finally derive that

‖D2u‖Lp(B 1
2

) ≤ c
(
‖f‖Lp(B1) + ‖u‖L∞(B1)

)
after taking ρ ∈

(
0, 1

16
√
n

)
small enough so that B 1

2
is covered by finite number of

balls B ρ
2
(x0) with x0 ∈ B 1

2
. In turn, the desired estimates (4.2) can be obtained by

using the interpolation inequality in [22, Theorem 7.28].
�
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5. Proof of main theorem

In this section, we are going to prove our main result, Theorem 2.4.

Lemma 5.1. Under the same assumptions as in Lemma 4.5, we further suppose
that w ∈ Aq for some q > 1. For any ε ∈ (0, 1), there exist M = M(n, c?) > 1 and
δ = δ(n, λ,Λ, q, c?, w, ε) ∈ (0, 1) such that if µ < δ, ‖f‖Ln(B8

√
n) ≤ δ and(∫

−
Br(x0)

βF?(x, x0)n dx

)1/n

≤ δ

for any Br(x0) ⊂ B8
√
n with r > 0, then extending f by zero outside B8

√
n, for

j = 0, 1, 2, . . . , we have
(5.1)

w
(
AMj (u,B8

√
n) ∩Q1

)
≤ εjw(Q1) +

j−1∑
i=0

εj−iw
({
x ∈ Q1 : M(fn)(x) ≥ (ηM i)n

})
for some constant η = η(n, λ,Λ, c?, ε) > 0.

Proof. Let ε ∈ (0, 1) be given. We choose δ = δ(n, λ,Λ, c?, ε) > 0 as in Lemma 4.5

with ε replaced by
(
ε
s1

) 1
s2

where s1, s2 are the constants depending only on n, q and

[w]q in Lemma 2.1. Then letting D and E as in the proof of Lemma 4.5, Lemma 4.5

gives that |D| <
(
ε
s1

) 1
s2 |E|. By virtue of Lemma 2.1, we obtain that

w(D)

w(E)
≤ s1

(
|D|
|E|

)s2
< s1

(
ε

s1

) s2
s2

= ε,

which implies that

w
(
AMj+1(u,B8

√
n) ∩Q1

)
≤ εw

(
AMj (u,B8

√
n) ∩Q1

)
+ εw

({
x ∈ Q1 : M(fn)(x) ≥ (ηM i)n

})
for j = 0, 1, . . . . Therefore by iterating these estimates, we conclude the desired
estimates (5.1). �

Now we prove the main theorem in this paper.

Proof of Theorem 2.4. In the same argument as the proof of Theorem 4.1, from
the approximation procedure, it is enough to derive the desired estimates (2.6) for
C-viscosity solutions u to Eq.(1.1) provided that F and f are continuous in all
variables.

Given the N -function Φ, we denote Ψ(t) = Φ(tn) for t ∈ [0,∞). Then it can be
easily seen that Ψ becomes an N -function satisfying ∆2 ∩ ∇2-condition and that
i(Ψ) = n i(Φ).We further note that w ∈ Ai(Φ) ⊂ Ai(Ψ) by virtue of the monotonicity
property for the Aq weight. Fix any point x0 ∈ B 1

2
and choose a small constant

r ∈
(

0, 1
16
√
n

)
that will be determined later. We define w̃(x) := w(rx + x0) and

then it is clear that w̃ ∈ Ai(Φ). We also define ũ(x) := µ
Lr2u(rx+ x0), where

L :=
(
r−nδ−n‖f‖LΨ

w(B8r
√
n(x0)) + r−2n‖u‖nL∞(B8r

√
n(x0))

)1/n

.
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Here, δ = δ(n, λ,Λ,Φ, w, ε) ∈ (0, 1) is the same as in Lemma 5.1 and ε will be
determined later. We proceed as in the proof of Theorem 4.1. One can check that
ũ is a viscosity solution to

F̃µ(D2ũ, x) = f̃(x) in B8
√
n

where

F̃µ(X,x) = µ F̃ (µ−1X,x) :=
µ

L
F (Lµ−1X, rx+ x0) and f̃(x) :=

µ

L
f(rx+ x0)

for µ := δ
2 < δ. We get that ‖ũ‖L∞(B8

√
n) ≤ µ < δ ≤ 1. Applying Hölder inequality,

we infer that

‖f̃‖Ln(B8
√
n) =

µ

L r

(∫
B8r
√
n(x0)

|f |n dx

) 1
n

≤ c µ

L r
‖f‖

1
n

LΨ
w(B8r

√
n(x0))

≤ c µ δ < c δ2

for some constant c = c(n,Φ, w) > 0. By the same way as in the proof of The-

orem 4.1, we see that the operator F̃ satisfies all the hypotheses of Lemma 5.1.
Therefore, Lemma 5.1 allows us to discover that
(5.2)

w̃
(
AMj (ũ, B8

√
n) ∩Q1

)
≤ εjw̃(Q1) +

j−1∑
i=0

εj−iw̃
(
{x ∈ Q1 : M(f̃n)(x) ≥ (ηM i)n}

)

for some constants M = M(n, c?) > 1 and η = η(n, λ,Λ, c?, ε) > 0.
By the assumption Φ ∈ ∆2, there exists a positive constant κ = κ(Mn) such

that Φ(Mnt) ≤ κΦ(t) for all t > 0. By iterating this inequality, we obtain that
Φ(M jn) ≤ κjΦ(1) for each j ≥ 1. We also see that Φ(M jn) ≤ κj−iΦ(M in) for any
0 ≤ i ≤ j − 1. Therefore, from the above estimates (5.2), we infer that

∑
j≥1

Φ(M jn)w̃
(
AMj (ũ, B8

√
n) ∩Q1

)
≤
∑
j≥1

Φ(M jn)εj

(
w̃(Q1) +

j−1∑
i=0

εj−iw̃
(
{x ∈ Q1 : M(f̃n)(x) ≥ (ηM i)n}

))
≤ Φ(1)w̃(Q1)

∑
j≥1

(κε)
j

+

∑
j≥1

(κε)
j

∑
i≥0

Φ(M in)w̃
(
{x ∈ Q1 : M(f̃n)(x) ≥ (ηM i)n}

) .(5.3)

On the other hand, we see that |f̃ |n ∈ LΦ
w̃(B8

√
n) because |f |n ∈ LΦ

w(B1). Then by

virtue of Lemma 3.3, taking account with (2.3) and the definition of f̃ , we have
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that M(f̃n) ∈ LΦ
w̃(B8

√
n) and∫

B8
√
n

Φ
(
M(f̃n)(x)

)
w̃(x) dx

≤ c
∫
B8
√
n

Φ
(
|f̃(x)|n

)
w̃(x) dx =

c

rn

∫
B8r
√
n(x0)

Φ

(∣∣∣∣µ f(y)

L

∣∣∣∣n)w(y) dy

≤ c

rn

(∥∥∥∥µn|f |nLn

∥∥∥∥γ̃2

LΦ
w(B8r

√
n(x0))

+ 1

)
≤ c

rn
(
µnγ̃2rnγ̃2δnγ̃2 + 1

)
≤ c,

for some constant γ̃2 > 1. Hence, Lemma 3.4 leads us to find that∑
i≥0

Φ(M in)w̃
(
{x ∈ Q1 : M(f̃n)(x) ≥ (ηM i)n}

)
≤ c

∫
Q1

Φ
(
M(f̃n)(x)

)
w̃(x) dx ≤ c

∫
B8
√
n

Φ
(
M(f̃n)(x)

)
w̃(x) dx ≤ c.(5.4)

In turn, inserting (5.4) into (5.3), we infer that∑
j≥1

Ψ
(
M j
)
w̃
(
AMj (ũ, B8

√
n) ∩Q1

)
=
∑
j≥1

Φ(M jn)w̃
(
AMj (ũ, B8

√
n) ∩Q1

)
≤ (Φ(1)w̃(Q1) + c)

∑
j≥1

(κε)
j ≤ c,

by taking ε so that κε ≤ 1
2 . Then taking into account the definition of Θ, it follows

that ∑
j≥1

Ψ(M j) w̃
(
{x ∈ B 1

2
: Θ(ũ, B 1

2
)(x) > M j}

)
≤
∑
j≥1

Ψ(M j) w̃
(
AMj (ũ, B 1

2
)
)
≤
∑
j≥1

Ψ(M j) w̃
(
AMj (ũ, B8

√
n) ∩Q1

)
≤ c

for some constant c = c(n, λ,Λ, c?,Ψ, w) > 0. Applying Lemma 3.4, together with
(2.3), we consequently obtain that

‖Θ(ũ, B 1
2
)‖LΨ

w̃(B 1
2

) ≤
∫
B 1

2

Ψ
(

Θ(ũ, B 1
2
)(x)

)
w̃(x) dx+ 1

≤ c

w̃(B 1
2
) +

∑
j≥1

Ψ(M j) w̃
(
{x ∈ B 1

2
: Θ(ũ, B 1

2
)(x) > M j}

)+ 1 ≤ c

for some constant c = c(n, λ,Λ, c?,Ψ, w) > 0. Therefore, thanks to Lemma 3.2, we
get ‖D2ũ‖LΨ

w̃(B 1
2

) ≤ 8‖Θ(ũ, B 1
2
)‖LΨ

w̃(B 1
2

) ≤ c, which implies

‖D2u‖LΨ
w(B r

2
(x0)) ≤ c rnδ−n

(
r−nδ−n‖f‖LΨ

w̃(B8r
√
n(x0)) + r−2n‖u‖nL∞(B8r

√
n(x0))

)
.

Accordingly, we have

‖D2u‖LΨ
w(B 1

2
) ≤ c

(
‖f‖LΨ

w̃(B1) + ‖u‖nL∞(B1)

)
from the standard covering argument, by choosing r sufficiently small so that B 1

2

is covered by finite number of balls Br(x0) for x0 ∈ B 1
2
. The desired estimate (2.6)
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is thus obtained by applying the interpolation inequality for weighted Orlicz spaces
in [29, Theorem 4.3-4.4 or Example 6.1]. �

6. Regularity for fully nonlinear equations with measurable terms

In this section, we further extend regularity result in Theorem 2.4 to fully non-
linear elliptic equations of the form

(6.1) F (D2u,Du, u, x) = f(x) in B1,

provided that the nonlinear operator F is uniformly elliptic and Lipschitz with
respect to Du and u, by the same argument as in the proof of [12, Theorem 1.1]
(see also [43, Theorem 3.1]).

Let us consider the nonlinear operator F = F (X, z, s, x) which is a real valued
Carathéodory function defined on S(n)×Rn×R×B1. We assume that the operator
F satisfies that there exist constants Λ ≥ λ > 0, κ, ν ≥ 0 such that

P−λ,Λ(X − Y )− κ|z − z̃| − ν|s− s̃|
≤ F (X, z, s, x)− F (Y, z̃, s̃, x)(6.2)

≤ P+
λ,Λ(X − Y ) + κ|z − z̃|+ ν|s− s̃|,

for all X,Y ∈ S(n), Y ≥ 0, z ∈ Rn, s ∈ R and almost all x ∈ B1, where P+
λ,Λ,P

−
λ,Λ

are the Pucci extremal operators defined by

P−λ,Λ(X) := λ
∑
µi>0

µi + Λ
∑
µi<0

µi and P+
λ,Λ(X) := λ

∑
µi<0

µi + Λ
∑
µi>0

µi

for the eigenvalues µi of X. Note that the above condition (6.2) implies the uniform
ellipticity of F. We further suppose that F (0, 0, 0, ·) ≡ 0 in B1. Similar to (2.5), let
the oscillation of F ?(X, z, s, x) in x be measured by

β̃F?(x, x0) := sup
X∈S(n)\{0}

|F ?(X, 0, 0, x)− F ?(X, 0, 0, x0)|
‖X‖

.

The definition of viscosity solutions to (6.1) that we are treating in this section is
following:

Definition 6.1. Let q > n
2 and f ∈ Lqloc(B1). A function u ∈ C(B1) is called an

Lq-viscosity solution of (6.1) if the following two conditions hold:

(i) For all ϕ ∈W 2,q
loc (B1) whenever ε > 0, O ⊂ B1 is open and

F
(
D2ϕ(x), Dϕ(x), u(x), x

)
≤ f(x)− ε a.e. in O,

u− ϕ cannot attain a local maximum in O.
(ii) For all ϕ ∈W 2,q

loc (B1) whenever ε > 0, O ⊂ B1 is open and

F
(
D2ϕ(x), Dϕ(x), u(x), x

)
≥ f(x) + ε a.e. in O,

u− ϕ cannot attain a local minimum in O.

We refer to [10, 14] for a detailed account for the theory of the viscosity solutions.

Under the above structure condition (6.2) on the nonlinearity F, we have the
following result.
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Theorem 6.2. Assume that Φ is an N -function satisfying ∆2 ∩ ∇2-condition
and w ∈ Ai(Φ). Let u be an Lγ-viscosity solution to (6.1), where γ is defined

in Remark 2.3. Suppose that F ? exists and F ?(D2v, 0, 0, x0) = 0 has C1,1 inte-
rior estimates with constant c̃? for any x0 ∈ B1. Assume that f ∈ LΨ

w(B1) with
Ψ(t) := Φ(tn). Then there exists a positive constant δ = δ(n, λ,Λ,Φ, w, c̃?) such
that if

(6.3)

(∫
−
Br(x0)

β̃F?(x, x0)n dx

)1/n

≤ δ

holds for any ball Br(x0) ⊂ B1 with r > 0, then we have u ∈ W 2,Ψ
w (B 1

2
) with the

estimate

‖u‖W 2,Ψ
w (B 1

2
) ≤ c

(
‖f‖LΨ

w(B1) + ‖u‖nL∞(B1)

)
(6.4)

for some c = c(n, λ,Λ, κ, ν,Φ, w, c̃?) > 0.

To prove Theorem 6.2, we need the following gradient estimates.

Lemma 6.3. Under the same assumptions of Theorem 6.2, there exists a small
δ = δ(n, λ,Λ,Φ, w) > 0 such that if (6.3) holds for any ball Br(x0) ⊂ B1 with
r > 0, we have that Du ∈ LΨ

w(B 1
2
) and

‖Du‖LΨ
w(B 1

2
) ≤ c

(
‖f‖LΨ

w(B1) + ‖u‖nL∞(B1)

)
for some constant c = c(n, λ,Λ, κ, ν,Φ, w, c̃?) > 0.

We omit the proof of Lemma 6.3 since it is almost literally the same as in the
proof of [3, Lemma 3.2] when the approximation lemma, Lemma 3.1 is taken into
account.

Proof of Theorem 6.2. let us set

g(x) := F (D2u, 0, 0, x)− F (D2u,Du, u, x) + f(x) = F (D2u, 0, 0, x).

Then from the structure condition (6.2) of F, it follows that |g(x)| ≤ κ|Du(x)| +
ν|u(x)|+ |f(x)| for a.e. x ∈ B1. Due to Lemma 6.3, we note that g belongs to the
space LΨ

w(B1) locally. Then for any Lγ-viscosity solution u of

F (D2u, 0, 0, x) = g in B1,

we apply Theorem 2.4 with g instead of f to discover that

‖u‖W 2,Ψ
w (B 1

2
) ≤ c

(
‖g‖LΨ

w(B 2
3

) + ‖u‖L∞(B 2
3

)

)
≤ c

(
‖f‖LΨ

w(B 2
3

) + ‖Du‖LΨ
w(B 2

3
) + ‖u‖L∞(B 2

3
)

)
.

In turn, from Lemma 6.3, we obtain the desired estimates (6.4). �

7. Regularity for asymptotically elliptic equations

In this section, we derive weighted Orlicz estimates for fully nonlinear, asymp-
totically elliptic equations as an outgrowth of our main result, Theorem 2.4. In
order to descirbe our results, let us recall the definition of asymptotically elliptic
operators.
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Definition 7.1. The operator F = F (X,x) : S(n) × U → R is asymptotically
elliptic if there exist a uniformly elliptic operator F̄ = F̄ (X,x) and a bounded
function θ : R+ → Rn with lim

r→∞
θ(r) = 0 such that

(7.1) 0 ≤ F (X,x)− F̄ (X,x) ≤ θ(‖X‖)(1 + ‖X‖)
for all X ∈ S(n) and all x ∈ U.

The following is our result of this section.

Theorem 7.2. Assume that Φ is an N -function satisfying ∆2 ∩∇2-condition and
w ∈ Ai(Φ). Let u be an Lγ-viscosity solution to (1.1), where γ is defined in Re-
mark 2.3. Suppose that F (·, 0) ≡ 0, and F (X,x) is asymptotically elliptic with
F̄ satisfying that its recession function F̄ ?(X,x) exists and has uniform convexity
with respect to X. Assume further that f ∈ LΨ

w(B1) with Ψ(t) := Φ(tn). Then there
exists a positive constant δ = δ(n, λ,Λ,Φ, w) such that if

(7.2)

(∫
−
Br(x0)

βF̄?(x, x0)n dx

)1/n

≤ δ

for any ball Br(x0) ⊂ B1 with r > 0, then we have u ∈W 2,Ψ
w (B 1

2
) with the estimate

‖u‖W 2,Ψ
w (B 1

2
) ≤ c

(
‖f‖LΨ

w(B1) + ‖u‖nL∞(B1) + 1
)

(7.3)

for some c = c(n, λ,Λ,Φ, w, θ) > 0.

Proof. The proof is similar to that of Theorem 2.7 in [7]. Let F (X,x) be asymp-
totically elliptic with F̄ satisfying that its recession function F̄ ?(X,x) exists and
has uniform convexity with respect to X and satisfy (7.2) with δ = δ0 which will
be determined later. We now define H(X,x) by

H(X,x) :=
F (X,x)− F̄ (X,x)

‖X‖
for X ∈ S(n)\{0}. Since F (X,x) is asymptotically elliptic with F̄ , (7.1) implies
that there exists N = N(δ0) > 0 such that if ‖X‖ ≥ N, then |H(X,x)| ≤ δ0 for
any x ∈ B1. Then we define H(X,x) by

H(X,x) :=


0 if X = 0,
‖X‖
N H

(
N
‖X‖X,x

)
if 0 < ‖X‖ < N,

H(X,x) if ‖X‖ ≥ N.
It is clear that H = H(X,x) is a Carathéodory function defined on S(n) × B1,
and |H(X,x)| ≤ δ0, uniformly with respect to x ∈ B1 for any X ∈ S(n). From the
definitions of H and H, we infer that

F (X,x) = F̄ (X,x) +H(X,x)‖X‖
= F̄ (X,x) +H(X,x)‖X‖+ (H(X,x)−H(X,x)) ‖X‖χ{X∈S(n):‖X‖<N}(7.4)

for any X ∈ S(n)\{0}, where χ{X∈S(n):‖X‖<N} is the characteristic function of the

set {X ∈ S(n) : ‖X‖ < N}. If we let H(X,x)‖X‖ = F (0, x)− F̄ (0, x) when X ≡ 0,
then (7.4) is satisfied for any X ∈ S(n).

Let us consider an Lγ-viscosity solution u of (1.1). We denote

F(X,x) := F̄ (X,x) +H(D2u, x)‖X‖
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and then from (7.4), it is seen that

F (D2u, x) = F(D2u, x) +
(
H(D2u, x)−H(D2u, x)

)
‖D2u‖χ{x∈B1:‖D2u‖<N}.

In turn, we observe that u is also an Lγ-viscosity solution of

(7.5) F(D2u, x) = f̃(x) in B1,

where f̃(x) := f(x)−
(
H(D2u, x)−H(D2u, x)

)
‖D2u‖χ{x∈B1:‖D2u‖<N}.

Take δ0 = min{ δ3 ,
λ
2 }, where δ = δ(n, λ,Λ,Φ, w, c?) is the same as in Theorem 2.4.

In order to apply Theorem 2.4 with Eq.(7.5), we need to check the following :

(a) the operator F is uniformly elliptic,
(b) the recession function F? associated with F exists and F?(D2v, x0) = 0

has C1,1 interior estimates for any x0 ∈ B1,
(c) the operator F satisfies that(∫
−
Br(x0)

βF?(x, x0)n dx

)1/n

≤ 3 δ0 for any ball Br(x0) ⊂ B1 with r > 0.

To show (a), we deduce that

F(X + Y, x)−F(X,x)

= F̄ (X + Y, x)− F̄ (X,x) + H(D2u, x) (‖X + Y ‖ − ‖X‖)

≥ λ‖Y ‖ − δ0 |‖X + Y ‖ − ‖X‖| ≥ (λ− δ0)‖Y ‖ ≥ λ

2
‖Y ‖,

and moreover,

F(X + Y, x)−F(X,x)

≤ Λ‖Y ‖+ δ0 |‖X + Y ‖ − ‖X‖| ≤ (Λ + δ0)‖Y ‖ ≤
(

Λ +
λ

2

)
‖Y ‖.

Consequently, we obtain that

λ

2
‖Y ‖ ≤ F(X + Y, x)−F(X,x) ≤

(
Λ +

λ

2

)
‖Y ‖,

which means that the operator F is uniformly elliptic with ellipticity constants λ
2

and Λ + λ
2 .

On the other hand, we note that

Fµ(X,x) = µF(µ−1X,x) = µ F̄ (µ−1X,x) + µH(D2u, x)‖µ−1X‖
= F̄µ(X,x) +H(D2u, x)‖X‖

for any µ > 0, and then it follows from the definition of the recession operator that

F?(X,x) = F̄ ?(X,x) +H(D2u, x)‖X‖.

This implies that the existence of F̄ ? guarantees the one of F?. Furthermore, from
the definition of H and (7.1), it is clear that H(D2u, x) ≥ 0 for all x ∈ B1 and
so we see that H(D2u, x)‖X‖ is convex with respect to X. Then by the uniform
convexity assumption on F̄ ?(X,x) with respect to X, F?(X,x) is also uniformly
convex with respect to X. According to the Evans-Krylov C2,α regularity theorem
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(cf. [18, 33] or Chapter 6 in [8]), it turns out that F?(D2v, x0) = 0 has C1,1 interior
estimates for any x0 ∈ B1. Moreover, we have that

βF?(x, x0) = sup
X∈S(n)\{0}

|F?(X,x)−F?(X,x0)|
‖X‖

≤ sup
X∈S(n)\{0}

|F̄ ?(X,x)− F̄ ?(X,x0)|
‖X‖

+
∣∣H(D2u, x)−H(D2u, x0)

∣∣
≤ βF̄?(x, x0) + 2δ0.

Then it follows that(∫
−
Br(x0)

βF?(x, x0)n dx

)1/n

≤

(∫
−
Br(x0)

βF̄?(x, x0)n dx

)1/n

+ 2δ0 ≤ 3δ0

and hence, (c) is satisfied.

Now, we claim that if f ∈ LΨ
w(B1), then f̃ ∈ LΨ

w(B1) with the estimate

‖f̃‖LΨ
w(B1) ≤ c

(
‖f‖LΨ

w(B1) + 1
)

for some constant c = c(n, θ,Ψ, w, δ0) > 0. Indeed, from the definition of H and
(7.1), it is easy to see that∣∣H(D2u, x)

∣∣ ‖D2u‖χ{‖D2u‖<N} ≤ ‖θ‖∞
(
1 + ‖D2u‖

)
χ{‖D2u‖<N} ≤ 2N‖θ‖∞,

and then we infer that

|f̃(x)| ≤ |f(x)|+
∣∣H(D2u, x)−H(D2u, x)

∣∣ ‖D2u‖χ{‖D2u‖<N}

≤ |f(x)|+
∣∣H(D2u, x)

∣∣ ‖D2u‖χ{‖D2u‖<N} + δ0N

≤ |f(x)|+ 2N‖θ‖∞ + δ0N ≤ |f(x)|+ (2‖θ‖∞ + δ0)N,

which implies that the claim holds.
Accordingly, all the hypotheses in Theorem 2.4 with Eq.(7.5) are fulfilled and

hence, Theorem 2.4 provides that u ∈W 2,Ψ
w (B 1

2
) with

‖u‖W 2,Ψ
w (B 1

2
) ≤ c

(
‖f̃‖LΨ

w(B1) + ‖F(0, ·)‖LΨ
w(B1) + ‖u‖nL∞(B1)

)
for some c = c(n, λ,Λ,Φ, w, c?) > 0. We notice that F(0, ·) ≡ F̄ (0, ·). Moreover,
(7.1) implies that

0 ≤ F (0, x)− F̄ (0, x) ≤ θ(0).

Then it follows that

‖F(0, ·)‖LΨ
w(B1) = ‖F̄ (0, ·)‖LΨ

w(B1) ≤ c
(
‖F (0, ·)‖LΨ

w(B1) + 1
)
≤ c

for some constant c = c(n,Ψ, w, θ) > 0. Hence, the desired estimates (7.3) are
obtained.

�
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