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Abstract
The natural dynamics of complex networks can be harnessed for information processing purposes.
A paradigmatic example are artificial neural networks used for machine learning. In this context,
quantum reservoir computing (QRC) constitutes a natural extension of the use of classical
recurrent neural networks using quantum resources for temporal information processing. Here, we
explore the fundamental properties of QRC systems based on qubits and continuous variables. We
provide analytical results that illustrate how nonlinearity enters the input–output map in these
QRC implementations. We find that the input encoding through state initialization can serve to
control the type of nonlinearity as well as the dependence on the history of the input sequences to
be processed.

1. Introduction

Complex networks stand out as an essential paradigm in social, biological, physical and engineered systems, to
understand several phenomena including emerging behaviors, resilience, controllability, influence, and trans-
port, to name a few [1–11]. An issue of broad interest is about information dynamics in complex networks to
understand aspects such as propagation, storing and processing [12]. These aspects have been considered in
classical systems, with prominent examples ranging from the World Wide Web to the brain and neural net-
works in machine learning. In the last years, the possibility to engineer networks based on quantum systems
has also been explored [13, 14]. Applications have been reported in quantum communication [15, 16], quan-
tum biology [17–19] and emerging quantum phenomena [20–25]. In these contexts, the network links can
be established through coherent couplings between (quantum) nodes [26–32], as well as through quantum
correlations [21, 33, 34], or transmitted signals [35–37], and the focus is on efficient and secure energy and
information transfer and emerging complex phenomena.

Recently, also the capability of quantum networks to process information has begun to be explored. By
combining the properties of neural networks with the unique features arising in the quantum realm, quantum
neural networks are expected to offer several advantages with respect to their classical counterparts, such as
higher effective dimension, exponentially increased memory capacity, and faster training and learning [38, 39].
In this context, a first proposal for extending reservoir computing (RC) to the quantum domain has also been
put forward recently, based on a network of qubits [40]. RC is a three-layer (recurrent) neural network singu-
larly suited to solve temporal tasks [41]. Several realizations of classical RC [41–43] were already established
in the last years in photonics, spintronics, mechanics and biological systems [44–53].

A good performance in RC is known to be achieved by exploiting a high-dimensional physical system,
internal memory, and nonlinearity [41, 54]. As for the system size, large reservoir networks can be considered
in classical systems or, as a promising alternative, in quantum ones. In fact for quantum networks, the large
Hilbert space displayed even with a reduced number of nodes is one of the main motivations to extend RC
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into the quantum regime [40, 55–57]. As for the internal memory, it refers to the ability of the reservoir to
store the information of previous inputs up to sometime in the past and it is generally related to the exten-
sion and dynamics of the reservoir computer. As for the nonlinearity, this is a property needed in the full
input–output transformation and it depends on the specific algorithm definition as well as on the dynamical
properties of the reservoir. Regarding physical implementations, most classical realizations of RC are based on
nonlinear systems [44–46] with a few exceptions introducing nonlinearity through input encoding or detec-
tion [58–62]. In quantum systems, despite the fact that the state dynamics are linear, efficient RC has been
reported and even in the absence of any nonlinearity in the reservoir [56]. Indeed quantum bosonic networks
restricted to Gaussian states, where also observables’ dynamics are governed by a fully linear (and finite) set
of equations, are a promising platform for quantum RC. The origin of the nonlinearity in quantum reservoir
computing (QRC) in this linear system can actually be traced back to the input encoding as first shown in
[56] and recently reviewed in [63]. In fact, nonlinear encoding has been emphasized as an important tool in
the field of quantum machine learning, outsourcing data processing and gaining power [64–66], as well as
providing universal approximation properties in different settings [67, 68].

In this work, we specifically address how nonlinearity enters the input–output map in quantum RC imple-
mentations both with spin and bosonic networks, providing insightful analytical results that also allow us to
establish new nonlinear processing strategies through input encoding.

1.1. Classical and quantum RC
We start by defining RC, a machine learning technique belonging to the family of recurrent neural networks
that exploits the natural dynamics of input–driven complex systems for information processing [41]. This
algorithm can be divided into three steps associated with the relative system layers:

(a) inject an input into the dynamical system, here a complex quantum network;

(b) let the dynamical system (also known as a reservoir) evolve under its natural dynamics;

(c) extract information from the reservoir, using all or some of its degrees of freedom via an output layer.

The main advantage of RC in the machine learning context with respect to other neural-network algo-
rithms is its minimal requirements for training [69, 70]. Indeed, only the weights of the output connections
are optimized toward the target function via e.g. linear regression, while the reservoir layer does not need any
fine tuning of parameters. RC is especially suited for temporal data processing, as the input temporal depen-
dence can be rooted in the complex dynamical behavior of the reservoir. Despite the simplicity, classical RC
has been successful in numerous practical applications as diverse as the recognition of human actions in video
streams, arrhythmia detection in human heartbeats or chaotic time-series forecasting [71–73].

QRC is the natural extension of the classical setting toward implementing quantum dynamical systems as
reservoirs. It has already been successfully demonstrated for time-series processing [40, 74] and quantum state
measurement [75], and the processing capacity has been quantified in different implementations [56, 76]. The
main advantage of quantum systems is that they exhibit a large number of degrees of freedom that can be
exploited for information processing.

Since the first proposal of networks of quantum spins as reservoir substrates [40], there have been a vari-
ety of works exploring the possibilities that the spin-based implementation can offer [40, 55, 74, 76–83].
These spin-based systems stand as the most analyzed platform for QRC at the moment, but also other finite-
dimensional systems have been considered, like fermionic networks [84, 85], and infinite-dimensional ones,
like bosonic reservoirs [56, 86, 87], as recently reviewed in reference [88]. In all these applications, computa-
tional performance is enhanced from having a nonlinearity in the input–output map. In the following sections,
we focus on this aspect considering both qubits (section 2) and bosonic continuous variables (section 3)
networks and we provide an analytical treatment.

2. Nonlinearity of the input–output map QRC with qubits

In the present section, we deal with a quantum reservoir consisting of a complex network of N randomly
coupled qubits in a finite-dimensional Hilbert space of dimension 2N. This quantum reservoir computer was
introduced in reference [40] and its potential was further explored in references [55, 89], while the performance
in terms of its dynamical phases was established in reference [76]. Figure 1 presents a schematic representation
of this spin-based QRC approach. We first examine the presence of nonlinear dependence on the input–output
QRC map and derive an analytical form of the observables as a function of the state of the reservoir. We focus
on the factors that influence the precise shape of the nonlinearities like the form of input encoding, the input
history or the dynamical regime. To this end, we derive a general expression for the system observables, which
is independent of the particular Hamiltonian that describes the unitary evolution of the system between input
injections. In order to exemplify the effect of working in different dynamical regimes, we numerically simulate
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Figure 1. Schematic representation of a RC system with a network of quantum spins. The input information is injected into the
system through the state of one or more of the spins. Then, the system evolves under the Hamiltonian dynamics and finally some
of the observables are read out.

the system of reference [76], which presents a dynamical phase transition from a many-body localized (MBL)
to an ergodic phase.

In the following, for illustration purposes and for simplicity, we look at the case of a discrete scalar input
that is given to the system at each time step k, so that the input is a series of random real numbers, {sk},
produced from a uniform distribution in the interval [0, 1]. In a first approach, we treat the case of the input
being encoded into a single qubit and then we move to other configurations.

2.1. Input encoding in one qubit
As a starting point, we consider the scenario in which the input is introduced into the reservoir system through
the reinitialization of the state of a single qubit for different types of states.

In the first place, we analyze a widely used input encoding in QRC as the single-qubit pure state
[40, 55, 76, 77]

|ψk〉 =
√

1 − sk|0〉+
√

sk|1〉 (1)

with a normalized input, such that sk ∈ [0, 1] (the effect of a phase factor will be addressed in section 2.1.2). As
remarked in reference [63], this input choice implies a linear encoding in the z direction, 〈ψk|σ̂z|ψk〉 = 1 − 2sk,
a nonlinear one in the x direction 〈ψk|σ̂x|ψk〉 =

√
sk(1 − sk), and that no information is codified in the y

direction, 〈ψk|σ̂y|ψk〉 = 0. Below, we show how this dependence is transferred to the output observables of the
whole reservoir system, which are eventually used to obtain the output when performing a given task [88].

In terms of a density matrix, the input state is written as:

|ψk〉〈ψk| =
(

1 − sk rk

rk sk

)
, (2)

where rk =
√

sk(1 − sk). We arbitrarily chose the first qubit to feed the input to the reservoir network in an
instantaneous way between steps of unitary evolution of durationΔt under the Hamiltonian Ĥ, which governs
the coherent evolution of the qubit network. Therefore, the map that describes this process for the state of the
whole system at each time step k is the following:

ρk = e−iĤΔt
(
|ψk〉〈ψk| ⊗ ρ̃k−1

)
eiĤΔt , (3)

where ρ̃k−1 = Tr1 (ρk−1) can be represented as a matrix of dimension 2N−1 × 2N−1 and Tr1 is the partial trace
performed with respect to the first qubit. The term inside the parenthesis in equation (3) describes the state of
the system after the input injection and before the time evolution that can be decomposed as

|ψk〉〈ψk| ⊗ ρ̃k−1 =

(
(1 − sk)ρ̃k−1 rkρ̃k−1

rkρ̃k−1 skρ̃k−1

)

=

(
ρ̃k−1 0

0 0

)
+

(
−skρ̃k−1 0

0 skρ̃k−1

)
+

(
0 rkρ̃k−1

rkρ̃k−1 0

)
, (4)

where 0 is the zero matrix. The state at time step k displays three contributions: (i) a sk-independent term;
(ii) a term proportional to sk; and (iii) a nonlinear term in sk through rk =

√
sk(1 − sk). After evolving during

Δt, the state of the system takes the following form:

ρk = e−iĤΔt

[(
ρ̃k−1 0

0 0

)
+ sk

(
−ρ̃k−1 0

0 ρ̃k−1

)
+ rk

(
0 ρ̃k−1

ρ̃k−1 0

)]
eiĤΔt

≡ ρ(0)
k + skρ

(1)
k + rkρ

(nl)
k , (5)
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where ρ(0)
k , ρ(1)

k , and ρ(nl)
k depend on the previous state ρk−1, the particular form of the Hamiltonian Ĥ and the

values of its internal parameters, and the time interval Δt. Besides that, from equation (5), we can immediately
write the functional form of the expected value of any observable Ô as

〈Ô〉ρk
= Tr(Ôρ(0)

k ) + sk Tr(Ôρ(1)
k ) + rk Tr(Ôρ(nl)

k ). (6)

The insight gained from equation (6) is that the functional form that relates the current input and all
possible output expectation values is the same, irrespective of the choice of observables. For instance, single-
qubit observables or pairwise correlations similarly follow this functional relationship. Furthermore, in the full
non-unitary evolution of the state (see equation (5)), we can identify the effects of both the input encoding
(determining the specific functional dependence on sk) and Hamiltonian choices. More specifically, for the
observables, in equation (6), the relative importance between the three terms contributing to the sum can vary
from a linear trend in sk to have a dominant contribution coming from the last nonlinear term. This will depend
on the observable in consideration and, more importantly, on the particular structure of the reservoir and
on the dynamical evolution of the system, both established by the Hamiltonian. Remarkably, this fact brings
out the importance of the reservoir’s design and working regime. To illustrate this, in the following lines, we
concentrate on the system Hamiltonian (and regimes) studied in reference [76], which has demonstrated a
high performance in realizing nonlinear demanding tasks as the NARMA task.

The physical system receiving attention is made of N qubits (or spins) that will evolve in between input
injections under the unitary evolution given by the transverse-field Ising Hamiltonian:

Ĥ =
1

2

N∑
i=1

(h + Di) σ̂
z
i +

N∑
i<j

Jijσ̂
x
i σ̂

x
j . (7)

The spin–spin couplings Jij are randomly generated from a uniform distribution in the interval [−Js/2, Js/2]
while the onsite disorder Di is randomly generated from a uniform distribution in the interval [−W, W], with
W the disorder strength.

The functional dependence on sk in equation (6) can be numerically illustrated in the following way. First,
we evolve the dynamical system up to a time step k − 1. Then, we compute the expected value of observables at
time step k for a sampling set of the input sk in the interval [0, 1], in such a way that we can plot 〈Ô〉k versus sk.
Note that this is done for a unique input history {sk−1, sk−2, . . .} such that the terms ρ(0)

k , ρ(1)
k , and ρ(nl)

k remain
constant for all the considered sk values. In other words, by fixing the history up to the time step k − 1, we can
sample the input sk and identify the observables’ dependence on it.

In figure 2, we show the response of two arbitrarily selected single-qubit observables. The first row corre-
sponds to the expected value of the spin projections in the x-axis (〈σ̂x

1〉k and 〈σ̂x
4〉k in (a) and (b), respectively)

and the second row contains the spin projections in the z-axis (〈σ̂z
1〉k and 〈σ̂z

4〉k in (c) and (d), respectively).
We recall that the input is introduced through qubit 1. In all panels, blue dots represent the response of the
observables in the ergodic regime, while red dots correspond to the MBL phase. At a first sight, we can dis-
tinguish that observables related to the x component have a nonlinear shape (produced by the combination
of sk and rk) and the observables related with the z direction show a linear dependence. In particular, 〈σ̂x

1〉k

and 〈σ̂z
1〉k in the MBL phase (red dots) of panels (a) and (c) show the same function as the input encoding

itself: 〈σ̂z
1〉k = 1 − 2sk and 〈σ̂x

1〉k = rk, while as expected figures 2(b) and (d) show a negligible response of the
observables (red dots) for a qubit different from the input one. Only in the thermal phase a clear (linear or
nonlinear) response arises (blue dots).

As we mentioned earlier, the response is determined by the terms ρ(1)
k and ρ(nl)

k , which depend on the Hamil-
tonian of the system. In the quantum ergodic regime, information spreads through the reservoir network and
all local observables can respond to input injection [76]. However, dynamical regimes of localization prevent a
good response of all the observables to the input, due to the presence of an extensive number of local conserved
quantities that hinder the spreading of information from the first qubit to the rest of the network.

The functional behavior presented in figure 2 is not exclusive of the single-qubit observables. Figure 3
exposes the case of the pairwise correlations 〈σ̂x

3σ̂
x
5〉k (panel (a)) and 〈σ̂z

3σ̂
z
5〉k (panel (b)). Again, observ-

ables in the ergodic phase show a dependence on the input while the MBL phase suppresses it since the input
information remains localized in the first qubit.

2.1.1. A mixed state as a linear input encoding
We now explore an alternative input encoding in order to see if the nonlinear dependence on the input is
always present. In particular, we choose a mixed state (equivalent to set rk = 0 in equation (2)) as in references

4
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Figure 2. Response of the observables to the input at time step k. The selected observables are the spin projections in the x-axis
(for the spins 1 and 4 in (a) and (b) respectively) and the spin projections in the z-axis (for the spins 1 and 4 in (c) and (d)
respectively). These figures have been obtained with parameters N = 8, JsΔt = 10, h/Js = 10 and time step k = 1000. For the
ergodic phase (blue dots) we set W/Js = 0 and for the MBL phase (red dots) W/Js = 100.

Figure 3. Response of the observables to the input at time step k. The selected observables are (a) the spin correlation in the
x-axis between spins 3 and 5 and (b) the spin correlation in the z-axis for spin 3 and 5 as well. These figures have been obtained
with parameters N = 8, JsΔt = 10, h/Js = 10 and time step k = 1000. For the ergodic phase (blue dots) we set W/Js = 0 and for
the MBL phase (red dots) W/Js = 100.

[63, 74, 78–80, 89, 90] so that

ρk = e−iĤΔt

[(
1 − sk 0

0 sk

)
⊗ ρ̃k−1

]
eiĤΔt , (8)

with the information encoded only in the z direction, 〈ψk|σ̂x|ψk〉 = 〈ψk|σ̂y|ψk〉 = 0. Then, equation (6) is
simplified to

〈Ô〉ρk
= Tr(Ôρ(0)

k ) + sk Tr(Ôρ(1)
k ), (9)

and all the observables indeed remain linear in sk.
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2.1.2. Input encoding in all directions
When the encoding of the input is done not only in the relative amplitude but also in the relative phase between
basis states with φk ∈ [0, 2π], there is information in all directions. In this case, we deal with the superposition
state |ψk〉 =

√
1 − sk|0〉+ eiφk

√
sk|1〉. The dependence is linear in the z direction as before 〈ψk|σ̂z|ψk〉 = 1 −

2sk, and nonlinear contributions are found in the other two directions with additional sinusoidal factors [63]
of the relative phase, 〈ψk|σ̂x|ψk〉 = 2rk cos(φk), and 〈ψk|σ̂y|ψk〉 = 2rk sin(φk).

For example, if the input is a single scalar, as considered before, we could reintroduce it into the system
through the phase as φk = 2πsk. Now, the state of the input qubit reads:

|ψk〉〈ψk| =
(

1 − sk rk e−iφk

rk eiφk sk

)
, (10)

and equation (5) is rewritten for the reservoir state as:

ρk = e−iĤΔt

[(
ρ̃k−1 0

0 0

)
+ sk

(
−ρ̃k−1 0

0 ρ̃k−1

)

+ rk cos(φk)

(
0 ρ̃k−1

ρ̃k−1 0

)
+ rk sin(φk)

(
0 −iρ̃k−1

iρ̃k−1 0

)]
eiĤΔt

≡ ρ(0)
k + skρ

(1)
k + rk cos(φk)ρ(nlc)

k + rk sin(φk)ρ(nls)
k . (11)

From this last expression, it follows that the general form of the expectation values of the reservoirs’ observables
has explicit contributions with sinusoidal nonlinear factors:

〈Ô〉ρk
= Tr(Ôρ(0)

k ) + skTr (Ôρ(1)
k ) + rk cos(φk)Tr(Ôρ(nlc)

k ) + rk sin(φk)Tr (Ôρ(nls)
k ). (12)

We notice that this further nonlinearity arises because the input is encoded also in the phase, producing an
input dependent rotation.

2.1.3. Dependence of the observables on the input history
The expression in equation (5), where the state of the reservoir is decomposed in three contributions, is valid
for any time step k. Thus, we can replace ρk−1 inside ρ̃k−1 = Tr1 (ρk−1) in equation (3) to relate the previous
input, sk−1, to the state ρk:

ρk = e−iĤΔt
[
|ψk〉〈ψk| ⊗ Tr1

(
ρ(0)

k−1 + sk−1ρ
(1)
k−1 + rk−1ρ

(nl)
k−1

)]
eiĤΔt

= e−iĤΔt
[
|ψk〉〈ψk| ⊗ Tr1

(
ρ(0)

k−1

)]
eiĤΔt + sk−1 e−iĤΔt

[
|ψk〉〈ψk| ⊗ Tr1

(
ρ(1)

k−1

)]
eiĤΔt

+ rk−1 e−iĤΔt
[
|ψk〉〈ψk| ⊗ Tr1

(
ρ(nl)

k−1

)]
eiĤΔt

≡ η(0)[ρ(0)
k−1] + skη

(1)[ρ(0)
k−1] + rkη

(nl)[ρ(0)
k−1] + sk−1

(
η(0)[ρ(1)

k−1] + skη
(1)[ρ(1)

k−1] + rkη
(nl)[ρ(1)

k−1]
)

+ rk−1

(
η(0)[ρ(nl)

k−1] + skη
(1)[ρ(nl)

k−1] + rkη
(nl)[ρ(nl)

k−1]
)

, (13)

where η(0)[ρ] ≡ e−iĤΔt

(
ρ 0
0 0

)
eiĤΔt , η(1)[ρ] ≡ e−iĤΔt

(
−ρ 0

0 ρ

)
eiĤΔt , and η(nl)[ρ] ≡ e−iĤΔt

(
0 ρ
ρ 0

)
eiĤΔt .

For any observable, from equation (13), we derive the following expression showing the dependencies on
two consecutive inputs:

〈Ô〉ρk
= Tr(Ôη(0)[ρ(0)

k−1]) + sk Tr(Ôη(1)[ρ(0)
k−1]) + rk Tr(Ôη(nl)[ρ(0)

k−1])

+ sk−1

(
Tr(η(0)[ρ(1)

k−1]) + sk Tr(η(1)[ρ(1)
k−1]) + rk Tr(η(nl)[ρ(1)

k−1])
)

+ rk−1

(
Tr(η(0)[ρ(nl)

k−1]) + sk Tr(η(1)[ρ(nl)
k−1]) + rk Tr(η(nl)[ρ(nl)

k−1])
)
. (14)

Equations (6) and (14) both imply that the particular input history at the time step k when we evaluate the
observables is relevant for the nonlinear input dependence. In addition, the functional form of the observables
at a given time is restricted to combinations of sk and rk with themselves at previous time steps (sk−1 or rk−1).
As an example, for sk−1 = sk in equation (14), we see the effect of reintroducing the same input [91, 92] in two

6
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Figure 4. Response of the observable 〈σ̂x
4〉 to the input at time steps k and k − 1. In (a), red dots represent time step τ = k = 1000

and blue dots correspond to τ = k − 1 = 999, respectively. Panel (b) represents an example of the values of 〈σ̂x
4〉 as a function of

both inputs sk and sk−1, when the input history {sk−2, sk−3, . . .} remains unchanged for all sk and sk−1 combinations. These figures
have been obtained with parameters N = 8, JsΔt = 10, h/Js = 10 and W/Js = 0, which correspond to the ergodic phase.

consecutive time steps on the functional form of the observables. This would increase the number of different
nonlinear terms compared to equation (6), where the same input is only introduced once. In return, this would
involve using more system memory for processing the same input.

Just to give a taste of these implications, we represent in figure 4 the response of a local observable at two
different time steps. Panel (a) shows the dependence of the observable 〈σ̂x

4〉 on the input at time steps k (red
dots) and k − 1 (blue dots). The lines are generated with the same input history {s1, s2, . . .} up to k − 1, where
we sample the interval [0, 1]. In the case of time step k (red dots), sk−1 is fixed at an arbitrary random value. We
can clearly see in figure 4(a) that the precise shape of the input dependence of 〈σ̂x

4〉 is determined by the input
history, even with only one time step of difference. In figure 4(b), we represent all the possible dependencies
of this observable respect to inputs sk and sk−1 (for the selected parameters). The axes x and y contain the
values of the input while the z axis displays the magnitude of 〈σ̂x

4〉 (the color of the surface goes from the
maximum value in yellow to the lowest value in dark blue), illustrating the rich complex nonlinear response
of the observable for different sk and sk−1 combinations and reflecting the nontrivial capabilities of spin-based
quantum reservoir computers [55].

2.2. Beyond one-qubit encoding
Among other possible extensions of the input encoding, here we examine the effect of encoding the same
input in several (NE) qubits, assuming the possibility of accessing a subset of the qubits in order to reinitialize
their state recurrently. With respect to the previously considered one-qubit encoding, the information is more
evenly and redundantly distributed into the system.

Firstly, we consider the encoding in a product of identical states of the form:

ρin
k =

(
|ψk〉〈ψk|

)⊗NE =

(
1 − sk rk

rk sk

)
⊗ . . . ⊗

(
1 − sk rk

rk sk

)
. (15)

Within this framework, the input–output mapping is rewritten as

ρk = e−iĤΔt
[(
|ψk〉〈ψk|

)⊗NE ⊗ ρ̃k−1

]
eiĤΔt , (16)

where in the present case ρ̃k−1 = Tr1,...,NE (ρk−1) corresponds to a matrix of dimension 2N−NE × 2N−NE.
Following the same procedure to decompose the state as before in the one-qubit case, remembering that
r2n

k = [sk(1 − sk)]n, each of the matrix elements of the state (15) is a linear combination of powers of sk

multiplied either by rk or by 1. Then, the state ρk can be formally written as

ρk ≡ sNE
k ρ(NE) +

NE−1∑
j=0

sj
k

(
ρ(j,0) + rkρ

(j,1)
)

, (17)

where the explicit form of the matrices ρ(NE), ρ(j,0) and ρ(j,1) is omitted. Thus, the expectation value of any
observable Ô is given by:

〈Ô〉ρk
= sNE

k Tr
(

Ôρ(NE)
)
+

NE−1∑
j=0

sj
k

(
Tr

(
Ôρ(j,0)

)
+ rk Tr

(
Ôρ(j,1)

))
. (18)
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As we have seen in section 2.1.1, in the case of mixed-state encoding over a qubit, the nonlinear input
dependence is lost. Interestingly, extending such an encoding to multiple qubits, the nonlinearity is immedi-
ately restored. Indeed when the input is introduced via multiple qubits and we use a product of identical mixed
states (1 − sk)|0〉〈0|+ sk|1〉〈1|,

ρin
k =

(
1 − sk 0

0 sk

)
⊗ . . . ⊗

(
1 − sk 0

0 sk

)
, (19)

the general form of the expectation value of the observables is a polynomial whose degree is determined by the
number of qubits used to codify the input, NE:

〈Ô〉ρk
=

NE∑
j=0

sj
k Tr

(
Ôρ(j)

)
. (20)

3. Nonlinearity of the input–output map QRC with continuous variables

Besides qubits or other finite-dimensional systems, RC can also be implemented by harnessing infinite-
dimensional quantum systems such as the bosonic harmonic oscillator. We will focus on the framework
introduced in [56], where a complex network of interacting oscillators is considered and focusing on Gaus-
sian states. A small subset of them—the ancillae—are subject to periodic state resets conditioned on the input
whereas the rest play the role of the reservoir. The output is some trained function of the observables of the
reservoir oscillators, while the effect of measurements on the dynamics is disregarded as in the previous section.

Let us consider N identical unit mass oscillators with frequencies ω0 and work in such units that � = 1
and kB = 1. Let x̂ = {q̂1, p̂1, q̂2, p̂2, . . . , q̂N , p̂N} be the 2N vector of position and momentum operators of the
network oscillators. Then the covariance matrix σ(x̂) and first moments vector 〈x̂〉 are defined as [56]

σ(ij)(x̂) = 〈x̂(i)x̂(j) + x̂(j)x̂(i)〉/2 − 〈x̂(i)〉〈x̂(j)〉, 〈x̂〉(i) = 〈x̂(i)〉, (21)

where i, j = 1, . . . , 2N. Throughout this section, we indicate the elements of the matrix and of the vector with
superindices (i) and ( j) whereas the subindex k is reserved for time steps.

In the case of a single ancilla in a Gaussian state, the state is completely determined by [93, 94]

σ(x̂A) =

(
nth +

1

2

)(
(y + zc)/ω0 zs

zs (y − zc)ω0

)
, 〈x̂A〉 =

(
|α| cos(arg(α))

√
2/ω0

|α| sin(arg(α))
√

2ω0

)
, (22)

where x̂A = {q̂A, p̂A}	 is the vector of position q̂A and momentum p̂A operators of the ancilla, whereas σ(x̂A)
and 〈x̂A〉 are the corresponding covariance matrix and first moments vector, respectively. The covariance
matrix depends on the amount of thermal excitations nth as well as the magnitude r and phase ϕ of squeezing
[95] which have been collected into terms y = cosh(2r), zc = cos(ϕ) sinh(2r), and zs = sin(ϕ) sinh(2r). The
first moments vector in turn is a function of the magnitude |α| and phase arg(α) of displacement. Although
equation (22) describe a displaced squeezed thermal state, an arbitrary single mode Gaussian state can be
recovered by a judicious choice of the parameters nth, r, ϕ, |α| and arg(α). These are also the parameters that
can be separately conditioned on the input sk; this is a quite natural choice as thermal excitations, squeezing
and displacement correspond to different state preparation methods [93, 94]. As before, the input is a real
uniformly-distributed random number, sk ∈ [0, 1].

Let the time between state resets be Δt and the network Hamiltonian Ĥ be quadratic in the elements of x̂,
with the form:

Ĥ =
p̂Tp̂

2
+

q̂T(Δ2
ω + L)q̂

2
, (23)

where the momentum and position of the oscillators are, respectively, in the vectors p̂T = {p̂1, . . . , p̂N},
and q̂T = {q̂1, . . . , q̂N}; Δω = 𝟙ω0; and L is a Laplacian matrix with components L(ij) = δ(ij) ∑

l g(il) − (1 −
δ(ij))g(ij) determined by spring-like links of strength g(ij). Then, given the current network state, the next state
is completely determined through the action of a 2N × 2N symplectic matrix S = S(Ĥ,Δt) [56], which is a
real matrix that preserves the canonical commutation relations. The form of the vector of operators at some
time step k is indicated by x̂k. In practice x̂k = x̂R

k ⊕ x̂A
k+1, where x̂R

k are the reservoir operators at time step k
and x̂A

k+1 are the ancilla operators conditioned on the input sk+1. Then, the operators at the following time
step have the form x̂k+1 = Sx̂k. Consequently, it follows from the definitions given by equation (21) that
σ(x̂k+1) = Sσ(x̂k)S	 and 〈x̂k+1〉 = S〈x̂k〉.
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To better understand how the reservoir oscillators evolve, we divide the symplectic matrix S to blocks as

S =

(
A B
C D

)
, (24)

where A is 2(N − 1) × 2(N − 1) and D is 2 × 2. We can assume a single ancilla to be the Nth oscillator without
a loss of generality. Then the update map reads

σ(x̂R
k+1) = Aσ(x̂R

k )A	 + Bσ(x̂A
k+1)B	, 〈x̂R

k+1〉 = A〈x̂R
k 〉+ B〈x̂A

k+1〉, (25)

which governs how the next form of reservoir covariances and first moments depend on the previous form
and the ancilla state conditioned on the input. Provided that the reservoir state is also Gaussian, all possible
reservoir observables are either elements of the covariance matrix or the first moments vector or a function of
these elements. By extension, the output is also a function of the elements of these quantities.

One may now ask how the reservoir observables depend on the input sk. To this end, one may solve the
recurrence relations of equation (25) as in [56]. Here we present the solution for the first moments vector; the
solution for the covariance matrix is similar. Given the initial state 〈x̂R

0 〉, the solution reads

〈x̂R
m〉 = Am〈x̂R

0 〉+
m∑

k=1

Am−kB〈x̂A
k 〉, (26)

where only 〈x̂A
k 〉 depends on the input sk. Since both the reservoir first moments and reservoir covariances

are linear in the ancilla first moments and covariances, respectively, it is clear that any nonlinearity in these
observables is due to the nonlinearity in the ancilla observables of equation (22) only. By direct observation of
this equation we may then state that there can be a nonlinear input dependence in covariances only if r or ϕ (or
both) are functions of the input, and a nonlinear input dependence in first moments only if arg(α) is a function
of the input. Otherwise, there is only a linear input dependence in these reservoir observables. Depending on
the input encoding, different linear and nonlinear dependencies on the input sequence history, i.e. memory,
can arise in this system as reported in reference [56]. We note in passing that displaced squeezed states have
been found to be useful for other forms of quantum machine learning as well since, e.g., the Hilbert–Schmidt
distance between two such states is nonlinear in both displacement and squeezing [96–98].

It should be pointed out that since each term in the sum in equation (26) is a function of the input at only
a single time step, there are no cross terms between different time steps as in, e.g., sksk−1. This is detrimental
to the performance in tasks that require such terms. As pointed out in [99], this drawback can be avoided
by forming the output from reservoir observables of the form 〈x̂R,(i)x̂R,(j) + x̂R,(j)x̂R,(i)〉, which introduces such
cross terms as long as the reservoir first moments depend on the input. This can be seen from equation (21)
by solving for such terms in the left equation.

At this point, we may briefly compare the nonlinearity found in the case of oscillators in Gaussian states
interacting according to a quadratic Hamiltonian to that of the spins analyzed in the previous section. In the
latter case and with encoding to pure states, there is a richer nonlinear input history dependence since the
observables in equation (6) depend on a sum of products of linear and nonlinear functions of the most recent
input and the previous state, which is further shown to lead to products of these functions for different time
steps with themselves in equation (13). In contrast, the first moments and covariances of the oscillators are
linear combinations of such terms and exhibit a limited range of nonlinear input history dependencies.

The reservoir response can be checked as in figure 2, i.e. a single Hamiltonian is generated with arbitrary
random fixed links g(ij) along with the input sequence up to the step k − 1. The final element sk is then varied.
Specifically, we consider a small network of N = 3 identical unit mass oscillators interacting with springlike
couplings, one of them being the ancilla. The bare frequency of all oscillators is ω0 = 0.25 and interaction
strength between some oscillator i and some oscillator j are g(ij) = g(ji) ∈ [0, 0.2], distributed independently
and uniformly. The initial state is the ground state of the network Hamiltonian. RC requires in particular
that the reservoir state becomes independent of the initial conditions at the limit of many inputs. Looking at
equation (26), it is clear that this requires that ρ(A) < 1, where ρ(A) is the spectral radius of matrix A. This
ensures that limm→∞ Am = 0. In fact, it can be shown [56] that this condition is both necessary and sufficient
to ensure that the reservoir observables become well-approximated by continuous functions of only a finite
number of past inputs. This in turn guarantees, e.g., that the reservoir state never diverges as long as the input
is bounded and the spectral radius condition is satisfied. In practice, the condition can be satisfied for a given
network Hamiltonian H by tuning the time between inputs Δt.

In figure 5, we show all together both the spectral radius of matrix A and reservoir response of one of the
quantum harmonic oscillators as a function of Δt. The response is checked considering a single covariance of
the reservoir corresponding to the position of the first reservoir oscillator. The input has been injected using
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Figure 5. Effect of the spectral radius ρ(A) on the response of the harmonic oscillator reservoir. The network is random but fixed
with N = 3 oscillators with one of them being the ancilla, whereas the input sequence is i.i.d. in the interval [0, 1]. See main text
for further details. The curve shows the spectral radius as a function of the time between inputs Δt, with shaded areas indicating
regimes where ρ(A) � 0.983. The response of a single observable of the first reservoir oscillator, namely 〈q̂2

1〉 − 〈q̂1〉2, is shown
below as a function of both the last input element sk and Δt. In diagonally hatched regions, the response is above the plot range
whereas in horizontally hatched regions the reservoir dynamics diverges.

squeezed vacuum states for the ancilla where rk = 1,ϕk = 2πsk. The diagonally hatched regions indicate values
that are finite but higher than the plot range and horizontally hatched regions indicate regimes where reservoir
dynamics diverges. There is a clear connection between the hatched regions and the spectral radius ρ(A).
Indeed, they indicate regions where ρ(A) is large. Near the boundaries where the spectral radius approaches
values that are too high, the reservoir seems to become unresponsive to the input. This might be due to a
relatively strong dependency on multiple earlier inputs as more and more terms in the sum of equation (26)
become significant. In the particular case at hand, these appear to be approximately the boundaries defined
by ρ(A) � 0.983 as indicated by the shaded regions under the curve. The regions include ρ(A) � 1, indicated
by the dashed horizontal line, where RC becomes impractical. In the regime useful for RC where the spectral
radius is sufficiently small, the response is nonlinear in sk as hinted by the observable responses in the bottom
part of figure 5. This is a direct consequence of the ancilla covariances being trigonometric functions of the
input. In particular, when the spectral radius is relatively small only a few of the terms of equation (26) survive,
which can be expected to lead to a stronger response to the most recent input. This can be observed, e.g., near
the region Δtω0 ∈ [2, 2.5].

In figure 6, we have fixedΔt to correspond to the global minimum of the spectral radius in figure 5 and con-
sider the response of both reservoir oscillators to the input for multiple different input encodings. In panel (a)
we have set |αk| = sk, arg(αk) = 0 and consider all reservoir first moments. The response is linear, as expected.
In panels (b) and (c) the ancilla is prepared in squeezed vacuum states whereas the diagonal elements of the
covariance matrix σ(ii)(x̂R

k ) = 〈x̂2
k〉(i) − (〈x̂k〉(i))2 are considered. In (b) we have set rk = sk, ϕk = 0 which leads

to a nonlinear response since this makes the ancilla covariances hyperbolic functions of the input; notice that
logarithmic scaling is used. In (c) phase encoding is used with rk = 1,ϕk = 2πsk, as in figure 5, and the response
is similar. Finally in (d) the input is encoded into phase of displacement according to |αk| = 0, arg(αk) = 2πsk

but reservoir second moments 〈x̂2
k〉(i) are shown with logarithmic scaling. The observed shape originates from

the dependency of 〈x̂2
k〉(i) on (〈x̂k〉(i))2 where each 〈x̂k〉(i) is a trigonometric function of sk.

Finally, it should be pointed out that the analysis presented above for the single ancilla case generalizes
directly to the case of multiple ancillae; in particular the forms of equation (24) through (26) still apply. The
nonlinearities analyzed and exemplified here can be harnessed for solving typical benchmark tasks with high
performance, as was done in [99]. Here it was also found that high performance comes mostly from choosing
an encoding compatible with the requirements of the task at hand, leaving considerable freedom over the form
of the Hamiltonian (here actually restricted to linear modes dynamics). This further increases the experimental
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Figure 6. Response of the harmonic oscillator reservoir to the input at time step k. Here observables from all reservoir oscillators
(first and second) are shown for a random but fixed network of N = 3 oscillators with the third oscillator as ancilla. In panel
(a) input is encoded to coherent states of the ancilla through the magnitude of displacement, which induces a linear response in
reservoir first moments. Panels (b) and (c) focus on encoding the input to squeezed vacuum states, which affects reservoir
covariances. The encoding is to the magnitude and phase of squeezing, respectively. In panel (d) the encoding is again to coherent
states via the phase of displacement but reservoir second moments are shown. Notice that in panels (b) and (d) logarithmic
scaling is used. The elements x̂(i) with i = 1, . . . , 4 correspond to the observables q̂1, p̂1, q̂2, and p̂2, respectively.

convenience besides using only Gaussian states. Allowing for correlations between the ancillae might introduce
new ways to encode the input, however the limitations of the nonlinearity in the reservoir first moments and
covariances still hold, i.e. they cannot depend on products of the input at different timesteps.

4. Conclusions

Quantum complex networks can provide the necessary ingredients for a good performance in RC. High dimen-
sionality is guaranteed by making use of a quantum system by an exponential increase of the Hilbert space
with the number of nodes or constituents. Furthermore, several proposals in different systems have numeri-
cally shown the possibility to introduce nonlinearities and to have the necessary memory to perform standard
machine learning benchmark tasks.

In this work, we have complemented the previous studies by showing in an analytical and explicit way the
input–output map nonlinear dependence for quantum networks of qubits and oscillators, respectively. The
knowledge of the functional form of the observables of both systems depending on the input has clarified the
role of all factors contributing to the presence of nonlinearity and it has also made visible the dependence on
past inputs, which is strongly related to the memory of the system.

In the case of the network of qubits, we have presented a formalism dependent on the specific map adopted
but independent of the particular Hamiltonian to derive the explicit functional dependence of the quantum
state of the system and its observables on the input. In general, the reinitialization of the state of one or more
qubits to encode the input leads to the presence of nonlinearities in all types of observable quantities. The form
of the nonlinear contributions, e.g. polynomial or sinusoidal, can be tuned by proper choice of the quantum
state used for encoding the input. As an exception, with a single-qubit encoding and using a mixed state there
are only linear dependences, but, remarkably, the nonlinearity is recovered with a multiqubit encoding. This
makes particularly evident the substantial effect the form of the input encoding can entail. We have also shown
that the form of the Hamiltonian and, in particular, being in different dynamical phases, plays a relevant role
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to determine the response of the diverse output observables to the input. Furthermore, it allows us to tailor
the optimal input strategy depending on the specific task at hand and the required degrees of nonlinearity.

In the continuous-variable case, for a bosonic network of harmonic oscillators considering only Gaussian
states, the importance of the input encoding becomes apparent in our analysis. We show how encoding the
input in quantum properties as the magnitude and phase of squeezing explicitly determines the expressions for
the covariances and first moments of the state of the system. The input-induced nonlinearities in these output
quantities arise from their functional dependence in the ancilla used for codifying the input. The presence
of nonlinear terms in the covariances is determined by the squeezing, whereas in the first moments it comes
from encoding in the displacement of the ancilla state. In contrast to the qubit network, we have found that
the dependence in the input history consists in a sum of functions without crossed terms between consecutive
inputs. This limitation, however, could be overcome with further post-processing of the output. Beyond the
general functional form, we have illustrated the influence of the dynamics by means of numerical calculations.
For a good performance, the system is required to work in a regime in which it forgets its initial state. The
condition to forget the initial state and to have a convergent dynamics depends on the Hamiltonian of the
system and the amount of time the system is allowed to evolve before the next input injection. Therefore, the
role of the system’s dynamical properties in establishing the dependence on the history of the system of the
output observables is again found to be decisive for a proper operation of quantum reservoir computers.

The analysis presented in this work could be extended in several promising directions and assist in the
search for the best design of QRC platforms. In particular, the form of encoding can include spatial and tem-
poral multiplexing strategies, temporal parameter modulation, or can even be extended to quantum inputs
[88]; physical reservoirs of qudits systems, including more complex network interactions or operating beyond
continuous-variable Gaussian states [57, 86] will also provide further forms on nonlinearity; finally, also the
observable choice of the output layer plays a key role. Models with increasing complexity can entail an improved
performance of QRC in tasks requiring nonlinear memory, but generally, this can only be assessed numeri-
cally. A major advantage of the platforms considered here, both with qubits and continuous variables, is the
possibility to achieve analytical insight, being therefore convenient models to test novel strategies in QRC.

Acknowledgments

We acknowledge the Spanish State Research Agency Severo Ochoa and María de Maeztu Program for Centers
and Units of Excellence in R & D (MDM-2017-0711) and Spanish State Research Agency QUARESC Project
(PID2019-109094GB-C21 and -C22/AEI/10.13039/501100011033). We also acknowledge funding by CAIB
through the QUAREC Project (PRD2018/47). The work of MCS has been supported by MICINN/AEI/FEDER
and the University of the Balearic Islands through a ‘Ramon y Cajal’ Fellowship (RYC-2015-18140). GLG is
funded by the Spanish Ministerio de Educación y Formación Profesional/Ministerio de Universidades and
co-funded by the University of the Balearic Islands through the Beatriz Galindo Program (BG20/00085). The
CSIC Interdisciplinary Thematic Platform (PTI) on Quantum Technologies in Spain is also acknowledged.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.
https://github.com/RMPhys/Analytical_QRC.

ORCID iDs

Pere Mujal https://orcid.org/0000-0002-4077-0304
Johannes Nokkala https://orcid.org/0000-0002-5052-9813
Rodrigo Martínez-Peña https://orcid.org/0000-0002-1459-7464
Gian Luca Giorgi https://orcid.org/0000-0003-3113-0193
Miguel C Soriano https://orcid.org/0000-0002-6140-8451
Roberta Zambrini https://orcid.org/0000-0002-9896-3563

References

[1] Strogatz S H 2001 Nature 410 268–76
[2] Albert R and Barabási A-L 2002 Rev. Mod. Phys. 74 47–97
[3] Newman M, Barabási A L and Watts D J 2006 The Structure and Dynamics of Networks (Princeton, NJ: Princeton University Press)

12

https://github.com/RMPhys/Analytical_QRC
https://orcid.org/0000-0002-4077-0304
https://orcid.org/0000-0002-4077-0304
https://orcid.org/0000-0002-5052-9813
https://orcid.org/0000-0002-5052-9813
https://orcid.org/0000-0002-1459-7464
https://orcid.org/0000-0002-1459-7464
https://orcid.org/0000-0003-3113-0193
https://orcid.org/0000-0003-3113-0193
https://orcid.org/0000-0002-6140-8451
https://orcid.org/0000-0002-6140-8451
https://orcid.org/0000-0002-9896-3563
https://orcid.org/0000-0002-9896-3563
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1103/revmodphys.74.47
https://doi.org/10.1103/revmodphys.74.47
https://doi.org/10.1103/revmodphys.74.47
https://doi.org/10.1103/revmodphys.74.47


J.Phys.Complex. 2 (2021) 045008 (14pp) P Mujal et al

[4] Newman M 2010 Networks: An Introduction (Oxford: Oxford University Press)
[5] Trabesinger A 2012 Nat. Phys. 8 13
[6] Crutchfield J P 2012 Nat. Phys. 8 17–24
[7] Barabási A-L 2012 Nat. Phys. 8 14–6
[8] Newman M E J 2012 Nat. Phys. 8 25–31
[9] Vespignani A 2012 Nat. Phys. 8 32–9

[10] Gao J, Buldyrev S V, Stanley H E and Havlin S 2012 Nat. Phys. 8 40–8
[11] Bianconi G 2018 Multilayer Networks: Structure and Function (Oxford: Oxford University Press)
[12] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D 2006 Phys. Rep. 424 175–308
[13] Kimble H J 2008 Nature 453 1023–30
[14] Biamonte J, Faccin M and De Domenico M 2019 Commun. Phys. 2 1–10
[15] Duan L-M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413–8
[16] Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288
[17] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[18] Mohseni M, Omar Y, Engel G S and Plenio M B 2014 Quantum Effects in Biology (Cambridge: Cambridge University Press)
[19] Lambert N, Chen Y-N, Cheng Y-C, Li C-M, Chen G-Y and Nori F 2013 Nat. Phys. 9 10–8
[20] Greentree A D, Tahan C, Cole J H and Hollenberg L C L 2006 Nat. Phys. 2 856–61
[21] Acín A, Cirac J I and Lewenstein M 2007 Nat. Phys. 3 256–9
[22] Cuquet M and Calsamiglia J 2009 Phys. Rev. Lett. 103 240503
[23] Manzano G, Galve F, Giorgi G L, Hernández-García E and Zambrini R 2013 Sci. Rep. 3 1439
[24] Valdez M A, Jaschke D, Vargas D L and Carr L D 2017 Phys. Rev. Lett. 119 225301
[25] Cabot A, Giorgi G L, Galve F and Zambrini R 2019 Phys. Rev. Lett. 123 023604
[26] Ritter S et al 2012 Nature 484 195–200
[27] Xuereb A, Genes C, Pupillo G, Paternostro M and Dantan A 2014 Phys. Rev. Lett. 112 133604
[28] Reiserer A, Kalb N, Blok M S, van Bemmelen K J M, Taminiau T H, Hanson R, Twitchen D J and Markham M 2016 Phys. Rev. X 6

021040
[29] Nokkala J, Galve F, Zambrini R, Maniscalco S and Piilo J 2016 Sci. Rep. 6 26861
[30] Lodahl P 2017 Quantum Sci. Technol. 3 013001
[31] Cabot A, Galve F, Eguíluz V M, Klemm K, Maniscalco S and Zambrini R 2018 npj Quantum Inf. 4 57
[32] Kollár A J, Fitzpatrick M and Houck A A 2019 Nature 571 45–50
[33] Perseguers S, Lewenstein M, Acín A and Cirac J I 2010 Nat. Phys. 6 539–43
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