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ABSTRACT

Currently, classification of the optical spectra of active galactic nuclei (AGN) into different types is based on features such as line
widths, intensity ratios, etc. While well founded on AGN physics, this approach involves some degree of human oversight and cannot
scale to large data sets. Machine learning (ML) tackles such a classification problem in a fast and reproducible way, but is often -and
not without reason- perceived as a black box. However, ML interpretability and explainability are active research areas in computer
science, increasingly providing us with tools to alleviate this issue. We apply ML interpretability tools to a classifier trained to predict
AGN type from spectra. Our goal is to demonstrate the use of such tools in this context, obtaining for the first time insight into an
otherwise black box AGN classifier. In particular we want to understand which parts of each spectrum most affect the predictions of our
classifier, checking that the results make sense in the light of our theoretical expectations. We train a support-vector machine on 3346
high-quality, low redshift AGN spectra from SDSS DR15. We consider either two-class classification (type 1 VS 2) or multiclass
(type 1 VS 2 VS intermediate). The data set was previously and independently hand-labeled into types 1, 2 and intermediate i.e.
sources in which the Balmer line profile consists of a sharp, narrow component superimposed on a broad component. We perform a
train-validation-test split, tuning hyperparameters and independently measuring performance with a variety of metrics. On a selection
of test-set spectra, we compute the gradient of the predicted class probability at a given spectrum. Regions of the spectrum are then
color-coded based on the direction and the amount by which they influence the predicted class, effectively building a saliency map. We
also visualize the high-dimensional space of AGN spectra using t-distributed stochastic neighbor embedding (t-SNE), showing where
the spectra for which we computed a saliency map are located. Our best classifier reaches an F-score of 0.942 on our test set (with
0.948 precision and 0.936 recall). We compute saliency maps on all misclassified spectra in the test set and on a sample of randomly
selected spectra. Regions that affect the predicted AGN type often coincide with physically relevant features, such as spectral lines.
t-SNE visualization shows good separability of type 1 and type 2 spectra. Intermediate-type spectra either lie in-between as expected
or appear mixed with type 2 spectra. Misclassified spectra are typically found among the latter. Some clustering structure is apparent
among type 2 and intermediate-type spectra, though this may be an artifact. Saliency maps show why a given AGN type was predicted
by our classifier resulting in a physical interpretation in terms of regions of the spectrum that affected its decision, making it no longer
a black box. These regions coincide with those used by human experts such as relevant spectral lines, and are even used in a similar
way, with the classifier e.g. effectively measuring the width of a line by weighing its center and its tails oppositely.

Key words. Methods: statistical – quasars: general – Galaxies: active

1. Introduction

Active galactic nuclei (AGN) are the most energetic non-
transient phenomena in the Universe. AGN can be found in nu-
clei of galaxies characterized by highly ionized gas not corre-
lated with stellar activity. The gas surrounding the AGN can
be photoionized by photons produced by accretion mechanisms
onto a supermassive black hole (SMBH), with MBH ≈ 106 −

109M�, which accretes material from the surrounding interstellar
medium (Salpeter 1964; Zel’Dovich & Novikov 1965; Lynden-
Bell 1969; Rees 1984).

Classically AGNs, and in particular Seyfert galaxies, are
divided into two groups (Khachikyan & Weedman 1971;

? tobia.peruzzi@studenti.unipd.it
?? mp5757@nyu.edu

Khachikian & Weedman 1974): Type 1 and Type 2. The cor-
responding physical interpretation -the so-called Unified Model-
is that for Type 1 the observer looks directly into the unobscured
accretion disk surrounded by fast-moving gas clouds, and for
Type 2 the line-of-sight into the accretion disk is blocked by an
obscuring medium (Antonucci 1993; Urry & Padovani 1995).

AGNs emit radiation in virtually all bands and consequently
have historically been described in terms of several classes of ob-
jects depending on the band they were discovered in. AGN clas-
sification is reviewed in detail by Padovani et al. (2017), which
also includes a systematic discussion of the definitions of dif-
ferent but sometimes overlapping classes of AGNs defined over
time by observational astronomers in bands ranging from the ra-
dio to the gamma-rays, the so-called AGN zoo. In the following
we focus on the problem of classification into Type 1 and Type
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2 because of its implications for statistical analyses (see Elitzur
2012, which also discusses a refinement of the original unified
model) on large catalogs and to illustrate an application of ML
interpretability tools.

Classification of sources into Type 1 and Type 2 is typi-
cally based on features observed in the optical spectrum, such
as the full width at half maximum (FWHM) of the broad Hβ
line: type 1 AGN are classically defined as having FWHM of
permitted "broad" lines in excess to the ones of forbidden lines
that rarely exceed 1000 km/s, generally accompanied by an in-
tense, blue continuum; type 2 show permitted and forbidden
emission lines with comparable width (Khachikian & Weedman
1974). Among type 1 AGN, the ratio of equivalent widths be-
tween FeII optical emission and the HI Balmer emission line Hβ
helps to classify large samples of quasars along a main sequence
(Boroson & Green 1992). This approach may be supplemented
by observables in different bands, leading to the so-called four-
dimensional Eigenvector 1 (4DE1) parameter space (Sulentic
et al. 2000a,b, 2007). These methods of AGN classification are
firmly grounded in our understanding of AGN physics but are
hard to automate, requiring at least some human oversight. Di-
rect quantification of the classification performance attained by
humans is obviously hard, as it would involve setting up a con-
trolled classification experiment, but there are documented in-
stances of spurious source identifications which were overturned
on closer inspection, e.g. (Järvelä et al. 2020). The performance
of automatic approaches on the other hand can be easily eval-
uated on an unseen test set. For these reasons, AGN classifica-
tion for extremely large data sets, such as the Sloan Digital Sky
Survey (SDSS), is likely to require an automated approach. The
challenge we are facing is to make classification fast and accu-
rate, without turning the classification process into a black box
and losing physical interpretability.

Surprisingly, automatic ML classification of AGN optical
spectra was attempted relatively few times based on artificial
neural networks (Rawson et al. 1996; González-Martín et al.
2014) and nearest neighbor schemes (Zhao et al. 2007) only.
In all cases the focus was only on correct automatic classifica-
tion rather than on the interpretability of the resulting model.
This is also the case for the most recent and to our knowledge
most accurate AGN classification result based on a supervised
ML framework presented by Tao et al. (2020). They trained var-
ious black-box machine learning models on 10000 SDSS DR-14
spectra, achieving remarkably high classification performance
(≈ 93% in terms of the F-score metric, which we will discuss
later). The authors also use random forest feature importance to
gain some insight into which principal components of the fea-
ture space of spectra are more informative, but do not further
discuss their physical meaning. Notwithstanding their great clas-
sification performance, the current state of the art in automated
AGN classification lacks interpretability: how are these models
achieving such high performance? In the following we will focus
on this question, while pointing the reader interested in a general
discussion of ML in astronomy to the excellent review by Fluke
& Jacobs (2020).

Interpretability and explainability are open research areas in
machine learning, and a variety of techniques have been pro-
posed depending on the context in which the need for model ex-
planation arises (see Molnar 2019, for a review). In astronomy
and science in general, the ability to provide an explanation in
addition to a bare prediction is likely crucial for adoption of ML
methods.

While interpretability techniques are increasingly being ap-
plied to a variety of astronomical problems (see e.g. Peek

& Burkhart 2019; Villanueva-Domingo & Villaescusa-Navarro
2020; Zhang et al. 2020), alongside with natively interpretable
models such as simple decision trees (e.g. Askar et al. 2019),
they are still far from the norm in the field. Generally speaking,
interpretability tools are either model-specific or model agnostic.
The former apply only to a specific set of ML models, while the
latter potentially apply to any model, including a black-box one;
these are clearly more interesting for application to astronomy.
In the following we will visualize the gradient of our classifier’s
prediction (more precisely the relative change in the predicted
probability or confidence for the predicted class), which is appli-
cable to any underlying ML model as long as it is differentiable.
The gradient is cheap to compute, clearly indicates how to mod-
ify a given instance (an AGN spectrum in our case) to change
the associated prediction, and can be readily visualized.

In this paper we obtain comparable accuracy to Tao et al.
(2020), also using a support-vector machine (SVM; Cortes &
Vapnik 1995). We then explain our trained classifier’s decision
on an individual basis by visualizing its gradient by a so-called
saliency map (Simonyan et al. 2013) given any AGN spectrum.
SVMs are differentiable, allowing us to compute the gradient
of the predicted class probability at any given point in feature
space. Since the coordinates of this space are the fluxes mea-
sured for each wavelength in our spectra, we can use the gradi-
ent computed at any given spectrum to visualize which parts of
the spectrum are responsible for a Type 1 classification (slightly
increasing the flux at those wavelengths increases the predicted
probability of being Type 1), which parts are irrelevant (increas-
ing the flux has no effect), and which parts pull in the opposite
direction, towards a Type 2 classification (increasing the flux de-
creases the predicted probability of being Type 1). This can be
conveniently shown as a color-coding of the spectrum under con-
sideration and is an easy way to check what the model is basing
its predictions on.

In addition to interpretability tools applied to classifiers, vi-
sualization and visual clustering based on dimensionality reduc-
tion approaches where high-dimensional data is mapped to a
low-dimensional space such as a plane for visualization purposes
are also becoming more commonplace in astronomy (see e.g.
Kos et al. 2018; Anders et al. 2018; Lamb et al. 2019; Furfaro
et al. 2019; Steinhardt et al. 2020b,a; Kline & Prša 2020), with
applications also to AGNs ranging from time-tested linear meth-
ods such as principal component analysis (Yip et al. 2004b,a)
to advanced deep learning approaches (Ma et al. 2019; Portillo
et al. 2020). Since we are using saliency maps as an instance-by-
instance explanation of our ML model it is natural to leverage
dimensionality reduction to represent AGN spectra on a plane,
where we then show which instances (data points) we are exam-
ining. This also allows us to visualize the position of misclassi-
fied instances with respect to the other data in our set.

In Sect. 2 we will describe the dataset used, in Sect 3. the
supervised classification setup. In Sect. 4 we will present the
SVM performance (Subsec. 4.1), the AGN spectra space visu-
alized with the dimensionality reduction algorithm t-SNE (Sub-
sec. 4.2) and the application of saliency map interpretability tool
to AGN spectra (Subsec. 4.3). In Sect. 5 we provide a summary
of the results reached in this work.

2. Data

Our dataset is composed by 680 type 1, 2145 type 2 and 521 in-
termediate type AGN spectra from the SDSS survey. All of them
have been accurately classified by previous works in the litera-
ture, and are expected to have a lower rate of misclassification
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than what is typically achieved with unsupervised sample selec-
tion (e.g., sect. 2 of Berton et al. 2020). For this reason they are
well-suited to test our automatic classification procedure.

The selection of type 1 spectra is described in detail by
Marziani et al. (2013). Firstly, they selected sources cataloged
as quasars in the SDSS DR7 in the redshift range 0.4 - 0.75,
and with magnitude brighter than 18.5 in g, r, or i band, to en-
sure a good spectral quality. They also included sources with
FWHM(Hβ) < 1000 km s−1 selected by Zhou et al. (2006),
which usually are not classified as quasars by SDSS. After a vi-
sual inspection to remove bad quality spectra, they included 680
sources in the final sample.

The selection of the type 2 and intermediate type spectra was
carried out by Vaona et al. (2012). In SDSS DR7 they selected
all the sources showing the [O II]λ3727, [O III]λ5007, and [O
I]λ6300 lines, with an additional criterion on the signal-to-noise
ratio (S/N)([O I]λ6300) > 3. This sample of 119226 sources
was subsequently reduced by applying a redshift threshold 0.02
≤ z ≤ 0.1. The lower limit was needed to ensure the presence
of the [O II] line, while the upper limit to avoid contamination
from extranuclear sources within the fibre aperture. An empirical
criterion based on line ratios suggested by Kewley et al. (2006)
was applied, to remove sources without AGN activity (see eq.
(1) of Vaona et al. 2012). The remaining objects were further
analyzed on the basis of the diagnostic diagrams by Veilleux &
Osterbrock (1987) and their Hα width, and were finally divided
into two samples of 2153 Seyfert 2 and 521 intermediate type
AGN. Thanks to these strict selection criteria, their spectra had
a typical S/N, defined here as the ratio between the mean flux
of the 5100Åcontinuum and the standard deviation in the same
spectral region, between 10 and 40, directly comparable to that
of the type 1 sample.

Intermediate type AGN show Balmer line profiles consisting
of a sharp, narrow component superimposed on a broad compo-
nent (Osterbrock & Koski 1976; Osterbrock 1981, 1991). Fol-
lowing the classification proposed by Osterbrock, they are dis-
tinguished into 1.2, 1.5, 1.8 in order of decreasing prominence
of the broad component. For the context of the classification task
presented in this work, they will be considered as a single type,
since an additional subdivision would require a level of sophis-
tication not necessary at this stage..

Every spectrum has been shifted to rest-frame using the val-
ues of z given by the SDSS and normalized to the flux value at
5100 Åin the rest frame. This value is chosen in order to normal-
ize on a flux that belongs to the continuum and not to an emission
line or some other component.

In order to perform classification on a fixed number of spec-
tral features, we need to turn each spectrum into an array of nor-
malized fluxes of the same length. Every spectrum in the data
set has thus been interpolated over 1000 points at equally spaced
wavelengths obtaining flux values at the same wavelengths for
every spectrum. Over the range of wavelength overlap this re-
sults in an effective resolution in wavelength strictly higher than
the nominal SDSS resolution in the same range, therefore no
information is lost in the interpolation. These flux values con-
stitute our features, so our feature space is 1000-dimensional.
We restricted the range of our interpolation to the shared overlap
of our spectra, i.e. between the maximum among the minimum
wavelengths of all the spectra and the minimum among the max-
imum wavelengths of all the spectra, so that we could include all
spectra in the final sample without having to add padding. Note
that this approach somewhat reduces the amount of information
available to our classifier with respect to that used during human

Table 1: Extremes of the wavelength interpolation ranges for
type 1, type 2 and intermediate type AGN spectra. Columns:
AGN types in our dataset (first three columns from the left) and
adopted range in the last column. Rows: value of minimum and
maximum wavelenghts in Å.

Type 1 Type 2 Int. Adopted range
Min 2713.93 Å 3727.07 Å 3728.91 Å 3728.91 Å
Max 5265.95 Å 6955.6 Å 8318.88 Å 5265.95 Å

classification, because e.g. some lines used in the latter may end
up outside our adopted range. The values of the resulting wave-
length range are reported in Table 1.

3. Supervised classification setup

For classifying AGN spectra we selected a support-vector ma-
chine (SVM) classifier (Cortes & Vapnik 1995) both for two-
class classification between type 1 VS type 2 and multiclass with
type 1 VS type 2 VS intermediate. SVMs look for a maximum
margin hyperplane separator between the classes, possibly af-
ter an implicit transformation into an higher dimensional space
where data that is not linearly separable may become such. Max-
imizing margin means that the separation surface is as far as pos-
sible from any data point, which is an additional constraint with
respect to other methods that just find a separation surface. Intu-
itively this reduces uncertainty in classification (since points are
far away from the separation surface, i.e. they are firmly classi-
fied) and results in a boundary between classes that depends only
on a handful of training data points near the surface, the epony-
mous support vectors. It was shown empirically that SVMs have
good performance on a variety of structured data, text, and other
classification tasks (see e.g. Manning et al. 2008). In the follow-
ing we use SVMs in the scikit-learn (Pedregosa et al. 2011) im-
plementation for python. We make use of soft-margin classifica-
tion, so the separating hyperplane is allowed to make some clas-
sification mistakes if this increases margin, but these mistakes
are weighed negatively within the cost function that is optimized
to train the SVM. The cost of mistakes is a hyperparameter that
we fine-tune in validation together with other hyperparameters
such as the kernel used for nonlinear SVM, as described in the
following.

The whole dataset was randomly divided into a training and
a test set with a 80% − 20% split. The training set was fur-
ther randomly split into training and validation sets, again with
a 80% − 20% split, so the final proportions are training-64%,
validation-16%, and testing-20%. The hyperparameter optimiza-
tion (see below) took place within a 5-fold cross-validation loop,
while the test set was kept as a holdout set from the beginning,
i.e. it was not involved in any cross-validation loop. The train-
validation-test split is adopted in order to have a subset to select
the best set of parameters for the classifier (the validation set)
and a subset of unseen data in order to test the performance of
the best model on unseen data. The latter is one of the techniques
used in ML to avoid overfitting, that happens when a ML model
is unable to generalize well to new data. The random partitioning
was unstratified, that is performed without imposing any kind of
fixed ratio between the number of samples belonging to differ-
ent classes, given the relatively balanced nature of our data set
with respect to the different class frequencies. However during
all training steps of our SVM, we applied weights inversely pro-
portional to class frequency in an attempt to counter class inbal-
ance, using the class_weight=balanced option in scikit-learn. In
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Table 2: Class frequency in training, validation and test sets.
Columns: AGN types in our dataset. Rows: subsets of the com-
plete AGN spectra dataset used in supervised classification.

Type 1 Type 2 Int.
Train 441 1370 330
Validation 107 352 76
Test 132 423 115

Tab. 2 we show the frequency of the classes in training, valida-
tion and test sets.

We then performed a hyperparameter optimization for our
SVM classifier using a grid search approach. The parameters
optimized were cost C, that is the regularization parameter (the
strength of the regularization is inversely proportional to C,
which represents the cost of misclassification for a soft-margin
SVM), and γ, a kernel coefficient used only for Polynomial ker-
nels or Radial Basis Function (RBF) kernels that can be seen
as the inverse of the radius of influence of samples selected by
the model as support vectors. The choice of the kernel used was
also itself subject to optimization. The grid search optimization
was firstly applied to a wide range for parameter C, going from
5 × 10−4 to 5 × 104 on an equally-spaced logarithmic grid, and
then interactively restricted around the best value until the F-
score stopped improving (i.e. the fourth decimal digit remained
constant). The range investigated for γ was narrower, going from
0.005 to 5.0. Both ranges were selected while keeping in mind
the trade-off between computational requirements and the ability
to satisfactorily cover hyperparameter space.

The hyperparameters optimization was performed for four
different kernels: linear, polynomial of degree 2 and 3, and RBF.
The performance was evaluated with the F-score. F-score is de-
fined as the harmonic mean of precision and recall (Van Rijsber-
gen 1979; Chinchor 1992), where precision is the number of true
positives (TP) divided by the total number of samples classified
as positive (that is TP plus false positive– FP), and recall is the
number of true positives divided by the number of all the actual
positive samples (that is true positive plus false negatives –FN).

Based on this definitions, we can express precision, recall
and F-score as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F = 2 ·
P · R
P + R

. (3)

In astronomical literature precision is often referred to as purity
and recall as completeness.

A high value (close to 1) of the F-score means that the classi-
fier is able to correctly classify most of the data, achieving both
good precision and good recall. These definitions of course apply
to a given class, where positive means a member of that class and
negative a non-member. Their extension to a multi-class setting
is straightforward by taking the mean over the different classes.

It was found that the kernel with the highest performance,
that is highest F-score, for multiclass classification was the lin-
ear one and the best regularization parameter was C = 0.07,
while for two-class classification all the kernels achieved nomi-
nally perfect results except for the polynomial of degree 3. These
metrics were calculated on the validation set. The performances
of the four different models corresponding to the four kernels

Table 3: F-score on validation set for the multiclass classifica-
tion problem for four different models corresponding to different
SVM kernels (from top to bottom): linear, radial basis, polyno-
mial of degree two, polynomial of degree three. Columns: kernel
(first column), hyperparameters optimized in the classification
context (second and third columns) and F-score value (last col-
umn). Rows: SVM kernels.

Kernel Optimized C Optimized γ F-score
Linear 0.0700 N/A 0.920
RBF 34.000 0.003 0.912
Poly 2 0.0005 0.500 0.916
Poly 3 0.0005 0.050 0.918

Table 4: F-score on validation set for four different models (two-
class classification). Columns and rows as in Tab. 3.

Kernel Optimized C Optimized γ F-score
Linear 0.40000 N/A 1.000
RBF 45.0000 0.005 1.000
Poly 2 0.00005 0.600 1.000
Poly 3 0.00050 0.050 0.997

Table 5: Performance metrics calculated on test set with incre-
mental additive Gaussian noise. Noise standard deviation in units
of flux value at 5100Å of the original spectrum. Columns: Gaus-
sian standard deviation noise values. Rows: Mean F-score (first
row) and F-score values for every type in the dataset.

Noise σ 0.1 0.2 0.4 1.0 2.0 3.0 4.0
Mean 0.92 0.89 0.82 0.74 0.68 0.57 0.56
Type 1 1.00 1.00 1.00 0.99 0.83 0.64 0.62
Type 2 0.95 0.92 0.86 0.76 0.68 0.59 0.60
Int. 0.82 0.74 0.63 0.48 0.38 0.33 0.27

can be seen in Tab. 3 for multiclass classification, and in Tab. 4
for two-class classification.

We then trained the SVM using both the training and vali-
dation subsets and evaluated the model performance on the test
set.

3.1. Dependence on signal-to-noise ratio

We explored how the performance of our SVM (trained on both
the training and validation subsets) changes when we add Gaus-
sian noise onto the test-set spectra. The noise’s standard devia-
tion was taken proportional to the flux value corresponding to
5100Å, with the following values as proportionality factors: 0.1,
0.2, 0.3, 0.4, 1.0, 2.0, 3.0, and 4.0. The metrics can be seen in
Tab. 5 and in Fig. 1a and 1b. As can be seen, for small values
of the noise, the mean F-score remains above 0.8, but decreases
almost linearly with increasing noise factor, while the Type 1
F-score initially remains equal to 1.0. Type 2 F-score decreases
similarly as the mean F-score, but remains above 0.85. On the
contrary the intermediate type F-score decreases rapidly with the
noise factor, reaching 0.63 for noise factor 0.4. With higher val-
ues for the noise factor, all the F-scores are below 0.8, exception
made for the first two values of type 1 F-score that remain above
0.8 for noise factor 1.0 and noise factor 2.0. It is worth to notice
that for higher values of the noise factor, type 1 F-score decreases
rapidly, in contrast to the F-scores of both type 2 and intermedi-
ate. This can indicate that in general spectra characterized by a
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low S/N ratio are harder to classify and that the SVM classifier
that we used begins to missclassify also type 1 AGNs for high
values of the noise, but the confidence for type 2 and intermedi-
ate does not change considerably after some value of the noise
factor.

4. Interpretability framework

4.1. Classifier gradient visualized as saliency map

In order to gain insights on what our SVM classifiers have
learned, we followed the saliency map approach that found wide
application in the context of deep neural networks (Simonyan
et al. 2013) and has proven very useful in the interpretation of
image classifiers, showing which parts of a given image con-
tribute the most to the image’s predicted classification. In this
paper we refer exclusively to the second meaning of the term
saliency map defined in the Simonyan et al. (2013) paper, that
is an image (in our case a one-dimensional array representing a
given AGN spectrum) where each pixel represents the derivative
of the class score with respect to the value of the corresponding
pixel of a given image as per their Eq. 4.

In the context of our work we built saliency maps as follows:

– we considered the class score or, loosely speaking, the prob-
ability associated by our classifier to a given sample’s pre-
dicted class, pc( fi), where fi is the flux at wavelength λi for
a given spectrum and c is the predicted class, for example,
Type I;

– we then computed a numerical approximation to the gradient
gi = ∇ f log pc( fi), which yields a vector the same length as
the original spectrum;

– finally, we visualized the computed gradient vector as a color
coding on top of the original spectrum, with blue (orange)
corresponding to wavelengths for which the associated com-
ponent of the gradient is positive (negative)

To compute the gradient gi, each feature fi of a chosen sam-
ple is individually perturbed by a certain value ei, forming n
spectra with the i-th feature perturbed, where n is the number of
features, that in this work is equal to 1000. Then our SVM model
is used to re-classify these perturbed spectra, obtaining a value
of pc( f j + δi jei) for each one. Since the perturbation was chosen
as ei = 0.01 fi (i.e. a 1% perturbation), pc( f j + δi jei) − pc( fi)/ei
approximates the i − th component of the gradient of log pc.

A gi value close to zero (shown in white in the map) means
that a perturbation of the i-th feature does not change the confi-
dence of the classifier in classifying the spectrum as belonging
to a specific class; a positive value (shown in blue in the map)
means that a perturbation of the i-th feature strengthens the con-
fidence of the classifier’s prediction for the given class (increases
the class score) and a negative value (shown in orange in the
map) reduces it.

4.2. Dimensionality reduction for visualization

The t-distributed stochastic neighbor embedding (t-SNE van der
Maaten & Hinton 2008) is an unsupervised dimensionality re-
duction algorithm used for visualization and data exploration in
many machine learning settings. The goal of dimensionality re-
duction is to map high-dimensional data to a lower-dimensional
space (in our case the plane) while preserving the pairwise dis-
tances of points. This is impossible to do rigorously, because the
high-dimensional space cannot be embedded in the plane, but t-
SNE achieves this approximately by prioritizing the distances of

Table 6: Metrics values on test set for linear, RBF and poly-
nomial kernels for multiclass classification. Columns: values of
precision, recall and F-score. Rows: SVM kernels.

Kernel Precision Recall F-score
Linear 0.948 0.936 0.942
RBF 0.945 0.927 0.935
Poly 2 0.925 0.928 0.927
Poly 3 0.935 0.932 0.933

Table 7: Metrics values on test set for linear, RBF and polyno-
mial kernels for two-class classification. Columns and rows as in
Tab. 6.

Kernel Precision Recall F-score
Linear 1.0 1.0 1.0
RBF 1.0 1.0 1.0
Poly 2 1.0 1.0 1.0
Poly 3 1.0 1.0 1.0

points that are near to each other, so short distances are distorted
the least, while the large-scale structure of the data-set is mostly
lost. This is obtained by minimizing a loss

L = −
∑
i, j

pi j log qi j/pi j (4)

where pi j is a similarity measure between points i and j in the
original high dimensional space and qi j is a (different) similar-
ity measure in the low dimensional space. While pi j decays as
a Gaussian with the distance between point i and j, qi j decays
like a Student’s t-distribution with one degree of freedom, hence
the name of the algorithm. We can see from Eq. 4 that points that
are far from each other in the high dimensional space do not con-
tribute much to the loss, as their pi j goes to zero exponentially
with squared distance. The outcome of t-SNE depends on the
perplexity hyperparameter, which drives the standard deviation
of the Gaussian used to define pi j and can be loosely interpreted
as the typical size of the subgroups expected in a given dataset.
A practical illustration of the effect of varying perplexity can be
found in Wattenberg et al. (2016). Since perplexity can be set at
the discretion of the user of t-SNE, results that depend strongly
on this parameter, such as e.g. clustering structure that shows
up only for a narrow range of values of perplexity, should not
be blindly trusted. In the following we make sure to test a wide
range of perplexity values. We use t-SNE in the scikit-learn im-
plementation (Pedregosa et al. 2011) for Python. While our main
use for t-SNE visualization is to show where the AGN spectra we
selected for inspection through saliency maps are located, which
is particularly useful for misclassified spectra, we will also gain
some useful insight on the structure of our dataset through this
approach, as shown below.

5. Results

5.1. Classifier performance

The metrics values reached by our models on our test set are
reported in Tab. 6 for multiclass classification and in Table 7
for two-class classification. We find that they are comparable to
those obtained on the validation set, suggesting no overfitting is
occurring. In Table 8 can also be seen the value of precision, re-
call and F-score obtained by our best model for the three classes:
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Fig. 1: F-scores for linear SVM on data with incremental noise. Blue: mean F-scores, orange: F-scores for type 1, green: F-scores
for type 2 and red: F-scores for intermediate type.
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(b) Confusion matrix for linear kernel.

Fig. 2: Confusion matrix heatmaps for SVM classification over test set. Horizontal axis: labels predicted by the classifier. Vertical
axis: true labels for the samples.
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Fig. 3: Normalized confusion matrix heatmaps for SVM classification over test set. Horizontal axis: labels predicted by the classifier.
Vertical axis: true labels for the samples.

type 1, type 2 and intermediate type AGN. It is clear that sepa-
rating type 1 and type 2 can be easily done by every kernel, with
the right choice of hyperparameters. On the other hand, the mul-
ticlass classification including intermediate type spectra, turns

out to be a more difficult task to solve, requiring a careful choice
of hyperparameters in order to achieve high performances.

The confusion matrix for the two best models for multiclass
classification can be seen in Fig. 2 and the normalized confusion
matrix in Fig. 2. Even if the linear kernel performs slightly bet-
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Table 8: Precision, recall and F-score obtained by SVM with lin-
ear kernel for every class in the test set. Columns as in Tab. 6.
Rows: AGN types.

Type Precision Recall F-score
1 1.0 1.0 1.0
2 0.96 0.97 0.96
Int. 0.89 0.83 0.86

Table 9: Training computational time for various kernels. Ev-
ery time measurement is calculated by taking the average of 10
training for every kernel. All measures are in seconds. Columns:
SVM kernels. Rows: computational times.

Linear RBF Poly 2 Poly 3
15.13 s 13.34 s 12.94 s 12.96 s

ter than the RBF, both models are able to classify the majority of
the spectra, failing only in the classification of a small number of
type 2 and intermediate type spectra. Specifically 22 intermedi-
ate spectra, over 115 total, were classified as type 2 by the RBF
model and 12 type 2, over 423 total, as intermediate; the linear
model failed to classify 19 intermediate spectra, over the same
115 total, by classifying them as type 2 and 12 type 2, over the
same 423 total, classified as intermediate. To a point, this is an
expected result, because the distinction between type 2 and in-
termediate AGN is difficult in the presence of spectra with low
S/N. Therefore, this uncertainty in the distinction between inter-
mediate and type 2 AGN spectra in presence of a low S/N, can
affect the automated classification result.

5.2. Training time complexity

Every kernel was also evaluated in terms of the computational
time of the training. The computational time is evaluated by tak-
ing the time average of 10 different trainings (using both train
and validation sets for this purpose) for every kernel. The results
presented in Tab. 9 show that the two polynomial kernels are
the fastest, in particular the polynomial of degree 2. Surprisingly
the linear kernel appears to be the slowest. A possible explana-
tion could be the fact that the scikit-learn implementation used
in this work (libsvm-based (Chang & Lin 2011)) is less efficient
for the linear case, as stated in the scikit-learn documentation
(Pedregosa et al. 2011). The documentation also provides an es-
timation of the time complexity, in big O notation, of the SVM
implementation, that scales between O(n f eatures x n2

samples) and
O(n f eatures x n3

samples) (Pedregosa et al. 2011). Every computation
in this step was performed on a Intel(R) Core(TM) i7− 6700HQ
CPU (2.60GHz).

5.3. Visualizing spectra with t-SNE

Thanks to the interpolation used in this work, the AGN spectra
space turns out to be 1000-dimensional, while the original spec-
tra comprised a variable number of points typically of order a
few thousands. The dimensionality of feature space is still, how-
ever, quite high. We then used t-SNE to map our spectra dataset
to a plane. The algorithm was firstly applied to data not scaled
and not mean normalized to compare its results between this case
and the case with features pre-processed as described below.

The result of t-SNE applied only to type 1 and type 2 AGN
can be seen in Fig. A.1. In the embedded plane, type 1 AGN

Fig. 4: t-SNE embedded plane for type 1, type 2 and intermedi-
ate type AGN. Perplexity: 50. Blue points: type 1. Yellow points:
type 2. Red points: intermediate type. Red circles: possible inter-
mediate subgroups identified by the t-SNE algorithm.

and type 2 AGN are clearly separated, with just a few outliers.
The perplexity parameter was set to 50 in Fig. A.1. With lower
perplexities the separation between the two types was somewhat
less clear, but still persisted as can be seen in Figure A.2. Ad-
ditionally, some smaller-scale structures can be appreciated. We
also applied t-SNE to the whole dataset, including also interme-
diate type AGN. The result can be seen in Figure 4 (in this case
as well the perplexity was set to 50). Predictably, intermediate
type AGN cannot be well separated from the other two classes,
in particular from type 2 spectra with which they appear some-
what mixed. However, there is a clear cluster of intermediate
type spectra connecting the regions occupied by type 1 and type
2 spectra, true to the definition of ’intermediate type’. While spu-
rious groups may sometimes appear in t-SNE plots, this is likely
a physically motivated feature, since it persists while varying
perplexity (see below). At the moment we can only speculate
as to the physical meaning of the other two subclusters of inter-
mediate type spectra which appear to gather in distinct islands at
the extremes of the region occupied by type 2 spectra. Perhaps
this should be addressed by direct visual inspection of the spec-
tra, as part of a future work. In Figure A.3 we plot the embedded
spaces for various values of perplexity, showing that the main
results we outlined here are robust for changes of the perplexity
parameter; this is further discussed in appendix.

5.4. Saliency maps

In the following we consider directly the multiclass problem
(Type 1, Type 2, Intermediate) because of its higher scientific
interest and due to the fact that in the two-class problem we
find no misclassified instances, i.e. we have a nominally per-
fect accuracy as discussed above. We thus used saliency maps
to investigate missclassified and correctly classified spectra in
the multiclass problem. The saliency maps for a correctly clas-
sified (Fig. 5) and a missclassified (Fig. 6) spectrum, show that
the main optical lines used by humans to classify AGN spectra
are also recognized by the SVM as important features. In every
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Fig. 5: Intermediate-type spectrum that was correctly classified
by our SVM. The regions of the spectrum shown in blue are
those that most contributed towards its classification as an in-
termediate type, whereas those shown in red would reduce the
SVM classification confidence if their flux were to increase. Sev-
eral regions surrounding lines conventionally used for classifica-
tion appear in blue, suggesting that our SVM model relied, in
this case, on clues similar to those used by human experts. No-
tice in particular how the center of the Hβ line appears in red,
while the tails in blue: this corresponds to the classifier using the
width of the Hβ line for its decision.
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Fig. 6: Intermediate type spectrum missclassified as type 2 with
76% confidence. The regions of the spectrum shown in blue are
those that most contributed towards its classification as a type 2,
whereas those shown in red would reduce the SVM classification
confidence if their flux were to increase.

saliency map we plot the main lines that can be used to classify
AGN spectra (namely [OII]3727, HeI3889, Hδ4101, Hγ4340,
Hβ4861, [OIII]4959 and [OIII]5007) are marked by grey verti-
cal dashed lines. Especially the region around the Hβ line plays
an important role, as can be seen in both Fig. 5 and Fig. 6 where
the center of the line and its tails appear in opposite colors, signi-
fying the opposite effect on the class score of an increase in flux.
In particular Fig. 6 is an intermediate type confidently (76%)
misclassified as Type 2, with the model’s decision depending
mostly on the Hβ line. This is apparent by looking at the re-
gion next to the Hβ line, where the continuum is the reddest
spot in the saliency map. This shows that the misclassification is
largely due to the absence of a broad component in Hβ (we re-
call here that red means that increasing the flux value at that lo-
cation would reduce the confidence in the predicted class). Other
regions of the saliency map that appear to contribute to the mis-
classification are the other hydrogen lines, but their contribution
is very minor as evidenced by the color coding. Still, their pat-
tern of color coding is similar, suggesting that lack of a broad
component is the main driving feature for misclassification here.
To properly classify this spectrum we likely would need to ob-
serve the Hα line, which is not included in the current spectral
range, otherwise an intermediate type 1.9, which would show a
broadening only on the Hα line may appear as a Type 2, hav-
ing a virtually unbroadened Hβ line. These findings should be
contrasted with Fig. 5, where the color coding shows the same
behaviour, but in reverse: there the tails of the Hβ appear colored
in blue, showing that increasing the flux there would lead to an
even more confident classification as intermediate type. This ap-
plies similarly to the other hydrogen lines.

For example increasing the flux in the tails of the Hβ line, i.e.
increasing its width for a given height of the central peak reduces
the classification probability of classifying the spectrum in Fig. 5
as intermediate, while it increases the probability of classifying
it as type 1, as one would expect; increasing the flux in the center
has exactly the opposite effect. This result is expected because a
broader Hβ profile, indicative of a type 1 AGN, would signifi-
cantly change the shape of the spectrum next to the line. Inter-
estingly, the saliency maps show that the continuum between the
Hγ and Hβ also affects the classification results. This is also rea-
sonable, considering how the continuum differs between type 1
spectra and type 2 / intermediate.

In Fig. 7 we show the spectra for which we calculated a
saliency map projected onto the t-SNE Embedded Plane. In the
figure the red panels correspond to missclassified spectra and
the green ones to correctly classified spectra. The corresponding
saliency maps can be seen in Fig. 8 for missclassified spectra,
and in Fig. 9 for correctly classified spectra. The numbering cor-
responds to the one reported in Fig. 7.

For spectra in Fig. 8 where an intermediate had been mis-
classified as Type 2, the cause of misclassification as inferred
from the saliency map is the same as discussed above for Fig. 6.
When the opposite misclassification occurs, we note that the Hβ
line appears often embedded in the underlying stellar absorption,
a situation that is likely not common enough in our training set
for the model to learn to deal properly with it.

Classification probabilities calculated by the SVM classifier
can be seen for misclassified spectra in Table 10 and for correctly
classified spectra in Table 11.

The classification of spectra classified with an high confi-
dence, like the 14-th spectrum in Fig. 9, do not change consider-
ably under small perturbations, as are the one used in this work
to calculate the confidence derivative. This can be interpreted
as the fact that single features, even if perturbed, do not change
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sified spectra for which saliency maps were calculated.

Table 10: Classification probabilities for missclassified spectra
for which saliency maps were calculated. Columns: reference
index (first column), probabilities predicted for every class and
ground truth in the last column. Rows: missclassified spectra
highlighted in red in Fig. 7.

Index Prob. type 1 Prob. int. Prob.type 2 True class
1 0.0 0.41 0.58 Type 2
2 0.0 0.68 0.32 Type 2
3 0.01 0.13 0.86 Int.
4 0.0 0.48 0.52 Type 2
5 0.0 0.07 0.93 Int.
6 0.0 0.14 0.86 Int.

an high confidence prediction, showing that the results obtained
with the SVM are robust.

6. Conclusions

We trained a support-vector machine model to classify AGN
spectra, obtaining fairly accurate results on a test set not seen in
training (F-score of ≈ 94%). While it is tempting to just apply the
trained model to a large sample of spectra, we argue that it is cru-
cial to first understand why the classifier returns the prediction it
does. We have shown that simple interpretability tools, such as
a saliency map, allow us to easily accomplish this, at least on a
spectrum-by-spectrum basis. Even though a general explanation
of the criteria used by a classifier (as would be achieved by some
natively interpretable machine learning method) is in general im-
possible to achieve for a black box classifier, saliency maps make
it possible to understand the workings of an otherwise black-box
classifier in the neighborhood of any given datapoint.

Table 11: Classification probabilities for missclassified spectra
for which saliency maps were calculated. Columns and rows as
in Tab. 10.

Index Prob. type 1 Prob. int. Prob.type 2 True class
7 0.99 0.01 0.00 Type 1
8 0.00 0.02 0.98 Type 2
9 0.00 0.95 0.05 Int.
10 0.00 0.05 0.95 Type 2
11 0.00 0.05 0.95 Type 2
12 0.00 1.00 0.00 Int.
13 1.00 0.00 0.00 Type 1
14 0.99 0.01 0.00 Type 1

We computed saliency maps of a random sample of correctly
classified and misclassified spectra. In general we find that the
regions of the spectrum that most affect the classifier prediction
are similar to those used by a human expert, i.e. those around the
spectral lines [OII]3727, HeI3889, Hδ4101, Hγ4340, Hβ4861,
[OIII]4959 and [OIII]5007. Also the way in which the model
uses the information in these regions conforms to our expecta-
tions: for example it implicitly relies on the width of the Hβ line
which increases the probability of classifying a spectra as type
1. We thus conclude that, at least on the spectra we considered,
our classifier operates pretty much in the same way as a human
would, just automatically and much faster. This is extremely re-
assuring regarding the possibility of applying machine learning
classifiers to the large datasets of spectra that will result from
upcoming surveys, which will not be amenable to direct human
classification.

We also visualized the high-dimensional feature space of the
spectra using the t-SNE algorithm, which maps spectra to points
in a plane while attempting to preserve the local pairwise dis-
tances. We find that type 1 and type 2 spectra are mapped to dis-
tinct regions of the plane, forming two ’islands’ separated by a
clear-cut isthmus. If intermediate-type spectra are also included,
some of them happen to populate the isthmus, forming a bridge
between type 1 and type 2, as expected from the very definition
of intermediate type. However, several intermediate-type spec-
tra end up in the same region occupied by type 2 spectra, ap-
parently mixed with them. It may be that labeling these spectra
as intermediate-type is questionable in the first place. Interest-
ingly, both intermediate-type and type-2 spectra show subclus-
tering structure in the t-SNE plane. While this may be an arti-
fact of t-SNE, it persists when different values of the perplexity
hyperparameter are used (perplexity roughly corresponds to the
expected size of groups in the dataset) which suggests that the
result is genuine. Further work is needed to characterize these
subgroups, perhaps comparing them with proposed AGN sub-
types; we plan to carry this out in a subsequent paper.
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Fig. 8: Saliency maps for missclassified spectra. The regions of the spectrum shown in blue are those that most contributed towards
the classification chosen by our model, whereas those shown in red would reduce the SVM classification confidence if their flux
were to increase.
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Fig. 9: Saliency maps for correctly classified spectra. Color coding and axes as in Fig. 8.
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Fig. A.1: t-SNE embedded plane for type 1 and type 2 AGN.
Blue points: type 1. Yellow points: type 2.

Appendix A: Effects of feature scaling and
perplexity on t-SNE results

The t-SNE algorithm depends on a tunable parameter, perplex-
ity, which loosely corresponds to the expected number of neigh-
bors of the typical point in the dataset under consideration. The
visualization produced by t-SNE can vary strongly as perplex-
ity is changed and there is no general rule on how to pick the
right value of this parameter. This may result in misleading vi-
sualizations, so it is best to try different values of perplexity and
be wary of features (e.g. data subclusters) that only show up in a
narrow range of perplexities (Wattenberg et al. 2016). In Fig. A.2
we explore the effects of varying perplexity between 5 and 40
for type 1 and type 2 AGNs, while in Fig. A.3 we also include
intermediate-type AGNs.

After that, the t-SNE algorithm was fed with scaled and mean
normalized data, that is every feature xi is expressed by:

xi =
xi − µi

si
(A.1)

where µi is the average of the i-th feature and si is the standard
deviation of the i-th feature. The results can be seen in Fig. A.4,
with a perplexity of 50. The result for other values of the per-
plexity can be seen in Fig. A.5.

Overall the outcome is similar to the un-normalized case,
and t-SNE (with the right choice of perplexity) seems to perform
just as well after feature scaling and mean normalization. The re-
sult presented in Figure A.4 can be interpreted even more clearly
as a transition from type 1 spectra, characterized by broad lines
and strong continuum, to intermediate spectra, characterized by
narrower lines and lower continuum, and from intermediate to
type 2 spectra, characterized by narrow lines and almost con-
stant continuum. Of course some intermediate spectra will still
be clustered together with type 1, or more often with type 2 spec-
tra, but this is an expected result. In fact the distinction between
intermediate and type 2 spectra is not strict and spectra of the
two types may appear similar. Nonetheless the figure shows a
clear transition region between type 1 and type 2 populated by
intermediate-type spectra.
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Fig. A.2: t-SNE for type 1 and type 2 with various perplexity
values. Color points as in Fig. A.2.
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Fig. A.3: t-SNE for whole dataset with various perplexity values.
Color points as in Fig. 4.
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Fig. A.4: t-SNE embedded plane for type 1, type 2 and inter-
mediate type AGN spectra scaled and mean normalized. Color
points as in Fig. 4.
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Fig. A.5: t-SNE for whole dataset scaled and mean normalized
with various perplexity values. Color points as in Fig. 4.
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