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a b s t r a c t

Remote health monitoring is an effective method to enable tracking of at-risk patients outside of
conventional clinical settings, providing early-detection of diseases and preventive care as well as
diminishing healthcare costs. Internet-of-Things (IoT) technology facilitates developments of such
monitoring systems although significant challenges need to be addressed in the real-world trials.
Missing data is a prevalent issue in these systems, as data acquisition may be interrupted from time
to time in long-term monitoring scenarios. This issue causes inconsistent and incomplete data and
subsequently could lead to failure in decision making. Analysis of missing data has been tackled in
several studies. However, these techniques are inadequate for real-time health monitoring as they
neglect the variability of the missing data. This issue is significant when the vital signs are being
missed since they depend on different factors such as physical activities and surrounding environment.
Therefore, a holistic approach to customize missing data in real-time health monitoring systems is
required, considering a wide range of parameters while minimizing the bias of estimates. In this
paper, we propose a personalized missing data resilient decision-making approach to deliver health
decisions 24/7 despite missing values. The approach leverages various data resources in IoT-based
systems to impute missing values and provide an acceptable result. We validate our approach via a
real human subject trial on maternity health, in which 20 pregnant women were remotely monitored
for 7 months. In this setup, a real-time health application is considered, where maternal health status
is estimated utilizing maternal heart rate. The accuracy of the proposed approach is evaluated, in
comparison to existing methods. The proposed approach results in more accurate estimates especially
when the missing window is large.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Remote health monitoring systems broadly extend the bound-
aries of everyday healthcare access particularly for at-risk popu-
lation groups including pregnant women [1] and senior adults [2]
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who may require additional observation. These systems are very
promising in the healthcare domain as the individuals can be
continuously monitored for early detection, preventive care, and
early intervention. The key function of such healthcare systems is
to ubiquitously observe and analyze users’ health conditions, and
subsequently deliver medical early-warning as well as health and
wellness coaching.
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Fig. 1. An IoT-based system for remote health monitoring.

Fortunately, recent advances in Internet-of-Things (IoT) tech-
nologies have paved the way for enabling such monitoring ser-
vices with 24/7 availability. IoT is a growing network of intercon-
nected objects that envision a shared knowledge for smart and
autonomous decision-making and actuation [3–6]. In the health-
care domain, IoT systems leverage different sensing, computing
and communication resources.

As illustrated in Fig. 1, the architecture of IoT-based sys-
tems can be partitioned into three main tiers [7]. First, a Sensor
network includes wearable and mobile sensors (i.e., Body Area
Network) recording health and context data, by which the user’s
condition is perceived. Second, a Gateway acts as a bridge be-
tween the Sensor network and remote servers. Such a device
(e.g., an access point) mostly performs data transmission and
conventional services such as protocol conversion. However, al-
ternative network infrastructures (e.g., smart e-health gateways)
are proposed to incorporate intelligent techniques into the edge
of the network [8–10]. Third, a Cloud Server offers broadcast-
ing, data storage and a wide range of data analytic techniques
(e.g., machine learning), through which healthcare services and
applications are obtained [11].

In the real-world domain, missing data is one of the biggest
challenges among the IoT-based health monitoring systems. Miss-
ing data refers to an entry in data where no value is available.
Such missingness often occurs over the process of health mon-
itoring, in particular long-term screening, due to failure in data
collection and data transmission, as the sensor(s) might detach
from the skin, lose connections with gateway devices or run out
of batteries. Moreover, in case of long-term monitoring, the user
might refuse or forget to use wearable sensor(s) all the time. This
inconsistent and incomplete data collection leads to failure in
decision making and consequently the mission of the application.

There is a large body of literature on the analysis of missing
data in databases [12,13]. However, most of the conventional
techniques are insufficient for real-time health monitoring sys-
tems since they neglect the variability of the missing data in
estimations. This issue is especially significant in primary vital
signs (e.g., heart rate) as the variations are considerably large,
influenced by different factors such as health conditions, physical
activities and surrounding environment. Clearly, these techniques
generate biased estimates and subsequently cause high error
rates in health applications. In consequence, a missing data re-
silient method is required to consider a wide range of parameters
while minimizing the bias of estimates. We believe such a solu-
tion can be realized for real-time health monitoring systems by
holistically leveraging IoT-enabled concepts such as multi-modal
data collection and personalization.

In this paper, we present a personalized missing data resilient
decision-making approach to continuously deliver health deci-
sions despite missing values. This approach uses a Multiple Im-
putation method [12,13] reinforced with various data resources
(e.g., context information) in IoT-based systems to estimate miss-
ing values. Subsequently, a personalized pooling method is in-
troduced to provide an acceptable decision according to states

of the user and monitoring system. Our approach is proposed
for a real human subject trial on maternal health where 20
pregnant women were remotely monitored for 7 months (i.e., 6
months of pregnancy and 1 month postpartum) beside normal
check-up visits in maternal health clinics. In this case study, we
concentrate on a real-time health application, in which maternal
health status is remotely estimated using maternal heart rates.
Major contributions of this paper are as follow:

• A personalized missing data resilient decision-making ap-
proach is proposed to continuously deliver health decisions
despite missing data.
• The approach is presented for a real human subject trial on

maternal health, focusing on a real-time health application
where maternal health statues are remotely estimated.
• Personalized models are defined and used exploiting mater-

nal (medical) history and context data to impute the missing
values.
• A personalized pooling method is introduced to fuse the

values and deliver health decisions leveraging user’s data.
• The proposed approach is evaluated in terms of accuracy of

the health decisions, in comparison to existing missing data
analysis methods.

The remainder of the paper is organized as follow. In Sec-
tion 2, we outline background and related work of this research.
Section 3 describes the proposed solution. The demonstration
and evaluation are provided in Section 4; and finally, Section 5
concludes the paper.

2. Background and related work

In this section, we first present our case study on maternal
health monitoring, including a maternal health indicator to re-
motely estimate health conditions of pregnant women. Then, we
delve into the missing data concept and possible techniques of
dealing with this issue.

2.1. Maternal health monitoring

The maternal body undergoes a variety of changes through-
out pregnancy, particularly in the cardiovascular system. Cardiac
output and compliance elevation is an example, which is re-
flected by different vital signs such as stroke volume and heart
rate [14,15]. These changes are parts of physiological adapta-
tions during pregnancy and are mostly normal. However, they
are affected by pre-pregnancy and pregnancy conditions and
complications. On the one hand, diseases and serious conditions
such as maternal obesity, diabetes and depression considerably
impact pregnancy and elevate vital signs (e.g., heart rate and
blood pressure), increasing risk factors for various health prob-
lems in the mothers and their future offspring. On the other
hand, a healthy lifestyle consisting of an adequate diet and regular
physical activity engagement could be beneficial [16,17].

To investigate such physiological changes in pregnancy, long-
termmonitoring and studies of pregnant women are desirable [18,
19], assessing their health conditions and providing efficient rec-
ommendations and guidelines. In this context, we conduct a real-
time maternal monitoring and concentrate on heart rate variation
and physical activity of pregnant women. This study includes
7 months monitoring of 20 pregnant women, in which heart rate,
steps, hand movements, sleep level and ascending/descending
stairs are continuously collected via a smart wristband. The pa-
rameters should be mapped into an abstracted level of data (i.e., a
health score) to continuously and explicitly indicate her maternal
health status.
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Therefore, a maternal health indicator is selected to remotely
estimate the health condition while the user is engaging in var-
ious physical activities in everyday settings. This indicator lever-
ages a set of guidelines, rules and recommendations that state the
target ranges of heart rate in different phases of pregnancy [14,
16,17,20–22]. In our case study, this rule-based indicator tailors
continuous monitoring of heart rate, physical activity, personal-
ized data (e.g., baseline heart rate values at the beginning of the
monitoring) and meta-data (e.g., gestational week and maternal
age) to estimate the health decision. The decision is a warning
sign ranging from 0 to 3, where 0 indicates a normal health
condition and 3 shows the highest health deterioration [23,24].

2.2. Missing data

In the first place, it is important to understand the proper-
ties and patterns of the missing values for developing effective
methods in real-world applications. Various missingness mech-
anisms cause missing values in the health monitoring systems,
interrupting real-time decision-making. As proposed by Rubin
et al. [12,13,25], such missingness mechanisms generally stand
into three main categories. (1) Missing Completely At Random
(MCAR). The missing value is independent of the data values. For
example, unpredictable data loss occurs during the monitoring in
case of sensor failure or loss of Internet connection. (2) Missing At
Random (MAR). The probability of data to be missing is related to
available information. However, the missingness does not depend
on the missing values. For instance, the vital signs are more likely
to be missing in the evening, as the sensors are disconnected
to be charged when the user is at home. (3) Not Missing At
Random (NMAR). It occurs when the missingness depends on the
missing values. For example, a pregnant woman removes the
wearable devices while she is smoking, obscuring the direct effect
of smoking on the vital signs.

There is a broad variety of missing data analysis methods
in the literature, aiming to provide estimates with acceptable
bias (i.e., distance between the estimate and the true value) for
missing values [13,26–29]. Such analysis methods have their own
strengths and restrictions. They are selected according to target
applications with different requirements (e.g., desired accuracy)
and limitations (e.g., the amount of missing data and the missing-
ness mechanisms). In the following, we outline various missing
data analysis methods available in the literature.

Deletion methods are the most straightforward approaches
for handling missing data, where records with missing values
are eliminated. Listwise deletion is one of the methods where
a record is dropped out from the analysis if it has at least one
missing attribute. This method results in a complete dataset al-
though it reduces the amount of data. Similarly, Pairwise deletion
is another method in which a record is omitted on an analysis-
by-analysis basis. This method minimizes the deletion, in contrast
with the Listwise deletion, as records with missing values are
kept if their under-analysis attributes are not missing. Such dele-
tion methods are restricted to MCAR, otherwise they produce
biased estimates [28,30–32].

Despite the deletion methods, imputation-based methods fill-
in the missing values exploiting available (i.e., observed) data.
There are different imputation methods in the literature including
mean imputation, Last Observation Carried Forward (LOCF) im-
putation, regression imputation, hot-deck imputation, cold-deck
imputation and K-Nearest-Neighbor (KNN) imputation [12,33–
35]. Unfortunately, such single imputation methods might lead
to biased estimates, as they neglect the variability of the miss-
ing values. Additionally, Multiple Imputation (MI) is a modern
missing data imputation method that complete the dataset, con-
sidering imputation uncertainty [12,13,36–38]. MI includes three

main steps as Imputation, Analysis and Pooling. First, different
estimates (n ≥ 2) for the missing values are created via different
procedures (e.g., linear regression and hot-deck). Second, the
completed datasets are analyzed. Last, the results are integrated
into one final output. In contrast with single imputation methods,
MI is applicable for both MAR and MCAR.

In addition to the imputation-based methods, model-based
methods create a model of the observed data to estimate the
missingness. For example, Maximum Likelihood Estimation (MLE)
method utilizes available data to approximate parameters (e.g.,
mean and standard deviation of a log-likelihood function) that
fits the data [13,39,40]. Missing values can be estimated via
the obtained model. MLE provides unbiased estimates for MAR
and MCAR. Furthermore, there are model-based methods such as
pattern-mixture, selection models and shared-parameter models,
that are able to yield estimates for NMAR. Such methods are ap-
propriate for studies where data are recorded repeatedly through
time [41–44].

Moreover, machine learning-based methods tailor available
data (i.e., attributes) to provide a hypothesis (i.e., classifier). The
hypothesis could assign new values to missing attributes. Thus
far, different approaches including Artificial Neural Networks
(ANN), Support Vector Machine (SVM) and Generic algorithms
have been evaluated for missing data estimations [45–50]. On
the other hand, some machine learning-based methods handle
missingness in a dataset without imputing values. In such meth-
ods, a classifier is trained by observed data including missing
values, and subsequently decision making is performed. However,
the missingness and poor correlation between available attributes
might decrease the performance of the methods. These learning-
based methods (e.g., Decision Tree) have been investigated in
different studies [51–54].

In addition, there are studies to investigate missing data in IoT
devices and wireless sensor network, featuring a multi-sensors
data collection. In this regard, a probabilistic method has been
proposed to estimate the missing value considering similarity in
neighboring sensors data [55]. Similarly, missing, corrupted and
late-reading data has been tackled in streaming data [56–58].

3. Missing data resilient decision-making approach

In this section, we tackle the missing data issue in IoT-based
health monitoring systems, which are incapable of providing
services when sensory data are unavailable or unreliable. In this
regard, we, first, outline which missing data analysis techniques
can be suitable for these systems. Then, we present the definitions
and functions of our personalized decision-making approach via
a case-study on maternal health monitoring.

As mentioned in Section 2.2, there is a wide range of methods
available for missing data estimations, targeting different applica-
tions and missingness mechanisms. Many of the available tech-
niques are, nevertheless, inappropriate for real-time decision-
making of IoT-based health monitoring systems. Deletion meth-
ods are not applicable in such systems as the decision making is
interrupted while there is a missing input. Moreover, the decision
making is vulnerable to biased values when single imputation
methods are exploited. LOCF imputation is also a straightforward
method used for longitudinal studies, which fills in missing values
leveraging the pattern of gradual changes in observed data. This
method is inappropriate, due to underestimating the variation of
the missing values. In addition, conventional multiple imputation,
model-based methods (e.g., Maximum Likelihood Estimation) and
machine learning-based methods are other possible alternatives.
In health monitoring systems, these methods are insufficient
for data with high variations such as heart rate, which highly
depends on different factors.
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Fig. 2. Health decision making while the primary data (from primary sensor) is missing. In this setup, context data (from Sensor 1 to Sensor n), history data and
user’s feedback are utilized in the computation.

In contrast, auxiliary information can be utilized in missing
data analysis techniques to mitigate the bias of the estimates [59–
62]. Auxiliary information is additional data or meta-data that
correlates with the value of interest (i.e., missing value). The use
of such information in a missing data analysis technique is suit-
able for IoT-based monitoring systems due to their capability of
heterogeneous data collection. Moreover, this information is very
promising in real-time health decision-making as the missingness
mechanism might be MAR or NMAR.

The IoT-based systems provide a great opportunity to record
such auxiliary information, also named as context, along with the
primary data collection throughout the monitoring. Context is the
information that describes the environment and condition of the
system [63]. Context-awareness in computing enables the IoT-
based systems to observe and understand the sensory data and to
be aware of their own states and surrounding environment, pro-
viding robust and adaptive behavior in different conditions [64,
65]. In addition, other meta-data such as medical records and user
feedback can be manually added to the computations to improve
the system’s performance.

To incorporate context-awareness into our missing data re-
silient decision-making approach, we believe that Multiple Im-
putation (MI) method can be an appropriate alternative. In this
regard, the computation of this decision-making approach is par-
titioned into three main components as Imputation, Analysis and
Personalized Pooling, estimating a real-time health score while the
sensory data is missing. This function is depicted in Fig. 2, where
the data collected from one sensor is missing. In the rest of this
paper, we entitle this sensor as primary sensor and its data as
primary data; and other sensors are named as secondary sensors
which acquire context data and other information including other
vital signs.

We thoroughly present these three components in the fol-
lowing and clarify the definitions and functions of our approach
via a case study on maternal health during pregnancy. In this
context, we concentrate on a maternal health indicator (see Sec-
tion 2.1) which remotely estimates the degree of maternal health
condition while the pregnant woman is engaging in various phys-
ical activities in everyday settings. This indicator tailors sensory
data and meta-data to estimate the health score (i.e., warning
sign). However, its functionality is limited to the availability of
the real-time heart rate value (i.e., primary data). The proposed
decision-making approach allows this health indicator to accept-
ably operate even if the heart rate is missed due to interruptions
in data collection or data transmission.

3.1. Imputation

A number of different methods are exploited to impute the
missing value (i.e. maternal heart rate in our case)m times, where

m ≥ 2. Therefore, m values are estimated leveraging different
resources, each of which holds a considerable correlation with the
primary data that is missing. The method of selection depends on
the nature of the data and the type of auxiliary information. In
the following, we outline methods to impute maternal heart rate
values throughout the monitoring.

3.1.1. Short-term data
First, short-term history of data (i.e., preceding neighbors)

can be utilized for the data imputation. These values correlate
strongly with the missing value, particularly when the context
situation and the individual condition are constant. Autoregres-
sive models [66] are conventionally used for such a sequence of
data, in which the current value is estimated from n preceding
values. The autoregressive model of order n is defined as:

xt = fs(t, β)

= β0 + β1xt−1 + β2xt−2 + · · · + βnxt−n (1)

where xt−1, xt−2, . . . , xtn are the previous n data, and β0, β1, . . . ,
βn are the parameters of the model estimated.

In our case study, non-missing heart rate values from previous
weeks are selected as the training data to estimate the parameters
via a regularized least-square (i.e., ridge regression) desired to
minimize:
k∑

i=1

[xi − fs(t, β)]2 + λ

n∑
j=0

β2
j

where k is the number of training data, xi indicates the actual
heart rate, fs(.) estimates the heart rate from preceding data,
and λ > 0 is a regularization parameter [67,68]. The model is
periodically updated to consider variation of maternal heart rate
throughout pregnancy.

The estimated value is added to the heart rate set, so it is
considered as a preceding neighbor for the next iteration. When a
considerable number of data items are missing, the estimates be-
come unreliable in this imputation as the errors are accumulated.
Root-mean-square error (RMSE) of the heart rate estimates for a
pregnant woman is shown in Fig. 3. As indicated, the RMSE values
increase when a large portion of data is missing. In a similar man-
ner using neighboring heart rate values, the unreliability of heart
rate estimation when the missing window is large is investigated
in [69]. In consequence, this imputation is appropriate only when
the amount of missing data is small.

3.1.2. Context data
Associations between the primary data and context informa-

tion can be exploited to impute the missing values. This can be
indicated as:

x = fc(t, γ ) (2)
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Fig. 3. RMSE of the estimates of a pregnant woman’s heart rate (1714 iterations)
using the autoregressive model.

Fig. 4. Weekly average of maternal heart rate values of 10 pregnant women
during sedentary time in the second trimester.

where γ is the context-related data and fc(.) is the function that
approximates the heart rate value. In our case study, context
data are the maternal physical activities, including 7 states as
light sleep, deep sleep, sedentary, very light activity, light activity,
moderate activity and vigorous activity. They are specified via
steps and hand movements of the user [70,71]. Such physical
activities are associated with the heart rate values and their
variations.

However, this association is specific for each individual, so
a personalized model is required. To show the differences in
maternal heart rate, we select data from 10 pregnant women
as examples. Weekly average heart rate values of these women
during the sedentary time in the second trimester (i.e., gestational
weeks 14–26) are illustrated in Fig. 4. As indicated, the heart rate
ranges are not overlapped in some cases. Average heart rates of
M4 vary from 62 to 72 beats/min althoughM3 average heart rates
are between 87 and 96 beats/min. Moreover, such a model should
be dynamically updated frequently (e.g., every week or every two
weeks) because conditions of each pregnant woman are changing
as the pregnancy advances. Fig. 5 illustrates such variations in
average heart rates of one pregnant woman in different activities
from gestational week 14 to postpartum week 4.

In our context, Eq. (2) can be defined as:

x = γ (t)TH (3)

Fig. 5. Weekly average of maternal heart rate values of a pregnant woman in
different activities from week 14 to postpartum week 4.

where γ (t) = [p1(t), p2(t), . . . , p7(t)] represents which of the 7
physical activities is allocated to t , where pk(.) is either 0 or 1
and:

p1(t)+ p2(t)+ · · · + p7(t) = 1

H = [h1, h2, . . . , h7] also indicates the most probable heart
rate value in each state. This vector is uniquely defined for each
individual according to non-missing data of previous weeks of
monitoring.

3.1.3. Lifestyle data
Similarity in heart rate patterns due to repetitive habits (i.e.,

user’s lifestyle) is another resource to impute missing values.
These patterns could be manually added by users (feedback) or
automatically extracted from the data. This is significant in the
monitoring particularly when the context data is incomplete or
not fine-grained enough. For example, we access to the physical
activity of the pregnant women, but no information is available
regarding eating and drinking habits (e.g., time and duration of
meals), which affect user’s heart rates [72]. With this intention,
the missing value can be obtained via a function as:

x = fl(φ) (4)

where φ holds history data and/or feedback.
In our case, non-missing heart rate values of the current time

window are compared with previous time windows, and the
window with the most similar heart rate pattern is extracted.
Then, the imputation is fulfilled using heart rates of the most
similar window. In this regard, Eq. (4) can be determined as:

x = xk (5)

where xk is the corresponding heart rate value of the window k,
which has the least distance to the current window. Hence, k is
specified via:

argmin
k∈φ

dist(k)

which dist(.) is a distance function defined as:

dist(k) =
n∑

i=1

∥xi0 − xik∥2

where n is the window length, and xi0 and xik are available heart
rate values in the current window and window k, respectively.

Moreover, additional information can be manually collected to
select the most similar heart rate pattern. Such information in-
cludes self-reported physical activities or events marked in user’s
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calender, from which similar windows are selected to perform
data imputation. For instance, the user participates in a certain
exercise course every odd day from 2 pm to 4 pm Heart rate data
of this exercise can be leveraged if the heart rate value is missed
in this activity in the future.

3.2. Analysis

The rule-based maternal health indicator is implemented,
mapping the sensor data into an abstracted decision. It repeats
m times per iteration, as m versions of the missing value are
estimated in the Imputation part. Therefore, m decisions are
generated in each iteration. m equals to 3 in our case study as the
missing heart rate value is filled via the 3 imputation methods.
However, the decisions might be diverse due to inaccuracy and
uncertainty in the imputation methods.

The rule-based indicator generates a warning score between
0 and 3 for each heart rate value. Similar to a typical obstetric
Early Warning Score (EWS) [23,24], different ranges are defined
for the heart rate value to obtain the score. The ranges are defined
for each pregnant woman according to personalized data such as
baseline heart rate at the beginning of the monitoring. In addition,
a set of guidelines and rules are utilized [14,16,17,20–22]. For
examples, heart rate should not exceed 140 (beats/min) while the
mother engages moderate and vigorous activities; it should not
be less than 40 (beats/min) during sleep and sedentary time; and
heart rate likely rises 20% till the end of pregnancy. Note that this
function is assumed to indicate the functionality of the proposed
approach, and it can be replaced with other classifiers.

3.3. Personalized pooling

A pooling method is performed to integrate the m decisions
into a final decision (i.e., dfinal). An arithmetic mean is a conven-
tional method in this case. However, it might be inappropriate
as the decisions with different errors are treated equally, even if
some decisions hold high error rates.

We propose a personalized pooling method to alleviate the im-
pact of the errors in the final decision. In this regard, a weighted
arithmetic mean is exploited to pool the decisions, in which the
weights become personalized throughout the monitoring lever-
aging user’s data. In each iteration, the weights are determined
and selected according to the states of the user and monitoring
system. The final decision is obtained via a dot product of the
vectors of the m decisions and the personalized weights that
satisfies:

w1 + w2 + · · · + wm = 1

When the primary data is available, the weights are calculated
by the squared error between actual and estimated values. How-
ever, as conditions of the user and system are highly dynamic
(e.g., state of the user and size of the missing window), general
weights are insufficient, minimizing the sum of squared errors
over all time points. In this regard, we define different states for
each imputation and calculate the sum of squared errors over the
corresponding points in each state. In the following, we outline
how states and weights are defined in our case study with the 3
imputation methods.

The first imputation is related to the short-term data. The
error of the imputation highly depends on the portion of missing
data, as indicated in Fig. 3. Therefore, the weights should be
determined for different missing window sizes. A missing win-
dow refers to the interval between the current point and the
last point that heart rate data was recorded. When the missing
window size is i, the last i value(s) of heart rate data including
current heart rate and previous values are removed; the current

heart rate is imputed; and the weight is determined using the
errors in this iteration and previous iterations. This process is
repeated n1 times with different sizes of missing window, where
the maximum missing window size is n1. In consequence, a set
of weights (i.e., W1 = {w1,1, . . . , wn1,1}) is obtained for the
n1 missing windows.

The second imputation is associated with the context data. The
uncertainty of the heart rate is significant in this imputation as
the most probable heart rate is selected (see Section 3.1.2). This
uncertainty (e.g., variance) are diverse in different physical activ-
ities. For instance, in most cases, the variance of deep sleep heart
rate is considerably less than the variance of heart rates of vig-
orous activity. Therefore, the squared errors should be severally
calculated for each physical activity to obtain weights—i.e., W2 =
{w1,2, . . . , wn2,2} where n2 is the number of physical activities. As
there are 7 physical activities, n2 is 7 in this monitoring.

The third imputation is related to the lifestyle data. Meta-data
including the weekly schedule of the user is considered to define
different time states (i.e., n3 states). For example, the weight
for weekend-days (as a time state) is defined, considering the
squared error of the time points during weekend days. In this
regard, a set of weights (i.e., W3 = {w1,3, . . . , wn3,3}) is calculated
for the n3 time states in the monitoring.

The three weights vectors, W1, W2 and W3, are dynamically
updated in iterations that the heart rate data is available. The dy-
namic weights determination of the personalized pooling method
when the heart rate is available is illustrated in Fig. 6.

In contrast, in the iterations with the missing heart rate, the
heart rate is imputed by the 3 imputation methods, and the
health scores (i.e., d1, d2 and d3) are calculated. The corresponding
weights (i.e., wi1,1, wi2,2 and wi3,3) are selected from the three
weights vectors according to the current missing data size, phys-
ical activity and time state, respectively (see Fig. 7). Finally, the
health decisions are pooled using the selected weights as:

dfinal = wi1,1.d1 + wi2,2.d2 + wi3,3.d3 (6)

Algorithm 1 also indicates the function of the personalized pooling
when the heart rate is available and is missing.

4. Demonstration and evaluation

In this section, we present our case study on maternal health,
where 20 pregnant women have been remotely monitored for
seven months. First, we outline the study design and recruit-
ment in this monitoring. Next, we represent the setup, data
collection and data analysis in our IoT-based system. Moreover,
the proposed approach is tested and evaluated by comparing
the approach with conventional methods. Finally, strengths and
weaknesses of the approach are discussed.

4.1. Study design

The monitoring was conducted on primiparous pregnant
women who visited one of two maternity outpatient clinics in
Southern Finland between May and September 2016. Pregnant
women in Finland are provided a free of charge ultrasound ex-
amination at the end of the first trimester. The pregnant women
were recruited in this appointment considering the following
criteria.

1. The participant expected her first child.
2. The participant was at least 18 years old.
3. The pregnancy was singleton.
4. The pregnancy was less than 15 gestational weeks
5. The participant understood Finnish or English
6. The participant owned a PC, tablet or Smartphone to be

able to synchronize the smart wristband

Consequently, twenty participants were selected as the sample
size was appropriate for a pilot study [73].



I. Azimi, T. Pahikkala, A.M. Rahmani et al. / Future Generation Computer Systems 96 (2019) 297–308 303

Fig. 6. The personalized pooling when heart rate is available (weights determination).

Fig. 7. The personalized pooling when heart rate is missing (weights selection).

After the ultrasound examination, the eligible women were
met face-to-face once and after signing the informed consent, the
device and instructions were provided. Background information
was collected via a questionnaire. Some background information
is represented in Table 1. Afterward, Garmin Vivosmart R⃝ HR [74]
as the selected wristband for this study along with instructions
has been delivered to the pregnant women. During the follow-up,
the participants were interviewed via telephone.

4.2. Setup

An IoT-based system was tailored for this study, determining
the Garmin wristband as the sensor device, by which physical
activity and heart data were collected. The Garmin wristband
is a small and light water-proof band with considerable battery
life [74], so it can be an appropriate choice considering the
feasibility of the monitoring. More details regarding the feasibility
of this study can be found in [75].

The wristband includes one built-in optical-based sensor to
record a photoplethysmogram (PPG) signal enabling real-time
heart rate measurements [76] Moreover, it consists of an inertial
measurement unit (IMU) to track steps, stair ascending/descending
and hand movements. In our setup, the data collection rate
was set as 1 sample per 15 min, so a new data record was
available in every 15 min. A 24-h sample of such data with non-
missing values collected from one pregnant woman is illustrated
in Fig. 8 (a,b,c,d).

The pregnant women were asked to periodically send the data
to remote servers through a gateway device, which was a smart-
phone or a PC. Most of the data analysis was performed in the
cloud servers, amalgamating sensor data to extract new informa-
tion such as health status and physical activity [77]. For the data
analysis, we used a Linode virtual private server (VPS) [78] with
two 2.50 GHz Intel Xeon CPU (E5-2680 v3), 4 GB memory and
SSD storage drive. Fig. 8 (e,f) shows such information abstracted
from the data in Fig. 8 (a,b,c,d). As indicated, the health score was



304 I. Azimi, T. Pahikkala, A.M. Rahmani et al. / Future Generation Computer Systems 96 (2019) 297–308

Algorithm 1 The function of the personalized pooling throughout
the monitoring.
1: Initialize:

n1 ← maximum missing window size
n2 ← number of physical activities
n3 ← number of time states
{w1,1, ..., wn1,1}, {w1,2, ..., wn2,2}, {w1,3, ..., wn3,3}

2: while monitoring is Active do
3: xtrue ← data from the heart rate sensor
4: if xtrue ̸= NULL then
5: dfinal ← HealthIndicator(xtrue)
6: for i1 = 1 to n1 do
7: remove last i1 value(s) of heart rate data
8: x1 ← fs(t, β)
9: ei1,1 ← squared error of the corresponding heart rate data
10: wi1,1 ← 1− Normalize(ei1,1)
11: end for
12: i2 ← determine the current physical activity
13: x2 ← fc (t, γ )
14: ei2,2 ← squared error of the corresponding heart rate data
15: wi2,2 ← 1− Normalize(ei2,2)
16: i3 ← determine the current time state
17: x3 ← fl(t, φ)
18: ei3,3 ← squared error of the corresponding heart rate data
19: wi3,3 ← 1− Normalize(ei3,3)
20: else
21: x1 ← fs(t, β), x2 ← fc (t, γ ), x3 ← fl(t, φ)
22: d1, d2, d3 ← HealthIndicator(x1, x2, x3)
23: i1 ← determine the current missing window size
24: i2 ← determine the current physical activity
25: i3 ← determine the current time state
26: Normalize(wi1,1, wi2,2, wi3,3)
27: dfinal = wi1,1.d1 + wi2,2.d2 + wi3,3.d3
28: end if
29: end while

0 when the subject was sleeping. However, it varied between 0

to 2 while she engaged in different physical activities.

Table 1
Background information of the twenty selected participants.

âĂĺ
Statement Type Value

Age at pregnancy (years) – 25.7± 4.96
Gestational age at recruitment (weeks) – 12± 2.1
Pre-pregnancy Body Mass Index – 25.0± 6.45

Quantity of pre-pregnancy physical activity in
week

Once or less 3 women
Sometimes 5 women
Almost daily 12 women

Quality of pre-pregnancy physical activity in
week

Light 8 women
Moderate 11 women
Vigorous 1 woman

Employment status
At work 13 women
Student 5 women
Unemployed 2 women

Smoking status Pre-pregnancy 7 women
In-pregnancy 5 women

The proposed decision-making approach was implemented
with a Python service in the cloud server to estimate health
status of 15 pregnant women. Five of the pregnant women were
dropped out of this analysis because the missing data was too
large (i.e., no data for at least 50% of the monitoring days). A view
of heart rate with missing values and estimated health scores for
one day of monitoring is depicted in Fig. 9. The heart rate values
are missed in two time windows with lengths of 75 and 180 min.
The blue circles in Fig. 9(b) are the scores when the heart rates are
available; and the red trinagles indicate estimated health scores
while the heart rates are missing. Note that, this approach is not
restricted to the cloud layer settings and can be pushed to the fog
layer to enable local decision making.

In addition, manual data collection was implemented to enrich
the aforementioned data collection and decision making. In this

Fig. 8. A 24-h sample of (non-missing) data collected from one pregnant women in gestational week 34 (day 244th). (a), (b), (c) and (d) indicate the variables
collected via the wristband; and (e) and (f) are the physical activities and health decisions calculated in the cloud server.
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Fig. 9. A 24-h sample of heart rates with missing values and estimated health scores. The blue circles (solid line) represent the health scores obtained from the
available heart rates while the red triangles (dashed line) indicate the estimated scores when heart rates are missing.

regard, semi-structured phone interviews were fulfilled once or
twice in a month. Such interviews contained a set of questions
to indicate the self-report physical activity on a scale 1 to 5 and
certain events that considerably influence their sleep or activities.
Pregnancy-related data including blood pressure, weight gain and
oral glucose test were also obtained from the maternity card and
hospital patient records.

4.3. Ethics

The monitoring was performed in accordance with the code of
ethics of the World Medical Association (Declaration of Helsinki)
for experiments involving humans. Moreover, it was approved by
the joint ethics committee of the hospital district of Southwest
Finland (35/1801/2016) and Turku University Hospital (TYKS).
In addition, the permission to employ Garmin Vivosmart R⃝ HR
(Garmin Ltd, Schaffhausen, Switzerland) in this monitoring was
acquired from the manufacturer Garmin Ltd.

4.4. Accuracy assessment

We validate the performance of our personalized decision-
making approach in terms of accuracy. In this regard, a cross-
validation technique is used to discard a window of the heart rate
and estimate the health score. The estimated score is compared
with the actual score obtained via the actual heart rate value.

To evaluate the proposed approach, other existing methods
are selected to impute missing heart rate values and extract the
health scores. First, the KNN as a single imputation method is
utilized, where the missing heart rate is estimated from the k pre-
ceding non-missing values by weights proportional to the inverse
of the distance to the missing value. Second, the autoregressive
model is used leveraging preceding neighbors. Third, the MLE
as a model-based method is used, in which the missing value
is extrapolated via a Sigmoid function. Fourth, the SVM (with
an RBF kernel) as a machine learning-based method is tailored,
imputing the missing value from the variation of the history of
data (i.e., last two-weeks data). The methods are implemented
using the SciPy [79] and Scikit-learn [80] libraries in Python.

In the first evaluation, we investigate the distance (i.e., RMSE)
between the estimations and actual health scores with different
windows of missing heart rate. The RMSE values are illustrated
in Fig. 10 while the missing window (i.e., x axis) varies from
15 min to 6 h. As indicated, when the missing window is small,
the proposed method, autoregressive and KNN have the lowest

RMSE; and the RMSE values of the SVM and logistic MLE methods
are higher. In contrast, in large missing windows, the RMSE values
of the autoregressive and logistic MLE and KNN methods are
significantly high, whereas the RMSE of the proposed method is
the lowest.

In addition, we evaluate the performance of the methods by
determining the C-index (i.e., concordance index) [81] of estima-
tions in different missing windows. C-index represents how well
health scores are estimated considering the correct rank/order of
outcomes. In this experiment, the scores as well the outcomes are
in ascending order, varying from 0, as the normal health status,
to 3, as the highest health deterioration. The C-index is defined
as:

1
|{(i, j)|yi > yj}|

∑
yi>yj

H(ŷi − ŷj)

where yi and ŷi indicate the actual and estimated decisions (i.e.
scores), respectively; and H(.) is the Heaviside step function.

For 15 pregnant women monitoring data, the estimation pro-
cess is randomly repeated in 2040 iterations, in which the health
scores are obtained considering different missing windows. Even-
tually, the C-index values of the 5 methods are determined. As
illustrated in Fig. 11, the proposed method’s C-index is approxi-
mately 0.82 when the missing window is small, and it decreases
to 0.7 when the missing window is considerably large. On the
contrary, C-index of SVM and logistic MLE are less than the
proposed method’s C-index in all cases; and the C-index of the
autoregressive and KNN methods drop to less than 0.55 while the
missing window is large.

4.5. Discussion

The proposed approach results in more reliable and more
accurate estimates compared with the conventional methods. As
aforementioned, deletion methods are unfit for real-time decision
making. Moreover, traditional imputation methods, model-based
methods and machine learning based methods underestimate
variability of the missing heart rate values, delivering estimates
with high error rates. This is in accord with our findings in the
previous section. In contrast, the proposed approach considers
this variability in data using context information, minimizing the
bias of estimates. This enhancement is particularly significant
when there is a high correlation between context and the missing
heart rate.
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Fig. 10. RMSE values of the health scores estimations with different methods while the missing window varies from 15 min to 6 h.

Fig. 11. C-index of the estimations with different methods while the missing window varies from 15 min to 6 h.

One of the major concern of using auxiliary information is
a low correlation between context information and the missing
data. As a result, the estimates could be biased, reducing the
precision of the output [61]. The proposed approach mitigates
such a problem in decision makings through the personalized
pooling method. In this regard, a small value is allocated to the
related weight when the correlation is insignificant.

Another issue in multi-sensor health IoT systems is the occur-
rence of missingness in more than one variable. In such cases,
the imputation of the proposed approach is repeated n × m
times, where n is the number of missed variables and m is the
number of different imputation methods for each variable. In
each imputation, one missed variable is considered as the primary
data, and other non-missed variables are the secondary data
(i.e., auxiliary information). Next, n×m decisions are generated,
and consequently the decisions are pooled.

In addition, the proposed approach is capable of handling
additions or changes in the health monitoring, adding new im-
putations to the approach or updating the existing imputations.
This modular approach, first, suits IoT systems where the context
of the user might change; and various sensors are added with
respect to needs in the monitoring. Second, the approach can
be distributed into the 3 layers of IoT systems (i.e., sensor net-
work, gateway and cloud server) according to health application
requirements. Moreover, adding new data resources can improve
the performance of the system, removing ambiguity in the con-
text information. This disambiguation is important when the
missingness mechanism is NMAR, and the variability of missing
data is invisible in available information.

Estimating health status with only one vital sign is the limi-
tation of this study, where unexpected health deterioration with
no prior history cannot be estimated when the heart rate value
is missing. Therefore, the health indicator in this monitoring only

targets real-time health coaching and preventive purposes, but
not health deterioration detection. However, this health indicator
is a proof-of-concept for the proposed decision-making approach;
and inclusion of different vital signs could alleviate this problem.

As the future work of this study, we are going to extend
our work, targeting real-time health deterioration in pregnant
women. We will use an obstetric Early Warning Score (EWS) [23,
24] as a standard manual tool in clinical settings to early-detect
patients’ health deterioration. This tool will be developed for
remote health monitoring through IoT-based systems [82,83]. In
this regard, five warning scores ranging from 0 to 3 are generated
from five vital signs which are heart rate, body temperature,
blood oxygen saturation, respiration rate and blood pressure.
The aggregation of these scores represents the level of health
deterioration.

5. Conclusion

Missing data is a prevalent problem among IoT-based health
monitoring systems, where data collection and data transmission
may be interrupted in long-term scenarios. This problem mostly
leads to failures in decision making and subsequently health ap-
plications. Conventional missing data methods are inappropriate
for such systems as these methods underestimate variability of
the missing values. This is important when the vital signs such
as heart rate are being missed, as heart rate variations could
be considerably large. In this paper, we proposed a personal-
ized missing data resilient decision-making approach tailoring
data resources in IoT systems to enable continuous health de-
cision making despite missing values. This approach exploited
the Multiple Imputation method reinforced with auxiliary infor-
mation obtained via the IoT-based system. In this regard, first,
the missing values were estimated via different methods using
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various resources. Second, the decision-making method was im-
plemented, and decisions were obtained from different estimates.
Eventually, the final decision was extracted using a personalized
pooling method. We demonstrated the proposed approach via
a real human subject trial on maternity health. The accuracy of
the proposed approach was compared with existing methods.
We indicated that the proposed approach leads to more accurate
decisions, especially when the missing window is large.

Acknowledgments

This work was partially supported by the Academy of Finland
grants 313448 and 313449 (PREVENT project) and grants 316810
and 316811 (SLIM project).

References

[1] WHO. Maternal mortality, Retrieved on 2019. http://www.who.int/
mediacentre/factsheets/fs348/en/.

[2] WHO. Ageing and health, Retrieved on 2019. http://www.who.int/
mediacentre/factsheets/fs404/en/.

[3] L. Atzori, et al., The internet of things: a survey, Comput. Netw. 54 (15)
(2010) 2787–2805.

[4] J.A. Stankovic, et al., Research directions for the internet of things, IEEE
Internet Things J. 1 (1) (2014) 3–9.

[5] J. Gubbi, et al., Internet of things (iot): A vision, architectural elements, and
future directions, Future Gener. Comput. Syst. 29 (7) (2013) 1645–1660.

[6] R. Mieronkoski, et al., The internet of things for basic nursing care—a
scoping review, Int. J. Nurs. Stud. 69 (2017) 78–90.

[7] A. Al-Fuqaha, et al., Internet of things: a survey on enabling technologies,
protocols, and applications, IEEE Commun. Surveys Tutor. 17 (4) (2015)
2347–2376.

[8] A.M. Rahmani, et al., Exploiting smart e-health gateways at the edge
of healthcare internet-of-things: A fog computing approach, FGCS 78 (2)
(2018) 641–658.

[9] F. Bonomi, et al., Fog computing and its role in the internet of things, in:
MCC’12, 2012, pp. 13–16.

[10] A.M. Rahmani, et al., Fog Computing in the Internet of Things Intelligence
at the Edge, Springer, 2017.

[11] J. Lin, et al., A survey on internet of things: architecture, enabling
technologies, security and privacy, and applications, IEEE Internet Things
J. 4 (5) (2017) 1125–1142.

[12] R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data. Wiley Series
in Probability and Statistics, Wiley, 2014.

[13] A.n Baraldi, C.K. Enders, An introduction to modern missing data analyses,
J. Sch Psychol 48 (1) (2010) 5–37.

[14] S. Hunter, s, C. Robson, Adaptation of the maternal heart in pregnancy, Br.
Heart J. 68 (6) (1992) 540–543.

[15] M.E. Hall, et al., The heart during pregnancy, Rev. Esp. Cardiol. 64 (11)
(2011) 1045–1050.

[16] K. Melzer, et al., Physical activity and pregnancy, Cardiovascular adap-
tations, recommendations and pregnancy outcomes, Sports Med. 40 (6)
(2010) 493–507.

[17] K.R. Evenson, et al., Guidelines for physical activity during pregnancy:
Comparisons from around the world, Am. J. Lifestyle Med. 8 (2) (2014)
102–121.

[18] D.S. Feig, et al., Continuous glucose monitoring in pregnant women
with type 1 diabetes (conceptt): a multicentre international randomised
controlled trial, Lancet 390 (2017) 2347–2359.

[19] L. Underwood, et al., A longitudinal study of pre-pregnancy and pregnancy
risk factors associated with antenatal and postnatal symptoms of depres-
sion: evidence from growing up in new zealand, Matern Child Health J.
21 (4) (2017) 915–931.

[20] J.F. Clapp, Maternal heart rate in pregnancy, Am. J. Obstet. Gynecol. 152
(6) (1985) 659–660.

[21] M.G. Moertl, et al., Changes in haemodynamic and autonomous ner-
vous system parameters measured non-invasively throughout normal
pregnancy, Eur. J. Obstet Gynecol. Reprod Biol. 144 (2009) S179–S183.

[22] P.K. Stein, et al., Changes in 24-hour heart rate variability during normal
pregnancy, Am. J. Obstet. Gynecol. 180 (4) (1999) 978–985.

[23] G.B. Smith, et al., Vital signs and other observations used to detect
deterioration in pregnant women: an analysis of vital sign charts in
consultant-led uk maternity units, Int. J. Obstet. Anesth. 30 (2017) 44–51.

[24] C. Carle, et al., Design and internal validation of an obstetric early warning
score: secondary analysis of the intensive care national audit and research
centre case mix programme database, Anaesthesia. 68 (4) (2013) 354–367.

[25] D.B. Rubin, Inference and missing data, Biometrika 63 (3) (1976) 581–592.
[26] J.L. Schafer, J.W. Graham, Missing data: Our view of the state of the art,

Psychol. Methods 7 (2) (2002) 147–177.
[27] X. Zhou, et al., Applied Missing Data Analysis in the Health Sciences, John

Wiley & Sons Inc., 2014.
[28] L.O. Silva, L.E. Zárate, A brief review of the main approaches for treatment

of missing data, Intell. Data Anal. 18 (6) (2014) 1177–1198.
[29] P.J. Garcia-Laencina, et al., Pattern classification with missing data: a

review, Neural Comput. Appl. 19 (2) (2010) 263–282.
[30] R.J.A. Little, Regression with missing X’s: a review, J. Amer. Statist. Assoc.

87 (420) (1992) 1227–1237.
[31] H. Jelicic, et al., Use of missing data methods in longitudinal studies: the

persistence of bad practices in developmental psychology, Dev. Psychol.
45 (4) (2009) 1195–1199.

[32] H.W. Marsh, Pairwise deletion for missing data in structural equation
models: nonpositive definite matrices, parameter estimates, goodness of
fit, and adjusted sample sizes, Struct. Equ. Model. 5 (1) (1988) 22–36.

[33] R.R. Andridge, R.J. Little, A review of hot deck imputation for survey
non-response, Int. Stat. Rev. 78 (1) (2010) 40–64.

[34] C. Tsai, F. Chang, Combining instance selection for better missing value
imputation, J. Syst. Softw. 122 (2016) 63–71.

[35] S.B. Woolley, et al., Last-observation-carried-forward imputation method
in clinical efficacy trials: review of 352 antidepressant studies,
Pharmacotherapy 29 (12) (2009) 1408–1416.

[36] D.B. Rubin, Multiple imputation after 18+ years, J. Amer. Statist. Assoc. 91
(434) (1996) 473–489.

[37] C.K. Enders, Multiple imputation as a flexible tool for missing data handling
in clinical research, Behav. Res. Therapy 98 (2017) 4–18.

[38] Y. He, Missing data analysis using multiple imputation: getting to the heart
of the matter, Circ. Cardiovasc Qual Outcomes. 3 (1) (2010) 98–105.

[39] I.J. Myung, Tutorial on maximum likelihood estimation, J. Math. Psych. 47
(1) (2003) 90–100.

[40] I. Myrtveit, et al., Analyzing data sets with missing data: an empirical
evaluation of imputation methods and likelihood-based methods, IEEE
Trans. Softw, Eng. 27 (11) (2001) 999–1013.

[41] P. Diggle, et al., Analysis of Longitudinal Data, OUP Oxford, 2002.
[42] R.J.A. Little, Modeling the drop-out mechanism in repeated-measures

studies, J. Amer. Statist. Assoc. 90 (431) (1995) 1112–1121.
[43] J.G. Ibrahim, G. Molenberghs, Missing data methods in longitudinal studies:

a review, Test (Madr) 18 (1) (2009) 1–43.
[44] M.L. Bell, D.L. Fairclough, Practical and statistical issues in missing data

for longitudinal patient-reported outcomes, Stat. Methods Med. Res. 23
(5) (2014) 440–459.

[45] F.V. Nelwamondo, et al., Missing data: A comparison of neural network
and expectation maximization techniques, Current Sci. 93 (11) (2007)
1514–1521.

[46] M. Abdella, T. Marwala, The use of genetic algorithms and neural networks
to approximate missing data in database, in: IEEE 3rd International
Conference on Computational Cybernetics, 2005.

[47] I.B. Aydilek, A. Arslan, A hybrid method for imputation of missing values
using optimized fuzzy c-means with support vector regression and a
genetic algorithm, Inform. Sci. 233 (2013) 25–35.

[48] I.B. Aydilek, A. Arslan, A novel hybrid approach to estimating missing
values in databases using k-nearest neighbors and neural networks, Int.
J. Innovative Comput. Inf. Control 8 (7) (2012) 4705–4717.

[49] W. Wei, Y. Tang, A generic neural network approach for filling missing
data in data mining, in: IEEE International Conference on Systems, Man
and Cybernetics, 2003.

[50] E. Silva-Ramirez, et al., Missing value imputation on missing completely
at random data using multilayer perceptrons, Neural Netw. 24 (1) (2011)
121–129.

[51] K. Pelckmans, et al., Handling missing values in support vector machine
classifiers, Neural Netw. 18 (5–6) (2005) 684–692.

[52] S. Tsang, et al., Decision trees for uncertain data, IEEE Trans. Knowl. Data
Eng. 23 (1) (2011) 64–78.

[53] M. Juhola, J. Laurikkala, Missing values: how many can they be to preserve
classification reliability?, Artif. Intell. Rev. 40 (3) (2013) 231–245.

[54] G. Wang, et al., Tackling missing data in community health studies using
additive ls-svm classifier, IEEE J. Biomed. Health Inf. 22 (2) (2018) 579–587.

[55] B. Fekade, et al., Probabilistic recovery of incomplete sensed data in iot,
IEEE Internet Things J. (2017).

[56] M. Halatchev, L. Gruenwald, Estimating missing values in related sensor
data streams, in: International Conference on Management of Data, 2005.

[57] P. Zhang, et al., SKIF: a data imputation framework for concept drifting data
streams, in: ACM international Conference on Information and Knowledge
Management, 2010.

[58] N. Jiang, L. Gruenwald, Estimating missing data in data streams, in:
Advances in Databases: Concepts, Systems and Applications, 2007.

http://www.who.int/mediacentre/factsheets/fs348/en/
http://www.who.int/mediacentre/factsheets/fs348/en/
http://www.who.int/mediacentre/factsheets/fs348/en/
http://www.who.int/mediacentre/factsheets/fs404/en/
http://www.who.int/mediacentre/factsheets/fs404/en/
http://www.who.int/mediacentre/factsheets/fs404/en/
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb4
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb4
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb4
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb5
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb5
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb5
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb12
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb12
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb12
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb13
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb13
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb13
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb20
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb20
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb20
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb23
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb23
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb23
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb23
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb23
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb24
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb24
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb24
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb24
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb24
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb25
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb27
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb27
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb27
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb28
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb28
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb28
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb29
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb29
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb29
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb30
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb30
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb30
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb31
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb31
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb31
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb31
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb31
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb32
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb32
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb32
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb32
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb32
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb33
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb33
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb33
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb34
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb34
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb34
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb35
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb35
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb35
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb35
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb35
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb36
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb36
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb36
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb37
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb37
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb37
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb38
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb38
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb38
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb52
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb52
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb52
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb53
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb53
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb53
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb54
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb54
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb54
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb55
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb55
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb55
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb56
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb56
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb56
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb57
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb57
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb57
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb57
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb57
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb58
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb58
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb58


308 I. Azimi, T. Pahikkala, A.M. Rahmani et al. / Future Generation Computer Systems 96 (2019) 297–308

[59] C. Wang, C. Hall, Correction of bias from non-random missing longitudinal
data using auxiliary information, Stat Med. 29 (6) (2010) 671–679.

[60] L.M. Collins, et al., A comparison of inclusive and restrictive strategies in
modern missing data procedures, Psychol Methods. 6 (4) (2001) 330–351.

[61] J. Hardt, et al., Auxiliary variables in multiple imputation in regression
with missing x: a warning against including too many in small sample
research, BMC Med. Res. Methodol. 12 (184) (2012).

[62] J.G. Ibrahim, et al., Using auxiliary data for parameter estimation with
nonignorably missing outcomes, Appl. Statist. 50 (2001) 361–373.

[63] G.D. Abowd, et al., Towards a better understanding of context and context-
awareness, in: 1st International Symposium on Handheld and Ubiquitous
Computing, 1999, pp. 304–307.

[64] G. Chen, D. Kotz, A survey of context-aware mobile computing research,
in: Technical report, Dartmouth College, 2000.

[65] C. Perera, et al., Context aware computing for the internet of things: a
survey, IEEE Commun. Surv. Tutor. 16 (1) (2014) 414–454.

[66] C. Chatfield, The Analysis of Time Series: An Introduction, Sixth ed., CRC
Press, 2016.

[67] R. Rifkin, R. Lippert, Notes on regularized least square. Technical report,
MIT-CSAIL-TR-(2007) 2007-025.

[68] T. Pahikkala, A. Airola, Rlscore: regularized least-squares learners, J. Mach.
Learn. Res. 17 (221) (2016) 1–5.

[69] Q. Gui, et al., Exploring missing data prediction in medical monitoring:
a performance analysis approach, in: Signal Processing in Medicine and
Biology Symposium, 2014.

[70] C. Tudor-Locke, et al., Pedometer-determined step count guidelines for
classifying walking intensity in a young ostensibly healthy population, Can.
J. Appl. Physiol. 30 (6) (2005) 666–676.

[71] C. Tudor-Locke, et al., Patterns of adult stepping cadence in the 2005-2006
NHANES, Prev Med. 53 (3) (2011) 178–181.

[72] C. Vinader-Caerols, et al., Effects of alcohol, coffee, and tobacco, alone
or in combination, on physiological parameters and anxiety in a young
population, J. Caffeine Res. 2 (2) (2012) 70–76.

[73] S.K. Grove, et al., The Practice of Nursing Research: Appraisal, Synthesis,
and Generation of Evidence, Elsevier Health Sciences, 2012.

[74] Garmin. Vivosmart HR | Activity Tracker, Retrieved on 2019. https://buy.
garmin.com/en-US/US/p/531166.

[75] K. Grym, et al., Feasibility of smart wristbands for continuous monitoring
during pregnancy and one month after birth, BMC Pregnancy Childbirth
19 (34) (2019).

[76] J. Allen, Photoplethysmography and its application in clinical physiological
measurement, Physiol. Meas. 28 (3) (2007) R1–39.

[77] A. Bulling, et al., A tutorial on human activity recognition using body-worn
inertial sensors, ACM Comput. Surv. 49 (3) (2014) 33:1–33:33.

[78] Linode. SSD Cloud Hosting & Linux Servers, Retrieved on 2019. https:
//www.linode.com/.

[79] Eric Jones, et al., SciPy: Open source scientific tools for Python, 2001,
Retrieved on 2019. https://www.scipy.org/.

[80] F. Pedregosa, et al., Scikit-learn: machine learning in python, J. Mach. Learn.
Res. 12 (2011) 2825–2830.

[81] M. Gönen, G. Heller, Concordance probability and discriminatory power in
proportional hazards regression, Biometrika 92 (4) (2005) 965–970.

[82] I. Azimi, et al., Self-aware early warning score system for iot-based
personalized healthcare, in: LNICST, volume 181, 2016.

[83] A. Anzanpour, et al., Self-awareness in remote health monitoring systems
using wearable electronics, in: Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017.

Iman Azimi received his bachelor’s degree in biomed-
ical engineering at the University of Isfahan, Iran, in
2010, and his master’s degree in Artificial Intelligence
and Robotics at the Sapienza University of Rome, Italy,
in 2014. He is currently a Ph.D. candidate at the De-
partment of Future Technologies, University of Turku,
Finland. His current research interests focus on person-
alized health data analytics, remote health monitoring,
Internet of Things, and embedded systems. He is the
author of more than 15 peer-reviewed publications,
both in medical and technological venues.

Tapio Pahikkala received his doctoral degree in 2008
from the University of Turku, Finland and he currently
holds a tenure track associate professorship of machine
learning with the University of Turku. He has authored
more than 140 peer-reviewed scientific articles and
participated in the winning teams of several inter-
national scientific competitions/challenges. He has led
many research projects, supervised six doctoral theses,
held several positions of trust in academia and served
in the program committees of numerous international
conferences. His current research interests include the-

ory and algorithmics of machine learning, data analysis, and computational
intelligence, as well as their applications on various different fields.

Amir M. Rahmani received his MSc from Department
of ECE, University of Tehran, Iran, in 2009 and Ph.D.
degree from Department of IT, University of Turku,
Finland, in 2012. He also received his MBA jointly from
Turku School of Economics and European Institute of
Innovation & Technology (EIT) Digital, in 2014. He is
currently Marie Curie Global Fellow at University of
California Irvine (USA) and TU Wien (Austria). He is also
an adjunct professor (Docent) in embedded parallel
and distributed computing at the University of Turku,
Finland. His work spans self-aware computing, runtime

resource management for systems-on-chip and resource-constrained IoT devices,
wearable sensor design, and Fog Computing. He is the author of more than 180
peer-reviewed publications. He is a senior member of the IEEE and the Associate
Editor of ACM Transactions on Computing for Healthcare.

Hannakaisa Niela-Vilen works as postdoctoral re-
searcher at the Department of Nursing Science, Uni-
versity of Turku, Finland. Her current research projects
are about the possibilities of remote monitoring in
maternity care, early contact between a mother and
her newborn infant and breastfeeding. Before doctoral
studies, she has worked seven years as a midwife in the
labor and delivery unit in Turku university hospital. She
was graduated as a midwife in 2002, Master of Nursing
Science in 2010 and PhD in Nursing Science in 2016.

Anna Axelin is Associate Professor in the Department
of Nursing Science at the University of Turku, Finland.
She has conducted quantitative and qualitative research
on maternity and neonatal care in multidisciplinary and
international research groups. Dr. Axelin is leading the
Health in Early Life and Parenthood (HELP) research
group which aims to promote health and welfare in
the early stages of life. Her special research interest
is how to keep parents and sick newborns together
throughout the infant hospital stay and strengthen
their relationship already during pregnancy. One of

her strategies to achieve this goal is to implement evidence-based practice in
maternity and neonatal care with the help information technology.

Pasi Liljeberg received the MSc and PhD degrees in
electronics and information technology from the Uni-
versity of Turku, Turku, Finland, in 1999 and 2005,
respectively. He received Adjunct professorship in em-
bedded computing architectures in 2010. Currently he
is working as a professor in University of Turku in
the field of Embedded Systems and Internet of Things.
At the moment his research is focused on biomedical
engineering and health technology. In that context he
has established and leading the Internet-of-Things for
Healthcare (IoT4Health) research group. Liljeberg is the

author of around 300 peer-reviewed publications.

http://refhub.elsevier.com/S0167-739X(18)31648-0/sb59
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb59
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb59
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb60
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb60
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb60
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb61
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb61
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb61
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb61
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb61
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb62
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb62
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb62
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb63
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb63
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb63
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb63
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb63
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb64
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb64
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb64
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb65
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb65
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb65
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb66
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb66
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb66
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb68
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb68
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb68
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb69
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb69
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb69
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb69
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb69
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb70
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb70
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb70
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb70
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb70
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb71
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb71
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb71
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb72
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb72
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb72
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb72
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb72
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb73
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb73
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb73
https://buy.garmin.com/en-US/US/p/531166
https://buy.garmin.com/en-US/US/p/531166
https://buy.garmin.com/en-US/US/p/531166
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb75
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb75
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb75
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb75
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb75
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb76
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb76
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb76
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb77
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb77
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb77
https://www.linode.com/
https://www.linode.com/
https://www.linode.com/
https://www.scipy.org/
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb80
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb80
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb80
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb81
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb81
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb81
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb82
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb82
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb82
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb83
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb83
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb83
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb83
http://refhub.elsevier.com/S0167-739X(18)31648-0/sb83

	Missing data resilient decision-making for healthcare IoT through personalization: A case study on maternal health
	Introduction
	Background and related work
	Maternal health monitoring
	Missing data

	Missing data resilient decision-making approach
	Imputation
	Short-term data
	Context data
	Lifestyle data

	Analysis
	Personalized pooling

	Demonstration and evaluation
	Study design
	Setup
	Ethics
	Accuracy assessment
	Discussion

	Conclusion
	Acknowledgments
	References


