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Abstract  9 

Recent years have witnessed the practical value of open-access Earth observation data 10 

catalogues and software in land and forest mapping. Combined with cloud-based computing 11 

resources, and data collection through the crowd, these solutions have substantially improved 12 

possibilities for monitoring changes in land resources, especially in areas with difficult 13 

accessibility and data scarcity. In this study, we developed and tested a participatory mapping 14 

methodology utilizing the open data catalogues and cloud computing capacity to map the 15 

previously unknown extent and species composition of forest plantations in the Southern 16 

Highlands area of Tanzania, a region experiencing a rapid growth of smallholder-owned 17 

woodlots. A large set of reference data, focusing on forest plantation coverage, species and 18 

age information distribution, was collected in a two-week participatory GIS campaign where 19 

22 Tanzanian experts interpreted very high-resolution satellite images in Google Earth with 20 

the Open Foris Collect Earth tool developed by the Food and Agriculture Organization of the 21 

United Nations. The collected samples were used as training data to classify a multi-sensor 22 

image stack of Landsat 8 (2013-2015), Sentinel-2 (2015-2016), Sentinel-1 (2015), and SRTM 23 

derived elevation and slope data layers into a 30m resolution forest plantation map in Google 24 

Earth Engine. The results show that the forest plantation area was estimated with high overall 25 

accuracy (85%). The interpretation accuracy of local experts was high considering general 26 

definition of forest plantation declining with increased details in interpretation attributes. The 27 
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results showcase the unique value of local expert participation, enabling the collection of 28 

thousands of reference samples over a large geographical area in a short period of time 29 

simultaneously building the capacity of the experts. However, sufficient training prior to the 30 

data collection is crucial for the interpretation success especially when detailed interpretation 31 

is conducted in complex landscapes. Since the methodology is built on open-access data and 32 

software, it presents a highly feasible solution for repetitive land resource mapping applicable 33 

at different spatial scales globally. 34 

Keywords: Crowdsourcing, planted forests, open-source, multi-sensor, cloud computing, 35 

Tanzania  36 

1. Introduction 37 

Recent years have witnessed the practical value of emerging open-access Earth observation 38 

data catalogues and software in land and forest mapping. Data repositories provided by 39 

commercial vendors and public organizations, such as Google Earth and Global Land Cover 40 

Facility have diversified the opportunities to make remote sensing based observations at 41 

multiple spatial and temporal scales globally (Wulder and Coops 2014, Turner et al. 2015, 42 

Klein et al. 2017). Combined with cloud-based computing resources, these solutions have 43 

substantially improved possibilities for monitoring of environmental and land resource 44 

development in a changing world (Hansen et al. 2013, Dong et al. 2016, Xiong et al. 2017). 45 

The impacts have not only been on the lessening of previously laborious satellite data 46 

downloading and pre-processing phases of the work, but on the overall access to, and 47 

enabling of combined uses of multiple data sources simultaneously in a cloud-based 48 

environment. Access to open data repositories have enabled multi-sensor and multi-temporal 49 

image analysis essential to overcome the shortcomings related to land and forest mapping in 50 

the tropics such as spectral mixing between planted and natural forests, heterogeneous 51 

spectral characteristics of different tree species, dynamic land use patterns, and frequent 52 
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cloud cover and moist conditions (Dong et al. 2013, le Maire et al. 2014, Fagan et al. 2015, 53 

Chen et al. 2016, Torbick et al. 2016). 54 

At the same time new solutions to collect evidence-based information to support image 55 

processing have become widely accessible for the larger public. Collecting volunteered 56 

geographical information (VGI) based on, for example Google Earth images has been 57 

introduced for validating global and regional mapping of land cover (Fritz et al. 2009, Clark 58 

et al. 2010, Gessner et al. 2015, See et al. 2015a, See et al. 2015b, Tsendbazar et al. 2015, 59 

Estes et al. 2016), land conversion (Jacobson et al. 2015), cropland coverage (Fritz et al. 60 

2015, See et al. 2015c) and forest cover (Song et al. 2011, Schepaschenko et al. 2015). These 61 

studies have shown the immense potential of crowdsourcing in creating large amount of 62 

geographical validation data with limited resource investment, particularly valuable in areas 63 

where such information did not previously exist. 64 

However, the veracity and unknown quality and accuracy of the mapped data has been the 65 

major concern related to scientific applications based on VGI data (Comber et al. 2013, See 66 

et al. 2015b). The most important factors affecting the quality of collected information are 67 

related to lack of good quality images to support the decisions when collecting the data, and 68 

respondents’ insufficient capacity for interpretation (See et al. 2013, Comber et al. 2016). In 69 

particular, studies which require specialized interpretation skills are sensitive to the quality of 70 

the collected data (Salk et al. 2016). In such cases, the quality of mapping can be improved 71 

by turning VGI approaches into structured participatory data collection campaigns by 72 

engaging groups of experts with local knowledge and providing sufficient background 73 

information and training for calibrating multiple interpretations (Verplanke et al. 2016). 74 

These participatory GIS (PGIS) solutions are promising combinations of open data 75 

catalogues, cloud computing capacity and motivated participants to tackle land and forest 76 

mappings (Brown and Fagerholm 2015). The integration of local knowledge and automated 77 
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classification processes calibrate and contextualize land and forest information 78 

geographically (Hansen et al. 2014, Tropek et al. 2014).  79 

The Food and Agriculture Organization of the United Nations (FAO) has developed an open-80 

source software suite which enables the combination of participatory mapping with cloud-81 

based image access and processing. One of these tools, Collect Earth, has been designed for 82 

structured, augmented data collection based on visual interpretation on Google Earth and 83 

other public sources of imagery (Bey et al. 2016). As a PGIS platform it offers a new 84 

generation of participatory image interpretation and classification environment, where easy-85 

to-use elements of a public survey are combined with professionally structured visual image 86 

interpretation tasks. 87 

In this study we have tested the quality and relevance of PGIS approach combined with the 88 

use of open-access image catalogues and software in mapping forest plantations at a regional 89 

scale in Tanzania, East Africa, where access to large amounts of data and computing power, 90 

as well as capacity of experts have previously prohibited efficient mapping and monitoring of 91 

land resources. We have developed a participatory mapping methodology, which utilizes 92 

open data catalogues and cloud computing capacity (Open Foris suite, Google Earth Engine) 93 

combined with participation of local experts. Our aim is to evaluate the role of participation 94 

in collecting reference samples, quality of the results and participant experiences as evidences 95 

of the suitability of the method for participatory land and forest mapping, and its possible 96 

generic uses and repetition for monitoring purposes.  Furthermore, our aim is to test the 97 

suitability of this methodology in producing a high-resolution forest plantation map within 98 

our study area in the Southern Highlands of Tanzania, a region experiencing a rapid growth 99 

of smallholder-owned woodlots but where lack of spatially explicit estimates of the forest 100 

plantation coverage hampers the evaluation of environmental and socio-economic impacts of 101 

the land development. 102 
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2. Data and methods 106 

2.1 Forest plantations in the Southern Highlands of Tanzania 107 

The Southern Highlands area is located in Southwest Tanzania, roughly within the 108 

administrative regions of Iringa, Mbeya and Njombe (Figure 1). Overall, the terrain of the 109 

region is variable, with the altitude ranging from nearly 3000 m.a.s.l. of Mount Rungwe, to 110 

less than 300 m.a.s.l, in the floodplains of the Kilombero Valley. Unimodal rains start in 111 

November and continue until April and rainfall ranges from yearly average of 600mm in the 112 

North to over 2000mm in the Southwest (Mbululo and Nyihirani 2012). Due to its reliable 113 

and sufficient rains and mild temperatures the Southern Highlands is the most important 114 

forest plantation and silviculture area in Tanzania. The most common planted trees are pine 115 

(Pinus patula, P. elliottii and P. caribaea), several Eucalyptus spp., black wattle (Acacia 116 

mearnsii) and, in some areas, teak (Tectona grandis).  117 

Currently the coverage of planted forests is unknown in Tanzania, with estimations ranging 118 

from 250,000 to 550,000 hectares (Ngaga 2011, MNRT 2015, FAO 2015). The most recent 119 

national estimates were produced in National Forest Resources and Monitoring Assessment 120 

(NAFORMA 2009-2014), which was the first field reference based national forest inventory 121 

in the country (MNRT 2015). NAFORMA produced two estimates on plantation cover for 122 

Tanzania. Based on the field samples the planted forest area was estimated to be around 123 

555,000 hectares in the whole country, whereas according to the NAFORMA land cover map 124 

there are 147,000 hectares of planted forests in Tanzania and around 70% of those plantations 125 

are located in the area of the Southern Highlands (MNRT 2013). However, the mapping has 126 
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not been explicit enough for deriving subnational estimates since only the large forest 127 

plantation areas are depicted in the national level maps. Recently, Southern Highlands has 128 

experienced a “timber rush” as many smallholders have established small scale private 129 

plantations for future investment ranging in size from smaller than an acre to a couple of 130 

hectares (Ngaga 2011). These non-industrial private forestry establishments have been 131 

particularly promoted in this area through various donor-funded incentive schemes, such as 132 

Hifadhi ya Mazingira (HIMA 1990-2002), and more recently Private Forestry Programme 133 

(PFP, since 2014), and Forestry Development Trust (FDT, since 2013) (Danida 2007, FDT 134 

2016, PFP 2016). There is an urgent need to produce a baseline map of forest plantations for 135 

the area, and also introduce a methodology of systematic, repeatable and open-access forest 136 

plantation cover mapping with open data.  137 

 138 

Figure 1.  The study area is located in the Southern Highlands in the south-west corner of Tanzania 139 

lying in between 6.8°S and 10.9°S and 32°E and 37°E covering area of ca 202,770 km2. The land 140 

cover is dominated by woodlands, bushlands and agricultural area. The largest forest plantations are 141 

concentrated in the vicinity of Mafinga and Njombe (MNRT 2013). 142 

 143 
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2.2 Design of the participatory mapping methodology  144 

The forest plantation mapping was based on freely available global geospatial datasets and 145 

satellite images combined with participatory reference data collection, use of the Open Foris 146 

suite, Google Earth and Google Earth Engine (Figure 2). Both optical [Landsat 8 OLI 147 

(Operational Land Imager) best-pixel mosaic from 2013-2015 and Sentinel-2 MSI 148 

(Multispectral Instrument) median mosaic from 2015-2016] and synthetic aperture radar 149 

[SAR; ALOS PALSAR (2010) and Sentinel-1 (2015)] satellite data sets were used in the 150 

mapping, as the combined use has proven to be more effective in detecting forest covered 151 

areas (Dong et al. 2013, Fagan et al. 2015, Torbick et al. 2016). The optical datasets were 152 

accessible through Google Earth Engine (GEE) as pre-processed and geo-referenced image 153 

collections, facilitating straightforward utilization of the images in the GEE code editor 154 

platform to create cloud-free best pixel mosaics. We found this especially feasible in our case 155 

as frequent cloud cover over the study area necessitated using the best available pixels from 156 

multiple image acquisitions to create cloud-free composites suitable for classification. At the 157 

time of our analysis, the ALOS PALSAR imagery was not accessible through GEE and 158 

analysis-ready Sentinel-1 SAR data on GEE still lacks the radiometric normalization along 159 

slopes. Due to the missing metadata, respective correction routines couldn’t be applied in 160 

GEE. For that reason, both ALOS PALSAR and Sentinel-1 data were pre-processed with the 161 

Open Foris SAR toolkit (Vollrath et al. 2016) that provides fully-automated pre-processing 162 

routines for analysis-ready SAR data. Detailed description of the datasets and the pre-163 

processing steps prior the extraction of spatial variables is included in the supplementary 164 

material. 165 

The methodological approach was divided into 3 stages preceded by the acquisition and pre-166 

processing of the geospatial datasets (Figure 2).  In the first stage, a preliminary forest 167 

plantation/non-plantation layer was created. In the second stage, a reference data set of 7500 168 
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sample points was generated and stratified based on the first stage land cover classes and the 169 

sample locations were interpreted and assigned to land cover classes by local experts in a 170 

two-week participatory mapping campaign (Mapathon). In the third stage, final forest 171 

plantation map was created and the accuracy of the map was assessed. 172 

 173 

Figure 2. The overall study design was based on three stages. RS and DS marked in the derived 174 

variables of Landsat 8 OLI best pixel mosaic refer to rainy season and dry season, respectively. 175 

Numbers 1 and 3 in the down-right corner of derived layer boxes refer to the classification stages in 176 

which the layers were used. The classifiers used in the third stage were Random Forest (RF), 177 

classification and regressions tree (CART), and Support Vector Machine (SVM).  178 

 179 

2.3 Creation of forest plantation mask (Stage1) 180 
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A sample point data set was stratified based on preliminary forest plantation and forest area 181 

estimates. The total amount, geographical distribution and extent of the sample points for the 182 

survey were constructed with the Open Foris Accuracy Assessment tool 183 

(https://github.com/openforis/accuracy-assessment). We used an adjusted number of points 184 

with a minimum sample size of 150 points to ensure enough points represent forest 185 

plantations. Altogether, 963 sample points were created with 150, 361 and 452 points falling 186 

on forest plantation, forest and other land strata, respectively.  187 

The Collect Earth tool of the Open Foris suite was used to collect land cover information 188 

from the sample locations. Collect Earth bridges Google Earth, Bing Maps and Google Earth 189 

Engine and allows online visual interpretation of very high to medium resolution satellite 190 

imagery including DigitalGlobe, SPOT, Sentinel-2, Landsat and MODIS (Bey et al. 2016). In 191 

Collect Earth, the user fills the survey form for the sample locations with relevant land cover 192 

information based on visual interpretation (Figure 3). The Collect Earth survey, simple at this 193 

stage with binary plantation/non-plantation classes, was created using the Collect tool of the 194 

Open Foris suite that enables the construction of a structured survey form.  195 

196 
Figure 3. Collect Earth allows easy filling of the structured survey form and viewing the plot area in 197 
different data repositories (Google Earth and Bing Maps in this example). 198 

https://github.com/openforis/accuracy-assessment
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 199 

The collected samples were used as training data for image classification. The Landsat 8 OLI, 200 

ALOS PALSAR, Sentinel-1 and SRTM elevation and slope data sets were used as inputs. A 201 

classification and regressions tree (CART) classifier was chosen to carry out the classification 202 

experiments in GEE. Additional samples (704) were added to the training dataset to improve 203 

classification performance in forest plantation and natural forest classes, as these were often 204 

mixed in initial classification results. Adding these points, a total of 1667 reference points 205 

were used for the first stage forest plantation mask. 206 

 207 

2.4 Participatory data collection (Stage 2) 208 

The objective of the second stage was to increase the accuracy and precision of the first stage 209 

forest plantation mask by collecting a large amount of reference points through the 210 

participation of local experts.  2,500 sample points (7500 in total) were allocated to each 211 

stratum (forest plantation, forest, and other land cover) based on the forest plantation mask 212 

and tree cover layer of stage 1. The size of the sample plot was adjusted to 30x30m 213 

equivalent to the pixel size of the imagery used in the classification stage. The survey was 214 

broadened from the first stage to include also other land cover classes than forest plantations. 215 

Systematic grid of 16 sample points within each plot was used to estimate the coverage of 216 

land use and land cover (LULC) elements within the plot area, guiding the respondent in the 217 

selection of the land cover class. For woodland, bushland, grassland, and open land the 218 

coverage proportions of LULC elements were defined by the NAFORMA land cover system 219 

(MNRT 2015) but apart from those, the precept was to define the dominant LULC class 220 

inside the plot. In cases where the plot area was shared equally by two or more land cover 221 

classes, a previously agreed hierarchy was used (Martinez and Mollicone 2012) (Figure 4). 222 

For forest plantations, the species, canopy cover and age class were recorded along with 223 
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information on the year of establishment and latest clearing whenever possible. Also ‘no 224 

data’ and low interpretation confidence options were included in the survey and later used 225 

with the image date to indicate the quality of the data. 226 

  227 
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 228 

 229 

Figure 4. Land use and land cover (LULC) classes and their hierarchy for interpretation.  230 

Making the process of a large reference sample data collection through participation feasible, 231 

a PGIS data collection campaign, Mapathon, was organized at the University of Dar es 232 

Salaam (UDSM) Department of Geography HEI-GIS lab in October 2016. A total of 22 233 

participants took part in the Mapathon: eight forestry, remote sensing and mapping experts 234 

from the University of Dar es Salaam (UDSM), Ardhi University (ARU), Private Forestry 235 

Programme (PFP) and Tanzania Forest Service (TFS), and 14 MSc and BSc students from 236 

UDSM and University of Bagamoyo (UOB) Geography Departments.  237 
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During the first four days, the participants were trained on using Open Foris Collect Earth 238 

and on interpreting land cover and forest patterns of the Southern Highlands based on high-239 

resolution satellite imagery. The focus of the training was on separating forest plantation 240 

types (species and estimated age class). After the first week’s experience and based on the 241 

participants’ feedback on the challenges of the interpretation, the survey was slightly 242 

modified: ‘harvested plantation’ class was added in the open land cover classes due to its 243 

spectral characteristics, and a choice of ‘eucalyptus or wattle’ was added in the forest 244 

plantation types, since the respondents often had difficulties in distinguishing between these 245 

two species. 246 

During the second week of the Mapathon, the participants interpreted LULC information 247 

visually on individually assigned batches of plots through Collect Earth. In addition to the 248 

Google Earth and Bing Maps imagery, the participants were offered a possibility to use 249 

previously downloaded auxiliary data in QGIS to support the interpretation: the Landsat 8 250 

OLI 2-season mosaics, SRTM digital elevation model (Jarvis et al. 2008) and WorldClim 251 

average temperature and mean annual rainfall (Hijmans et al. 2005). These layers can be 252 

accessed through the GEE extension of Collect Earth but were downloaded in advance to 253 

avoid problems caused by the instabilities in the internet connection.  254 

 During the Mapathon the participants collected information for 6,871 samples including 387 255 

‘no data’ observations. 23% (1,587) of the interpreted samples had low confidence, poor 256 

accuracy or insufficient marking and were modified by the research team, resulting in 6,866 257 

sample points available for the supervision of the land cover and forest mapping. Out of all 258 

points, 1,534 were forest plantation reference points (Figure 5, Table 1). Most of the 259 

plantation plots were interpreted as eucalyptus or wattle by species and growing (3 to 8 years 260 

old) by age. 261 
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 262 

 263 

 Figure 5. Distribution of the samples collected by the local experts during the Mapathon. The sample 264 
distribution is denser in forest plantation and forest areas because of the stratification based on the 265 
1st stage classification. 266 

 267 

 268 

 269 

 270 

 271 

Table 1. Number of collected samples during the Mapathon by forest plantation species and age, and 272 

other land cover classes. 273 

Plantation 

species 
P E/W Mix N/A 

      

 

  604 862 44 24               
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Plantation 

age 
Rp Gr Mat N/A 

      

 

  150 318 263 803               

Land cover Bu Bl Cr Fn Gl Ol Otl Wa Wt Wl N/A 

  26 1039 815 727 479 177 26 5 184 1746 108 

P = Pine, E/W = Eucalyptus or wattle, RP = Recently planted, Gr = Growing, Mat = Mature, Bu=Built up, Bl=Bushland, 274 
Cr=Cropland, Fn=Natural forest, Gl=Grassland, Ol=open land, Otl=Other land, Wa=Water, Wt=Wetland, Wl=Woodland 275 

The accuracy of the interpretation was evaluated against ground data collected during field 276 

visits in 2015 and 2016. 147 known reference samples were interpreted by local experts and 277 

research team members during the Mapathon, and the accuracies were tabulated. 278 

Furthermore, the confidence of all of the collected samples was evaluated by randomly 279 

choosing 300 forest plantation points and 300 other land cover points (in total 8% of all 280 

points), to be interpreted by the research team members. The interpretation agreements of 281 

local experts and research team members were calculated and tabulated. 282 

To evaluate the learning experiences of the local experts during the Mapathon we collected 283 

systematic feedback using a form with specified learning statements and open-ended 284 

questions. The statements allowed participants to assess the quality of the event and personal 285 

learning experiences by marking their agreement related to the statements on a scale from 1 286 

to 5. The open-ended questions allowed participants to describe their key skills after the 287 

completion of the Mapathon campaign. We asked which skills the participant felt they 288 

specifically learned though the Mapathon, in which remote sensing skills they felt the most 289 

confident after the event, and which skills they felt they still needed more practice in.  290 

 291 

 292 

2.5 Classification and accuracy assessment of forest plantation map (Stage 3) 293 

The training data collected through the participatory GIS campaign was used to produce the 294 

final forest plantation and planted tree species maps. We left out the ALOS PALSAR 2010 295 
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from the data layers at this stage to ensure a uniform temporal coverage of the data sets. By 296 

the time of the stage 3 classification, Sentinel-2 imagery from the dry season had become 297 

available and was added to the datasets. Due to having most of the data sets in 30m 298 

resolution, the classification target resolution was set to the same pixel size in GEE, which 299 

means that the data being classified gets automatically resampled to 30m resolution with 300 

nearest-neighbour method. 301 

Three different classifiers (CART, Support Vector Machine and Random Forest) were tested 302 

for the final classification in GEE. All of these classifiers have a well-established 303 

methodological base and are widely used in land cover and forest mapping applications 304 

(Fagan et al. 2015, Khatami et al. 2016, Torbick et al. 2016, Zhao et al. 2016). The accuracies 305 

were compared using a reference data set. Based on the best accuracy, Random Forest with 306 

150 trees was selected for creation of the forest plantation area and planted species 307 

distribution maps.  308 

Due to the heterogeneity of the study area landscape, forest plantations that consisted of only 309 

1 or 2 pixels were erased from the output prior the accuracy assessment. Altogether 900 310 

validation samples were created with the Open Foris Accuracy Assessment tool and stratified 311 

based on the three land cover classes used (forest plantation, natural forest and other land 312 

cover). The amount of samples for each stratum was fixed following the guidelines of 313 

Olofsson et al. (2014) leading to 100 samples for forest plantations and 328 and 472 for forest 314 

and other strata, respectively (Figure 6). The land cover information of these samples was 315 

interpreted through very high-resolution imagery in Google Earth and Bing Maps by the 316 

research team, and used to estimate the accuracy of the forest plantation map. In addition, 357 317 

field observations samples were collected during visits to the Southern Highlands in February 318 

2015, February 2016, and November 2016. These samples were used to estimate the accuracy 319 

of the plantation species map.  320 
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 321 

Figure 6. Distribution of the validation samples. 322 

3. Results 323 
 324 

3.1  Success of participation in reference sample collection  325 

The participants had a varying degree of similarity in their interpretations (Figure 7, Table 2). 326 

The local experts had an average agreement of 84% for distinguishing between forest 327 

plantation and other land covers based on the field reference data. For the research team 328 

members the average agreement was 97%. In some areas, inaccuracies were overestimated 329 

since not all of the reference points were detectable from the Google Earth images due to the 330 

time discrepancy between the field observations and the visual interpretation based on older 331 

image date. Thus, some of the differences may have been actual changes in land cover. 332 

Generally, the interpretation agreements with reference data were higher for those local 333 
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experts who stated being proficient with remote sensing (Figure 7). Pines were detected with 334 

high accuracy by local experts (86%) and research team members (100%). Since the amount 335 

of Eucalyptus and Wattle samples in the reference data was small, we did not calculate the 336 

agreements for these attributes.  337 

The confidence assessment of the collected sample points resulted in similar findings as the 338 

comparisons against field samples (Table 2). The agreement of interpretation between local 339 

experts’ and research team members’ observations was high regarding the forest plantation 340 

samples (94%). This means that forest plantations could be recognized from other land cover 341 

types with relatively high confidence using visual interpretation. The agreements were lower 342 

but still relatively high for plantation species. Pine plantations were identified with 72% 343 

agreement and eucalyptus and wattle plantations with 55% agreement. These figures show 344 

that pines are more easily detected in the study area while the canopy shape of eucalyptus and 345 

wattle resembles that of natural forest causing more classification errors. Different age 346 

classes were identified with overall agreement of 60%. 347 

Overall, between local respondents and research team members the LULC interpretation 348 

agreements were highest with forest class (69%) and lower with the other classes (50% 349 

agreement or less). This may be due to the heterogeneity character of the landscape which 350 

made it difficult to label single land cover information for a plot. Also, interpretation based 351 

on poor-quality images could have caused some of the disagreement: among the 600 cross-352 

referenced samples the authors identified 22 images that were not suitable for interpretation 353 

due to cloud coverage or blurry images on both Google Earth and Bing, although these 354 

images had been interpreted by the respondents with high confidence.   355 

Table 2. The upper part of the table shows the agreements of local experts and research team 356 
members’ interpretation of 147 reference points collected from the field. The local expert data 357 
includes all of the interpretations made by 16 respondents. The research team member data includes 358 
interpretations from 2 experts. The lower part of the table shows the results of the confidence test of 359 
600 interpreted samples. 360 
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  Plantation 

interpretation 

agreements 

Species 

interpretation 

agreements 

Age class 

interpretation 

agreements 

Field Reference Data Plantation Other 

LC 

P E/W Rp Gr Mat 

Number of samples 68 79 52 -    

Correctly classified by 

local experts 

84% 55% 86% -    

Correctly classified by  

research team members  

97% 79% 100% -    

Visual Interpretation 

Data 

           

Number of samples 300 300 155 124 55 136 68 

Agreements between 

local experts and 

research team members 

94% 86% 72% 55% 64% 63% 56% 

P = Pine, E/W = Eucalyptus or wattle, RP = Recently planted, Gr = Growing, Mat = Mature 361 

 362 

 363 

 364 

                365 
Figure 7. Hierarchical clustering of the expert interpretation of 147 known field reference points 366 
clustered based on their Euclidean distance against the reference points. Interpretations conducted by 367 
experts, proficient (Prof) with remote sensing have smaller distance to field reference (Ref) compared 368 
to interpretations of intermediate (Int) skills on remote sensing. 369 

 370 

3.2 Capacity building of the Mapathon event 371 

Based on the feedback collected from the local experts, the participants felt that they were 372 

substantially benefiting from the Mapathon experience. Only two experts had previous 373 
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experience with Open Foris tools, but most had been using Google Earth in their studies or 374 

professional work. They all felt that the experience was positive in general and that they were 375 

highly motivated to take part (avg. score 4.9/5.0). Although the working process required 376 

training and some of the interpretation tasks were challenging, the participants felt that their 377 

understanding of the exercise was high (avg. score 4.3/5.0). They felt that their skills in 378 

remote sensing and image interpretation became much better than before (avg. score 4.7/5.0). 379 

On top of learning remote sensing and image interpretation, the participants also felt that they 380 

learned organising and time-management issues, in addition to which their understanding of 381 

the applications of remote sensing are now wider and more real-world based. 382 

The orientation week was considered necessary in providing the participants with required 383 

skills for interpretation and to share knowledge to modify the survey. According to the 384 

participants, still more practice would have been needed in analytical image analysis skills, in 385 

software skills and in demanding image interpretation tasks. We also received plenty of 386 

feedback about a need for a follow-up training on how to create a survey for Collect Earth. 387 

Such training was organized as part of the results dissemination and discussion event 388 

arranged for the participants after the mapping work had been finished.  389 

 390 

3.3 Forest plantation cover and distribution  391 
 392 

Based on our participatory mapping methodology, using Random Forest classifier there are 393 

240,000±87,000 hectares of planted forests in the Southern Highlands area and the overall 394 

accuracy of the plantation map is 85±2% (Table 3). These plantations cover approximately 395 

1% of the study area. The relatively large confidence interval area of the forest plantation 396 

area is explained by its relatively small coverage and misclassifications with the dominant 397 

land cover classes. These new forest plantation cover estimates in the Southern Highlands are 398 
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50-200% higher than the previous estimates made in the National Forest Inventory 399 

NAFORMA Land Cover map (MNRT 2013). Although these figures are not explicitly 400 

comparable due to the national scope of NAFORMA Land Cover map, the difference 401 

suggests that the previous estimates of forest plantation coverage were underestimates. 402 

In the Southern Highlands, the forest plantations are concentrated in the highland range, in 403 

the regions of Iringa, Mbeya and Njombe (Figure 8A). The majority of the planted forest 404 

landscape is characterized by numerous small and scattered woodlots (Figure 8B). In 405 

contrast, there are concentrations of high-intensity planted forests close to Mafinga, Njombe 406 

and Mbeya. These areas are characterized by large industry-scale dense forest patches (Figure 407 

8C).  408 

At the species level the forest plantation map overall accuracy was 65±4% with pines having 409 

the highest classification accuracies (Table 4). The eucalyptus and wattle classes were 410 

combined due to their problematic interpretation in the samples. Pines are the most dominant 411 

plantation species covering 69% of all the forest plantations (Figure 8). The share of 412 

eucalyptus and wattle in the classification output is 31%.  413 

 414 

 415 

 416 

 417 

 418 

Table 3. Error matrix populated by the estimated proportion of area for each category. Rows 419 

represent map categories and columns represent reference categories. Accuracy measures are 420 

presented with 95% confidence interval. 421 

  

Forest 

plantation 

Natural 

Forest Other Total 

Map area 

(ha) Estimated area (ha) 

User's 

accuracy 

Producer's 

accuracy 

Forest 

plantation 0.0075 0.0006 0.0008 0.0089 180011 239842 ± 87023 0.84 ± 0.07 0.96 ± 0.04 
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Natural 

Forest 0.0044 0.3399 0.1100 0.4542 9200524 7132229 ± 425063 0.75 ± 0.04 0.95 ± 0.02 

Other 0 0.0116 0.5252 0.5369 10874033 12882496 ± 420410 0.98 ± 0.01 0.76 ± 0.04 

Total 0.0118 0.3521 0.6360 1 20254568 

   Overall 

Accuracy 0.85 ± 0.02 

      
 422 

Table 4. Error matrix populated by the estimated proportion of area for each category. Rows 423 

represent species map categories and columns represent reference categories. Accuracy measures are 424 

presented with 95% confidence interval. 425 

  Pine 

Eucalyptus 

or Wattle 

Natural 

Forest Other Total 

User's 

accuracy 

Producer's 

accuracy 

Pine 0.0050 0.0008 0 0.0003 0.0061 0.82 ± 0.06 0.68 ± 0.07 

Euca or 

Wattle 0.0006 0.0020 0.0002 0.0000 0.0028 0.71 ± 0.07 0.67 ± 0.07 

Natural 

Forest 0 0.1339 0.2096 0.0349 0.4542 0.46 ± 0.08 0.56 ± 0.08 

Other 0.0405 0.0304 0.2026 0 0.5369 0.49 ± 0.11 0.65 ± 0.10 

Total 0.1218 0.1671 0.4124 0.2987 1 

  Overall 

Accuracy 0.65 ± 0.04 

        426 
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427 
Figure 8. A) Spatial distribution and composition of the forest plantations in 2015 in the study 428 

area. Most of the areas are dominated by smallholder woodlots (B, Njombe) while some areas are 429 

dominated by industry-scale plantations (C, Sao hill) visualized in 20x20km example areas. 430 

 431 

The created plantation map of the Southern Highlands and the reference and validations 432 

samples are freely available at PANGAEA 433 
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(https://doi.pangaea.de/10.1594/PANGAEA.894892), and the GEE script is available at 434 

GitHub (https://github.com/utu-tanzania/sh-plantations). 435 

 436 

 437 

 438 

4. Discussion 439 

Recent development of open-access data catalogues and cloud computing capacity have 440 

improved possibilities for monitoring land resources in areas with data scarcity and difficult 441 

field accessibility. Our aim was to test the relevance of participatory GIS approach combined 442 

with the improved access to data and software in providing locally calibrated and spatially 443 

detailed forest and land cover information. A carefully planned and conducted participatory 444 

mapping campaign resulted in a high quality forest plantation reference sample set for the 445 

extensive study area of the Southern Highlands, which was further classified to a high-446 

resolution spatially explicit forest plantation map. Furthermore, the mapping campaign 447 

increased the capacity of the local experts to conduct rigorous mapping of land cover based 448 

on open-source data and software they all have access to. Our research shows that this 449 

methodological set-up is a feasible approach to produce locally fixed land cover information 450 

with limited resource investment especially in areas where previous information of such 451 

spatial data is generic or non-existent. 452 

One of the main challenges in participatory reference data collection is the quality and 453 

consistency of the collected samples (Comber et al. 2013, See et al. 2015b). Despite the 454 

challenges that participants had in the image interpretation process in our study, the forest 455 

plantations were interpreted with relatively high confidence, comparable to previous studies 456 

with similar methodology (Clark et al. 2010). Carefully planned, structured and visually 457 

attentive survey eases participants’ interpretation work technically and leave more room for 458 

the actual interpretation of the images. With the Open Foris suite, the development of guided 459 
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surveys with nested questionnaire and easy access to auxiliary data sources is available (Bey 460 

et al. 2016). The approach can greatly simplify otherwise rather challenging interpretation 461 

tasks. Recent studies relying on crowdsourcing have stated that the expert opinion depends on 462 

the case, having low influence on simple interpretation tasks and more influence on 463 

challenging tasks (Salk et al. 2016). Also, the familiarity of the study area has been reported 464 

to have influence, depending however on the tasks and the geographical scope of the survey 465 

(Comber et al. 2014). Our results are in concordance with these findings clearly showing that 466 

when dealing with complex landscapes and challenging interpretation, methods and tools that 467 

enable interpreters to focus more energy on the classification task improve decision-making 468 

and ultimately improve results.  469 

A structured survey and carefully adjusted level of interpretation details can effectively 470 

reduce the misinterpretations. In our study, the interpretation agreement declines when details 471 

are increased from forest plantation coverage to specific plantation quality attributes. This 472 

demonstrates that, at least in complex environments, it may not be realistic to expect good 473 

accuracy on detailed level information such as tree species or age derived from visual 474 

interpretation of optical data and this should be noted when planning the purpose and 475 

methods of the survey. Successful participatory mapping campaigns require a well-designed 476 

practice of participation with simple data collection set-up, embedded user motivation and 477 

realization of benefits of participation to the users (Verplanke et al. 2016). These elements are 478 

especially crucial, when participatory mapping approaches are taken into those parts of the 479 

world where professional remote sensing practices and experiences working with image 480 

interpretation are less established, but where mapping processes are crippled without well-481 

conducted participation and access to local knowledge.  482 

Involving local expertise through participation has a significant potential in facilitating forest 483 

and land resource mapping when large amounts of training data are needed, when field-based 484 
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data collection is too laborious and costly, and when local knowledge in general is needed to 485 

obtain relevant information of the forest and land features (Clark et al. 2010). Gathering 486 

participants for an intensive data collection campaign allows learning from each other, 487 

incorporating better control over the reliability of the collected information and strengthening 488 

the remote sensing expertize of the participants. These elements are all vital for the success of 489 

the mapping results and additionally they empower developing societies with better access 490 

and opportunities for natural resource mapping and management (McCall et al. 2015; 491 

Verplanke et al. 2016).  492 

Our results show that organized training is a fundamental element in conducting participatory 493 

image interpretation and classification efforts. The extensive training period prior to the 494 

actual mapping increased the motivation and capacity of the local experts particularly to 495 

interpret differences between forest plantations and natural forests, and acted as an important 496 

preparation for the challenging interpretation task. Participants’ pre-training ensures that 497 

essential skills are mastered and the semantics of interpretation are calibrated between the 498 

experts (Comber et al. 2016, Salk et al. 2016). The training period also allows research team 499 

members to learn from local experts and use that knowledge to modify the survey with 500 

respect to the skills of the respondents, the complexity of the landscape and the interpretation 501 

procedure. 502 

In light of the fact that spatially explicit forest plantation estimates were previously missing 503 

from the Southern Highlands, the forest plantation map developed in this research gives 504 

access to one of the most fundamental baseline datasets to base regional forest management 505 

decisions on and to assess the sustainability of land development.  Compared to recent similar 506 

scale plantation mapping studies conducted in the tropical regions, the achieved accuracy of 507 

our forest plantation map is somewhat lower (Dong et al. 2012, Petersen et al. 2016, Torbick 508 

et al. 2016). However, the mapping of rubber, oil and eucalyptus planted as spatially 509 
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extensive monocultures is not comparable with the heterogeneous landscape of our area of 510 

interest where the majority of the forest plantations are smallholder woodlots. The complex 511 

landscape structure of the Southern Highlands with multifunctional agroforestry land uses 512 

and detailed topographical variation affects the classification performance of small 513 

plantations by generating mixed pixels. Furthermore, technical restrictions for detecting 514 

young plantations and regenerating forests have been reported also in previous studies (Dong 515 

et al. 2013, le Maire et al. 2014). Therefore, the map is a conservative representation of the 516 

forest plantations and most likely an underestimation of the forest plantation area as indicated 517 

also by larger plantation cover estimates generated based on the reference data. Repetition of 518 

the mapping every 2-3 years would not only enable identification of the dynamics of forest 519 

plantation cover, but also increase the reliability of the baseline map.  520 

This research was conducted foremost at regional level, but the overall approach and the 521 

methodology used are applicable at different scales and in different regions. The Open Foris 522 

survey tools facilitate visual interpretation of very high-resolution satellite images, especially 523 

useful for collecting a large number of training samples in a cost-effective way. Combined 524 

with learning-based expert participation, a constantly updated global harmonized catalogue of 525 

satellite imagery and geospatial datasets and cloud computing resources of GEE, this set-up is 526 

a promising approach for environmental remote sensing in the next years to come (Teluguntla 527 

et al. 2018). GEE is especially suitable for repeatable multi-temporal and multi-sensor 528 

approaches due to the capabilities of image collection filtering and reducing mechanisms in a 529 

user-friendly JavaScript environment, providing a powerful tool for dynamic land cover 530 

mapping over large geographic areas (Patel et al. 2015, Xiong et al. 2016, Chen et al. 2017, 531 

Teluguntla et al. 2018). At present, GEE hosts the most significant open satellite image 532 

collections and the algorithm functionalities are constantly updated to meet the needs of user 533 

community (Gorelick et al. 2017). However, there are still limitations in available datasets 534 
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(e.g. GEE’s pre-processing routine for Sentinel-1 ingestion does not include radiometric 535 

slope correction necessary for land cover classifications), algorithms (e.g. lack of readily 536 

available pixel-based sun-sensor geometry correction), functionalities (e.g. Boosted 537 

regression trees classification (BRT)), control over the results, user memory and storage 538 

capacity. In many studies this leads to data transfer between GEE and other software e.g. R 539 

statistics, meanwhile losing some of the key benefits of conducting all the methodological 540 

steps from data acquisition to result output at a single platform.  541 

Remote sensing as a professional discipline has crossed an important border from a rather 542 

restricted expert-based science to broader citizen-supportive practice and discourse. These 543 

changes have been and will continue to be enlarging societies’ general capacities in data 544 

driven decision making, creating ownership, responsibility and commitment to resource 545 

governance, and empowering citizens to spatial decision-making and dialogue which follows 546 

from those decisions (See et al. 2015b, Fritz et al. 2017).  547 

5. Conclusions 548 

Spatially explicit information on the extent of forest plantation cover is essential to estimate 549 

the environmental and socio-economic impacts of the forest dynamics and to support 550 

sustainable forest management, particularly in regions that experience a rapid expansion of 551 

forest plantations. This study demonstrated the power of combining local expertise with the 552 

opportunities created by the recent development of free and online data repositories and cloud 553 

computing capacity in producing credible spatial estimates on forest plantation cover and 554 

species distribution in complex and heterogeneous landscapes. The participatory approach 555 

was found particularly suitable as it creates ownership and builds capacity enabling the 556 

repetitive monitoring of the plantations. Since the methodology is based on open source 557 

applications it is applicable in all parts of the world at various scales, driven however by the 558 
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locality of sampling design. This set-up is a promising approach for environmental remote 559 

sensing in the next years to come. 560 

 561 

 562 
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