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Abstract In the application of machine learning methods with natural language inputs, the
words and their positions in the input text are some of the most important features. In this
article, we introduce a framework based on a word-position matrix representation of text, lin-
ear feature transformations of the word-position matrices, and kernel functions constructed
from the transformations. We consider two categories of transformations, one based on word
similarities and the second on their positions, which can be applied simultaneously in the
framework in an elegant way. We show how word and positional similarities obtained by
applying previously proposed techniques, such as latent semantic analysis, can be incor-
porated as transformations in the framework. We also introduce novel ways to determine
word and positional similarities. We further present efficient algorithms for computing ker-
nel functions incorporating the transformations on the word-position matrices, and, more
importantly, introduce a highly efficient method for prediction. The framework is particu-
larly suitable to natural language disambiguation tasks where the aim is to select for a single
word a particular property from a set of candidates based on the context of the word. We
demonstrate the applicability of the framework to this type of tasks using context-sensitive
spelling error correction on the Reuters News corpus as a model problem.
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1 Introduction

Many natural language processing applications require accurate resolution of the various
kinds of ambiguity present in natural language, giving rise to a class of disambiguation
problems. When applying machine learning methods to natural language disambiguation,
the text documents in which disambiguation is performed must be given a suitable represen-
tation. Such a representation needs to capture many features of the documents, and one of
the most important choices is the selection of the representation that is given to the words in
the documents. The most common choice for this purpose in many tasks is the bag-of-words
(BoW) representation, in which the words are represented as word frequency vectors.

Although the BoW representation is simple and surprisingly effective in many cases, it
discards much of the information contained in the original text, including information related
to the positions of the words with respect to each other. However, positional information
can be included, for example, by employing a representation in which words are replaced
by word-position pairs (see e.g. Jurafsky and Martin 2000). This then means that identical
words are considered as different features when they are located in different positions.

In this study, we propose a framework that allows systematic incorporation of word po-
sitions and facilitates the efficient use of similarity information of words and their positions.
It brings together a number of our earlier proposals for incorporating positional information,
discussed in detail in Sect. 6. The framework can be applied in tasks where word positions
can be defined, and is particularly suitable when the aim is to disambiguate a single word
based on its context by selecting a particular property of the word, such as the correct word
sense or spelling, from a set of candidates. Similarly to how the BoW representation is
commonly used together with more complex features, it might be beneficial to combine the
use of the presented framework with other feature representations. However, as the word-
position matrix representation extends the BoW and word-position feature representations,
we only consider it in relation to these in this paper. The main contributions of the current
work are summarized below.

– Framework. We describe a framework that is based on a word-position matrix representa-
tion of text, linear feature transformations of the word-position matrices, and kernel func-
tions constructed from the transformations. This approach generalizes over previously in-
troduced representations, including the BoW and word-position feature representations,
and allows external sources of information on the similarity of words to be incorporated
efficiently. The framework also naturally allows for combinations of word similarity and
positional information to be applied.

– Feature transformations. We consider two categories of feature transformations: word
and positional transformations. We describe how previously proposed techniques can be
applied in the framework and introduce novel transformations, including ones derived
directly from the training data. The performance gain obtained when using the frame-
work with the introduced transformations is demonstrated in experiments using context-
sensitive spelling error correction with the Reuters News corpus as a model problem.

– Efficient computation. We present efficient algorithms for training a kernel-based learning
machine that uses the proposed framework. More importantly, we also introduce a method
for the prediction of new examples with a trained linear regularized least-squares classifier
that uses the framework, and show that prediction of the output variables can be performed
as efficiently as in the BoW framework.

The paper is organized as follows. In Sect. 2, we briefly survey kernel methods and
feature transformations, and present the representation of the input data points as word-
position matrices. In Sect. 3, we introduce several types of linear feature transformations
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of the word-position matrices, namely, word and positional transformations, as well as an
unsupervised method to construct the word and positional transformations from a data set.
Section 4 concentrates on the computational issues related to the transformations and kernel
functions constructed from the transformations. In Sect. 5, we describe experiments with the
transformations and kernel functions. We discuss in detail several recently proposed kernels
and their relationship to the framework proposed in this study in Sect. 6. Finally, we discuss
the framework in a broader setting and describe possible extensions of the framework in
Sect. 7. Section 8 concludes the paper.

2 Kernel methods and matrix representation of data

In this section, we first give a brief introduction to kernel methods and feature transforma-
tions. We then propose the word-position matrix representation of text.

2.1 Kernel methods

Kernel-based learning algorithms—see for example Schölkopf and Smola (2002) and
Shawe-Taylor and Cristianini (2004)—can be viewed to consist of two modules: the learn-
ing algorithm and the kernel function. The learning algorithm can be, for example, a support
vector machine (Vapnik 1998) or a regularized least-squares (RLS) classifier (Rifkin et al.
2003). The kernel function, which acts as an interface between the learning algorithm and
the data, provides information to the learning algorithm in a form of the inner products of
data points in some feature space into which the original data points are mapped. Formally,
let X denote the input space, which can be any set, and H denote the feature space. For any
mapping Φ : X → H,k(x, z) = 〈Φ(x),Φ(z)〉 is a kernel function. Note that if we have an
efficient way to compute k(x, z) directly, there is no need to explicitly compute the mapping
Φ , because the kernel-based learning algorithms need only the value of the inner product.
In order to design a good kernel function for a particular learning problem, we may use
prior knowledge of the problem (see e.g. Schölkopf et al. 1998 for a typical example of this
approach).

In this paper, we consider only linear mappings of the data points. Let the mapping Φ be
a linear transformation from X to H , where X is a vector space, and let the kernel function
be

k(x, z) = 〈Φ(x),Φ(z)〉 = 〈̂Φ(x), z〉, (1)

where ̂Φ : X → X is a symmetric positive semidefinite endomorphism. An endomorphism
is a morphism from a vector space to itself. By symmetry, we indicate that, for any x and z,
〈̂Φ(x), z〉 = 〈x, ̂Φ(z)〉. Positive semidefiniteness means that 〈̂Φ(x), x〉 ≥ 0. Therefore, in
this case an alternative way to compute the value of the kernel function for two data points
is to transform only one of the two points with the endomorphism and compute its inner
product with the non-transformed point. Below, we use the terms transformation and its cor-
responding endomorphism when referring to the correspondence between Φ and ̂Φ defined
in (1).

2.2 Representation of the data

The BoW model is a simple and common choice of text representation. In the context of
kernel-based methods, the BoW representation of was first proposed by Joachims (1998)
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under the name word vector space kernel and since then it has been widely applied. A
BoW vector is indexed with a set of words W , that is, there is an element in the vector
corresponding to each word in W .

In this paper, we consider an alternate representation that is particularly appropriate to
disambiguation tasks, which we use as a model problem. In disambiguation tasks, each
input data point consists of a word to be disambiguated and the context words surrounding
it. For this model problem, we use the following formalization for the data points. Let s be
a context span parameter that determines how many words to the left and to the right from
the ambiguous word are included in the context, so that the size of the context window is
r = 2s + 1. If there are not enough words available in the text to the left or to the right
from the ambiguous word, the positions are left empty. Let n be the number of words and
W = {w1, . . . ,wn} be the set of words. We define our input data points to be word-position
matrices A ∈ Mn×r (R), where Mn×r (R) is the set of n× r-matrices whose elements belong
to R. The word positions of a context are indexed from −s to s, where the word to be
disambiguated is at the position zero of its context. A word-position matrix A generated from
the context of an ambiguous word is a binary matrix in which the element Ai,j corresponding
to the word wi and the position j has the value one if the word wi occurs at the position j of
the context and zero otherwise. There can be at most one nonzero element in each column,
because each position can have only one word. If the word in a certain position of a context
is not in W or if there is no word at that position, the corresponding column has only zeros.
On the other hand, the same word can occur in several positions in the context, and therefore
the rows of the matrices can have several nonzero elements. Notice that BoW vectors can be
created from the word-position matrices simply by summing up the matrix columns.

The word-position matrices are elements of the vector space Mn×r (R). The Frobenius
product is an inner product in this vector space

〈A,B〉F =
∑

i,j

Ai,jBi,j , (2)

where 1 ≤ i ≤ n and −s ≤ j ≤ s.

3 Transformations of word-position matrices

In this section, we consider different ways to construct linear transformations for the word-
position matrices. We start by separately introducing word and positional transformations
in Sects. 3.1 and 3.2, respectively. Further, in Sect. 3.3 we present a method to derive trans-
formations directly from a given data set. The composite transformations are presented
in Sect. 4. The endomorphisms corresponding to the word and positional transformations
(Propositions 1 and 2 in this section) are special cases of composite endomorphisms (Propo-
sition 3). For more information on matrix analysis and linear algebra, see the book by Meyer
(2000), for example.

3.1 Word transformations

We now consider linear transformations of word vectors. In the literature, such transforma-
tions are usually performed on BoW vectors to introduce similarities between words. Here
we apply word-vector transformations on a word-position matrix A, so that each column
of the matrix is transformed in the same way. An example of such word transformation is
presented below.
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Let the feature mapping in the context of kernel functions be

Φ(A) = WA, (3)

where A ∈ Mn×r (R) is a word-position matrix, W ∈ Mt×n(R) is here termed the word
transformation matrix, and t depends on the transformation. Then we obtain the following
proposition.

Proposition 1 The endomorphism corresponding to the transformation (3) is

̂Φ(A) = ̂WA,

where ̂W = W TW ∈ Mn×n(R) is the matrix of the endomorphism.

The proposition is a special case of Proposition 3 proven in Sect. 4.
Typical linear transformations of BoW vectors are importance weights of words, whose

use with support vector machines has been explored in detail by Leopold and Kindermann
(2002) and Joachims (2002). The matrix ̂W corresponding to the importance weight trans-
formation is a diagonal matrix whose elements are the importance weights of the words. By
including also non-zero off-diagonal elements in the matrix ̂W , word-word similarities can
be taken into account in addition to the importance weights. There are several other potential
sources of external information that can be used to construct the transformations. Siolas and
d’Alché-Buc (2000) used WordNet as an external source of semantic similarity of words
in order to perform semantic smoothing on BoW vectors. In addition, Gliozzo et al. (2005)
applied WordNet Domains to construct the kernel functions for word sense disambiguation.
Furthermore, word similarities could be obtained from a word-document matrix constructed
from a large text corpus by latent semantic analysis techniques (Deerwester et al. 1990).

We now consider a simple example of a word transformation. For many natural lan-
guage disambiguation tasks, the parts-of-speech (PoS) of context words are shown to
provide useful additional information (see e.g. Jurafsky and Martin 2000). This exter-
nal source of information can be used to construct a word transformation W so that
Wi,j is one if the j th word can have the ith PoS and zero otherwise. For example, if
W = {composition, contribution,write,being} and the possible PoS are noun and verb, then
n = 4, t = 2, and we can construct the word transformation matrix and its corresponding
endomorphism matrix as follows

W =
(

1 1 0 0.71
0 0 1 0.71

)

and ̂W =

⎛

⎜

⎜

⎝

1 1 0 0.71
1 1 0 0.71
0 0 1 0.71

0.71 0.71 0.71 1

⎞

⎟

⎟

⎠

, (4)

where the rows of W are indexed by the parts-of-speech and the columns of W as well as
the rows and the columns of ̂W are indexed by the words. Notice that it is possible for words
to have several nonzero values in their corresponding column in W ; for example, the word
being can be either a noun or a verb. Note also that we have normalized the columns of W

so that the similarity of all words with themselves is 1 in the endomorphism matrix.
In addition to the PoS, any feature depending only on a word, not its context, can be

included through word transformations in the way illustrated above. The fact that the size
of the endomorphism matrix does not depend on the number of features included in this
way allows the incorporation of a substantial amount of features extracted from the input



Mach Learn

words. To illustrate a common case of this type, let us consider the case of prefix and suf-
fix features. By including word prefixes and suffixes of given lengths as features e.g. in
a feature vector representation, it is possible to introduce similarity between words that
would otherwise be considered completely distinct. As an example, consider a case where
W = {composition, contribution, cabinet,write} and one- and two-character prefix features
are included. Thus, the possible prefixes are {c, ca, co,w,wr}, n = 4, t = 5 and the word
transformation and endomorphism matrices can be constructed as

W =

⎛

⎜

⎜

⎜

⎜

⎝

0.71 0.71 0.71 0
0 0 0.71 0

0.71 0.71 0 0
0 0 0 0.71
0 0 0 0.71

⎞

⎟

⎟

⎟

⎟

⎠

and ̂W =

⎛

⎜

⎜

⎝

1 1 0.71 0
1 1 0.71 0

0.71 0.71 1 0
0 0 0 1

⎞

⎟

⎟

⎠

.

Note that the number of unique prefixes and suffixes grows with prefix/suffix length, and thus
including prefix and suffix features of multiple different lengths increases the size of feature
vectors for representing text to some extent. By contrast, when prefix and suffix features are
equivalently included through a word transformation, the size of the endomorphism matrix
is always n × n, and, as discussed in Sect. 4.2, linear transformations can be incorporated
in prediction without increasing computational complexity beyond that of the basic BoW
representation. Thus, linearly calculable features, including by definition all features that can
be directly calculated from the words without reference to their context, can in some cases
be calculated more efficiently in the present framework than when naively incorporating the
respective features in a feature vector representation.

The simple transformations presented above discard the original word identify informa-
tion. In the first example, the words composition and contribution are identified with each
other because their corresponding columns in W are equal. This is a problem in practice
because there are only a few PoS compared to the number of words, and therefore only ap-
plying this type of transformation loses information differentiating the words. Similar issues
can occur also with other types of transformations, such as those introducing short word
prefixes. These issues can be addressed by stacking the transformation with a identity trans-
formation so that the feature space consists of the new features together with the old ones.
Thus, in the above example, the transformed feature space will contain both word-position
pairs as well as PoS-position pairs. To control the relative contribution of the two sets of
features to the word similarities, we use a weighting parameter μ yielding the following
block matrix

Wμ =
( √

μI
√

1 − μW

)

. (5)

The endomorphism matrix corresponding to the stacked transformation matrix (5) is the
following full rank word-word matrix

̂Wμ = W T
μWμ = (1 − μ) ̂W + μI, (6)

that is, the endomorphism matrix corresponding to the original transformation with a shifted
diagonal.

3.2 Positional transformations

We now consider positional transformations of the word-position matrices and relate our
previous work on position-sensitive models to the proposed framework. One use of posi-
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tional transformations is weighting, where some of the positions are considered to be more
important than the others, analogously to importance weighting of words. For example,
words that are close to the word to be disambiguated will often carry more useful informa-
tion than distant words. In our previous work (Pahikkala et al. 2005a), we used positional
weighting, originally introduced by Ginter et al. (2004), as a support vector kernel for dis-
ambiguation tasks. Positional transformations can be also used to “spread” an occurrence of
a word in a certain position to other nearby positions, analogously to semantic smoothing
techniques for words. For example, while the exact positions of words immediately before
or after the word to be disambiguated are important, the exact positions of words far from the
ambiguous word are less important, and therefore these distant positions can be considered
similar to each other. We have previously proposed kernel functions that can be considered
as implementations of this type of transformations (Pahikkala et al. 2005b, 2005c).

Linear positional transformations of the word-position matrices can be defined as

Φ(A) = AP, (7)

where A ∈ Mn×r (R) is a word-position matrix, P ∈ Mr×u(R) is here termed the positional
transformation matrix, and u depends on the transformation.

Proposition 2 The endomorphism corresponding to the transformation (7) is

̂Φ(A) = ÂP ,

where ̂P = PP T ∈ Mr×r (R) is the position-position matrix of the endomorphism.

The proposition is a special case of Proposition 3 proven in Sect. 4.
Note that if we set P = (1 . . .1)T, then the word-position matrices are transformed to

BoW vectors. The weighted-BoW approaches used by Ginter et al. (2004) and Pahikkala
et al. (2005a) can be implemented as a transformation P ∈ Mr×1(R) where the elements
of the single column are the weights for the positions. Since there is only one column,
the word-position matrices are transformed to weighted BoW vectors. Of course, positional
weighting can be applied without “compressing” the positions to BoW by setting P to be
a diagonal matrix that has the weights on the diagonal. A simple example of a positional
transformation that uses a combination of the BoW transform and positional weighting is
given in the following along with the corresponding endomorphism matrix

P =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
1 1 0 0
1 0 2 0
1 0 0 1
1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

and ̂P =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
1 2 1 1 1
1 1 5 1 1
1 1 1 2 1
1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎠

, (8)

where the context span s is 2 and therefore the number of positions is 2s + 1 = 5. The five
rows of P and the five rows and columns of ̂P correspond to the positions −2, . . . ,2. The
first column of P corresponds to the BoW transformation, that is, it maps each row of a
word-position matrix to a feature that counts the occurrences of the word corresponding to
the row. The three other columns correspond to features where a word occurs in a specific
position near to the word to be disambiguated, which are often used in disambiguation tasks.
Further, the weight given to the feature for the word at the position zero is higher than the
weights for the positions −1 and 1, emphasizing the importance of that position.
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In (8), the transformation is constructed by defining the values of the transformation
matrix P . By doing this, we define the structure of the feature space into which the data
points are mapped. However, in the context of kernel methods only the value of the inner
product of the feature vectors is needed. Therefore, another way to construct the transfor-
mation is to define directly the values of the endomorphism matrix ̂P . Below, we consider
these two approaches of the transformation construction. First, we relate our previous work
about the kernel functions on the word positions and use the kernels to define the endomor-
phism matrices. Next, we present a similar approach that we use to define the values of the
transformation matrices.

In our previous work (Pahikkala et al. 2005b, 2005c), we have developed a kernel func-
tion that can be applied in the current framework to determine the elements of the endo-
morphism matrix ̂P without defining P . This approach is analogous to determining the
endomorphism matrix corresponding to a word transformation based on an external source
of word similarities. The support vector machine (SVM) classifier using the proposed kernel
outperformed SVMs with the BoW and the weighted BoW kernels and SVM with no trans-
formations performed on the word-position matrices. The applied endomorphism matrix
was defined by

̂Pp,q = exp(−α(p2 + q2) − θ(p − q)2) + β, (9)

where α, θ , and β are parameters controlling three components of the function: weighting
based on the distance of each position from the position zero, the effect of the distance of the
positions from each other, and a BoW component, respectively. The parameter α controls
the distance-based weighting so that for large values of α the value of the function decays
faster than for small values as the distance of p or q from the position 0 increases. The
parameter θ controls the effect of the mutual difference of the positions, so that for large
values of θ the value of the function decays faster than for small values as the difference
p − q increases. Finally, β corresponds to BoW, that is, a constant value given for any pair
of positions. Note that the rows and columns of ̂P are indexed by positions, which range
from −s to s. Some parameterizations of (9) are illustrated in Fig. 1. The level curves in the
general case (top left) are ellipses whose major axes are always parallel with the line p = q .
The ellipses are circles if θ is zero (top right), giving weighting similar to the weighted BoW
transformation. If we omit the positional weighting by setting α to zero (bottom left), we
have a Gaussian kernel of positions which depends solely on the distances of the positions
from each other. This can be considered as equivalent to an intermediate between the BoW
transformation and the case where no positional transformations are made. If we let θ → ∞
(bottom right), the function is equivalent to a transformation that only weights the positions.
For more detailed analysis of the function and its parameters, we refer to Pahikkala et al.
(2005c).

We now present a procedure to construct P inspired by kernel density estimation tech-
niques (see e.g. Silverman 1986). In this approach, the feature space equals the input space
and therefore we use the term word-position matrix also when referring to the transformed
data points. The idea is to construct a transformation that spreads the word occurrences from
their exact positions to the positions that are related to the original one. In other words, if a
word is originally at a position p when there is one nonzero element in the row correspond-
ing to that word in the word-position matrix, the corresponding row of the transformed
matrix contains also other nonzero values, of which positions with large values are more
related to the position p than positions with small values. A well-known way to perform
this kind of transformation is the Gaussian function. Further, a common practice in density
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Fig. 1 Gray-scale illustrations of
the position-position matrices
obtained using (9) with different
parameterizations. Position pairs
associated with larger values
have darker color than those with
smaller values

estimation is to use variable Gaussian widths that depend on the amount of available data in
different regions.

Next, we construct a Gaussian function κp(q) whose width depends on the word position
p so that the Gaussians used to spread the word occurrences in the vicinity of the position
zero are sharp whereas the distant occurrences are spread more evenly to the other positions
due to the wide Gaussians. We construct the positional transformation matrix as Pp,q =
κp(q). Note that again P is indexed by positions and that the columns of P determine
how much the word occurrences are spread to the neighboring positions. The following
realization of the function has a variable width controlled by a function h(p):

κp(q) = exp(−h(p)(p − q)2)

Zp

, (10)

where

Zp =
∑

−s≤q≤s

exp(−h(p)(p − q)2)

is a normalization constant for the columns of P . We use the Gaussian function h(p) =
exp(−γp2), where γ ≥ 0 is a parameter controlling the rate of spreading of positions with
respect to the distance of the position 0. The matrices P and ̂P obtained using (10) with dif-
ferent values of γ are depicted in Fig. 2. In the illustrations of the transformation matrix P ,
the vertical axis corresponds to the original positions and the horizontal axis to the trans-
formed ones. The variable width Gaussian functions determine how the word occurrences
in the original positions are spread to other positions. The narrow ridge in the middle means
that the occurrences in the nearby positions are spread only to the positions that are close to
them while the distant occurrences are spread almost uniformly to the other positions.

From the depictions of the endomorphism matrices we observe the resemblance to the
matrices obtained from the endomorphism (9). Close position pairs are again given larger
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Fig. 2 Gray-scale illustrations of
the matrices P (left) and ̂P

(right) obtained using (10) with
γ = 0.125 (top) and γ = 0.5
(down). Position pairs associated
with larger values have darker
color than those with smaller
values

weight than the distant ones and the close position pairs in which the positions are on dif-
ferent sides of the word at position zero are penalized even more strictly than with (9). We
speculate that the presented procedure is more advantageous than the one obtained by us-
ing (9) because in (10) there is only one parameter to be selected. In our experiments, we
notice that the classification performance with the variable width Gaussian transformation
is as good as with the previous one while the parameter selection requirements are consid-
erably smaller.

3.3 Unsupervised transformations

The word transformations can be constructed using external sources of information, such
as the parts-of-speech of the words, and the positional transformations are designed based
on prior knowledge of the task. Information on word similarities can also be obtained di-
rectly from training data. For example, Wong et al. (1985) developed the generalized vector
space model, in which word similarities were obtained from word co-occurrences in docu-
ments (see Shawe-Taylor and Cristianini 2004 for a more thorough discussion). This model
uses a document-word matrix to represent the information. Inspired by this model, we will
now consider a method that allows to construct not only the word but also the positional
transformations automatically. By contrast to the generalized vector space model, we use
word-position matrices. Let Ai denote the ith word-position matrix in a data set and let

D =
∑

i

Ai (11)

be a word-position matrix obtained by summing all word-position matrices. Note that the
construction of D does not need the class information of the examples, and therefore we
can use much more examples for that purpose (also the examples to be predicted) than
we use to train the supervised machine learning methods. This is, because the unclassified
data is often in greater abundance than the labeled training data. Some preprocessing steps
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Fig. 3 Gray-scale illustration of
an example of an automatically
generated ̂P from a confusion set
principal-principle. Position
pairs associated with larger
values have darker color than
those with smaller values

that are necessary when constructing transformations from D are discussed in Sect. 5. The
transpose of the obtained matrix can directly be used as a word-transformation W = DT or as
a positional transformation P = DT, whose corresponding endomorphisms are ̂W = DDT

and ̂P = DTD, respectively.
Let us consider the positional transformation P = DT and the corresponding position-

position matrices. We can think the pth column of D as an empirical estimate of the word
probability mass function of the position p. We observe that the value of an element of
̂P corresponding to a certain pair of positions is large if the word distributions of the two
positions are similar and the distributions have low entropy, that is, the probability mass is
substantially concentrated on a few words. The entropies of the word distributions of the
nearby positions are very low compared to those of the distant positions and therefore the
nearby positions get weighted much more than the distant ones which can be seen from
the diagonal elements of ̂P . This is analogous with the observations made by Yarowsky
(1993, 1995). The word distributions in distant positions are close to the word distribution
of the whole data set which makes the off-diagonal elements of ̂P corresponding to the
pairs of distant positions medium-sized. On the other hand, some of the nearby position
pairs have very small off-diagonal elements in ̂P because of the different low-entropy word
distributions of the positions.

An example of a position-position matrix ̂P generated for a confusion set principal-
principle is depicted in Fig. 3. Because of the nature of the task of context-sensitive spelling
error correction, the ambiguous word has been removed from the contexts used to generate
the matrix D. Therefore, there are only zero elements in the corresponding row and column
of ̂P . Of course, this removal may not be necessary in other types of tasks.

An unsupervised word transformation can be constructed analogously to the positional
transformation. The wth row of D can be considered as an empirical estimate of the position
probability mass function of the word w. Note that the sum of the elements of a row depends
of the frequency of the word, potentially causing high frequency words to get excessive
weights—this effect can be removed by normalizing the rows. The value of an element
of ̂W corresponding to a certain pair of words is large if the position distributions of the
two words are similar and the distributions have low entropy, that is, the probability mass
is substantially concentrated on a few positions. For example, if the ambiguous word is a
singular noun, the words is and was may tend to occur frequently at the position one, while
the occurrences of the word are at that position would be rare. Therefore, for that kind of
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disambiguation task, the words is and was would be considered similar, while is and are
would be different. The practical aspects of applying the unsupervised transformations are
discussed in more depth in Sect. 5.

4 Composite transformations and their computational complexity

In the previous sections, we considered word and positional transformations of the word-
position matrices as well as their corresponding endomorphisms. Here we study composite
transformations, that is, transformations that combine word and positional transformations.
We additionally present efficient techniques for computing the kernel matrices and perform-
ing prediction for unseen examples, as well as discuss their computation complexity.

4.1 Composite transformations

To obtain the benefits of both the word and positional transformations, we can consider
kernel functions over word-position matrices that correspond to a composite transformation
of the two transformations. As above, we also show that the feature mappings of the data
points can be considered from both the transformation and from the endomorphism point of
view. In this case, the feature mapping for the input data points is

Φ(A) = WAP, (12)

where A ∈ Mn×r (R) is a word-position matrix, W ∈ Mt×n(R) is a word transformation
matrix, and P ∈ Mr×u(R) is a positional transformation matrix. Now t and u determine the
dimension tu of the feature space H into which the word-position matrices are mapped.

We note that the explicit computation of the mapping and the inner products of the trans-
formed word-position matrices is computationally very demanding. However, the compu-
tational complexity can often be decreased by applying the following proposition. A more
general version of the proposition is proved by Vishwanathan et al. (2006). We present our
proof for the proposition to gain more insight into computational complexity considerations.

Proposition 3 Let Φ(A) = WAP as in (12). Then the endomorphism of the input space
corresponding to Φ as stated in (1) is

̂Φ(A) = ̂WÂP , (13)

where ̂W = W TW and ̂P = PP T.

Proof We show that 〈Φ(A),Φ(B)〉F = 〈̂Φ(A),B〉F , and that ̂Φ is symmetric and positive
semidefinite. We begin by noting that the Frobenius product of matrices can be written as

〈A,B〉F = tr(ATB),

where tr(M) denotes the trace of a square matrix M . Then

〈Φ(A),Φ(B)〉F = 〈WAP,WBP 〉F
= tr(P TATW TWBP)

= tr(PP TATW TWB)
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= 〈 ̂WÂP ,B〉F
= 〈̂Φ(A),B〉F , (14)

where (14) follows due to the cyclic property of the trace, that is, the trace of a product
of matrices is equal to the trace of any cyclic permutation of the product provided that the
matrices are permutated so that all products can be performed. The tenability of the equality
〈Φ(A),Φ(B)〉F = 〈A, ̂Φ(B)〉F can be shown in a similar way.

Let vec be the vectorization operator which stacks the columns of a matrix in a column
vector and let ⊗ denote the Kronecker product of matrices (see e.g. Magnus 1988). We
observe that

〈̂Φ(A),B〉F = vec( ̂WÂP )Tvec(B)

= vec(A)T(̂P ⊗ ̂W)vec(B), (15)

for the equality (15); see Magnus (1988), for example. The matrix ̂P ⊗ ̂W is symmetric and
positive semidefinite, since it can be decomposed as (P T ⊗ W)T(P T ⊗ W), and therefore
〈̂Φ(A),A〉F ≥ 0 which proves the symmetry and positive semidefiniteness of ̂Φ . �

Next we consider how we can take advantage of the sparsity of the word-position matri-
ces in order to speed up the computations. Because a context has at most one word in each
position, there is at most one nonzero element in each column of the corresponding word-
position matrix, and hence there are at most r nonzero elements in the whole matrix. Thus, a
fast way to compute the Frobenius product of two word-position matrices of which the other
is not transformed, is to go through the list of nonzero elements of the non-transformed ma-
trix and calculate the corresponding sum of products. A sparse word-position matrix is also
fast to multiply by any transformation matrix. For example, if we transform a sparse word-
position matrix with a rank t word transformation matrix W , we need O(rt) floating point
operations because we sum one column of W per each nonzero element of the word-position
matrix. On the other hand, if the word-position matrix is already multiplied with a transfor-
mation matrix once, the sparsity property is lost and the subsequent matrix multiplications
will be computationally more complex.

4.2 Kernel matrix computation

We now consider the computational complexity of the calculation of the kernel matrices
when the transformations defined above are performed on the word-position matrices. We
assume that the number of words n is always larger than the context length r .

The kernel matrix used to train a kernel-based learning algorithm is the following square
matrix of m2 elements

Ki,j = k(xi, xj ), 0 ≤ i, j ≤ m,

where xi are training examples and m is the size of the training set. The naive approach
would be to calculate the Frobenius product of the transformed word-position matrices in-
dependently for each element of the kernel matrix. However, it is often possible to speed
up the computation by transforming one training example at a time and calculating the ele-
ments of the corresponding row of the kernel matrix provided that the Frobenius product is
faster to compute when one of the training examples is already transformed. Below we will
discuss some situations when this is the case.
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We consider two different ways to compute the kernel when both the word and the posi-
tional transformations are used (of course, even faster computational shortcuts can be found
when only one of the two transformations, or no transformation, is applied). According to
the Proposition 3, we can compute the kernel function in the following two ways

k(x, z) = 〈WAP,WBP 〉F (16)

= 〈 ̂WÂP ,B〉F , (17)

where A and B are the word-position matrices corresponding to the data points x and z,
respectively. The computational complexity of kernel matrix calculation using (16) is

O(rtum + tum2). (18)

The first term of (18) corresponds to the matrix product of the matrix WA ∈ Mt×r (R) with
the matrix P ∈ Mr×u(R) that is calculated for each training example (the complexity of the
product WA is O(tr) due to the sparsity of A, and has no effect on the complexity). The
second term corresponds to the Frobenius product of the matrices WAP ∈ Mt×u(R) and
WBP ∈ Mt×u(R) computed for each element of the kernel matrix. The memory complexity
of (16) is O(tum) because we need to store m dense Mt×u(R)-matrices into the memory.

The kernel (17) can be implemented using the following simple kernel function

k(x, z) =
∑

p,q

̂Wx(p),z(q)
̂Pp,q,

where x(p) and z(p) denote the indices of the words in W that the contexts x and z have
at the position p, respectively. The above kernel can be computed in O(r2) time for each of
the m2 elements of the kernel matrix provided that we have the matrices ̂W and ̂P stored in
the memory. Therefore, the complexity of kernel matrix calculation using (17) is

O(r2m2). (19)

Clearly, the magnitudes of the complexities (18) and (19) depends crucially on the matrix
dimensions t and u. Before discussing which of the alternatives (16) and (17) should be used
in different cases, we consider two ways by which we can speed up the calculation of the
alternative (16).

Firstly, we can assume that t and u are equal to the ranks of the matrices W and P ,
respectively, and hence t ≤ n and u ≤ r . This can be ensured by the following application
of singular value decomposition to reshape the matrices. The singular value decomposition
of, for example, a word transformation matrix W ∈ Mt×n(R) is

W = UΣV T,

where Σ ∈ Mn×t (R) is a diagonal matrix that contains the singular values of W . Here
U ∈ Mt×t (R) and V ∈ Mn×n(R) are orthogonal matrices that contain the left and right
singular vectors of W , respectively. The corresponding word-word matrix is

̂W = W TW = V ΣTUTUΣV T = V ΣTΣV T (20)

because U is orthogonal. Its eigenvalues are the diagonal elements of the matrix ΣTΣ . Note
that the number of nonzero singular values equals the rank of the matrix. Therefore, we can
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also set t to be equal to the rank, because the transformation matrix W can be reshaped as
W := ΣtV T, where Σt contains only the t rows of Σ with the nonzero singular values.
This reshaping does not change the matrix of the endomorphism, because Σt T

Σt = ΣTΣ .
Positional transformation matrices can be reshaped analogously. If L ∈ Mr×r (R) and Λ ∈
Mr×u(R) contain the left singular vectors and singular values of P , respectively, then we set
P := LΛu, where Λu contains only the u columns of Λ with the nonzero singular values.
The transformations can be performed more efficiently when the transformation matrices
are compressed in the above described way.

Secondly, we consider speeding up the computation of (16) when the word transforma-
tion is stacked with an identity transformation as in (5). The stacking does not increase the
computational complexity, because we first compute the value of the kernel with the low
rank word transformation and then add the value of the kernel with the positional transfor-
mation only. This can be stated formally as:

〈WμAP,WμBP 〉F = 〈WAP,WBP 〉F + μ〈ÂP ,B〉F , (21)

where Wμ is the transformation defined in (5) and μ is the diagonal shift parameter. The
matrices ÂP for each training example can be computed and stored in memory in O(r2m)

time and the second term of (21) can then be efficiently computed due to the sparsity of B .
We conclude that in most cases the alternative (16) is a better choice when the product

of the ranks of the transformation matrices are low compared to the square of the context
length. This is the case, for example, when the matrix W ∈ Mt×n(R) is a mapping from the
words to their part-of-speech information, because typically only about ten part-of-speech
are used. The rank of the positional transformation is low, for example, when the all the word
occurrences in the distant positions are mapped to bag-of-words kind of features as in (8).
On the other hand, if the extracted contexts are short, when we only use the information
of the nearby words and not the word distribution of the whole document for example, the
alternative (17) may be preferred instead.

4.3 Prediction of unseen examples

Above we analyzed the time complexity of the kernel matrix calculation in several different
cases because most of the kernel-based learning algorithms, such as support vector machine
or regularized least-squares for example, are trained with the kernel matrix generated from
the training examples. We now consider the prediction of new examples. When using the
traditional dual formulation of the kernel-based learners, the prediction of the output of a
new data point z needs the calculation of the values of the kernel function between the new
data point and the training examples

f (z) =
∑

x

αxk(z, x),

where x ranges over the training examples and αx ∈ R is the weight (see e.g. Vapnik 1998)
of the training example x. Because of the linearity of the transformations, we also have a
more efficient possibility to predict new data points. Recall that when using a linear kernel-
based learner, we can calculate and store in memory the normal vector M of the hyperplane
corresponding to the learned solution

M =
∑

x

αxΦ(x) = Φ

(

∑

x

αxx

)

.
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In our case, the normal vector M is a word-position matrix. The prediction of a new data
point z would then be performed by calculating directly the Frobenius product 〈Φ(z),M〉F
of the mapped data point Φ(z) with the matrix M . Due to the sparsity of the word-position
matrix z and the Proposition 3, a faster prediction time is achieved by storing in the memory
the following word-position matrix

̂M =
∑

x

αx
̂Φ(x) = ̂Φ

(

∑

x

αxx

)

= ̂W

(

∑

x

αxx

)

̂P . (22)

Given ̂M , the prediction of a new data point z can be performed by calculating the Frobenius
product 〈z, ̂M〉F of the original data point z with the matrix ̂M . However, the matrix z

contains only at most r nonzero elements, and therefore the prediction can be done via

f (z) =
∑

p

̂Mz(p),p, (23)

where z(p) denotes the index of the word in W that the context z has at the position p.
When the context information of the data point z is stored in memory as a list of r word-
position pairs, the computational complexity of predicting the label of a new data point with
(23) is only O(r). This form thus allows a considerably more efficient calculation of the
kernel function in prediction than (16), where the transformation is be applied to the new
data points. Using this form, in the framework prediction thus requires no more operations
than prediction using a linear kernel and the very basic BoW vector representation.

5 Evaluation

To evaluate the performance of the proposed kernels, we apply them to the model disam-
biguation problem of context-sensitive spelling correction, where disambiguation is done at
the level of words. A misspelling of an original word may belong to the language, such as,
for example, desert misspelled as dessert. This kind of mistake cannot be detected by stan-
dard lexicon-based checkers, since dessert belongs to the English lexicon. A set of similar
words that belong to the lexicon and that are often confused with the other words in the set
is called a confusion set. For example, {piece, peace} can be considered as a binary confu-
sion set. In the context-sensitive spelling correction task, the correct spelling of a word must
be disambiguated among the alternative spellings in the confusion set based on its context.
There is practical interest in improving methods at solving this task, and it is ideal as a model
problem since a large dataset can be created without manual tagging. As high-quality texts
such as newswire articles are widely available and unlikely to contain spelling errors, the
required training and test examples can simply be extracted from such resources.

To form the datasets, we use all 19 binary confusion sets among the 21 sets of commonly
confused words used by Golding and Roth (1999) in their context-sensitive spelling correc-
tion experiments. We create the datasets from the Reuters News corpus (Rose et al. 2002),
extracting a training set of 1000 and a test set of 5000 examples for each confusion set as
follows: we first search the corpus for documents containing at least one of the confusion set
words. In each such document, every occurrence of a confusion set word forms a candidate
example. We then form datasets of the required size by randomly selecting documents un-
til they together contain sufficiently many examples; possible extra examples are randomly
disregarded from the last selected document. This sampling strategy assures that there is
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no overlap in documents between training and test examples. Finally, we assign one of the
confusion set words the positive and the other the negative label, we label each selected
example, and ‘remove’ from the context of each example the confusion set word.

As a kernel based classification algorithm we use regularized least-squares (RLS) (Rifkin
et al. 2003) that has been shown to have classification performance equivalent to the well-
known support vector machines. The algorithm for learning a classification function f :
X → R that maps the input vectors x ∈ X to real values can be considered as a special
case of the following regularization problem known as Tikhonov regularization (for a more
comprehensive introduction, see e.g. Rifkin 2002; Vapnik 1998):

min
f

m
∑

i=1

(f (xi) − yi)
2 + λ‖f ‖2

k, (24)

where xi ∈ X and yi ∈ {+1,−1} are the training data points and their corresponding labels,
λ ∈ R+ is a regularization parameter, and ‖ · ‖k is the norm in the reproducing kernel Hilbert
space defined by a positive definite kernel function k. The second term is called a regularizer.
The learned classification function can be used to predict positive or negative labels by
selecting a threshold value.

By the representer theorem, the minimizer of (24) has the following form:

f (x) =
m

∑

i=1

αik(x, xi),

where αi ∈ R and k is the kernel function associated with the reproducing kernel Hilbert
space mentioned above. Given a regularization parameter λ, a vector α ∈ R

m that contains
the coefficients αi for the training examples is obtained as follows

α = (K + λI)−1Y,

where I is an identity matrix, K is the kernel matrix, and Y ∈ R
m contains the labels yi

of the training examples (for a proof, see e.g. Rifkin 2002). Our implementation of RLS is
explained in more detail in Pahikkala et al. (2006b).

Because all of the extracted examples may not have as many context words, for example,
when the ambiguous word is the first word of the document, we normalize the data in the
input space as follows

˜A = A√〈A,A〉F
where A is a binary word-position matrix corresponding to an extracted data point and ˜A is
the normalized one.

We measure the performance of the classifier with different kernels with the area
under the ROC curve (AUC) (see e.g. Fawcett 2003), since it is shown to be a bet-
ter performance measure than simple accuracy/error rate (see e.g Provost et al. 1998;
Ling et al. 2003) for selecting between classifiers. AUC is preferred in particular in cases
where the class distribution in skewed, and is equivalent to the Wilcoxon-Mann-Whitney
statistic, that is, the probability that given a randomly chosen positive and negative example,
the classifier can correctly determine which is which (Cortes and Mohri 2004). Formally,

AUC = 1

m+m−

∑

yi=+1,yj =−1

δ(f (xi) > f (xj )), (25)
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where δ(e) is one when the expression e is true and zero otherwise, and m+ and m− are
the number of positive and negative examples, respectively. Note that as AUC is a symmet-
ric measure, it makes no difference how the positive and negative class labels are assigned.
While performance evaluation with AUC does not require a classification threshold value to
be set, a suitable threshold can be selected when necessary by, for example, cross-validation.
The statistical significance of the performance differences between the various transforma-
tions and the baseline method is tested using the Wilcoxon signed-ranks test (Wilcoxon
1945).

To select parameters, we first use the training set to select the context span, transforma-
tion parameters, and the RLS regularization parameter with a coarse grid search and ten-fold
cross-validation, separately for each confusion set. The best performing parameter combi-
nations are then selected and the classifiers are then trained with the training set. Finally, the
performance of the classifiers is evaluated on the test set.

We start by comparing the RLS classification performance with the word-position matrix
representation of the data to the performance with the bag-of-words (BoW) representation.
The results of the comparison are presented in Table 1. The results with BoW representation
are considerably worse than with the word-position representation and therefore, we con-
sider the word-position representation without transformations as the baseline (B) method.
Our earlier evaluation of BoW and the baseline method (Pahikkala et al. 2005b) using the
Senseval-3 dataset gave different results, with the BoW representation outperforming the
basic word-position matrix representation on 8 datasets out of 14 and performing better on
average. The amount of training examples available in the Senseval-3 dataset was smaller
than used here and we speculate that this difference and the use of the positional information
of the words may, at least in part, account for the different results.

The tests of the different transformations are divided into three subsections. First, we
test the classification performance with the positional transformations and then we test the
word transformations. Finally, the classifiers using both the word and the positional transfor-
mations are tested. The RLS classification performances with the different transformations
and their combinations are compared to the baseline in which no transformations are used.
Naturally, the optimal context span and regularization parameter values are selected also for
the baseline method. The performance level of the baseline method turned out to be very
high for most of the confusion sets and hence there is not too much room for improvement.
Nevertheless, we found statistically significant performance improvements for most of the
experiments.

5.1 Experiments with positional transformations

We compare the baseline B to three different positional transformations or kernel func-
tions: the BoW transformation, the unsupervised positional (UP) transformation described
in Sect. 3.3, and the variable width (VW) Gaussian transformation obtained from the func-
tion (10). In preliminary experiments, we found out that the performance of VW is as good
as the performance of our previous position-sensitive transformation (Pahikkala et al. 2005b,
2005c) corresponding (9). Because VW has only one parameter compared to the three para-
meters of (9), we decided to only use the VW transformation. The unsupervised positional
transformation is constructed by summing up 10000 word-position matrices of unlabeled
data. Each word-position matrix D used in the UP-transformation experiments is smoothed
with log(D + 1) and its columns are normalized with their 1-norms. The test results are
presented in Table 1.

An interesting result is that while UP-transformation has no parameters at all it performs
almost as well on average as the VW-transformation which has one parameter. Therefore,
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Table 1 The RLS classification
performances with different
positional transformations and
kernels, namely, the
bag-of-words (BoW),
no-transformations baseline (B),
unsupervised positional (UP)
transformation, and variable
width Gaussian (VW)
transformation

BoW B UP VW

I-me 97.13 99.13 99.25 99.25

accept-except 99.38 99.80 99.82 99.86

affect-effect 97.88 98.64 98.55 98.57

among-between 91.94 94.28 95.37 95.58

amount-number 90.75 92.00 92.61 93.64

begin-being 97.43 98.97 98.75 99.03

country-county 92.77 93.14 98.01 98.38

fewer-less 72.44 78.13 83.05 80.18

its-it’s 93.01 97.08 98.38 98.67

lead-led 95.30 98.06 98.24 98.06

maybe-may be 88.30 94.93 96.19 96.26

passed-past 96.55 98.85 98.62 99.17

peace-piece 96.19 96.79 96.56 96.84

principal-principle 92.24 95.59 96.21 96.55

quiet-quite 95.68 98.53 98.82 98.58

raise-rise 93.82 98.41 98.68 98.72

than-then 97.69 99.05 99.02 99.33

weather-whether 97.58 99.22 99.65 99.59

your-you’re 94.69 97.02 96.71 97.43

Average 93.73 96.19 96.97 97.04

the UP-transformation, which also performs considerably better on average than the baseline
and BoW, is an useful alternative when we have enough data available to construct it. Every
positional transformation gives a statistically significant performance improvement over the
baseline B except the BoW transformation which is statistically significantly worse than the
baseline.

5.2 Experiments with word transformations

Three word transformations are compared against the baseline B, namely, the part-of-speech
(PoS), WordNet Domains (WD) (see Magnini and Cavaglià 2000; Bentivogli et al. 2004),
and the unsupervised word (UW) transformation described in Sect. 3.3. These transforma-
tions represent simple examples of word transformations and more sophisticated ones may
be obtained using, for example, latent semantic indexing techniques. The unsupervised word
transformation is constructed in the same manner as the unsupervised positional except that
the rows of the matrix D are normalized with their 2-norms. We observed in preliminary
experiments that using the unsupervised transformation matrix without normalization gives
excessive weight to common words (including common stop words such as a, the and of ),
leading to decreased classification performance. Further experiments suggested that the use
of the 2-norm gives somewhat better results than the use of the 1-norm.

Note that there is an additional degree of freedom when selecting the context span for
the word-position matrices used to construct the unsupervised transformation. This span
determines the number of features in the vector each word is mapped to, and it should not
be confused to the context span parameter used to construct the word-position matrices of
the data points. We do not perform an extensive search for this context span, but preliminary
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results suggest that it is of minor importance. In the reported experiments, we set the span
so that it encompasses 8 words to the left and right of the word to be disambiguated.

To determine the possible PoS of nouns, verbs, adjectives and adverbs for the PoS trans-
formation, we used WordNet lookup, combined with the use of the WordNet morphy mor-
phological analyzer for determining the PoS of inflected forms. All possibly applicable
parts-of-speech were assigned to words, and no disambiguation was attempted. For exam-
ple, both the noun and verb PoS were assigned for the word being, which can be either a
noun or an inflected form of the verb be. Closed-class words such as pronouns, prepositions
and determiners are not found in WordNet and for these, PoS was assigned by table lookup.
We further included separate PoS tags for numbers and punctuation. Of the 10000 most
common tokens, 8736 could be assigned at least one PoS using this procedure. The remain-
ing 1264, consisting mostly of proper names but also containing, for example, abbreviations
and multiword tokens such as week-long, were not assigned any PoS and thus remain similar
only to themselves.

The WordNet Domains transformation was constructed analogously to the PoS transfor-
mation. All senses in all applicable parts-of-speech were determined for each word and the
relevant domains were extracted for each sense. The union of these sets of domains was then
taken to form the set of all possible applicable domains for each word. Thus, for example,
the word march was assigned, among others, the domains time period, music and transport
based on the noun senses the third month and marching music and the verb sense march in
a procession, respectively. Based on this approach, 8004 of the 10000 most common tokens
could be assigned at least one applicable domain. The remaining tokens, including closed-
class words (such as prepositions, determiners, conjunctions, and pronouns), most proper
nouns and punctuation, were not assigned any domain.

All the transformations have the diagonal shift parameter and hence their computational
complexities are quite close to each other. The only difference is the number of features
in the vectors the words are mapped to. There are only ten different part-of-speech and
the number of position features in UW is 17 (i.e. 2 · 8 + 1) while there are more than 200
different domains associated with WD transformation.

The test results are presented in Table 2. The classification performance using the PoS
transformation is clearly the best among the word transformations, which is not surprising
since the PoS information is known to be useful in natural language disambiguation tasks
(see e.g. Jurafsky and Martin 2000). Every word-transformation gives a statistically signifi-
cant performance improvement over the baseline B.

5.3 Experiments with composite transformations

We tested the RLS classification performance with the following transformation combina-
tions: The unsupervised word and unsupervised positional (UWUP), the part-of-speech and
unsupervised positional (PoSUP), as well as the part-of-speech and variable width Gaussian
(PoSVW). We used the unsupervised positional transformation as a part of the combinations
because it has no extra parameters and the parameters of the combinations are therefore easy
to select. The part-of-speech and the variable width Gaussian transformations are, on the
other hand, the best performing ones among the positional and word transformations, re-
spectively. We also wanted to test the performance of the fully unsupervised transformation
combination. To further speed up the parameter selection phase of PoSVW, we took the best
performing width parameter of VW from the positional transformation experiments and se-
lected the other parameters in with the grid search. The test results of the combinations are
presented in Table 3. Every combination improved the average performance compared to the
classifiers with a single transformation and the improvements are statistically significant.
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Table 2 The RLS classification
performances with different word
transformations, namely, the
no-transformations baseline (B),
part-of-speech (PoS)
transformation, WordNet
Domains (WD) transformation,
and unsupervised word (UW)
transformation

B PoS WD UW

I-me 99.13 99.48 99.23 99.45

accept-except 99.80 99.81 99.82 99.79

affect-effect 98.64 98.68 98.64 98.57

among-between 94.28 94.30 94.66 93.64

amount-number 92.00 91.91 92.60 92.21

begin-being 98.97 99.05 98.91 99.06

country-county 93.14 94.11 93.30 93.20

fewer-less 78.13 80.73 79.59 80.59

its-it’s 97.08 98.99 98.01 98.01

lead-led 98.06 98.18 98.10 98.08

maybe-may be 94.93 96.30 95.46 95.84

passed-past 98.85 99.01 98.91 98.85

peace-piece 96.79 97.69 96.29 96.64

principal-principle 95.59 95.90 95.66 95.91

quiet-quite 98.53 98.94 98.72 98.83

raise-rise 98.41 98.26 98.49 98.24

than-then 99.05 99.08 99.05 99.18

weather-whether 99.22 99.32 99.35 99.34

your-you’re 97.02 98.63 97.75 97.36

Average 96.19 96.76 96.45 96.46

Table 3 The RLS classification
performances with different
combined transformations,
namely, the no-transformations
baseline (B), unsupervised word
and unsupervised
positional (UWUP)
transformation, part-of-speech
and unsupervised
positional (PoSUP)
transformation, and
part-of-speech and variable width
Gaussian (PoSVW)
transformation

B UWUP PoSUP PoSVW

I-me 99.13 99.46 99.52 99.51

accept-except 99.80 99.82 99.83 99.89

affect-effect 98.64 98.79 98.71 98.67

among-between 94.28 95.32 95.37 95.58

amount-number 92.00 92.76 92.61 93.64

begin-being 98.97 98.98 99.04 99.19

country-county 93.14 98.18 98.30 98.52

fewer-less 78.13 86.30 86.86 84.30

its-it’s 97.08 98.59 98.95 99.10

lead-led 98.06 98.24 98.32 98.19

maybe-may be 94.93 96.75 97.15 96.97

passed-past 98.85 98.62 98.82 99.28

peace-piece 96.79 98.50 97.36 97.64

principal-principle 95.59 96.40 96.18 96.68

quiet-quite 98.53 99.06 99.24 99.17

raise-rise 98.41 98.68 99.01 98.95

than-then 99.05 99.05 99.00 99.33

weather-whether 99.22 99.69 99.66 99.53

your-you’re 97.02 97.31 98.42 98.77

Average 96.19 97.39 97.49 97.52



Mach Learn

In summary, we find that the best-performing composite transformation achieves on aver-
age a 60% reduction in AUC error when compared against the BoW representation (93.73%
for BoW and 97.52% for PoSVW) and a 35% reduction in AUC error compared to the
untransformed word-position matrix representation (96.19% for B), demonstrating that the
proposed methods can provide considerably increased performance.

6 Related work

In this section, we first describe related word and positional transformations considered
in earlier studies on kernel methods, and then discuss related frameworks for constructing
kernels suitable for natural language processing tasks.

Word similarities have been incorporated in kernel functions through a number of tech-
niques. For example, kernels that perform semantic smoothing for word vectors were pro-
posed by Siolas and d’Alché-Buc (2000), latent semantic kernels were introduced by Cris-
tianini et al. (2002), and semantic diffusion kernels by Kandola et al. (2003). The semantic
smoothing, latent semantic indexing (Deerwester et al. 1990) and semantic diffusion tech-
niques can be applied in our framework as word transformations, as described in Sect. 3.1.

We have considered positional transformations in a number of previous studies. The
distance of the context words from the word to be disambiguated was used as the ba-
sis of a weighted BoW representation in (Ginter et al. 2004). This approach was then
used to construct a support vector kernel (Pahikkala et al. 2005a). Further, we introduced
a position-sensitive kernel which incorporates distance-based weighting and positional
smoothing (Pahikkala et al. 2005b, 2005c). We have also shown that the positional smooth-
ing can be applied together with word similarity transformations when using Bayesian clas-
sifiers (Pahikkala et al. 2006a). These studies included evaluations against the BoW and
word-position feature representations at the disambiguation-type tasks of context-sensitive
spelling error correction, word sense disambiguation, and gene versus protein name dis-
ambiguation, finding a statistically significant advantage to the proposed methods in each
evaluation. The application of these transformations in the current framework is discussed
in detail in Sect. 3.2. The framework introduced in this study generalizes over all these po-
sitional kernels, allowing their use simultaneously with word transformations as described
in Sect. 4.

We now discuss other proposed frameworks relevant to natural language process-
ing tasks. A number of studies on kernels over discrete structures have recently been
proposed that fall into the general convolution kernel framework proposed by Haussler
(1999). For example, kernels over strings (Lodhi et al. 2002), word sequences (Can-
cedda et al. 2003), trees (Collins and Duffy 2001), and graphs (Gärtner et al. 2003;
Suzuki et al. 2003) have been introduced. Of these, string kernels and word sequence ker-
nels are in particular applicable to disambiguation tasks similar to the one considered in
this work in the sense that the sequence of the words is the primary ordering information
considered by these kernels. Word similarity information can be applied together also with
word sequence kernels, as suggested by Shawe-Taylor and Cristianini (2004). However, the
way positional information is incorporated in these kernels differs substantially from the
approach taken in the current framework, and, in particular, positional distance weighting
has not been considered in any of these methods. Positional similarity information can be
applied also with sequence kernels, as we have suggested in Tsivtsivadze et al. (2006). In
addition to allowing computation of the similarity of structured data, one of the characteris-
tic properties of the convolution framework is that the feature spaces induced by the kernel
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functions are typically very high-dimensional, thus making explicit computation of the fea-
ture mapping and the inner product in the feature space infeasible. These kernel functions
thus serve to facilitate the computation of similarity metrics where the features could not be
computed explicitly.

Cumby and Roth (2002, 2003a) have introduced a general framework for extracting fea-
tures from structured data expressed in terms of a feature description language. A family of
kernel functions corresponding to the inner product of feature vectors generated according
to the given feature descriptions was then introduced in Cumby and Roth (2003b). They
show that the use of a restricted feature space defined in a “syntax-driven” fashion can be
beneficial as irrelevant features can be excluded. It is also possible to explicitly represent
the feature vector defined by the feature description language, allowing the description to be
used with other, non-kernelized, learning algorithms. This explicit definition also facilitates
the use of feature description languages together with our framework, as discussed further
in Sect. 7. Kernel construction through syntax-driven feature definitions has also been dis-
cussed by Gärtner et al. (2004).

7 Discussion

In the description of the framework in the previous sections and in the experiments de-
scribed in Sect. 5, we have compared linear transformations of word-position matrices to
the simple BoW and word-position feature representations. In the following, we discuss the
applicability of the framework in a broader setting.

In many natural language processing tasks, linear combinations of word-position features
may not be sufficiently expressive. In particular, features derived in a nonlinear fashion from
the text, such as parts-of-speech generated by tagging algorithms, and nonlinear combina-
tions of features such as word bigrams (two words occurring consecutively in the text) are
commonly used by state-of-the-art classification systems (see e.g. Tjong and De Meulder
2003; Carreras and Màrques 2004, 2005).

In applications where, for example, a part-of-speech (PoS) tagger is used to provide the
PoS information of the context words, this information can be incorporated into the matrix
representation by adding one row per each possible PoS tag. Note that this approach to
integrating PoS information differs from that introduced in Sect. 3.1 in that PoS taggers
cannot be expressed as a matrix of a linear transformation. Other similar classes of features
whose position in the context can be defined, such as the inflectional categories of words
(e.g. verb tense, noun plurality, etc.) as well as combinations of, for example, words with
PoS tags (e.g. water/NN) could be similarly incorporated into the matrix representation.

When applied together with the BoW representation, bigram features are typically sepa-
rately included as a “bag of bigrams” so that the linear kernel function corresponds to a sum
of a BoW kernel and a bag-of-bigrams kernel. Thus, as the (transformed) word-position ma-
trix generalizes over the BoW “component”, it is natural to combine its use with bigram fea-
tures as a kernel that is the sum of the kernel presented in this study and the bag-of-bigrams
kernel. Other nonlinear features can also be applied together with the presented framework
similarly to bigrams. As discussed in Sect. 4, the computational complexity of our kernel is
very low due to its linearity. In cases where nonlinear features can be represented explicitly,
they can be applied together with our kernel without increasing the complexity of the predic-
tion. For example, the feature description language framework of Cumby and Roth (2002,
2003a) (discussed also in Sect. 6) offers a general way to define conjunctive features such
as bigrams that can be explicitly represented, allowing also the decision hyperplane to be
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represented explicitly in the defined feature space. The framework of Cumby and Roth can
thus be applied together with our framework. Such a combination could have the benefits of
both the linear feature transformations presented in this study and a general set of nonlinear
features. Closer integration of these two approaches could allow further benefits through,
for example, the application of feature transformations on explicitly represented nonlinear
features.

The combination of the framework with more complex nonlinear features would consid-
erably extend its applicability from the simple disambiguation tasks considered in this study.
Such combination and experiments establishing the performance of the methods in the large
number of disambiguation tasks remains as future work.

8 Conclusion

In this paper, we propose a framework that is based on a word-position matrix representation
of text, linear feature transformations of the word-position matrices, and kernel functions
constructed from the transformations. We consider several ways to construct the word and
positional transformations. The results of the experiments show that the classification per-
formance of kernel based classifiers in the model problem could be improved with each of
transformations separately, and the composite transformations further improved the perfor-
mance. The best-performing composite transformation was found to reduce the AUC error
by 60% compared to BoW and by 35% compared to the basic word-position feature repre-
sentation.

We also present efficient algorithms for training a kernel-based learning machine that
uses the proposed framework. More importantly, we also introduce a method for the pre-
diction of new examples with a trained linear support vector machine kind of learners that
use the framework, and show that prediction can be performed as efficiently as in the BoW
framework.

The use of the linear feature transformations to construct kernel functions is a promising
approach in general, because it provides an elegant and efficient way to incorporate external
information into the classifier. The external information we incorporate into the classifiers
via the linear feature transformations are just examples of a prior knowledge that is relevant
to the classification tasks considered. It is, of course, possible to develop more sophisticated
transformations and, moreover, other NLP tasks may prefer completely different kind of in-
formation. Also, the unsupervised word and positional transformations for the word-position
matrices introduced in this paper are simple and surprisingly effective ways to incorporate
extra information to the classifier.

Acknowledgements This work has been supported by Tekes, the Finnish Funding Agency for Technology
and Innovation. We would like to thank CSC, the Finnish IT centre for science, for providing us extensive
computing resources and Aleksandr Mylläri for his helpful comments on this manuscript.

References

Bentivogli, L., Forner, P., Magnini, B., & Pianta, E. (2004). Revising wordnet domains hierarchy: Semantics,
coverage, and balancing. In G. Sérasset, S. Armstrong, C. Boitet, A. Popescu-Belis, & D. Tufis (Eds.),
COLING 2004 workshop on multilingual linguistic resources (pp. 101–108), Geneva, Switzerland.

Cancedda, N., Gaussier, E., Goutte, C., & Renders, J.-M. (2003). Word-sequence kernels. Journal of Machine
Learning Research, 3, 1059–1082.



Mach Learn

Carreras, X., & Màrques, L. (2004). Introduction to the conll-2004 shared task: semantic role labeling. In
Proceedings of CoNLL-2004 (pp. 89–97). Boston: Association for Computational Linguistics.

Carreras, X., & Màrquez, L. (2005). Introduction to the CoNLL-2005 shared task: semantic role labeling.
In Proceedings of the ninth conference on computational natural language learning (CoNLL-2005)
(pp. 152–164). Ann Arbor: Association for Computational Linguistics.

Collins, M., & Duffy, N. (2001). Convolution kernels for natural language.
Cortes, C., & Mohri, M. (2004). Auc optimization vs. error rate minimization. In S. Thrun, L. Saul, &

B. Schölkopf (Eds.), Advances in neural information processing systems 16. Cambridge: MIT Press.
Cristianini, N., Shawe-Taylor, J., & Lodhi, H. (2002). Latent semantic kernels. Journal of Intelligent Infor-

mation Systems, 18(2–3), 127–152.
Cumby, C. M., & Roth, D. (2002). Learning with feature description logics. In Proceedings of the 12th

international conference on inductive logic programming.
Cumby, C. M., & Roth, D. (2003a). Feature extraction languages for propositionalized relational learning. In

Proceedings of the IJCAI’03 workshop on learning statistical models from relational data.
Cumby, C. M., & Roth, D. (2003b). On kernel methods for relational learning. In T. Fawcett & N. Mishra

(Eds.), Proceedings of the twentieth international conference on machine learning (pp. 107–114). Menlo
Park: AAAI Press.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Indexing by
latent semantic analysis. Journal of the American Society of Information Science, 41(6), 391–407.

Fawcett, T. (2003). Roc graphs: notes and practical considerations for data mining researchers (Technical
Report HPL-2003-4). HP Labs, Palo Alto, CA.

Gärtner, T., Flach, P. A., & Wrobel, S. (2003). On graph kernels: hardness results and efficient alternatives.
In COLT (pp. 129–143).

Gärtner, T., Lloyd, J. W., & Flach, P. A. (2004). Kernels and distances for structured data. Machine Learning,
57(3), 205–232.

Ginter, F., Boberg, J., Järvinen, J., & Salakoski, T. (2004). New techniques for disambiguation in natural
language and their application to biological text. Journal of Machine Learning Research, 5, 605–621.

Gliozzo, A., Giuliano, C., & Strapparava, C. (2005). Domain kernels for word sense disambiguation. In Pro-
ceedings of the 43rd annual meeting of the association for computational linguistics (ACL’05) (pp. 403–
410). Ann Arbor: Association for Computational Linguistics.

Golding, A. R., & Roth, D. (1999). A winnow-based approach to context-sensitive spelling correction. Ma-
chine Learning, 34, 107–130.

Haussler, D. (1999). Convolution kernels on discrete structures (Technical Report UCS-CRL-99-10). Univer-
sity of California at Santa Cruz.

Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features.
In C. Nédellec & C. Rouveirol (Eds.), Lecture notes in computer science: Vol. 1398. Proceedings of the
tenth European conference on machine learning (pp. 137–142), Chemnitz, Germany, 1998. Heidelberg:
Springer.

Joachims, T. (2002). Kluwer international series in engineering and computer science: Vol. 668. Learning to
classify text using support vector machines: methods, theory and algorithms. Norwell: Kluwer Acad-
emic.

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing: an introduction to natural language
processing, computational linguistics, and speech recognition. Upper Saddle River: Prentice Hall PTR.

Kandola, J., Shawe-Taylor, J., & Cristianini, N. (2003). Learning semantic similarity. In S. T. Becker &
K. Obermayer (Eds.), Advances in neural information processing systems 15 (pp. 657–664). Cambridge:
MIT Press.

Leopold, E., & Kindermann, J. (2002). Text categorization with support vector machines. How to represent
texts in input space? Machine Learning, 46(1–3), 423–444.

Ling, C. X., Huang, J., & Zhang, H. (2003). Auc: a statistically consistent and more discriminating mea-
sure than accuracy. In G. Gottlob & T. Walsh (Eds.), Proceedings of the eighteenth international joint
conference on artificial intelligence (pp. 519–526). San Mateo: Morgan Kaufmann.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002). Text classification using
string kernels. Journal of Machine Learning Research, 2, 419–444.

Magnini, B., & Cavaglià, G. (2000). Integrating subject field codes into WordNet. In Second international
conference on language resources and evaluation (LREC-2000) (pp. 1413–1418). Athens: European
Language Resources Association.

Magnus, J. R. (1988). Linear structures. London: Griffin.
Meyer, C. D. (2000). Matrix analysis and applied linear algebra. Philadelphia: Society for Industrial and

Applied Mathematics.
Pahikkala, T., Ginter, F., Boberg, J., Järvinen, J., & Salakoski, T. (2005a). Contextual weighting for support

vector machines in literature mining: an application to gene versus protein name disambiguation. BMC
Bioinformatics, 6(1), 157.



Mach Learn

Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., & Salakoski, T. (2005b). Improving the performance of
Bayesian and support vector classifiers in word sense disambiguation using positional information. In
T. Honkela, V. Könönen, M. Pöllä, & O. Simula (Eds.), Proceedings of the international and interdisci-
plinary conference on adaptive knowledge representation and reasoning (pp. 90–97). Espoo: Helsinki
University of Technology.

Pahikkala, T., Pyysalo, S., Ginter, F., Boberg, J., Järvinen, J., & Salakoski, T. (2005c). Kernels incorporating
word positional information in natural language disambiguation tasks. In I. Russell & Z. Markov (Eds.),
Proceedings of the eighteenth international Florida artificial intelligence research society conference
(pp. 442–447), Clearwater Beach, FL. Menlo Park: AAAI Press.

Pahikkala, T., Boberg, J., Mylläri, A., & Salakoski, T. (2006a). Incorporating external information in Bayesian
classifiers via linear feature transformations. In T. Salakoski, F. Ginter, S. Pyysalo, & T. Pahikkala (Eds.),
Lecture notes in computer science: Vol. 4139. Proceedings of the 5th international conference on NLP
(FinTAL 2006) (pp. 399–410). Heidelberg: Springer.

Pahikkala, T., Boberg, J., & Salakoski, T. (2006b). Fast n-fold cross-validation for regularized least-squares.
In T. Honkela, T. Raiko, J. Kortela, & H. Valpola (Eds.), Proceedings of the ninth Scandinavian confer-
ence on artificial intelligence (SCAI 2006) (pp. 83–90). Espoo: Otamedia Oy.

Provost, F. J., Fawcett, T., & Kohavi, R. (1998). The case against accuracy estimation for comparing induction
algorithms. In ICML ’98: proceedings of the fifteenth international conference on machine learning
(pp. 445–453). San Francisco: Morgan Kaufmann.

Rifkin, R. (2002). Everything old is new again: a fresh look at historical approaches in machine learning.
PhD thesis, MIT.

Rifkin, R., Yeo, G., & Poggio, T. (2003). Regularized least-squares classification. In J. Suykens, G. Horvath,
S. Basu, C. Micchelli, & J. Vandewalle (Eds.), NATO science series III: computer and system sciences:
Vol. 190. Advances in learning theory: methods, model and applications (pp. 131–154). Amsterdam:
IOS Press.

Rose, T. G., Stevenson, M., & Whitehead, M. (2002). The Reuters corpus volume 1: from yesterday’s news to
tomorrow’s language resources. In M. G. Rodriguez & C. P. S. Araujo (Eds.), Proceedings of the third
international conference on language resources and evaluation. Paris: ELRA.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge: MIT Press.
Schölkopf, B., Simard, P., Smola, A., & Vapnik, V. (1998). Prior knowledge in support vector kernels. In

M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems 10
(pp. 640–646). Cambridge: MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge
University Press.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall.
Siolas, G., & d’Alché-Buc, F. (2000). Support vector machines based on a semantic kernel for text catego-

rization. In S.-I. Amari, C. L. Giles, M. Gori, & V. Piuri (Eds.), Proceedings of the IEEE-Inns-Enns
international joint conference on neural networks (pp. 205–209), Como, Italy. Washington: IEEE Com-
puter Society.

Suzuki, J., Hirao, T., Sasaki, Y., & Maeda, E. (2003). Hierarchical directed acyclic graph kernel: methods
for structured natural language data.

Tjong, K. S. E. F., & De Meulder, F. (2003). Introduction to the conll-2003 shared task: language-independent
named entity recognition. In W. Daelemans & M. Osborne (Eds.), Proceedings of CoNLL-2003
(pp. 142–147). Edmonton: Association for Computational Linguistics.

Tsivtsivadze, E., Pahikkala, T., Boberg, J., & Salakoski, T. (2006). Locality-convolution kernel and its appli-
cation to dependency parse ranking. In The 19th international conference on industrial, engineering &
other applications of applied intelligent systems. Forthcoming.

Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
Vishwanathan, S., Smola, A. J., & Vidal, R. (2006, to appear). Binet-Cauchy kernels on dynamical systems

and its application to the analysis of dynamic scenes. International Journal of Computer Vision.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83.
Wong, S. K. M., Ziarko, W., & Wong, P. C. N. (1985). Generalized vector space model in information re-

trieval. In ACM SIGIR international conference on research and development in information retrieval
(pp. 18–25).

Yarowsky, D. (1993). One sense per collocation. In Proceedings, ARPA human language technology work-
shop, Princeton.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In Meeting of
the association for computational linguistics (pp. 189–196).


	Matrix representations, linear transformations, and kernels for disambiguation in natural language
	Abstract
	Introduction
	Kernel methods and matrix representation of data
	Kernel methods
	Representation of the data

	Transformations of word-position matrices
	Word transformations
	Positional transformations
	Unsupervised transformations

	Composite transformations and their computational complexity
	Composite transformations
	Kernel matrix computation
	Prediction of unseen examples

	Evaluation
	Experiments with positional transformations
	Experiments with word transformations
	Experiments with composite transformations

	Related work
	Discussion
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


