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Abstract
Ontogenetic changes in herbivory are generally not consistent with ontogenetic changes in defensive traits of woody plants. 
This inconsistency suggests that other factors may affect ontogenetic trajectories in herbivory. We tested the hypothesis that 
top-down factors contribute to differences in foliar losses to insects between juvenile and mature trees in tropical and boreal 
forests. We used artificial caterpillars made of modelling clay to compare predation rates between saplings and mature trees of 
two common forest species, Siparuna guianensis in Brazil (tropical site) and Betula pubescens in Finland (boreal site). Leaf 
area losses to chewing insects in saplings were 2.5-fold higher than in mature trees in both species. Physical plant defences 
(measured as specific leaf area, SLA) did not differ between saplings and mature trees in the boreal forest, whereas in the 
tropical forest, SLA was greater in saplings than in mature trees. Attack rates on the model prey by birds were higher in the 
boreal forest, whereas attack rates by arthropod predators were higher in the tropical forest. Overall, predation rates on model 
prey were consistently higher on mature trees than on saplings at both sites, but in the boreal site, this pattern was primarily 
driven by birds, whereas in the tropical site, it was primarily driven by arthropod predators. We conclude that the effect of 
predation on herbivorous insects may considerably contribute to ontogenetic differences in herbivory, but the relative roles 
of different predatory groups and of top-down and bottom-up factors may vary between environments.
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Introduction

Plant ontogeny is one of major factors influencing plant–her-
bivore interactions at both ecological and evolutionary time 
scales (Boege and Marquis 2005). Much effort has been 
made to understand ontogenetic trajectories in plant anti-
herbivore defensive traits (reviewed by Boege and Marquis 
2005; Barton and Koricheva 2010; Massad 2013; Barton and 

Boege 2017), but despite the study of dozens of plant spe-
cies, drawing definitive conclusions remains difficult.

Importantly, ontogenetic patterns in plant defensive traits 
were found to be inconsistent with ontogenetic patterns in 
herbivory for woody plants (Barton and Koricheva 2010). 
This inconsistency suggests that factors other than chemical 
and physical plant defences substantially contribute to the 
ontogenetic changes in foliar damage imposed by insects 
on plants. For example, Zverev et al. (2017) found that 
plant size may explain the level of insect chewing damage 
on downy birch and, therefore, plant size, affecting plant 
apparency, may be considered as a defensive trait changing 
through plant ontogeny. The levels of plant damage may also 
depend on the strength of the top-down control of insect 
herbivores (Mäntylä et al. 2011). However, the effects of the 
third trophic level are only rarely accounted for in explana-
tions of the differences in herbivory between plant ontoge-
netic stages (but see Boege and Marquis 2006).

A meta-analysis (Mäntylä et al. 2011) showed no differ-
ences in bird exclusion effects on plant damage by insect 
herbivores between mature plants and saplings. However, the 
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lack of significant differences revealed by this meta-analysis 
may be explained by the considerable variation among the 
included studies and among the studied plant species, which 
may exceed the variation between plant ontogenetic stages. 
The intensity of bird predation on herbivorous insects on 
trees of different ages has only rarely been compared within 
one site, and the outcomes of the existing studies are con-
tradictory. In tropical forests, the effect of bird exclusion on 
insect herbivory was considerably higher in tree canopies 
than in saplings in some studies (Van Bael et al. 2003; Van 
Bael and Brawn 2005), while other studies did not find any 
differences in predation between plant age classes (Boege 
and Marquis 2006). In temperate forests, the highest pre-
dation within a vertical gradient was observed on saplings 
(Aikens et al. 2013).

Predatory groups other than birds can substantially con-
tribute to the mortality of herbivorous insects and, conse-
quently, to differential patterns of herbivory across plant 
ontogeny. Arthropod predators are especially abundant in 
the tropics (Floren et al. 2002; Sam et al. 2015), and they 
impose higher predation pressure on herbivorous insects 
than do vertebrate predators, at least in the forest understo-
rey (Roslin et al. 2017). In tropical forests, the abundance of 
arboreal arthropod predators was higher in the understorey 
than in tree canopies (Basset et al. 2015). In another study, 
ants were considerably more abundant on saplings than on 
mature trees (Basset 2001). Similarly, in a temperate for-
est, Aikens et al. (2013) found lower invertebrate predation 
in the canopies of mature sugar maple trees than on con-
specific saplings. Nevertheless, studies comparing preda-
tion on juvenile and mature trees by arthropod predators are 
scarce, despite the importance of accounting for the effects 
of arthropod predators when estimating overall differences 
in predation.

Vertebrate insectivores can consume both predatory 
and herbivorous arthropods (Mooney et al. 2010), and bird 
exclusions can increase the number of arthropod predators 
(Maguire et al. 2015). Therefore, a negative effect of ver-
tebrate predators on herbivores can be counterbalanced by 
simultaneous suppression of the arthropod predators of those 
herbivores (Polis and Holt 1992). As a result, a negative 
correlation between predation rates by birds and arthropods 
may considerably influence the resulting estimate of overall 
top-down control on insect herbivory on saplings and mature 
plants.

We used modelling clay caterpillars to test the hypothesis 
that predation pressure from birds and arthropods on her-
bivorous insects differs between mature trees and conspe-
cific saplings, thereby potentially contributing to ontogenetic 
changes in herbivore damage. We tested whether differences 
in leaf losses to insects between saplings and mature trees 
would follow the pattern in predation rates by birds and 
arthropods—i.e. a tree age class with higher predation rates 

would suffer lower herbivore damage. To test this predic-
tion, we measured the damage imposed by chewing insect 
herbivores and the attack rates on model prey on mature and 
juvenile trees at two study sites located in tropical and boreal 
forests. Finally, we controlled for potential effects of ontoge-
netic changes in plant quality on herbivory by measuring the 
specific leaf area (SLA), which, along with other mechani-
cal leaf properties, is a better predictor of field herbivory 
than are concentrations of plant defensive compounds or 
leaf nutrients (Caldwell et al. 2016; Mediavilla et al. 2018).

Materials and methods

Study sites and plant species

We established our experiment at two sites, one in a tropical 
forest and one in a boreal forest. The tropical site was located 
in a secondary seasonal semideciduous Atlantic rainforest 
(Mata do Paraíso Reserve, Viçosa, Minas Gerais, Brazil; 
20°48′S, 42°51′W). This is a dense tropical forest dominated 
by Bauhinia forficate, Piptadenia gonoacantha, Anadenan-
thera macrocarpa and Siparuna guianensis (Marangon 
et al. 2007), with a shady (5.6% of average canopy open-
ness) understorey. The boreal site was located in a sparse 
mixed-managed forest near Turku, South-Western Finland 
(60°32′N, 22°33′E). The forest is dominated by Scots pine 
(Pinus sylvestris), Norway spruce (Picea abies) and downy 
birch (Betula pubescens), with abundant birch regrowth. 
Canopy openness at the boreal site was 58% (Zvereva and 
Kozlov, unpublished data).

For the experiment, we selected tree species which were 
common in our sites: downy birch, Betula pubescens Ehrh., 
in Finland and negramina, Siparuna guianensis Aublet, in 
Brazil. Downy birch, a deciduous tree, is widely distributed 
in Eurasia and is common in most types of boreal forests. 
This birch is damaged by several hundred different insect 
species (Atkinson 1992). Negramina, an evergreen tree, is a 
typical inhabitant of Neotropical forests; however, the data 
on insects feeding on this plant species are fragmentary and 
include records of two butterfly species (Robinson et al. 
2010), six galling insects (de Araújo et al. 2015) and leaf-
cutter ants (Costa et al. 2017).

Assessment of herbivory

Herbivory was assessed on plant individuals other than those 
used for measurements of predation rate soon after comple-
tion of the predation experiment (in August in Finland and 
in April in Brazil). Both saplings and mature trees were the 
same size as those used for measuring predation; they were 
selected on a “first found, first sampled” basis, but none were 
closer than 5 m apart. We surveyed 10 plants of each age 
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class in Brazil and 5 mature trees and 18 saplings in Finland. 
From each mature tree, we collected haphazardly selected 
low canopy branches, with approximately 100 leaves in 
total, at the same height where the caterpillar models were 
attached (i.e. at a height of 1.5−2 m); from saplings, all 
leaves were collected.

In the laboratory, the leaves on each sapling/branch were 
counted, and each leaf was examined for the presence and 
extent of insect damage. Following a widely used method-
ology (Alliende 1989; Kozlov et al. 2015), each leaf was 
assigned to one of the damage classes according to the per-
centage of the area of the leaf lamina consumed by chewing 
insects: 0% (intact leaves), 0.01–1%, 1–5%, 5–25%, 25–50%, 
50–75% and 75–100%. The leaf area lost to insects (AL) 
was calculated for each plant, as follows: the numbers of 
leaves in each damage class were multiplied by the respec-
tive median values of the damaged leaf area (i.e. 0 for intact 
leaves, 0.5% for the damage class 0.01–1%, 3% for the dam-
age class 1–5%, etc.); the obtained values were summed for 
all damage classes and divided by the total number of leaves 
(including undamaged ones) in a sample. We calculated the 
percentage of leaf area removed from a damaged leaf (ADL) 
by dividing the sum of the leaf-specific damage (calculated 
as described above) by the number of damaged leaves. We 
also calculated the proportion of damaged leaves (PDL) in 
each plant as the number of leaves bearing any traces of 
insect feeding divided by the total number of leaves in a 
sample. These three plant damage measures are related as 
follows: AL = ADL × PDL.

Measurement of specific leaf area

We measured SLA in late June 2018 in ten mature plants and 
ten saplings of each study species. For the analysis of SLA, 
we used plant individuals other than those used for exposing 
artificial caterpillars, because additional damage imposed 
by sampling leaves for SLA could have affected both her-
bivory and predation, especially in small seedlings. From 
each plant, we sampled two current-year leaves that had 
already completed their growth and we avoided generative 
shoots and leaves damaged by herbivores. From each leaf, 
we cut two disks (12 mm diameter in Finland and 16 mm in 
Brazil) avoiding thick veins. The disks were dried for 24 h 
at + 80 ºC and then weighed to the nearest 0.1 mg. The SLA 
was calculated as the leaf disk area divided by its weight.

Assessment of predation rates

Twenty mature trees (> 3 m tall) and 20 small saplings 
(30–50 cm tall) were haphazardly selected in each study 
site; individual plants were at least 5 m apart. Model cater-
pillars, which were made from non-toxic green modelling 
clay (Newplast, Newclay Products, UK), were 25–30 mm 

in length and 4–5 mm in diameter and were built over a 
wire 0.3–0.5 mm in diameter. These models were attached 
along thin branches of each of 40 plants per site, 1 model 
per plant, on 23 May 2018 in Finland and on 16 November 
2018 in Brazil. The models were placed in the outer part 
of the crown at a height of 1.5–2 m in mature trees and at 
about the middle height of the saplings. The records were 
conducted at 7–10 day intervals, with the total duration of 
the experiment 112 days in Finland and 95 days in Brazil. 
Thus, our observation period covered the entire vegetation 
season in Finland and the larger part of the rainy season in 
Brazil; it included periods of high bird breeding activities in 
both sites, and its length allowed us to account for seasonal 
variations in bird predation rates (described e.g. by Rem-
mel et al. 2009; Molleman et al. 2016). Each model was 
classified as attacked or not attacked by each of four groups 
of predators (arthropods, birds, mammals, reptiles); attribu-
tion of damage marks followed Low et al. (2014). Then, any 
models that had damage marks were remoulded or replaced 
if the damage was severe.

Statistical analysis

All our analyses explored the effects of site, plant age and 
their interaction (fixed effects) on predation, herbivory and 
SLA. Random effects were the observation period nested 
within individual tree (in the analysis of predation) and tree 
nested within site and age group (in the analysis of SLA). 
We analysed the three measures of predation (by birds, by 
arthropods, and by all predators combined) using a logistic 
regression analysis (with a binary error distribution and the 
logit link function). The three measures of herbivory and 
SLA were analysed by ANOVA. We used SAS GLIMMIX 
procedure for all analyses (SAS 2009). To facilitate accurate 
F tests of the fixed effects, we adjusted the standard errors 
and denominator degrees of freedom by the latest version of 
the method described by Kenward and Roger (2009).

Results

The overall losses of plant foliage to chewing insect herbi-
vores were similar in our study sites (6.56% in Brazil and 
7.41% in Finland) but were consistently higher in saplings 
than in mature trees at both study sites. The area consumed 
from a damaged leaf and the proportion of damaged leaves 
were also both higher in saplings than in mature trees 
(Table 1, Fig. 1b, c), but our sites differed in terms of the 
relative importance of these two components of overall leaf 
loss. The difference between saplings and mature trees in 
the area consumed from a damaged leaf was significant in 
Brazil, but not in Finland (Fig. 1b), while the difference in 
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the proportion of damaged leaves was significant in Finland, 
but not in Brazil (Fig. 1c).

SLA did not differ between B. pubescens and S. guian-
ensis, but the effect of ontogenetic stage on SLA differed 
between boreal and tropical sites (Table 1). In the boreal site, 
saplings and mature plants of B. pubescens did not differ in 
SLA, whereas in the tropical site, the SLA of S. guianensis 
was greater in saplings than in mature trees (Fig. 2).

The vast majority of damage marks on our model prey 
were classified as having been made by birds or by arthro-
pod predators. Attacks by mammal predators were too rare 
(on two models in Finland and on three models in Brazil) 
to analyse them separately, but they were included in the 
estimate of total predation; no attacks by reptile predators 
were recorded.

Predation by both birds and arthropods on model prey 
differed between the study sites (Table 1): attack rates by 
birds were higher at the Finnish site, whereas attack rates 
by arthropods were higher at the Brazilian site (Fig. 3a, b). 
Overall predation was greater at the Brazilian site than at the 
Finnish site due to a generally higher arthropod predation 
(Table 1, Fig. 3c).

The proportions of the models attacked by both avian 
and arthropod predators were generally higher on mature 
trees than on saplings across both study sites (Table 1), 
but within-site comparisons revealed that this difference 
was significant at the Finnish site only for bird predation 
(Fig. 3a) and at the Brazilian site for arthropod predation 
(Fig. 3b). The overall predation rate was significantly higher 
on mature trees than on saplings at both sites (Fig. 3c).

Discussion

Bottom‑up effects on herbivory

We found higher leaf area losses to herbivorous insects in 
saplings than in mature trees in natural environments, and 
this pattern was consistent between tropical and boreal 

forests. These differences between tree age classes are 
in line with several other studies (reviewed by Barton 
and Koricheva 2010); they are usually explained by the 
increase in resource allocation to defence, in particular to 
an increase in leaf toughness with plant growth (Stiegel 
et al. 2017; Castagneyrol et al. 2019). We assessed ontoge-
netic changes in leaf physical properties by measuring 
SLA, which not only directly affects leaf palatability for 
chewing insects, but also positively correlates with other 
leaf traits (e.g. foliar nitrogen) that enhance plant qual-
ity for herbivores (Reich et al. 1999; Write et al. 2004). 
Hence, we suggest that higher SLA could have contributed 
to greater herbivore damage on sapling than on mature 
plants in the Brazilian site. In contrast, but in line with 
an earlier study (Zverev et al. 2017), birch leaf SLA in 
our boreal site did not change with plant age. Therefore, 
physical defences are not likely to explain the ontogenetic 
changes observed in birch herbivory at the Finnish site.

Our findings suggest that the differences in foliar losses 
to insects between mature and juvenile plants (Fig. 1a) dis-
covered in our tropical and boreal sites were driven by dif-
ferent mechanisms. In Brazil, higher overall losses in sap-
lings of S. guianensis were mostly due to a greater amount 
of area lost from a damaged leaf, whereas in Finland, it 
was mostly due to a greater proportion of damaged leaves 
(Fig. 1b, c). Insects feeding on leaves with high physical 
defence (as reflected by low SLA) exhibit lower consump-
tion rates (Clissold et al. 2009), change their feeding sites 
twice more often, and spend three times more time moving 
between feeding sites when compared with insects feed-
ing on less defended leaves (Zvereva et al. 1998). These 
changes in feeding behaviour may explain the extent of 
the consumed area in a single leaf: on saplings with a high 
SLA, chewing insects feed longer on one place than they 
do on mature plants with a lower SLA, thereby resulting in 
higher area losses from a damaged leaf. Thus, changes in 
leaf physical properties are likely to contribute to ontoge-
netic changes in herbivory in S. guianensis, but not in B. 
pubescens.

Table 1   Effects of study site and plant age on plant losses to herbivorous insects (ANOVA, type III tests) and on the attack rates on clay caterpil-
lars by predators (logistic regression analysis with a binary error distribution and the logit link function)

Source of variation Site Plant age Site × plant age

Test statistics P value Test statistics P value Test statistics P value

Overall leaf area loss F1, 39 = 0.40 0.53 F1, 39 = 19.2  < 0.0001 F1, 39 = 0.13 0.72
Leaf area loss from a damaged leaf F1,39 = 0.00 0.99 F1,39 = 9.55 0.004 F1,39 = 0.34 0.56
Proportion of damaged leaves F1,39 = 2.14 0.15 F1,39 = 10.37 0.003 F1,39 = 0.48 0.49
Avian predation rate F1, 243.1 = 20.8  < 0.0001 F1, 243.1 = 5.05 0.026 F1, 243.1 = 0.52 0.47
Arthropod predation rate F1, 227.2 = 43.7  < 0.0001 F1,227.2 = 6.35 0.012 F1, 227.2 = 0.79 0.37
Overall predation rate F1, 219.3 = 6.67 0.01 F1,219.3 = 19.9  < 0.0001 F1, 219.3 = 0.23 0.63
Specific leaf area F1,36 = 0.79 0.38 F1,36 = 3.45 0.07 F1,36 = 4.25 0.046
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Changes in leaf physical traits with plant growth may 
occur due to ontogenetic shifts in defensive strategies 
(Boege and Marquise 2005; Barton and Koricheva 2010). 
However, differences in leaf physical properties between 
juvenile and mature trees may be determined not only by 

ontogenetic processes, but also by environmental factors, 
such as light availability. Plants or leaves growing in shade 
usually have lower toughness/thickness and, conversely, high 
SLA (Louda and Rodman 1996; Guerra et al. 2010; Kitajima 
et al. 2016). The understorey of a tropical forest is deeply 
shaded, so the understorey plants sometimes receive less 
than 1% sunlight (Kitajima et al. 2016; Messier et al. 2009), 
in line with low canopy openness at our Brazilian site. 
Therefore, the differences in SLA between mature plants 
and saplings in S. guianensis may be explained by the dif-
ferent light conditions in understorey versus the tree crown. 
This hypothesis is supported by the observed decreases in 
SLA of the understorey S. guianensis plants with an increase 
in forest disturbance (Prado Júnior et al. 2015). In contrast, 
the saplings of B. pubescens in our Finnish site grow under 
a high light availability, because the forest has high canopy 
openness due to recent management. The lack of differences 
in SLA between saplings and trees is therefore in line with 
their growth in similar light environments.

Chemical defences can also change with plant growth 
(Boege and Marquise 2005). Our tropical study plant, S. 
guianensis, is rich in sesquiterpenes (Andrade et al. 2015), 
which may provide anti-herbivore defence (Ferreira et al. 
2017; Loureço et al. 2018). We do not have data regard-
ing the ontogenetic changes in the defensive compounds 
of S. guianensis, but two other Brazilian tree species have 
higher concentrations of sesquiterpenes in saplings than in 
mature trees (Langenheim et al. 1986; Macedo and Langen-
heim 1989); this pattern would result in lower herbivory on 
saplings. Similarly, birch saplings have higher concentra-
tions of some defensive compounds when compared with 
mature plants (Reichardt et al. 1984). Therefore, ontogenetic 
changes in chemical defences are unlikely to explain the 

Fig. 1   Estimated marginal means (± SE) for (a) overall leaf area loss 
to insect herbivores, (b) leaf area loss from a damaged leaf and (c) 
proportion of damaged leaves on mature plants (filled circles) and 
saplings (empty circles) of Siparuna guianensis (Brazilian site) and 
Betula pubescens (Finnish site). The values marked with different let-
ters differ significantly (P < 0.05) from each other within a site

Fig. 2   Estimated marginal means (± SE) for specific leaf area of 
mature plants (filled circles) and saplings (empty circles) of Sipa-
runa guianensis (Brazilian site) and Betula pubescens (Finnish site). 
The values marked with different letters differ significantly (P < 0.05) 
from each other within a site
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higher herbivory we observed on saplings in either of our 
study species.

Bottom-up factors other than host-plant quality for 
herbivores may also contribute to ontogenetic changes in 

herbivory. For instance, plant size may be a good predictor of 
herbivory due to its effect on plant apparency (Castagneyrol 
et al. 2013; Strauss et al. 2015; Zverev et al. 2017). Accord-
ingly, escaping from herbivory, in particular due to small 
plant size, is a well-known mechanism of resistance (Boege 
and Marquis 2005) that provides a first line of plant defence. 
The effects of apparency on plant damage by insects can 
explain, in some cases, the lack of correspondence between 
the levels of plant defences and field herbivory, as has been 
demonstrated by Barton and Koricheva (2010). However, 
the plant apparency hypothesis predicts lower herbivory in 
saplings than in large trees, whereas we observed the oppo-
site pattern; therefore, this explanation is not applicable to 
our results. The discrepancy between the two studies that 
compared losses to insects on mature trees and saplings of 
the same species, B. pubescens (Zverev et al. 2017 and this 
study), indicates that ontogenetic trajectories of herbivory in 
nature depend on multiple factors and are highly context spe-
cific. In particular, Zverev et al. (2017) observed among-site 
variation in the direction of differences between juvenile and 
mature plants: although mature birches, on average, suffered 
more damage than saplings did, three of ten sites showed 
higher herbivory on saplings than on mature plants, i.e. the 
same pattern as found in the current study.

Thus, the bottom-up factors alone cannot explain the 
observed differences in herbivory between saplings and 
mature trees, although they may have contributed to the 
ontogenetic differences in herbivory in our tropical site.

Between‑site differences in predation rates

Higher arthropod predation in our tropical site than in our 
boreal site is in line with other studies, conducted with both 
natural (Jeanne 1979) and clay model preys (Roslin et al. 
2017; Zvereva et al. 2019), which found higher arthropod 
predation in the tropics than in temperate and boreal zones. 
Ants were the main arthropod predator in our boreal site; 
several nests of Formica aquilonia were located within the 
study area, and some of them were as close as two meters 
from the experimental plants. In the tropics, arthropod pre-
dation in tree crowns is also dominated by ants, but their 
abundance, diversity and activity are considerably higher 
there than in other environments (Jeanne 1979; Floren et al. 
2014; Kaspari and de Beurs 2019). Some researchers raise 
concerns about whether arthropod predators perceive mod-
elling clay caterpillars as real prey because the models do 
not possess the chemical cues important for prey recogni-
tion by many invertebrate predators (Vet and Dicke 1992). 
However, the correspondence between the results of studies 
that measured predation by different methods (cited above) 
indicate that arthropod predation, or at least predatory activ-
ity on herbivorous prey, is indeed higher in tropics than in 
other biomes. However, the modelling clay prey method is 

Fig. 3   Estimated marginal means (and 95% confidence intervals) for 
predation rates by birds (a), arthropod predators (b) and all preda-
tors combined (c) on modelling clay caterpillars attached to mature 
plants (filled circles) and saplings (empty circles) of Siparuna guian-
ensis (Brazilian site) and Betula pubescens (Finnish site). The values 
marked with different letters differ significantly (Tukey–Kramer test, 
adjusted P < 0.05) from each other within a site
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likely to overestimate the differences in arthropod predation 
between sites that substantially differ in ambient tempera-
tures at the time of model prey exposure due to the shallower 
indentations, and thus lower visibility, of arthropod attack 
marks on modelling clay in colder climates (Muchula et al. 
2019).

In contrast to arthropod predation, bird predation rates 
were higher in the boreal site than in the tropical site. This 
result contrasts with the higher density of insectivorous birds 
and the greater biomass of arthropods consumed by these 
birds per hectare in tropical forests relative to temperate and 
boreal forests (Nyffeler et al. 2018). However, our result is 
in line with another study, which found lower bird predation 
on modelling clay caterpillars in three tropical sites than in 
three boreal sites (Zvereva et al. 2019). These results may be 
at least partly explained by the high abundance of alterna-
tive food in the tropics, such as fruits and non-herbivorous 
arthropods (e.g. ants and spiders; Floren et al. 2002; Cardoso 
et al. 2011), which may decrease bird predation pressure 
upon herbivorous insects.

Predation and plant ontogeny

The importance of top-down factors in shaping ontoge-
netic changes in herbivory was suggested long ago (Boege 
and Marquise 2006; Boege et al. 2011), but this hypoth-
esis received surprisingly little experimental support (but 
see Van Bael et al. 2003). Our study provides unequivocal 
experimental evidence regarding the importance of these 
factors in shaping ontogenetic trajectories in herbivory in 
natural environments.

Several studies have discovered differences in predatory 
arthropod abundance and in predation rates on herbivorous 
insects between tree canopies and understoreys where sap-
lings are growing (Loiselle and Farji-Brener 2002; Van Bael 
et al. 2003; Ulyshen 2011; Aikens et al. 2013). Some of 
these studies reported a higher abundance of arthropod pred-
ators (Basset 2001) or higher arthropod predation (Loiselle 
and Farji-Brener 2002) in tree canopies than in understorey 
vegetation. Both these examples refer to tropical forests, 
while Aikens et al. (2013) found an opposite pattern in a 
temperate forest. In tropical forests, where ants are the most 
abundant arthropods preying on herbivorous insects (Loi-
selle and Farji-Brener 2002; Sam et al. 2015), the ant com-
munity includes many arboreal species (Floren et al. 2002, 
2014); therefore, ants dominate in tree canopies. Wasps, the 
second most abundant group of arthropod predators in the 
tropics, also prey more in tree canopies than in understo-
reys (Ulyshen 2011). Thus, our finding of higher arthropod 
predation on mature trees than on saplings in our tropical 
site may be explained by a higher abundance and/or activity 
of ants and wasps in the tree canopies compared with the 
tropical forest understorey. At the same time, the wood ants 

dominating our boreal site are mostly epigeic and search for 
their insect prey both on the ground and in the lower parts of 
tree canopies, where they tend aphids (Punttila et al. 2004; 
Domisch et al. 2009). This could then explain the lack of 
differences in arthropod predation at our boreal site.

Birds attacked our models more frequently on mature 
trees than on saplings, and the absence of interaction 
between the site and plant age suggests that this effect 
occurred at both our sites. We, therefore, suggest that the 
lack of statistical significance in the differences between the 
saplings and mature trees in our Brazilian site is explained 
by the extremely low rates of bird predation. Our result is in 
line with the bird exclusion study by Van Bael et al. (2003), 
who found that birds decreased arthropod densities and dam-
age to the leaves of mature plants, but not of conspecific 
saplings, in tropical forests. Our study, conducted with a 
different method, indicates that low bird predation on sap-
lings appears to be a general pattern across different forest 
habitats. This pattern may be related to the higher produc-
tivity of canopy branches compared with saplings, because 
predators are predicted to effectively limit herbivores mainly 
in areas of high plant productivity (Oksanen et al. 1981). 
Canopy branches may produce three times as much leaf area 
per day when compared with understorey saplings, and the 
overall numbers of potential bird prey are higher on canopy 
branches than on saplings (Van Bael et al. 2003; Bassett 
et al. 2015). Accordingly, foliage-gleaning birds foraging in 
tree canopies are generally more abundant and diverse than 
are birds foraging in understoreys (Robinson and Holmes 
1982; Van Bael et al. 2003; Castaño-Villa et al. 2019).

The difference in bird predation on herbivores between 
plant ontogenetic stages may be also related to changes in 
plant size (Boege and Marquis 2005). The optimal foraging 
theory (Stephens and Krebs 1986) states that predators are 
expected to minimise the time locating prey while maximis-
ing food intake. Hence, even when the density of herbivo-
rous insects is similar on mature and juvenile trees, foraging 
within the crown of a single mature tree is more advanta-
geous than is visiting numerous saplings with about the 
same volume of foliage. Additionally, ontogenetic changes 
in plant architecture may contribute to the observed differ-
ences in bird predation: foliage gleaners may have difficulty 
perching on the thin stems of saplings during foraging.

Conclusions

We found that herbivorous insects experience a higher pre-
dation pressure when located on mature trees than on con-
specific saplings, and we concluded that this difference could 
have contributed to the observed ontogenetic changes in her-
bivore damage. Our study adds to a very scarce body of evi-
dence for a role of top-down factors in shaping ontogenetic 
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trajectories in herbivory, and the effects of predators may be 
explained by ontogenetic changes in plant size and architec-
ture. We also found that the relative roles of the two major 
predatory groups differed between the studied forests: in the 
boreal forest, a higher predation on mature trees than on 
saplings was primarily driven by birds, whereas, in the tropi-
cal forest, prey mortality was primarily driven by arthropod 
predators. Ontogenetic shifts in plant defences could also 
have contributed to variations in herbivory, but in natural 
environments, differences in light availability between the 
tree crowns and the understorey may also affect changes in 
herbivory as plant grows.
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