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Abstract 
 
Direct optimization of unaligned sequence characters provides a natural framework to explore the 
sensitivity of phylogenetic hypotheses to variation in analytical parameters. Phenotypic data, when 
combined into such analyses, are typically analyzed with static homology correspondences unlike 
the dynamic homology sequence data. Static homology characters may be expected to constrain the 
direct optimization and thus, potentially increase the similarity of phylogenetic hypotheses under 
different cost sets. However, whether a total-evidence approach increases the phylogenetic stability 
or not remains empirically largely unexplored. Here, I studied the impact of static homology data on 
sensitivity using six empirical data sets composed of several molecular markers and phenotypic 
data. The inclusion of static homology phenotypic data increased the average stability of 
phylogenetic hypothesis in five out of the six data sets. To investigate if any static homology 
characters would have similar effect, the analyses were repeated with randomized phenotypic data, 
and with one of the molecular markers fixed as static homology characters. These analyses had, on 
average, almost no effect on the phylogenetic stability, although the randomized phenotypic data 
sometimes resulted in even higher stability than empirical phenotypic data. The impact was related 
to the strength of the phylogenetic signal in the phenotypic data: higher average jackknife support 
of the phenotypic tree correlated with stronger stabilizing effect in the total-evidence analysis. 
Phenotypic data with a strong signal made the total-evidence trees topologically more similar to the 
phenotypic trees, thus, they constrained the dynamic homology correspondences of the sequence 
data. Characters that increase phylogenetic stability are particularly valuable for phylogenetic 
inference. These results indicate an important role and additive value of phenotypic data in 
increasing the stability of phylogenetic hypotheses in total-evidence analyses. 
 
Introduction 
 
Maximization of homology provides a rationale for parsimony-based phylogenetic inference (De 
Laet, 2005, 2015). Hypotheses of homologous character correspondences are logically tree 
dependent, and the optimization of these correspondences on a phylogenetic tree is known as the 
Tree Alignment Problem (Sankoff, 1975; Wheeler, 1996; Varón and Wheeler, 2012). The most 
widely used heuristic solution to this problem is direct optimization (DO; Wheeler, 1996). 
 
Tree topologies typically vary when sensitivity analysis (sensu Wheeler, 1995) is conducted under 
DO, with a general understanding that less variable topological configurations are desired outcome 
of such exercise (Sharma et al., 2010; but for a contrasting view, see Grant and Kluge, 2005). 
Hence, characters that increase stability, i.e. make the data to converge towards a single optimal 
resolution under variable analytical conditions, can be seen particularly valuable for the 
phylogenetic inference. Sensitivity may result, for example, from a lack of clear signal to resolve a 
particular node in a tree, thus potentially resulting in alternative topological resolutions under 
different analytical cost sets. A character providing information for the resolution of such a node 
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may guide the optimization towards a common resolution under a variety of cost sets and this way 
improve the stability of the phylogenetic hypothesis. Such a behavior might be expected from 
characters evolving at a rate different from the other characters involved. Morphological (or more 
broadly, phenotypic) data undoubtedly evolve in a manner different from molecular sequence data, 
and therefore could help DO to converge into a more stable hypothesis (Titus and Frost, 1996). 
Indeed, Lehtonen et al. (2016) reported increased stability of phylogenetic hypotheses in two 
different data sets after static homology phenotypic data were incorporated into a sensitivity 
analysis of otherwise dynamic homology data. They noted strongest stabilizing effect when 
phenotypic data were given higher weight, clearly indicating that these data were influential, but 
were uncertain whether this was because the phenotypic data were constraining DO towards a 
phylogenetically more reasonable result, or if any static homology characters, supporting a 
reasonable tree or not, would impose similar constraints for DO.  
 
Total-evidence, or simultaneous analysis of phenotypic and genotypic data (Kluge, 1989), is a 
generally advocated approach by the proponents of DO (e.g. Giribet et al., 2001; Wheeler et al., 
2006a). Although some authors have applied DO to optimize phenotypic character homologies 
(Robillard et al., 2006; Ramírez, 2007; Agolin and D’Haese, 2009; Japyassú and Machado, 2010), 
the general approach is to co-optimize static homology phenotypic data with dynamic homology 
sequence data (Wheeler et al., 2006a). Under this kind of analysis, the homology correspondences 
of molecular data are affected by the phenotypic data, whereas the sequence data have no effect on 
the homology correspondences in the phenotypic data. How the static homology characters affect 
the optimization of dynamic homologies, and thus, the outcome of sensitivity analysis, remains 
largely unexplored. However, Aagesen (2005) noted that adding the length invariant rbcL partition 
into an analysis of Triticeae did not generally improve stability – this analysis did not fix the 
homology correspondences in the length invariant partition, but nevertheless indicated that 
invariable homology scheme does not automatically translate into increased stability. The same 
study found that stability increases, in general, when data partitions are added (Aagesen, 2005). 
These findings would suggest that static homology characters may not increase stability any more 
than dynamic homology characters. This is not necessarily surprising, given that the topological 
variation in a sensitivity analysis is only partially derived from altered homology correspondences 
and to an unknown degree from altered transformation costs (e.g. relative costs of transitions versus 
transversions) within unaltered homology scheme. Because of the varying transformation costs, 
topological variation is expected in the sensitivity analysis even if the underlying homology scheme 
remains the same (i.e. static). In this respect, however, the static phenotypic data behaves quite 
differently, because the transformation costs within the phenotypic data set typically are not altered 
in a sensitivity analysis, even if the weight of the phenotypic data set as a whole may be varied. 
 
In this study my main goal is to evaluate the impact of phenotypic data analyzed as static homology 
characters on phylogenetic sensitivity when combined with dynamic homology sequence data. I 
explore whether fixed sequence alignments or random static homology characters impact the 
analyses in the same manner as empirical phenotypic data and discuss the possible benefits and 
pitfalls of adding static phenotypic data into DO sensitivity analysis. 
 
Materials and methods 
 
Data sets 
 
Six published empirical data sets combining several molecular loci with phenotypic data were 
extracted from the literature. These data sets represented both plants and animals and varied by their 
phylogenetic depth. Each original data set was standardized to 19 terminal taxa, including one 



outgroup taxon, and to four or five molecular loci by subsampling the original matrices. Terminal 
taxa were selected semi-randomly, so that they covered broadly the original phylogenetic space and 
were not missing any molecular locus selected for this study. However, not all sequences were 
complete (the sequence lengths below are reported for the complete sequences only). The 
phenotypic data were coded and treated as originally, i.e. the original transformation costs and 
ordering were retained. Taxa and loci used with their GenBank codes are listed in Appendix 1, and 
the data sets analysed with the resulting trees are available as supplementary Data S1. 
 
Alismataceae. The phenotypic Alismataceae data were published by Lehtonen (2009) and consist of 
ten continuous characters coded as ranges and analyzed as such (Goloboff et al., 2006), and 67 
characters coded as having discrete states. Four molecular loci, the nuclear ITS (656–767 bp), and 
plastid matK (1264–1274 bp), psbA (759–760 bp), and rbcL (1091 bp) were taken from the data set 
compiled in Lehtonen (2017).  
 
Clematis. The Clematis (Ranunculaceae) data set was published by Lehtonen et al. (2016). The 
phenotypic data consisted of nine continuous characters analyzed as such and 31 discrete 
characters. The molecular data consisted of five loci: the nuclear ITS (567–613 bp), and plastid 
atpB-rbcL (700–757 bp), matK (2502–2520 bp), psbA-trnH-trnQ (480–573 bp), and rbcL-accD 
(1609–1643 bp). The ITS, matK, and rbcL-accD were further split into three, two, and three 
partitions, respectively, following the original analyses. 
 
Euphasiacea. The Euphasiacea (Crustacea) data set was published by Vereshchaka et al. (2018). 
The phenotypic data consisted of 168 discrete characters and the molecular data of four loci: COI 
(658 bp), 16S (511–517 bp), 18S (1809–1861 bp), and H3 (305 bp). 
 
Lindsaeaceae. The Lindsaeaceae data set was published by Lehtonen et al. (2010). The phenotypic 
data consisted of 55 discrete characters and the molecular data of five loci: trnL-trnF (429–496 bp), 
trnH-psbA (447–480 bp), rpoC1 (732 bp), rps4 (560–568 bp), and rps4-trnS (215–266 bp).  
 
Protodrilidae. The Protodrilidae (Annelida) data were published by Martínez et al. (2014). The 
phenotypic data consisted of 55 discrete characters and the molecular data of four loci: 28S (992–
1072 bp), 16S (327–362 bp), 18S (1720–1753 bp), and H3 (329–330 bp). 
 
Riama. The Riama (Squamata: Gymnophthalmidae) data set was published by Sánchez-Pacheco et 
al. (2017). The phenotypic data consisted of 35 discrete characters and the molecular data of four 
loci: C-mos (362–374 bp), 12S (340–368 bp), 16S (453–472 bp), and ND4 (621 bp). 
 
The possible impact of any kind of static homology characters on the phylogenetic sensitivity was 
explored by re-running the analyses ten times with randomized instead of empirical phenotypic 
data. The random phenotypic character matrices were created for each of the six data sets by 
randomly re-assigning the observed character states to terminal taxa, independently within each 
character. For the discrete characters this was done with the reshuffle states within characters 
command in Mesquite (Maddison and Maddison, 2018). In addition, the DNA-only analyses were 
repeated by fixing the homology scheme of the most conservative locus of each data set aligned 
with MAFFT v.7.215 (Katoh and Standley, 2013), and re-running the sensitivity analyses with the 
fixed locus as static homology characters. In these analyses the same substitution costs were applied 
for the static and dynamic homology characters. Gap extension costs cannot be applied to static 
homology characters, but only in the case of Clematis data (matK) did the fixed alignment have 
gaps spanning several bases. 
 



Tree searches 
 
All the phylogenies were inferred in POY 5.1.1 (Wheeler et al., 2015) with parsimony as the 
optimality criterion. The search strategy was based on TBR swapping of 50 Wagner trees using 
commands "build(50)" and "swap()"; this simple search strategy is here considered sufficient given 
that the trees have only 19 terminals and therefore do not exhibit composite optima (Goloboff, 
1999). The strict consensus topologies were used for downstream analyses. For each data set the 
phenotypic data, as well as each molecular marker, were first analyzed separately, then all the 
molecular markers combined, and finally a total-evidence analysis was completed. For the 
phenotypic data sets a jackknife analysis was run with 100 pseudoreplicates. 
 
Sensitivity analyses 
 
Sensitivity analyses under DO have generally varied the transversion-transition and gap-substitution 
costs, but sometimes also the gap opening-extension cost (Aagesen, 2005; Aagesen et al., 2005). 
Theoretically, this parameter space is infinite, but it can be narrowed down for more practical 
solutions. The triangle inequality constrains transformation costs to be symmetrical, transversion-
transition cost to a minimum of 0.5, and the cost of a gap to at least one half the cost of substitutions 
(Wheeler, 1993). The upper limits for these costs are not so obvious, but it has been suggested that 
gap costs should not exceed substitution costs by more than five times (Spagna and Álvarez-Padilla, 
2008). Even more complicated is the case of affine gap costs. Strings of gaps can be most 
parsimoniously explained as single events, and this can be emulated in POY by defining a low gap 
extension cost (Aagesen, 2005; Aagesen et al., 2005; De Laet, 2005). A gap extension cost set too 
low may violate the triangle inequality and result in uninformative alignments, however, whether an 
affine gap cost situation is non-metric depends on the gap length (Aagesen et al., 2005). In any case, 
affine gap costs sound biologically reasonable and seem to improve congruence (Petersen et al., 
2004; Aagesen, 2005; Aagesen et al., 2005; Pons and Vogler, 2006).  
 
Given these limits for the parameter space the following transformation cost sets were applied. The 
transversion-transition ratio was set to 1 or 2. The unit gap cost (sum of opening and extension cost) 
was set to 1 or 2 times the highest substitution cost. The gap extension cost was set to 1 or 0.25 the 
cost of a unit gap. In total, this resulted in eight cost sets that were explored in sensitivity analyses 
(Table 1). In the total-evidence analyses, the phenotypic data were given the weight of the highest 
transformation cost. The results of the sensitivity analyses were examined with Cladescan (Sanders, 
2010). 
 
Sensitivity analyses were run for combined analyses of the molecular loci as dynamic homology 
characters (DNA-only), for total-evidence analyses of static homology phenotypic data combined 
with dynamic homology molecular loci, for combined analyses of the molecular loci with the most 
conservative locus treated prealigned, and for total-evidence analyses with randomized phenotypic 
data. Furthermore, in order to estimate how much of the topological variation is due to different 
homology correspondences and how much of it rather represents alternative transformation costs 
within the same homology scheme, the POY implied alignments resulting from the sensitivity 
analyses of the combined molecular data were analyzed as static homology characters (prealigned) 
under equal weights. The topological variation observed among the trees from the latter analyses 
thus purely reflects the variation in the underlying homology scheme. 
 
Congruence measures 
 



Sensitivity analysis can be used to measure the sensitivity of any hypothesis and is therefore 
independent of hypothesis selection (Giribet, 2003). However, typically one cost set in the 
sensitivity analysis is selected as the preferred one (or simply as a reference) on some basis. The 
choice can be done a priori, in which case it must be based on some philosophical judgement, or 
the preferred cost set can be selected a posteriori. In the latter case, the choice can be based on 
congruence (Giribet and Wheeler, 1999; Giribet, 2003; Wheeler et al., 2006a; Giribet and Wheeler, 
2007; Spagna and Álvarez-Padilla, 2008; Sharma et al., 2010). Congruence, on the other hand, can 
be measured in phylogenetics either as character congruence, or topological congruence (Mickevich 
and Farris, 1981). Most authors using DO have relied on a priori choice of the preferred cost set 
(e.g. Frost et al., 2001), or have based their choice on character congruence (e.g. Giribet et al., 
2001; Sharma et al., 2010). 
 
The Meta-Retention Index (MRI) was proposed as a character congruence measure suitable for 
selecting the optimal cost set in a sensitivity analysis (Wheeler et al., 2006b). 
 

MRI = (∑ Maximum cost of Fragments – cost combined Fragments) / (∑ Maximum cost of 
Fragments – ∑ Minimum cost of Fragments) 

 
The maximum and minimum costs of each fragment were calculated following Wheeler et al. 
(2006b); the fragments were optimized on unresolved bush and the sum of minimum costs was 
taken as the sum of maximum cost of fragments, whereas the sum of minimum cost of fragments 
was simply summed from the best costs found in separate analyses of the genes. 
 
Alternatively, phylogenetic congruence can be evaluated topologically by comparing the trees 
obtained under different cost regimes. Nodal Stability (NS), as defined by Giribet (2003), is the 
extent to which alternative cost sets support the topology in question. Here, NS is summed over all 
the nodes for the trees obtained under each cost set and, hence, the topological congruence of each 
cost set can be directly compared. This approach has sometimes been used to select the reference 
cost set a posteriori (Lehtonen et al., 2013; 2016). Here, the topology most supported by alternative 
cost sets is referred to as Maximum Stability Tree (MST) and the NS value of a tree is simply the 
number of investigated cost sets supporting a node summed over all the nodes. Hence, in the 
present case of 19 taxa, the fully resolved topology has 18 nodes (including the root node) and eight 
cost sets were evaluated. The maximum stability is achieved when every cost set support the same 
fully resolved topology, in which case each of the 18 nodes is supported by eight cost sets, thus, the 
maximum NS value is 18 ´ 8 = 144. This measure takes into account both the resolution (tree with 
only a few resolved nodes receives a low value, even if the resolved nodes are congruent among all 
the trees) and the congruence (fully resolved but incongruent trees receive a low value). It is 
important to note that parameter sets resembling each other will likely produce more congruent 
topologies than more distant parameter sets. Therefore, MST will likely be located in the parameter 
space most densely sampled irrespective of whether this represents a biologically reasonable part of 
the parameter space. For this reason, it is important to explore the parameter space evenly. 
 
Furthermore, topological distances between the obtained trees were heuristically estimated as SPR 
distances (Goloboff, 2008) in TNT version 1.5 (Goloboff and Catalano, 2016). This aimed to 
measure the topological variation among gene trees and their distance to the phenotypic tree, and to 
find out if phenotypic data guides total-evidence analysis towards the phenotypic tree topology. 
 
Statistical tests 
 



The possible correlation between different congruence measures was investigated with Pearson 
correlation test. The impact of empirical phenotypic data on stability was compared to that of 
randomized phenotypic data using Mann-Whitney U test. U test was also used to test if SPR 
distances from gene trees to phenotypic trees were different from SPR distances among the gene 
trees. The relative roles of the signal strength in phenotypic data (jackknife support) and sensitivity 
of the DNA data (NS) in explaining the impact of phenotypic data on topology under total-evidence 
(change in SPR distance from the phenotypic tree to DNA tree in comparison to SPR distance from 
the phenotypic tree to total-evidence tree) were examined with multivariate regression analysis. 
Statistical tests were performed in Microsoft Excel. 
 
Results 
 
Character-based (MRI) and topology-based (NS) congruence measures were positively correlated (r 
= 0.375; n = 96; p = 0.000; correlation computed for all the analyses, including both empirical and 
randomized replicates). As well, MRI was negatively correlated with the average SPR-distances 
among the gene trees (r = –0.307; n = 48; p = 0.034), indicating that the higher the character-based 
congruence, the more topologically similar are the gene trees. However, MRI and NS did not 
always prefer the same cost sets (Fig. 1) and sometimes the preferred cost set of MRI was found to 
be worse with NS, or vice versa (Table S1). Both of the congruence measures behaved similarly in 
preferring cost sets with affine gap costs approximately three times as often as cost sets without 
affine gap costs.  
 
The Mann-Whitney U test indicated that phenotypic trees were topologically more distant to gene 
trees (Mdn = 6) than gene trees were from each other (Mdn = 5, U = 27415, p = 0.000). This was 
not always the case; in Protodrilidae and Euphasiacea data sets gene trees were on average 
topologically more distant from each other than they were from the phenotypic tree (Fig 2). 
Strength of the signal in phenotypic data varied from a data set to another, with average jackknife 
support varying from 23 to 100 and the number of equally parsimonious trees from 1 to 26. The 
randomized phenotypic data sets did not yield a much higher number of equally parsimonious trees 
than empirical data sets, but had a much lower average jackknife support (Table 2). 
 
The impact of static homology data on sensitivity was measured by computing the NS value for 
each cost set, thus, the results are not computed for the preferred trees only, but are general over all 
the cost sets explored. Stability varied greatly among the studied data sets (Fig. 3; Fig. S1). The 
least stable was the Clematis data, with an average NS value of 83 computed over all the studied 
parameter sets in the DNA-only analysis. The highest average NS value in DNA-only analyses was 
131 in the Riama data set. On average, the phenotypic data increased the stability in all the data sets 
(average impact +8) except in Protodrilidae, in which the NS was reduced from an average of 123 
to 122 (Fig. 3). A multivariate regression was computed to explore whether the signal strength in 
the phenotypic data (average jackknife support) or the sensitivity of the molecular data (NS) is a 
more important factor in explaining the observed increased topological similarity of the total-
evidence trees with the phenotypic trees. A significant regression (F(2, 45) = 6.898, p = 0.002) had 
an R2 of 0.235. Average jackknife support of the phenotypic tree significantly predicted (p = 0.000) 
the higher topological similarity of total-evidence trees to phenotypic trees, whereas sensitivity of 
the DNA trees (NS) had no significant effect (p = 0.317) (Fig. 4). 
 
On average, the randomized phenotypic data increased NS by 0.5 (Fig. 3). However, of the random 
phenotypic data analyses, 15% increased the stability even more than the empirical data, whereas 
22% of the random data analyses increased sensitivity compared to DNA-only analyses. The Mann-



Whitney U test indicated that empirical phenotypic data increased stability significantly more (Mdn 
= 6.5) than the randomized data (Mdn = 0.7, U = 1402.5, p = 0.002). 
 
Results of the sensitivity analyses in DNA-only analyses with the most conservative locus aligned 
and analyzed as static homology data did not differ at all from the sensitivity analyses where the 
homologies of all the sequence data were dynamically optimized. 
 
The instability related to different homology correspondences explained 100% of the instability 
observed in the DNA-only analysis of Alismataceae, 89% of the observed instability in Clematis, 
80% of the observed instability in Euphasiacea, 88% of the observed instability in Lindsaeaceae, 
81% of the observed instability in Protodrilidae, and 46% of the observed instability in Riama. Only 
in two data sets and under a single cost set in each of these data sets did DO trees have a higher 
stability than corresponding trees inferred from the implied alignments, indicating that the different 
change costs made alternative homology schemes to converge onto topologies more similar to each 
other than in the case of equal cost static homologies. 
 
Discussion 
 
It has been argued that phenotypic data are not distinct from genotypic data and should be analyzed 
together (Wheeler et al., 2006a). In practice, however, phenotypic data typically are treated as static 
homology characters even when analyzed in an otherwise dynamic homology context. The different 
underlying homology concepts make these data behave differently in DO total-evidence analysis; 
the homology correspondences and the phylogenetic signal of sequence characters will depend on 
the transformation costs applied, whereas the static homology data will provide the same signal 
irrespective of the cost sets applied for sequence characters. Therefore, it is not surprising that such 
phenotypic data make total-evidence topologies inferred under different cost sets more similar to 
each other, and more similar to the phenotypic tree, as observed in this study. 
 
A similar stabilizing effect was not observed when one of the 4–5 molecular loci was aligned prior 
to analysis and treated as static homology data in an otherwise dynamic homology analysis. This is 
likely because the most conservative locus, which in most cases was length invariant, was selected 
to be prealigned. Apparently, these sequences were optimized to have the same homology 
correspondences also when homologies were dynamic in sensitivity analyses. The effect would 
probably have been different if some of the length variable characters had been prealigned instead. 
This behavior can also be partly explained by the different transformation costs applied in the 
sensitivity analyses: even if the homology scheme of these selected loci remained static, the 
substitution costs were nevertheless varied the same way as in dynamic homology characters. 
 
The complex interplay of variable homology correspondences on one hand, and the different 
transformation costs even when the homology correspondences remain the same, have remained 
unexplored. It may be argued that these cannot logically be separated, as the search for optimal 
homology correspondences and topology can be seen as a single tree alignment problem (Sankoff, 
1975; Wheeler, 1996). Despite this, it may still be of great interest to know how much the observed 
sensitivity is related to differences in the inferred homology correspondences, indicating 'difficult 
alignment', or if the results remain sensitive regardless of largely similar homology 
correspondences. Here, by using implied alignments produced under different cost regimes and 
analyzing them with equal costs as static homology characters, it was shown that most of the 
topological variation in sensitivity analyses of these data sets could be linked with alternating 
homology correspondences, meaning that the 'alignment' indeed is of crucial importance and the 



increased stability in total-evidence analyses is probably due to alignment constraints imposed by 
the phenotypic data. 
 
Randomized phenotypic data had little impact in the analyses, although in general they slightly 
improved the stability. In some cases, however, random data had even a stronger stabilizing effect 
than empirical data. This reveals that any static homology data, phylogenetically relevant or not, 
may constrain DO and result in false stability. Of course, the same problem applies to any data, as 
the old phrase – garbage in, garbage out – points out. DO is particularly prone to pick up any signal 
and amplify it, especially in the lack of strong and clear signal in the sequence characters (Simmons 
et al., 2010; Yoshizawa, 2010) and it has been suggested that congruence-based criteria will pick up 
any alignment scenario that happens to support the same topology as morphology or other static 
homology data (Simmons, 2004). In the present data sets randomized data behaved "better" than 
empirical data in some random replicates of Lindsaeaceae, Protodrilidae, and Riama data. In these 
cases, the empirical phenotypic tree had a low average jackknife support and generally many 
equally parsimonious solutions indicating absense of clear phenotypic signal. Furthermore, the 
Protodrilidae gene trees were topologically highly distinct, suggesting a lack of clear signal also in 
the molecular data, and the phenotypic Riama data supported a topology highly different from the 
gene trees. Thus, in all of these cases the empirical data (phenotypic or sometimes also genotypic) 
appears somehow problematic and seems to behave to some degree like random data. 
 
Obviously, this does not imply that most phenotypic data are useless, or that genotypic data are 
automatically more trustworthy, as some authors have suggested (e.g. Scotland et al., 2003). 
Although the gene trees and phenotypic trees differed by a median distance of 6 SPR moves in 
contrast to median SPR distance of 5 moves among the gene trees, this difference, even if 
statistically significant, indicates rather that both types of data generally reflected the same 
underlying phylogenetic history. After all, two random topologies of 19 taxa with a fixed rooting 
differ on average by 11.7 SPR moves (1000 random tree pairs compared in TNT). A previous study 
focusing on the congruence between morphological and molecular trees similarly concluded that 
molecular and morphological trees are much more similar than expected by a chance, but 
congruence appears to be somewhat higher within the molecular trees (Pisani et al., 2007). These 
results support the idea that phenotypic data improve the phylogenetic stability by providing 
extrinsic and hopefully reasonable constrains for the dynamic homology correspondences (Titus 
and Frost, 1996). Although some authors might argue that this behavior illuminates the problems of 
DO rather than benefits of total-evidence DO analysis (Simmons et al., 2010; Yoshizawa, 2010), it 
should be noted that phylogenetic sensitivity to input parameters is by no means restricted to DO 
approach and phenotypic data can be expected to have similar impact regardless of the analytical 
method applied (see Mongiardino Koch and Gauthier, 2018). Particularly interesting avenues would 
be simultaneous dynamic optimization of all character data (for a stimulating discussion on 
phenotypic data optimization see Vogt, 2018), and the development of more biologically realistic 
optimizations. De Laet (2005, 2015) has demonstrated that maximization of sequence character 
homologies under the equal weighting scheme for length variable gap characters can be 
approximated in DO by using his weighting scheme (commonly referred to as 3221, but note that 
this corresponds with a cost set of 2221 in POY versions 4 and 5). However, it has been 
demonstrated that different cost sets should likely be applied to each data fragment in DO (Sharma 
et al., 2010). How the sequence data should be appropriately fragmented and what actually should 
be optimized within each fragment (consider for example the secondary structures, Kjer et al., 
2007) certainly deserve further consideration. Nevertheless, it should be clear that optimality of 
structural alignments (or whatever type of alignment) vary just like in any kind of alignments, the 
preference for suboptimal alignment can hardly be justified (whatever alignment criteria is applied), 



and that homologies are by definition tree-dependent (i.e. optimality of an alignment depends on the 
topology and therefore alignment and tree search are logically connected).  
 
In this study I did not consider nodal support (sensu Giribet, 2003) beyond investigating the 
strength of phylogenetic signal within the phenotypic data sets. Resampling techniques aim to test 
the support of the secondary homology scheme (sensu de Pinna, 1991) through pseudoreplicating 
the character congruence test of primary homologies. Since primary homologies do not exist at the 
nucleotide level under dynamic homology, resampling at this level is meaningless also (Wheeler et 
al., 2006a). The rather commonly used approach to resample POY implied alignments by 
jackknifing should therefore never be conducted, as it logically results in heavily inflated support 
values (Simmons et al., 2010). This problem can be avoided by properly resampling characters at 
the primary homology level, that is, at the fragment level with dynamic resampling methods in DO, 
but this would have required more fragments than used in the present study (see Simmons et al., 
2010). As well, whether character-based or topology-based congruence measures should be used to 
select the reference cost set, and which cost sets should be investigated in the first place, are 
questions largely beyond the scope of this paper. Unlike in some previous studies (e.g. Pons and 
Vogler, 2006), a significant correlation between character-based and topology-based congruence 
measures was found here, but the correlation was not particularly strong. Both approaches, 
however, more often preferred affine gap costs providing further evidence that these scenarios 
should be explored under DO sensitivity framework (Petersen et al., 2004; Aagesen, 2005; Aagesen 
et al., 2005; Pons and Vogler, 2006). 
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Data S1. Data sets analysed with the resulting trees. 
Figure S1. Trees from the analyses of combined molecular data (DNA-only; in left panel), 
phenotypic data (middle panel), and total-evidence analyses (right panel). Jackknife support values 
are shown for the phenotypic trees and sensitivity plots for the other trees. Reference topologies for 
the sensitivity analyses are the ones maximizing nodal stability (Maximum Stability Tree, MST). 
(a) Alismataceae. (b) Clematis. (c) Euphasiaceae. (d) Lindsaeaceae. (e) Protodrilidae. (f) Riama. 
Table S1. Minimum and maximum tree lengths, calculated Meta-Retention Index (MRS) and 
Nodal Stability (NS) under the studies cost sets. Separate tables for empirical data analyses and 
replicates or randomized phenotypic data (rnd1–rnd10). 
 
Appendix 1. Molecular data used in the analyses. 
 
Alismataceae. Albidella nymphaeifolia: EF088077, KX980066, KU499837, EF088125; Alisma 
canaliculatum: DQ339081, JF975413, JF781042, AB040179; Alisma plantago-aquatica: 
JF780977, JF975410, L08759, JF781065; Butomus umbellatus: JF780965, JF975415, AY149345, 
AY952416; Caldesia grandis: DQ207881, JF975417, JF781043, JF781068; Caldesia parnassifolia: 
JF780984, JF975416, KU499838, EF088140; Damasonium alisma: JF780988, JF975419, U80678, 
JF781070; Damasonium minus: JF780987, JF975418, JF781063, JF781069; Echinodorus berteroi: 
EF088087, KX980068, KU499839, EF088134; Echinodorus cordifolius: EF088078, KX980067, 
DQ859164, EF088126; Helanthium bolivianum: EF088060, KX980064, KU499841, EF088109; 
Hydrocleys nymphoides: JF780985, JF975425, JF781047, JF781074; Limnocharis flava:JF780986, 
JF975426, JF781048, JF781075; Limnophyton angolensis: JF780991, JF975427, JF781049, 
JF781076; Luronium natans: DQ339093,  (psbA taken from  Ross et al., 2016), U80680, 
HQ456465; Ranalisma rostrata: JF780983, JF975431, JF781051, JF781078; Sagittaria 
guayanensis: JF780968, JF975434, JF781054, JF781081; Sagittaria latifolia: JF780975, JF975441, 
L08767, JF781087; Sagittaria trifolia: JF780970, JF975436, JF781056, JF781083. Clematis. 
Anemone flaccida: AB115462, AB120212, AB117604, AB110530, AB117001; Clematis alternata: 
AB115440, AB120190, AB117582, AB110509, AB116979; Clematis crassifolia: AB115444, 
AB120194, AB117585, AB110513, AB116983; Clematis eichleri: AB115459, AB120209, 
AB117601, AB110527, AB116998; Clematis florida: AB115436, AB120186, AB117578, 
AB110505, AB116975; Clematis fusca: AB115429, AB120179, AB117571, AB110535, 
AB116968; Clematis gentianoides: AB115460, AB120210, AB117602, AB110528, AB116999; 
Clematis hancockiana: KR909735, KR909772, KR909882, KR909833, KR909668; Clematis 
ispahanica: KR909718, KR909777, KR909884, KR909837, KR909711; Clematis lasiandra: 
AB115435, AB120185, AB117577, AB110504, AB116974; Clematis ligusticifolia: AB115451, 
AB120201, AB117593, AB110519, AB116990; Clematis nobilis: AB115456, AB120206, 
AB117598, AB110524, AB116995; Clematis patens: AB115434, AB120184, AB117576, 
AB110503, AB116973; Clematis potaninii: AB115448, AB120198, AB117590, AB110517, 
AB116987; Clematis stans: AB115438, AB120188, AB117580, AB110507, AB116977; Clematis 
tangutica: AB115445, AB120195, AB117587, AB110514, AB116984; Clematis villosa: 
AB115461, AB120211, AB117603, AB110529, AB117000; Clematis vitalba: AB115457, 
AB120207, AB117599, AB110525, AB116996; Pulsatilla cernua: GU732566, GU732647, 
GU732728, AB110531, AB117002. Euphasiaceae. Acanthephyra purpurea: KP076173, 
KP075887, KP075819, KP076127; Euphausia krohnii: MG669391, MG677869, MG677832, 
MG699136; Euphausia pacifica: MG669392, MG677870, MG677833, MG699137; Euphausia 
pseudogibba: MG669393, MG677871, MG677834, MG699138; Euphausia recurva: MG669394, 
MG677872, MG677835, MG699139; Euphausia tenera: MG669395, MG677873, MG677836, 



MG699140; Meganyctiphanes norvegica: MG669397, MG677875, MG677838, MG699142; 
Nematobrachion boopis: MG669398, MG677876, MG677839, MG699143; Nematobrachion 
flexipes: MG669399, MG677877, MG677840, MG699144; Nematoscelis atlantica: MG669401, 
MG677879, MG677842, MG699146; Nematoscelis megalops: MG669402, MG677880, 
MG677843, MG699147; Nematoscelis tenella: MG669403, MG677881, MG677844, MG699148; 
Stylocheiron maximum: MG669408, MG677886, MG677849, MG699153; Thysanoessa gregaria: 
MG669410, MG677888, MG677851, MG699155; Thysanoessa inermis: MG669411, MG677889, 
MG677852, MG699156; Thysanoessa longicaudata: MG669412, MG677890, MG677853, 
MG699157; Thysanopoda aequalis: MG669415, MG677893, MG677856, MG699160; 
Thysanopoda cornuta: MG669416, MG677894, MG677857, MG699161; Thysanopoda cristata: 
MG669417, MG677895, MG677858, MG699162. Lindsaeaceae. Lindsaea blotiana: GU478813, 
GU478510, GU478633, GU478679, GU478381; Lindsaea botrychioides: FJ360994, FJ360904, 
FJ360949, GU478714, GU478416; Lindsaea lancea: FJ361006, FJ360915, FJ360961, GU478651, 
GU478353; Lindsaea lapeyrousei: FJ361007, FJ360916, FJ360962, GU478680, GU478382; 
Lindsaea linearis: FJ361008, FJ360917, FJ360963, GU478721, GU478423; Lindsaea lobata: 
FJ361009, FJ360918, FJ360964, GU478674, GU478376; Lindsaea multisora: GU478849, 
GU478534, GU478631, GU478676, GU478378; Lindsaea pacifica: FJ361015, FJ360924, 
FJ360970, GU478663, GU478365; Lindsaea pallida: GU478778, GU478479, GU478624, 
GU478705, GU478407; Lindsaea pectinata: FJ361021, FJ360930, FJ360976, GU478686, 
GU478388; Lindsaea plicata: GU478768, GU478471, GU478593, GU478661, GU478363; 
Lindsaea propinqua: GU478825, GU478537, GU478601, GU478662, GU478364; Lindsaea 
rigidiuscula: GU478794, GU478476, GU478621, GU478691, GU478393; Lindsaea tenuifolia: 
FJ361030, FJ360939, FJ360985, GU478677, GU478379; Nesolindsaea kirkii: KC155881, 
KC155835, HQ157323, HQ157327, KC155826; Odontosoria chinensis: MG561415, MG561405, 
HQ157313, HQ157328, MG561412; Odontosoria flexuosa: GU478742, GU478464, GU478583, 
GU478648, GU478350; Osmolindsaea odorata: GU478760, GU478431, GU478589, GU478646, 
GU478348; Tapeinidium luzonicum: GU478751, GU478444, GU478576, GU478643, GU478345. 
Protodrilidae. Claudrilus corderoi: KJ451189, KJ451231, KJ451272, KJ451387; Claudrilus 
draco: JX402098, KJ451237, KJ451278, KJ451361; Claudrilus hypoleucus: KJ451196, KJ451240, 
KJ451282, KJ451365; Claudrilus n. sp. 1: KJ451184, KJ451226, KJ451267, KJ451354; Claudrilus 
n. sp. 2: KJ451186, KJ451228, KJ451269, KJ451356; Claudrilus ovarium: KJ451188, KJ451230, 
KJ451271, KJ451386; Claudrilus tenuis: KJ451205, KJ451248, KJ451291, KJ451372; Megadrilus 
hochbergi: JX402096, KJ451238, KJ451279, KJ451362; Megadrilus n. sp. 1: KJ451208, 
KJ451251, KJ451294, KJ451375; Megadrilus purpureus: AY527057, EU418874, AY340474, 
DQ779760; Megadrilus schneideri: KJ451190, KJ451232, KJ451273, KJ451358; Meiodrilus 
adhaerens: KJ451197, KJ451241, KJ451283, KJ451366; Meiodrilus gracilis: KJ451194, 
KJ451239, KJ451280, KJ451363; Protodrilus affinis: KJ451207, KJ451250, KJ451293, KJ451374; 
Protodrilus ciliatus: KF954464, KF954420, KF954442, KF954505; Protodrilus oculifer: 
KJ451203, KJ451246, KJ451289, KJ451370; Protodrilus pythonius: KJ451212, KJ451255, 
KJ451298, KJ451379; Protodrilus smithsoni: JX402097, KJ451236, KJ451277, KJ451347; 
Saccocirrus pussicus: KF954481, KF954439, KF954460, KF954500. Riama. Ameivula ocellifera: 
AF420862, AF420706, AF420759, AF420914; Anadia rhombifera: KU902052, KU902133, 
KU902214, KU902289; Andinosauria aurea: KY670647, KY670682, KY681100, KY710831; 
Andinosauria crypta: KY670649, KY670684, KY681102, KY710833; Andinosauria vespertina: 
KY670657, KY670693, KY681111, KY710839; Bachia flavescens: AF420859, AF420705, 
AF420753, AF420869; Cercosaura argula: AF420838, AF420698, AF420751, AF420896; 
Kentropyx calcarata: AF420864, AF420707, AF420760, AF420913; Petracola ventrimaculata: 
AY507910, AY507863, AY507883, AY507894; Pholidobolus macbrydei: AY507896, AY507848, 
AY507867, AY507886; Placosoma cordylinum: AF420823, AF420673, AF420734, AF420879; 
Potamites ecpleopus: AF420829, AF420656, AF420748, AF420890; Proctoporus lacertus: 



AY507897, AY507850, AY507868, AY225180; Ptychoglossus brevifrontalis: AY507911, 
AY507865, AY507884, AY507895; Rhachisaurus brachylepis: AF420853, AF420665, AF420737, 
AF420877; Riama anatoloros: KY670664, KY670702, KY681120, KY710843; Riama orcesi: 
KY670675, KY670713, KY681131, KY710851; Riama striata: KY670678, KY670718, 
KY681136, KY710855; Riama unicolor: AY507907, AY507862, AY507880, AY507893. 
 
 
 
Table 1. Parameter cost sets explored in this study (gap opening : transversion : transition : gap 
extension). 
 
0:1:1:1 3:4:4:1 3:2:2:1 0:1:1:2 
0:2:1:2 3:4:2:1 3:2:1:1 0:2:1:4 

 
 
  



 
Table 2. Key statistics of the phenotypic trees. The impact of phenotypic data on stability is reported as an average over the explored eight cost 
sets. For randomized data sets (rnd data) minimum and maximum values are given in the parenthesis after the averages of ten randomizations. 
 
 Minimum tree length Average jackknife support Number of MPTs Impact on stability 
 empirical rnd data empirical rnd data empirical rnd data empirical rnd data 
Alismataceae 169.564 237.922 (233.071–240.930) 97 46 (21–66) 1 1 (1–1) +12 +4 (-2…+12) 
Clematis 91.67 99.67 (97.35–102.66) 70 46 (5–66) 1 1 (1–3) +9 +4 (-1…+9) 
Euphasiaceae 180 288 (284–294) 100 0 (0–0) 1 3 (1–5) +21 -6 (-19…+4) 
Lindsaeaceae 105 120 (117–122) 52 38 (24–45) 26 5 (1–11) +6 +2 (-2…+6) 
Protodrilidae 114 164 (161–166) 56 25 (15–38) 1 3 (1–8) –1 +1 (-6…+7) 
Riama 62 84 (82–86) 23 0 (0–0) 9 4 (1–10) +1 -2 (-5…+2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figures 

 
Fig. 1. (a) Sensitivity plots illustrating the Meta-Retention Index (MRI) and Nodal Stability (NS) in 
sensitivity analyses of the combined molecular data (DNA-only). Cost sets are in the same order as 
in the Table 1 and best cost sets are indicated with asterisks. The lower most heat maps show the 
change in NS after the phenotypic data were added. (a) Alismataceae. (b) Clematis. (c) 
Euphasiaceae. (d) Lindsaeaceae. (e) Protodrilidae. (f) Riama. 
 

 
Fig. 2. Median SPR distances between gene trees (white symbols) and from gene trees to 
phenotypic tree (black symbols), whiskers indicate one standard deviation above and below the 
mean of the data. (a) Alismataceae. (b) Clematis. (c) Euphasiaceae. (d) Lindsaeaceae. (e) 
Protodrilidae. (f) Riama. 
 

 
Fig. 3. Median nodal stability across sensitivity analyses of DNA-only data (white symbols), total-
evidence (black symbols), and total-evidence with randomized phenotypic data. Whiskers indicate 
observed minimum and maximum values. (a) Alismataceae. (b) Clematis. (c) Euphasiaceae. (d) 
Lindsaeaceae. (e) Protodrilidae. (f) Riama. 
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Fig. 4. Total-evidence topologies are more similar with the phenotypic trees than DNA-only 
topologies. SPR distance from the phenotypic tree to DNA-only tree on x-axis, and SPR distance 
from the phenotypic tree to total-evidence tree on y-axis. Size of the symbol corresponds with the 
average jackknife support of the phenotypic tree.  
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