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Abstract 

Repeatable behaviors (i.e. animal personality) are pervasive in the animal kingdom and various 

mechanisms have been proposed to explain their existence. Genetic and non-genetic mechanisms, 

which can be equally important, predict correlations between behavior and body mass on different levels 

(e.g. genetic, environmental) of variation. We investigated multi-level relationships between body mass 

measured on weeks 1, 2, and 3 and three behavioral responses to handling, measured on week 3, and 
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which form a behavioral syndrome in wild blue tit nestlings. Using 7 years of data and quantitative 

genetic models, we find that all behaviors and body mass on week 3 are heritable (h2= 0.18-0.23) and 

genetically correlated, whereas earlier body masses are not heritable. We also find evidence for 

environmental correlations between body masses and behaviors. Interestingly, these environmental 

correlations have different signs for early and late body masses. Altogether, these findings indicate 

genetic integration between body mass and behavior, and illustrate the impacts of early environmental 

factors and environmentally-mediated growth trajectory on behaviors expressed later in life. This study 

therefore suggest that the relationship between personality and body mass in developing individuals is 

due to various underlying mechanisms which can have opposing effects. Future research on the link 

between behavior and body mass would benefit from considering these multiple mechanisms 

simultaneously. 

Keywords 

Personality, behavioral syndrome, body mass, growth, heritability, genetic correlation, structural 

equation model, multivariate mixed model, Cyanistes caeruleus 

Introduction 

Animal personality is a pervasive phenomenon in nature, as evidenced by the great number of studies 

reporting repeatable (or heritable) behaviors and among-individual (or genetic) correlations between 

behaviors (i.e. behavioral syndromes) in wild animals. Animal personality research mainly aims at 

explaining among individual differences in behavior and a number of hypotheses involving genetic 

and/or phenotypic mechanisms have been proposed (Dingemanse and Réale 2013, Wolf et al. 2010). 

Both genetic and non-genetic mechanisms are likely to be equally important, as recently suggested by 

Dochtermann, Sih and Schwab (2015), who showed that additive genetic effects explain approximately 

half (52%) of among-individual variation in behavior, the remaining 48% being due to permanent 

environment effects. The latter include environmental factors that are maintained across measurements, 

of which an arguably major part are maternal and/or early environmental factors that have long-lasting 

effects on individuals’ behavior through their impacts on its ontogeny (developmental plasticity, as 
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opposed to reversible plasticity). Roughly speaking, we hence can expect that genes that individuals 

inherit from their parents and the conditions they encounter early in life equally determine between-

individual differences in behavior. Importantly, genes and environment can have opposing effects on 

behaviors, which is why genetic and environmental correlations between behaviors resulting from these 

effects do not always have similar signs (Dochtermann 2011). 

Different hypotheses and theoretical models for the existence and maintenance of animal personality 

predict a close link between behavior and body mass. Both repeatable behaviors and body mass have 

well-documented associations with survival and reproductive success (but see Smith and Blumstein 

2008, Moirón et al. 2020 for behaviors, and Wauters 1993, Profitt et al. 2008, Festa-Bianchet at al.1997, 

Linden et al. 1992, Monros et al. 2002 which show positive effects of juvenile body mass for survival 

in various bird and mammal species). Just as behavior, body mass is often heritable and strongly 

influenced by environmental conditions encountered by individuals. Therefore, body mass and behavior 

can be genetically and/or environmentally correlated.  

Firstly, if genetically correlated, behavior and body mass can coevolve. For example, the pace-of life 

syndrome (POLS) hypothesis predicts genetic correlations between an array of behaviors (e.g. risk 

taking, parental care), physiological (e.g. metabolism, immune response) and life-history traits (e.g. 

growth rate, age at maturity), which can be generated by correlational selection or developmental 

constraints (Réale et al. 2010). Under this hypothesis, it may be more beneficial for individuals with a 

slow pace-of-life to have a slower growth rate, to be larger at sexual maturity (hence heavier) and to be 

less bold than individuals with a fast pace-of-life. On the other hand, body mass and behaviors can also 

be genetically correlated if underpinned by similar heritable mechanisms (e.g. metabolism, allometric 

constraints). For instance, positive genetic correlations between body mass and behaviors that enable 

food acquisition can be expected as heavier individuals have higher energy requirements (Mathot et al. 

2018).  

Secondly, phenotypic mechanisms can generate correlations between behavior and body mass. For 

example, consistent behavioral differences between individuals are predicted to arise and to be 
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correlated to body mass through the action of various positive or negative state-dependent feedback 

loops (Sih et al. 2015). However, such mechanisms remain empirically challenging to demonstrate and 

only apply to a certain type of study systems and behaviors (e.g. behaviors allowing food acquisition or 

predation avoidance). Behaviors which are not involved in such feedbacks may also be (directly or 

indirectly) related to body mass. For example, correlated plasticity to unmodelled environmental factors 

can affect both behavioral development/expression and mass, or can affect behavioral 

expression/development through effects on body mass, if behavior is mass-dependent. Reversible and 

developmental environmental plasticity can generate correlations between body mass and behavior in 

the short-term (behavior and body mass only correlate when measured at the same life stage) and in the 

long-term (behavior can be correlated to body mass at an earlier developmental stage which influences 

final mass), respectively.  

Genetic and environmental relationships between body mass and behavior are therefore likely to arise 

as individuals develop. Importantly, body mass and growth are tightly related, but it remains unclear 

how they independently correlate with behavior. There is empirical support for correlations between 

growth rate and behavior (cf. meta-analysis in Royauté et al. 2018) and a few studies reported 

phenotypic associations between early-life body mass/birth weight and behaviors expressed later in 

life/personality in mammals (Rödel and von Holst 2009, Rödel and Meyer 2011, Hudson et al. 2011, 

Thomas et al. 2016), including humans (e.g. Hertz et al. 2013). Although a recent meta-analysis showed 

empirical evidence for among-individual correlation between body mass and behaviors (e.g. aggression 

or boldness, see Niemelä and Dingemanse 2018a), most reports of body mass-behavior association 

consist of phenotypic correlations (Niemelä and Dingemanse 2018a, b). At present there is hence a 

paucity of studies providing information on the role of environmental correlation (ecological 

mechanisms) or genetic correlations (evolutionary mechanisms) underlying phenotypic body mass-

behavior correlations.  

Because environmental and genetic relationships between body mass and behavior do not necessarily 

align, they need to be investigated using appropriate data and (co)variance partitioning approaches 

(Niemelä and Dingemanse 2018b). Blue tits (Cyanistes caeruleus) are an ideal study system in this 
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context as they often produce large families and their population characteristics facilitate the monitoring 

of a great number of them during the nesting period in natural conditions. Thanks to these features, and 

when data is available for a number of generations/breeding seasons, one can use the population’s 

pedigree to partition the phenotypic covariance between behavior and body mass into different 

components (Kruuk 2004). Such components include covariance due to environmental conditions (e.g. 

territorial quality, clutch size) that differ between nests (common environment), parental effects, 

additive genetic effects, and differences among individuals that are not explained by the above-

mentioned factors but can be caused, for example, by hatching asynchrony, genetic differences between 

siblings, or measurement error (residuals).  

In the present paper, we investigate the multi-level relationship between early body masses measured 

2, 9, and 16 days after hatching (D2, D9, D16) and three behavioral responses to handling measured on 

D16 in nestling blue tits. In this population, these behaviors are heritable and correlate on the additive 

genetic, common environment, and residual levels (Brommer and Kluen 2012) and all masses are 

expected to correlate positively with each other on all levels. Based on 7 years of phenotypic data 

collected in a pedigreed population and using a quantitative genetic model, we estimate the additive 

genetic, common environment and residual correlations between all six traits. For each estimated 

correlation matrix, we then compare 4 four structural equation models (SEM) which fit different 

hypotheses describing the potential relationships between body masses and a latent factor on which all 

behaviors load (Figure 1): i) under the “allometry hypothesis”, all masses and behavior load on a single 

latent factor which is individuals’ size; ii) under the “growth hypothesis”, each mass is explained by 

earlier masses (growth sequence) and independently correlates with behavior; iii) under the “body 

mass” hypothesis, all masses are grouped under a single latent factor “body mass” which correlates with 

behavior; iv) under the “early vs. late mass hypothesis”, early masses and late mass correlate 

independently with behavior while late mass is explained by early mass. Models were compared based 

on their AIC and uncertainty of the best model’s estimates was obtained through parametric 

bootstrapping. 

Material and methods 
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Data collection 

Data used for these analyses was collected between 2012 and 2018 in a wild population of blue tits 

breeding in nest boxes in south-west Finland (Tammisaari, 60°01′N, 23°31′E). This population has been 

monitored yearly since 2003 during the breeding season (first broods from end of April to end of June), 

following a standard protocol for nest box-breeding passerines (Brommer and Kluen 2012). Nest boxes 

were visited weekly in May to assess laying dates, clutch sizes and estimate expected hatching dates. 

Nests from first broods were visited daily starting from their expected hatching date until at least one 

hatchling was observed (D0). Two days after the hatching day (D2), nestlings were weighed (using a 

scale with 0.1g precision) and their nails were clipped following unique combinations to allow their 

identification at later stages of development. Parents were caught and identified when nestlings were at 

least 5 days old. One week later (D9), nestlings were weighed and banded by putting a metal ring with 

a unique alphanumeric code on their left leg after their nail code was read. A few days before fledging 

(D16), nestlings were transferred all together in a large paper bag and various measurements of each 

nestling were taken following a fixed sequence (cf. Brommer and Kluen 2012). Firstly, each individual 

was held still on its back in the observer’s palm. Stopwatch was started and the number of struggles 

during 10 seconds was counted. Docility was expressed as -1 time this number/second. Immediately 

after this 10 seconds assay, the time each bird took to take 30 breaths was measured twice using a 

stopwatch. Breath rate was calculated as 30 divided by the average of these two measures and expressed 

in number of breath/second. A higher breath rate reflects a higher stress response to handling (Carere 

et al. 2004). The bird’s right tarsus and head-bill length were then measured using a digital sliding 

caliper (0.1mm accuracy) before measuring its wing and tail length using a ruler (1mm accuracy). 

During these morphometric measurements, the bird’s aggressive behavior (struggling, flapping wings) 

was observed and a handling aggression score (1-5) was given to the bird. This score, which is 1 for a 

completely passive bird and 5 for a bird struggling continuously, reflects the time it takes for each bird 

to calm down during these measurements. Each nestling was then weighed using a Pesola spring balance 

(0.1g accuracy) and then placed in a second large paper bag where measured nestlings remained until 

the entire brood was processed and put back to its nest. 
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Pedigreed population 

Phenotypic data was available for 5404 individuals, which were connected through a social pedigree 

based on social parenthood. The pruned pedigree, which retains only informative individuals holds 

record for 6205 individuals, 5464 maternities, 5107 paternities, 25107 full sibs, 43411 maternal sibs, 

38543 paternal sibs, 18284 maternal half-sibs, 13416 paternal half-sibs, a mean family size of 10.8, a 

mean pairwise relatedness of 2.54e-3 and a maximum pedigree depth of 11. In this population, 11% to 

22% of offspring produced annually were sired by extra-pair males (unpublished data). Based on 

simulations (Charmantier & Réale 2005), such level of error in paternity assignment is unlikely to cause 

substantial biases in quantitative genetic parameters when using the social pedigree. 

Quantitative genetic analyses 

Quantitative genetic analyses were carried out using animal models, which are mixed effects models 

that use the relatedness matrix derived from a population pedigree to estimate additive genetic (co) 

variance (Wilson et al. 2010). Univariate animal models assuming Gaussian distribution were run for 

each trait separately to estimate their variance components and their ratios to phenotypic variance. Then, 

a multivariate animal model was run for all six traits to estimate their correlation on various levels. In 

all models, brood identity, maternal identity, and additive genetic effects were fitted as random effects 

to estimate (co)variance due to common environment, maternal, and additive genetic effects while fixed 

effects included time of measurement in minutes and year as continuous and categorical covariates, 

respectively. For behavioral responses, fixed effects also included observer identity and handling order 

(continuous). In univariate models, box was fitted as an additional random effect to account for 

consistent differences between territories. Animal models were solved using Restricted Maximum 

Likelihood (REML), and implemented in ASReml-R version 3 (Butler et al. 2009; VSN International, 

Hemel Hempstead, U.K.). Statistical significance of fixed and random effects was tested using 

conditional Wald F tests and likelihood ratio tests (LRT) with one degree of freedom, respectively. 

Heritability (h2) of each trait was calculated as the ratio VA /VP where VP, the phenotypic variance, is 

defined as the sum of the REML estimates of additive genetic effects, maternal, common environment 
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effects and residuals (VA , VPE, and VR respectively) and is conditional on the fixed-effect structure of 

the model. Correlations between pairs of traits on each level were calculated based on the corresponding 

covariance matrix estimated by the multivariate animal model. In this multivariate model, each response 

was corrected by the same fixed effects as in its corresponding univariate model. Random effects box 

and mother identities were not fitted in this model due to not being estimable for the former, and due to 

model convergence issues for the latter. Three 4-trait animal models including maternal effects were 

however fitted to verify that the relationships between each separate mass and behavior on other levels 

were consistent with the relationships found using the 6 trait animal model excluding maternal effects. 

Standard errors (SE) of variance ratios and correlations were approximated using the delta method 

(Fischer et al. 2004). Coefficients of variation (CV=sd*100/mean) were calculated for the different 

variance components in. All statistical analyses were performed in R (R development core team 2019). 

Residuals of all animal models were approximately normally distributed (Shapiro-Wilk test values 

>0.92, Figure S1). 

 

Structural equation models 

SEMs were used to investigate, on each level, different hypotheses for the relationships between 

behavior and body masses at different ages (Figure 1). SEMs have been previously used in behavioral 

studies to explore the structure of behavioral syndromes using predicted individual values derived from 

mixed models (Dochtermann & Jenkins 2007, Dingemanse et al. 2010). Here, each covariance matrix 

estimated by the multivariate model was converted into a correlation matrix, which was used as input 

data (cf. Class, Kluen and Brommer 2019, Moirón et al. 2019). In all SEMs variance of latent factors 

was fixed to 1. Because a correlation matrix was used as input data, the residual variance of each 

indicator (the variance unexplained by the latent factor) was fixed to 1 minus its squared factor loading. 

Each SEM was fitted in R using the package “lavaan” (Rosseel 2012). Sample size in these models was 

nominally set at 642 for the common environment level (number of broods) and 5404 (number of 

individuals) for the residual level and the all SEMs were compared using AIC. The sample size in a 
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SEM will not affect the inferred loadings or correlations between latent variables but can impact their 

uncertainty and the model AIC. We verified that the model rankings were similar if sample size was 

assumed to be lower. 

Parametric bootstrap simulations were conducted to estimate median and 95% confidence intervals (CI) 

the model’s loadings and assess model selection uncertainty. Because our findings indicated that the 

genetic covariance matrix was much reduced (see results), we focused on the common-environment 

and residuals covariances. Multivariate data for the 6 traits was simulated 1000 times using the inferred 

common environment and residual covariance matrices to generate a simulated dataset of the same 

dimension as the observations. Each simulated data was analyzed using a multivariate mixed model. At 

each iteration, and on each level, SEMs were run based on the estimated correlation matrices and ranked 

by AIC. Model selection uncertainty was assessed by calculating bootstrap selection rates (Lubke et al. 

2017), which indicate whether model ranking is consistent to sampling variability. The selection rates 

have no a priori cut-off value for “significance”, but instead provide an indication of model selection 

uncertainty (Lubke et al. 2017). For example, a selection rate of a SEM of 50% would indicate it is the 

top model in half the simulations, and 100% would suggest consistent support for this one SEM 

hypothesis over the others in all simulations. R code for performing SEMs and simulations are provided 

in Text S1.  

Results 

Univariate animal models 

All traits have significant common environment variance and show no between-box variance (Table 1). 

We find significant additive genetic variance for behaviors, which all have a moderate heritability 

(0.16—0.22). In contrast, D9 and D16 masses have low heritabilities (0.01 and 0.12) and D2 mass 

heritability is not estimable. The proportion of phenotypic variance explained by common environment 

effects is moderate to low for behavioral traits (0.08—0.22) but higher for masses (0.29—0.43) and 

increasing between D9 and D16. Maternal variance overall represents a low proportion of phenotypic 

variance for behaviors (0.01 to 0.05) and masses (0.12) and only significantly differs from zero in D9 
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mass (and marginally for D16 mass). In contrast, residual variance accounts for more than half of the 

phenotypic variance in all behaviors (0.54—0.74). Coefficients of variation of the different variance 

components in masses show an increase in CVA (0 to 3.35), and a decrease in CVCE (15.09 to 6.44), 

CVM (4.97 to 3.16) and CVR (20.08 to 5.84), between D2 and D16 (Table 1). This phenomenon is likely 

due to compensatory growth (Figure S2) and the disappearance of the smallest broods and nestlings 

during the week separating two measurements (26% of the chicks and 20% of the broods measured on 

D2 die before D16; Table 1). 

In all models, we find significant between-year differences (Tables S1-S6). Time of the day has a 

positive effect on masses on D2 and D9 but does not affect mass and behaviors measured on D16. We 

also find that observers differ in how they measure all behaviors and that handling order increases 

handling aggression and decreases breath rate but does not affect docility. Estimates of fixed and 

random effects as well as their test statistics and standard errors for each trait are reported in Tables S1-

S6. 

Multivariate animal models 

On all levels, point estimates of correlations between handling aggression and docility and breath rate 

are negative (-0.26— -0.21 for HA-BR, -0.71— -0.30 for HA-docility) while estimates of the 

correlations between docility and breath rate are positive (0.10—0.45). In addition, estimates of 

correlations between masses are almost all positive on all levels (Table 2). The only exception is the 

genetic correlation between D2 and D9 masses which has a negative point estimate but also high 

uncertainty due to both masses having very low estimated VA (Table S7). The high correlation estimates 

between subsequent mass measurements (0.54—0.79) indicate that rank orders of masses in nestlings 

and broods are mostly maintained from one week to the next.  

Signs of the correlations between behaviors and D2 and D9 masses are consistent across all levels, 

although genetic correlations should be interpreted with caution given that both masses have a low (but 

estimable) VA; On all levels, D2 and D9 masses appear to correlate positively with handling aggression 

(0.19—0.36) and negatively (-0.50— -0.08) with breath rate and docility. In contrast, the estimated 
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correlations between D16 mass and behaviors are inconsistent across levels; on the additive genetic 

level, D16 mass correlates positively with handling aggression (0.61) and negatively with breath rate 

and docility (-0.46,-0.37), whereas on the common environment and residual levels, D16 mass 

correlates negatively with handling aggression and docility (-0.04— -0.18) and positively with breath 

rate (0.05—0.25).  

We tested the statistical significance of the correlations between D16 mass and behaviors on each level 

and whether these correlations differ across levels. To do so, we performed pairwise comparisons (LRT 

tests) between an unconstrained 4 trait animal model and similar models in which these three 

correlations were fixed to zero on one level or constrained to have similar values across two levels. 

These tests confirmed that genetic and common environment correlations between D16 mass and 

behaviors differ from zero (χ2=9.21, df=3, p=0.03 and χ2=26.57, df=3, p<0.001, respectively) and from 

each other (χ2= 13.63 df=3, p=0.003), whereas residual correlations do not differ from zero (χ2= 3.01, 

df=3, p=0.39), differ from common environment correlations (χ2= 17.37 df=3, p=0.006) but not from 

genetic correlations(χ2= 7.13, df=3, p=0.07). As a result of these inconsistent correlation signs across 

levels, phenotypic correlations between D16 mass and behaviors are low; point estimates are positive 

for handling aggression and breath rate (0.06, 0.03) and negative (-0.12) for docility (Table 2). 

Variances and covariances and their standard errors estimated by the multivariate animal model are 

reported in Table S7. Four-trait animal models fitting each separate mass and the 3 behaviors and 

including maternal effects resulted in genetic, common environment, and residual correlation matrices 

which were qualitatively similar to those obtained in the 6-trait model excluding maternal effects 

(Tables S8-S10). 

Structural equation models 

Because D2 and D9 masses have no or very low VA (based on univariate animal models), interpretation 

of their estimated genetic correlations with each other and other traits are hampered. For this reason, 

the additive genetic correlation matrix was not considered further. We hence focused on common 

environment and residual correlation matrices for the SEM analysis. On both levels, the “early vs. late 
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mass” model (Fig. 1) is the best supported model (Tables 3 and 4). When setting a lower sample size 

for both levels, (e.g. arbitrarily set at 100 for the common environment level, 1000 for the residual 

level), rankings remained the same for the first and last-ranked models on the common environment 

level and for all models on the residual level (Table S11 and S12). Bootstrapped selection rates (for 

1000 iterations) on the common environment level were 87% for the “early vs. late mass” model, 11% 

for the “growth” model and 2 % for the “body size” model, while the “early vs. late mass” model had 

100% support on the residual level. Hence, the “early vs. late mass” was clearly the best-supported 

model on both levels. Bootstrapped estimates from this model indicate that early masses increase 

handling aggression but decrease docility and breath rate, while final mass has opposite effects on these 

behaviors (Figure 2). 

Discussion 

Using covariance partitioning and structural equation modeling, we investigated genetic and 

environmental relationships between body masses and a behavioral syndrome in developing blue tits. 

We show that that long-term (early-life) and short-term environmental factors have opposing effects on 

the relationship between body mass and behavior. In addition, we find that that the correlations between 

fledging mass and behavior have opposing signs on environmental and genetic levels. As a result, the 

phenotypic relationship observed between fledging mass and behavior is weak. 

Firstly, we show that nestlings and broods that are heavier in their first two weeks express higher 

handling aggression and lower breath rate and docility in their third week. Because early body mass is 

mainly caused by environmental variation, with additive genetic effect essentially absent, our results 

suggest that environmental factors that nestlings experience during the first days after hatching have a 

lasting impact on their behavior at fledging. A similar long-term impact of early environment and mass 

on the ontogeny of behavior was shown in studies on laboratory rats, mice, European rabbits, and 

domestic cats (Rödel and von Holst 2009, Rödel and Meyer 2011, Hudson et al. 2011). Impacts of early 

nutrition on behavioral development have received more attention in the recent years and early-life food 

deprivation has been shown, mainly from lab experiments, to have long-lasting effects on adult behavior 
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in various vertebrate and invertebrate species (reviewed in Langenhof and Komdeur 2018). In zebra 

finches, female raised on low quality food are faster explorers (Krause et al. 2009) than females raised 

on high quality diet and males raised under low micronutrient diet are less bold than individuals raised 

under high micronutrient diets (Noguera et al. 2015). In great tits, food rationing in early life was shown 

to increase aggression in a line selected for high exploration and aggression (Carere et al. 2005). In wild 

great tits, nestlings provisioned with lower amounts of caterpillars by their parents were shown to 

exhibit a stronger stress response to handling and to be faster explorers later on (van Oers et al. 2015). 

Secondly, we find that the environmental relationship between body mass and behaviors is positive 

until D9 and negative on D16, despite the overall maintenance of mass rankings. In this population, D9 

corresponds to a critical developmental stage after which growth rates increase for lighter individuals 

catching up growth, or decrease for heavier individuals reaching their final mass. Such pattern is typical 

in species showing asymptotic growth. Although the mechanism involved remains unclear, this change 

of sign in the correlation between behavior and early vs. late body masses indicates that 

environmentally-mediated growth trajectories play a role in birds’ behavioral development. There is 

some empirical evidence that growth trajectories (mediated by early nutrition) impact behavioral 

development. In particular, compensatory growth, despite immediate benefits, can incur costs that are 

paid later in life (Metcalfe and Monaghan 2001). For instance, compensatory growth has been shown 

to impair cognitive abilities (Fisher et al. 2006) and affect exploratory behavior (Krause and Naguib 

2011) in zebra finches. The present study is one of the few studies documenting long-term impacts of 

early environment and growth trajectories on animal behavior in wild. 

Thirdly, we find evidence for additive genetic covariance between D16 mass and a previously 

documented behavioral syndrome. In other words, genes increasing mass before fledging are associated 

with genes increasing handling aggression, and decreasing breath rate and docility in nestlings when 

they are handled. Because individuals express these behaviors in a stressful situation, this behavioral 

syndrome likely reflects how individuals cope with stress (i.e. coping styles, Koolhaas et al. 1999). We 

can thus expect higher levels of expression of this behavioral syndrome (i.e. higher handling aggression, 

lower breath rate and docility) to be associated with a proactive coping style and a fast pace-of-life. Our 
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findings that higher levels of expression of this behavioral syndrome are genetically associated with 

higher fledging masses hence seem to contrast with the POLS prediction that smaller individuals show 

more proactive behaviors and are less stressed. Nevertheless, this study does not allow ruling out the 

possibility of coevolution between these behaviors and body mass, as a result of correlational selection. 

Interestingly, and although the allometry hypothesis is not supported, the negative relationship that we 

find between body mass and breath rate aligns with the well-documented allometric relationship 

between body mass and respiratory variables across species (e.g. Frappell et al. 2001). 

Regardless of its mechanistic cause (i.e. pleiotropy or linkage disequilibrium), the genetic association 

between behaviors and D16 body mass indicates that these traits will respond non-independently to 

selection. Although it remains unclear whether and how these behavioral responses to handling 

influence post-fledging survival, mass at fledging is known to be a strong predictor of survival in small 

passerines (e.g., Perrins, 1965, Tinbergen and Boerlijst 1990, Linden et al.1992, Monrós et al. 2002, 

Radersma et al. 2015). Therefore selection for a higher mass should result in selection for a higher 

expression of this behavioral syndrome. Importantly, the behavior of an individual at fledging is 

genetically correlated to its behavior as a reproductive adult (Class and Brommer 2015), which was 

shown to influence adult survival and reproductive success (Class et al. 2014). As a result, some or 

several of the behaviors as well as the genetically correlated mass measured at fledging are likely under 

selection. Quantification of multivariate selection in combination with the here documented additive 

genetic covariances for behaviors and mass at fledging is required to investigate whether maintenance 

of variation in behaviors is facilitated when taking a multivariate perspective on the evolutionary 

dynamics of this behavioral syndrome or not. 

Theoretical models proposed adaptive integration of state (e.g. body mass, size) and behavior as a 

possible mechanism explaining the existence of animal personality (e.g. Wolf et al. 2007) but still lack 

empirical support. Using a combination of multivariate mixed models and a SEM approach similar to 

what was done in this study, Moirón et al. (2019) recently found evidence for phenotypic integration 

between risk-taking behaviors and body size in adult great tits. The present study provides further 

evidence for such integration on the genetic level. In addition, our partitioning of phenotypic variance 
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into additive genetic and common environment effects reveals complex relationships between body 

mass and behavior, which change as individuals grow and do not align across levels. Importantly, 

despite their strong genetic correlation, body mass and behavior are only weakly correlated on the 

phenotypic level, which cautions against taking the phenotypic gambit (Cheverud 1988, Dochtermann 

2011). Recent meta-analysis (Niemelä and Dingemanse 2018) revealed that among-individual 

correlations between intrinsic state variables (e.g. body size and mass) and behaviors (e.g. aggression 

or boldness) are weakly positive and that individual variation in states only explains about 5% of 

phenotypic variation in these behaviors. In the light of our findings, it is possible that high genetic 

correlations exist between states and behaviors but are being masked by other sources of (co)variation. 

Because quantitative genetic models allow partitioning such (co) variation further, they constitute 

valuable tools to study the coevolution between state and behavior and hence to understand better the 

existence of animal personality.  

This study provided insights into the relationship between handling behaviors and body mass in 

developing wild birds. Our findings demonstrated the importance of early environmental factors and 

environmentally-mediated growth trajectory for behavioral development and provided evidence for a 

genetic association between this behavioral syndrome and fledging mass. We also show non-aligning 

genetic and environmental correlations between fledging body mass and behavior which result in a 

weak phenotypic correlation. Altogether, these results exemplify the complexity of the relationship 

between behavior and body mass, shaped by genetic, long-term, and short-term environmental factors. 

Such complex and interesting relationship would have been missed, had we ignored earlier masses and 

not partitioned phenotypic (co)variances. Research on the link between behavior and body mass under 

natural environmental conditions can advance our understanding of animal personalities and would 

benefit from considering multiple underlying mechanisms simultaneously. 
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Figure 1: Four alternative structural equation models, which can describe the relationship 

between behaviors and body mass. Continuous arrows represent the loadings of variables 

(rectangular shape) on latent factors (oval shape). In all models, handling aggression, breath rate, 

and docility (HA, BR, Doc respectively) load on a latent behavioral factor. Double-headed spotted 

arrows represent the correlations between behaviors and body masses. The one headed spotted 

arrow in “early vs. late mass model” represents the causal relationship between the latent factor 

“early mass” and D16 mass. 

Figure 2: Median coefficients of the best supported model (“early vs. late mass”) on the common 

environmental (A) and residual (B) levels and their 95% confidence intervals estimated by 

parametric bootstrapping (1100 iterations). Sample sizes for the common environment and 

residual levels were 1031 and 1051, respectively, after non-converging models were excluded.  
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Table1: Sample sizes, mean (and standard deviation), animal model variance estimates (VA, VCE, 

VM, VR, Vbox), their ratios to VP (and their standard error) for all six traits (HA = handling 

aggression, BR= breath rate, Doc.= docility). Variance estimates for which LRT returned a p-

value <0.05 (or <0.10) are printed in bold (and bold italics), respectively. Coefficients of variation 

are printed in italics below variance estimates. Variance components and ratios that cannot be 

estimated are noted n.e.. 

Trait 
n 

nestlings 

n 

broods 
Mean  VA VCE VM VR Vbox h2 VCE/VP VM/VP VR/VP 

D2 

mass 

5268 627 1.86 

(0.49) 

n.e. 0.079 

(0.008) 

15.9 

0.009 

(0.007) 

4.97 

0.140 

(0.003) 

20.08 

n.e. n.e. 0.35 

(0.03) 

0.03 

(0.03) 

0.62 

(0.02) 

D9 

mass 

4577 557 8.60 

(1.33) 

0.018 

(0.109) 

1.56 

0.472 

(0.066) 

7.99 

0.194 

(0.073) 

5.12 

0.934 

(0.059) 

11.24 

n.e. 0.01 

(0.07) 

0.29 

(0.04) 

0.12 

(0.04) 

0.58 

(0.04) 

D16 

mass 

4119 526 11.40 

(1.16) 

0.146 

(0.116) 

3.35 

0.539 

(0.070) 

6.44 

0.130 

(0.070) 

3.16 

0.442 

(0.060) 

5.83 

n.e. 0.12 

(0.09) 

0.43 

(0.05) 

0.10 

(0.05) 

0.35 

(0.05) 

HA 

4110 526 2.96 

(1.27) 

0.295 

(0.099)  

18.38 

0.283 

(0.048) 

17.99 

0.009 

(0.047) 

3.23 

0.783 

(0.054) 

29.91 

n.e. 0.22 

(0.07) 

0.21 

(0.03) 

0.01 

(0.03) 

0.57 

(0.05) 

BR 

4114 526 2.02 

(0.43) 

0.030 

(0.012) 

8.59 

0.036 

(0.006) 

9.41 

0.009 

(0.006)  

4.58 

0.086 

(0.007) 

14.56 

n.e. 0.19 

(0.08) 

0.22 

(0.04) 

0.05 

(0.04) 

0.54 

(0.05) 

Doc. 

4102 525 -0.21 

(0.18) 

0.005 

(0.002)  

32.67 

0.002 

(0.001) 

22.62 

0.001 

(0.001) 

12.81 

0.022 

(0.001) 

69.89 

0.001 

(4.90E-4) 

0.16 

(0.06) 

0.08 

(0.03) 

0.02 

(0.03) 

0.74 

(0.04) 
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Table 2: Correlations (and standard errors) estimated by the multivariate animal model on the 

additive genetic, common environment, residual, and phenotypic levels. HA and BR denote 

handling aggression and breath rate. Correlations between masses and behaviors are highlighted. 

Statistical significance of correlations was not tested individually but estimates that are higher 

than two times their standard error are printed in bold. 

Level  D2 mass D9 mass D16 mass HA BR 

Additive genetic 

      

D9 mass -0.49 (1.55)     

D16 mass 0.04 (0.72) 0.63 (0.32)    

HA 0.26 (0.49) 0.36 (0.34) 0.61 (0.27)   

BR -0.08 (0.51) -0.50 (0.38) -0.46 (0.29) -0.26 (0.17)  

Docility -0.20 (0.48) -0.38 (0.33) -0.37 (0.24) -0.71 (0.11) 0.45 (0.16) 

Common 

environment 

      

D9 mass 0.54 (0.05)     

D16 mass 0.10 (0.07) 0.59 (0.05)    

HA 0.29 (0.08) 0.29 (0.08) -0.11 (0.09)   

BR -0.18 (0.08) -0.10 (0.09) 0.25 (0.08) -0.24 (0.09)  

Docility -0.25 (0.10) -0.37 (0.10) -0.18 (0.10) -0.41 (0.10) 0.10 (0.12) 

Residual 

      

D9 mass 0.79 (0.02)     

D16 mass 0.38 (0.05) 0.68 (0.04)    

HA 0.21 (0.04) 0.19 (0.04) -0.02 (0.06)   

BR -0.15 (0.04) -0.12 (0.05) 0.05 (0.07) -0.21 (0.05)  

Docility -0.14 (0.03) -0.14 (0.04) -0.04 (0.05) -0.30 (0.03) 0.22 (0.04) 

Phenotypic 

      

D9 mass 0.64 (0.01)     

D16 mass 0.21 (0.01) 0.61 (0.01)    

HA 0.22 (0.02) 0.21 (0.02) 0.06 (0.02)   
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BR -0.14 (0.02) -0.13 (0.02) 0.03 (0.02) -0.22 (0.01)  

Docility -0.16 (0.02) -0.19 (0.02) -0.12 (0.02) -0.40 (0.01) 0.24 (0.01) 
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Table 3: Model comparison on the common environment level. SEM models are drawn in 

Figure 1. 

Model ΔAIC AIC n.parameters 

Early vs. late mass model 0 10082.44 16 

Growth model 22.39 10104.82 15 

Body mass model 24.56 10106.99 15 

Allometry model 144.11 10226.55 13 

 

Table 4: Model comparison on the residual level. SEM models are drawn in Figure 1. 

Model ΔAIC AIC n.parameters 

Early vs. late mass model 0 81537.75 16 

Body mass model 94.05 81631.79 15 

Allometry model 461.40 81999.15 13 

Growth model 880.63 82418.38 15 
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