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Predicting mortality in critically 
ill patients requiring renal 
replacement therapy for acute 
kidney injury in a retrospective 
single‑center study of two cohorts
Mikko J. Järvisalo  1,2,3,7*, Noora Kartiosuo4,5,6, Tapio Hellman1 & Panu Uusalo2,3

Half of the critically ill patients with renal replacement therapy (RRT) dependent acute kidney injury 
(AKI) die within one year despite RRT. General intensive care prediction models perform inadequately 
in AKI. Predictive models for mortality would be an invaluable complementary tool to aid clinical 
decision making. We aimed to develop and validate new prediction models for intensive care unit (ICU) 
and hospital mortality customized for patients with RRT dependent AKI in a retrospective single-
center study. The models were first developed in a cohort of 471 critically ill patients with continuous 
RRT (CRRT) and then validated in a cohort of 193 critically ill patients with intermittent hemodialysis 
(IHD) as the primary modality for RRT. Forty-two risk factors for mortality were examined at ICU 
admission and CRRT initiation, respectively, in the first univariate models followed by multivariable 
model development. Receiver operating characteristics curve analyses were conducted to estimate 
the area under the curve (AUC), to measure discriminative capacity of the models for mortality. AUCs 
of the respective models ranged between 0.76 and 0.83 in the CRRT model development cohort, 
thereby showing acceptable to excellent predictive power for the mortality events (ICU mortality 
and hospital mortality). The models showed acceptable external validity in a validation cohort of IHD 
patients. In the IHD validation cohort the AUCs of the MALEDICT RRT initiation model were 0.74 and 
0.77 for ICU and hospital mortality, respectively. The MALEDICT model shows promise for mortality 
prediction in critically ill patients with RRT dependent AKI. After further validation, the model might 
serve as an additional clinical tool for estimating individual mortality risk at the time of RRT initiation.

One-year mortality in critically ill patients with acute kidney injury (AKI) requiring continuous renal replace-
ment therapy (CRRT) exceeds 50% and has not improved in spite of developments in the field of intensive care 
during the last decade1,2.

Previous studies have indicated that scores used to assess severity of disease in intensive care patients, such 
as, Acute Physiology and Chronic Health Evaluation (APACHE)3–5, Simplified Acute Physiology Score (SAPS)6 
and Sequential Organ Failure assessment score (SOFA)5,7 measured at the time of intensive care unit (ICU) 
admission or CRRT initiation, are associated with mortality in critically ill AKI patients but nevertheless perform 
inadequately in predicting mortality8,9.

Renal failure with a need for renal replacement therapy (RRT) substantially increase healthcare resource 
requirements and lead to increased costs and duration of hospital stay10,11. In spite of RRT half of the dialyzed 
ICU patients with AKI die within 1 year. More precise predictive models for mortality would be an invaluable 
complementary tool to aid clinical decision making in this highly morbid patient group and to recognize the 
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patients that are likely to benefit from an increase in the intensity of care by RRT initiation. Previous available 
data have suggested that a combination of clinical evaluation and a predictive model risk estimate may improve 
the detection of patients with high or low survival probability compared to mere clinical judgment12.

Several observational studies have aimed to validate prediction models including conventional intensive care 
scoring systems or new models including machine learning based algorithms and the Mortality Scoring system 
for AKI with CRRT (MOSAIC) score13 for mortality in critically ill AKI patients requiring RRT. Most studies 
have examined risk factor effects assessed at a single time point during intensive care and the performance and 
external validation of the prediction models has been limited.

Therefore, we aimed to develop and validate respective predictive models for ICU and hospital mortality in 
critically ill patients with AKI requiring CRRT in a retrospective cohort, using data available on ICU admission 
and at CRRT initiation. Furthermore, the external validity of the models was examined in an independent cohort 
of critically ill AKI patients with intermittent hemodialysis (IHD) as the primary modality for RRT.

Materials and methods
This retrospective cohort study consecutively included all patients admitted to the ICU of the Turku University 
Hospital requiring continuous veno-venous hemodialysis (CVVHD) (493 participants) as a primary modality for 
RRT between January 1 2010 and December 31 2019. As the focus of this pre-specified report was to develop and 
validate respective predictive models for ICU and hospital mortality in critically ill patients with AKI requiring 
RRT, all patients on maintenance dialysis (22 patients) were excluded from the study. No power calculations were 
performed due to the retrospective setting of the study. After model development in CRRT patients, we studied 
the external validity of the developed models in critically ill AKI patients that were started on IHD (not CRRT) 
as a primary RRT modality during the same time period at our ICU (240 patients: 47 patients with previous 
maintenance dialysis dependency were excluded leaving 193 patients for the validation analyses).

All data on patient demographics, disease history and medications at baseline were manually collected from 
the electronic patient records of the research hospital. Biochemical data at ICU admission as well as cumulative 
data on RRT and ICU clinical parameters were extracted from the clinical information software of the research 
ICU. All patients were followed-up from the electronic patient records to collect outcome data on ICU and 
hospital mortality.

Immunosuppression was defined as ongoing use of immunosuppressive medication: corticosteroids (meth-
ylprednisolone dose (or equivalent dose) exceeding 10 mg/day), calcineurin inhibitors, mycophenolate mofetil, 
azathioprine, immunosuppressive monoclonal antibodies used for active autoimmune disorders or cytotoxic 
chemotherapy agents administered within 1 year.

CVVHD and IHD.  CVVHD for all patients receiving CRRT was performed according to a standard protocol 
employed in our centre using Fresenius Multifiltrate CRRT monitors and 1.80 m2 polysulfone hemofilter Ultra-
flux AV1000 or Ultraflux EMiC2 membranes with the CiCa® dialysate K2 and 4% trisodium citrate to achieve 
regional citrate anticoagulation (Fresenius Medical Care, Bad Hamburg, Germany). Blood and dialysate flow 
rates were prescribed according to the weight of the patient and by the caring ICU physician to target a dialysis 
dose of 30 ml/kg/h. The methodology for CRRT remained unaltered for the entire study period and CVVHD 
was the modality for each patient in the study.

IHD was performed using Fresenius Cordiax 5008 dialysis monitors with 2.5–5 h treatment duration, blood 
flow rates 170–300 ml/min, dialysate flow rate of 500 ml/min, and low-molecular-weight heparin (LMWH) 
anticoagulation dependent on the clinical condition of the patient and the running number of IHD treatment.

In Finland CRRT is the primary modality in approximately 70% of all RRT initiations in ICUs as CRRT is 
considered the modality of choice for hemodynamically unstable patients with the highest severity of illness14.

Ethics.  The study protocol was approved by the Turku University Clinical Research Center scientific review 
board (Turku CRC) and the Hospital district of Southwest Finland (Reference number: T143/2019). The patient 
identity numbers were removed and the hospital software data combined before the statistical analyses. For 
this retrospective, register-based, non-interventional study the Turku CRC and Hospital district of Southwest 
Finland joint review board waived the need for informed consent in terms of data collection and analysis and 
publication of results. All experiments were performed in accordance with relevant (STROBE) guidelines and 
regulations and all methods were carried out in accordance with relevant guidelines and regulations including 
the Helsinki declaration.

Statistics.  Results are reported as mean ± standard deviation (SD) for normally distributed covariates and 
as median (inter-quartile range (IQR)) for skewed covariates unless stated otherwise. Categorical variables are 
presented with absolute and relative (percentage) frequencies. For the skewed variables, we examined differ-
ent transformations (loge-transformation, square root transformation and square transformation) to normalize 
distributions, and the best transformation for each variable was chosen according to visual examination or tests 
for normality (Shapiro–Wilk, Kolmogorov–Smirnov). Student’s t-test was used to compare continuous normally 
distributed covariates and Chi-square test for categorical covariates in the study subgroups. For skewed variables 
without suitable transformations the comparisons between groups were done using a non-parametric Kruskall–
Wallis test.

The univariate associations between the dependent variables and tested covariates were initially explored by 
entering the covariates separately into logistic regression models. A total of 42 different covariates were first exam-
ined using respective univariate models during model development. Risk factors included in the first univariate 
models are listed in Supplementary Table 1. All continuous variables included in the models were measured at 
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both ICU admission and CRRT initiation. Covariates with univariate associations with the dependent variable at 
p ≤ 0.05 significance level were included in the multivariable logistic regression models. Multiple imputation with 
25 imputations was performed for each response (ICU mortality and hospital mortality, respectively) and at both 
measurement time points (ICU admission and CRRT initiation, respectively) for those variables with p < 0.05 
in the univariate models. Then, in each imputed data set, these variables were entered in a multivariable model 
with stepwise selection. Prior to using the stepwise selection procedure, we removed variables that described the 
same phenomena and caused multicollinearity. Multicollinearity was assessed by examining variance inflation 
factors at several stages of the analyses.

A variable was chosen in the final model if the selection procedure chose the variable to the models in over 
50%, i.e. ≥ 13 imputations. The results of the final model were combined over the multiple imputed data sets. 
Hosmer–Lemeshow goodness-of-fit test was performed for the multivariable models to assess the goodness of 
fit of the models.

Receiver operating characteristics (ROC) curve analyses were conducted to estimate the area under the 
curve (AUC) as a measure of discriminative capacity of the multivariable models for different mortality events, 
respectively. The ROCCONTRAST function of SAS was employed to compare AUCs (discriminative capacity) 
between the generated final multivariable models and traditional intensive care scoring systems (APACHE, SAPS 
and SOFA) at ICU admission and CRRT initiation, respectively, for the mortality events. Generally, we consider 
an AUC > 0.90 outstanding, an AUC 0.80–0.90 excellent, an AUC 0.70–0.80 acceptable and an AUC < 0.70 poor 
discrimination.

Finally, the external validity of the models developed in the CRRT population was examined in an inde-
pendent cohort of 193 critically ill AKI patients with IHD as the first modality for RRT. Using the same selected 
variables of the models developed in the CRRT cohort, respective risk assessment equations for the IHD cohort 
were developed for further validation. However, as the mortality was significantly lower in the IHD population 
compared to the CRRT population the coefficients in these IHD specific equations differed from the CRRT 
cohort equations. Furthermore, we also aimed to validate the use of the equations developed in the CRRT cohort 
directly in the IHD cohort, without altering the models.

All statistical analyses were performed using statistical analysis system, SAS version 9.3 (SAS Institute Inc., 
Cary NC). p < 0.05 was considered statistically significant and all tests were two-sided.

Results
The CRRT study population included 471 CRRT patients (138/29% women) with a mean age of 64.8 ± 13.1 years. 
ICU mortality was 34.2% and hospital mortality 42.3%. The characteristics of the CRRT study population and 
comparisons between hospital survivors and non-survivors are shown in Table 1. In the CRRT cohort 396 / 471 
patients (84.1%) had data on baseline eGFR (within one year of admission). A total of 149 patients had prior CKD 
(eGFR < 60 ml/min/1.73 m2). CKD was not significantly associated with ICU (OR 1.251, 95% CI 0.839–1.867, 
p = 0.27) or hospital (OR 1.348, 95% CI 0.916–1.984, p = 0.13) mortality and therefore not included in the final 
models. The median time to dialysis initiation from ICU admission was 11 (3–31) h in the CRRT patients and, 
significantly longer, 19 (5–50) h in the IHD cohort (p = 0.001). At the time of RRT initiation 83 (18%) patients 
had hyperkalemia > 5.5 mmol/l, 173 (37%) patients Urea ≥ 20 mmol/l, 182 (39%) patients pH < 7.20 and 130 (28%) 
patients a cumulative fluid balance exceeding 5% of their body weight in the CRRT cohort. In the IHD cohort 
38 (20%) patients had hyperkalemia > 5.5 mmol/l, 96 (50%) patients had Urea ≥ 20 mmol/l, 27 (14%) patients 
had pH < 7.20 and 32 (17%) patients had fluid overload.

In the CRRT population a total of 191 patients were dialysis dependent at the time of death (n = 168) or 
hospital discharge (n = 23). During the study period a total of 17,316 patients were admitted to the research ICU 
leading to an observed incidence of RRT of 3.8%.

The final best ICU admission and RRT initiation (later MALEDICT) multivariable models for ICU and 
hospital mortality, respectively, are shown in Table 2. The AUCs of the respective models ranged between 0.76 
and 0.83, thereby showing acceptable to excellent predictive power for the mortality events (ICU mortality and 
hospital mortality). The AUCs were somewhat higher for RRT initiation models for predicting both ICU and 
hospital mortality, respectively, compared to ICU admission models. All the final multivariable models showed 
significantly higher predictive power compared to SOFA, APACHE-II and SAPS-II scores (p < 0.0001 for all com-
parisons) (Fig. 1). The performance of SOFA, APACHE-II and SAPS-II scores measured at both ICU admission 
and CRRT initiation and MOSAIC score measured at CRRT initiation was poor for mortality risk prediction with 
AUCs for discrimination of patients deceased in the ICU or during hospital care, respectively, ranging between 
0.57 and 0.68. The comparisons between the predictive power of the new developed risk estimate models versus 
APACHE-II, SAPS-II, SOFA and MOSAIC scores in the complete case CRRT population are shown in Table 3.

There was only minor variability in the covariates included in the final best multivariable models. The ICU 
admission model for ICU mortality included the categorical variable for surgical patient group instead of age 
compared to the RRT initiation model. The ICU admission model for hospital mortality included bilirubin 
instead of thrombocytes compared to the respective RRT initiation model. When using the best variables at ICU 
admission for prediction of hospital mortality risk (Table 2) to predict ICU mortality (instead of hospital mortal-
ity) the risk prediction equation for ICU mortality was: Logit (ICU mortality risk) =  − 4.796 + 0.021 (Age) + 0.924 
(Immunosuppression) + 0.623 (Coronary artery disease) + 1.770 (Mechanical ventilation) − 0.315 [loge (Hourly 
diuresis)] + 0.256 [loge (Bilirubin)] + 0.694 [loge (Lactate)]. The discriminative performance of this substitute 
model was similar to the best model shown in Table 2 [AUC 0.79 (0.78–0.80), p = 0.75].

When using the best variables at ICU admission for prediction of ICU mortality risk to predict hospital mor-
tality (instead of ICU mortality) the risk prediction equation for ICU mortality was: Logit (hospital mortality 
risk) =  − 0.082 + 0.394 (Surgical patient) + 0.773 (Immunosuppression) + 0.715 (Coronary artery disease) + 1.194 
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Table 1.   Characteristics of the study patients. Categorical values in parentheses are % unless stated otherwise. 
Continuous variables are expressed as mean (± SD) or median (IQR) for normally distributed and skewed 
covariates, respectively. Hypertension was defined as a clinical diagnosis of hypertension and cerebrovascular 
disease as a diagnosis of ischemic or hemorrhagic stroke or transient ischemic attack observed in the patient 
records, respectively. Heart failure was defined as a clinical diagnosis of congestive heart failure observed in the 
patient records or ejection fraction < 50% or diastolic heart failure observed in echocardiography. Pulmonary 
disease was denoted as a prior diagnosis of asthma, chronic obstructive pulmonary disease or chronic 
interstitial lung disease. Coronary artery disease and peripheral arterial disease were defined as previously 
diagnosed conditions. ICU intensive care unit, SOFA-score Sequential Organ Failure Assessment score, CRRT​ 
continuous renal replacement therapy, APACHE Acute Physiology and Chronic Health Evaluation II score, 
SAPS Simplified Acute Physiology II score. Significant values are in bold.

All Hospital survivors Non-survivors P-value

Number of subjects 471 272 199 –

Women [n, (%)] 138 (29) 79 (29) 59 (30) 0.89

Age (years) 66.4 (58.1–73.9) 64.9 (55.4–71.6) 68.6 (61.3–76.4) 0.0003

Surgical patients [n, (%)] 175 (37) 88 (32) 87 (44) 0.01

Hypertension [n, (%)] 304 (65) 173 (64) 131 (66) 0.62

Diabetes [n, (%)] 189 (40) 111 (41) 78 (39) 0.72

Heart failure [n, (%)] 113 (24) 64 (24) 49 (25) 0.78

Coronary artery disease [n, (%)] 134 (28) 63 (23) 71 (36) 0.003

Cerebrovascular disease [n, (%)] 47 (10) 26 (10) 21 (11) 0.72

Peripheral arterial disease [n, (%)] 60 (13) 29 (11) 31 (16) 0.11

Solid malignancy [n, (%)] 35 (7) 17 (6) 18 (9) 0.25

Pulmonary disease [n, (%)] 69 (15) 39 (14) 30 (15) 0.82

Liver cirrhosis [n, (%)] 15 (3) 6 (2) 9 (5) 0.16

Immunosuppression [n, (%)] 61 (13) 27 (10) 34 (17) 0.02

Sepsis [n, (%)] 245 (52) 132 (49) 113 (57) 0.08

Mechanical ventilation [n, (%)] 348 (74) 173 (64) 175 (88)  < 0.0001

Vasopressor use at ICU admission [n, (%)] 386 (82) 217 (80) 169 (85) 0.15

SOFA score at ICU admission 10 (7–12) 10 (7–12) 11 (7–13) 0.004

SOFA score at CRRT initiation 12 (9–14) 11 (9–13) 13 (11–15)  < 0.0001

APACHE score at ICU admission 25 (21–30) 24 (20–29) 27 (22–32) 0.0002

APACHE score at CRRT initiation 26 (21–31) 25 (21–30) 27 (23–32) 0.0002

SAPS score at ICU admission 55 (45–66) 52 (42–63) 60 (50–71)  < 0.0001

SAPS score at CRRT initiation 56 (46–66) 52 (43–63) 61 (51–71)  < 0.0001

Noradrenalin at ICU admission (µg/kg/min) 0.08 (0.02–0.16) 0.07 (0.02–0.15) 0.10 (0.03–0.18) 0.01

Noradrenalin at CRRT initiation (µg/kg/min) 0.13 (0.04–0.22) 0.10 (0.02–0.17) 0.17 (0.08–0.28)  < 0.0001

Hourly diuresis at ICU admission (ml/h) 14.6 (4.0–44.2) 18.7 (6.2–45.7) 8.5 (2.1–42.4)  < 0.0001

Hourly diuresis at CRRT initiation (ml/h) 10.2 (3.3–31.0) 14.9 (5.8–38.7) 5.8 (1.5–20.4)  < 0.0001

Mean arterial pressure at ICU admission (mmHg) 70 (60–82) 71 (61–84) 69 (59–81) 0.08

Mean arterial pressure at CRRT initiation (mmHg) 71 (63–81) 73 (64–84) 69 (62–77) 0.0006

Hemoglobin at ICU admission (g/l) n = 452 104 (93–120) 105 (95–121) 104 (91–119) 0.24

Hemoglobin at CRRT initiation (g/l) n = 460 103 (91–120) 104 (91–122) 102 (92–118) 0.37

Thrombocytes at ICU admission (109/l) n = 452 134 (87–202) 144 (95–205) 122 (76–194) 0.005

Thrombocytes at CRRT initiation (109/l) n = 459 135 (80–212) 160 (93–243) 103 (66–178)  < 0.0001

Bilirubin at ICU admission (µmol/l) n = 331 14 (8–32) 12 (7–26) 19 (9–43) 0.0006

Bilirubin at CRRT initiation (µmol/l) n = 357 14 (8–32) 11 (7–23) 20 (10–42)  < 0.0001

Creatinine at ICU admission (µmol/l) n = 421 216 (143–339) 243 (153–378) 190 (137–291) 0.02

Creatinine at CRRT initiation (µmol/l) n = 456 295 (190–415) 335 (217–490) 248 (171–357)  < 0.0001

Urea at ICU admission (mmol/l) n = 340 14.0 (8.5–23.1) 13.7 (8.9–22.1) 14.7 (8.3–23.5) 0.91

Urea at CRRT initiation (mmol/l) n = 371 19.0 (11.9–27.6) 20.0 (12.6–27.8) 17.6 (10.5–27.1) 0.13

Potassium at ICU admission (mmol/l) n = 464 4.4 (3.9–4.9) 4.3 (3.9–4.9) 4.4 (3.9–5.0) 0.41

Potassium at CRRT initiation (mmol/l) n = 392 4.2 (3.8–4.6) 4.1 (3.7–4.5) 4.3 (3.9–4.8) 0.0004

pH at ICU admission n = 465 7.27 (7.19–7.34) 7.28 (7.20–7.35) 7.26 (7.18–7.33) 0.01

pH at CRRT initiation n = 391 7.28 (7.19–7.36) 7.31 (7.22–7.37) 7.26 (7.12–7.34)  < 0.0001

Bicarbonate at ICU admission (mmol/l) n = 464 17.2 ± 4.8 17.6 ± 4.8 16.7 ± 4.7 0.02

Bicarbonate at CRRT initiation (mmol/l) n = 390 17.7 (14.4–20.8) 19.0 (15.4–21.2) 16.6 (12.9–19.4)  < 0.0001

Lactate at ICU admission (mmol/l) n = 463 3.2 (1.7–7.1) 2.4 (1.3–5.7) 4.8 (2.2–9.3)  < 0.0001

Lactate at CRRT initiation (mmol/l) n = 388 2.4 (1.2–7.3) 1.7 (1.0–4.3) 4.7 (2.0–9.2)  < 0.0001
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(Mechanical ventilation) − 0.291 [loge (Hourly diuresis)] − 0.346 [loge (Thrombocytes)] + 0.522 [loge (Lactate)]. 
The discriminative performance of this substitute model was similar to the best model shown in Table 2 [AUC 
0.75 (0.74–0.75), p = 0.29].

The RRT initiation models for predicting ICU and hospital mortality, however, were identical and 
included the need for Mechanical ventilation (yes/no), Age (years), LactatE (loge-transformed), hourly Diu-
resis (loge-transformed), Immunosuppression (yes/no), Coronary artery disease (yes/no) and Thrombocytes 
(loge-transformed) at RRT initiation as covariates (the MALEDICT model). The discrimination of the MAL-
EDICT RRT initiation model for ICU mortality was excellent with a mean AUC in 25 consecutive imputations 
(range) of 0.83 (0.81–0.84). The model was well calibrated (Hosmer–Lemeshow goodness of fit 8.00, p = 0.35) 
and the Brier score was 0.15 (range 0.15–0.16). The model yielded a risk prediction equation for ICU mortality: 
Logit (ICU mortality risk) =  − 1.473 + 1.565 (Mechanical ventilation) + 0.025 (Age) + 0.976 [loge (Lactate)] − 0.375 
[loge (Hourly diuresis)] + 0.864 (Immunosuppression) + 0.683 (Coronary artery disease) − 0.639 [loge (Throm-
bocytes)] (Table 2).

The discrimination of the MALEDICT model for hospital mortality was acceptable with a mean AUC in 25 
consecutive imputations (range) of 0.79 (0.78–0.80). The model was well calibrated (Hosmer–Lemeshow good-
ness of fit 8.00, p = 0.61) and the Brier score was 0.18 (range 0.18–0.19). The MALEDICT model yielded a risk 
prediction equation for hospital mortality: Logit (Hospital mortality risk) =  − 1.000 + 1.287 (Mechanical ventila-
tion) + 0.031 (Age) + 0.711 [loge (Lactate)] − 0.336 [loge (Hourly diuresis)] + 0.678 (Immunosuppression) + 0.550 
(Coronary artery disease) − 0.585 [loge (Thrombocytes)]. Figure 2 shows the calibration of the MALEDICT 
model for ICU and hospital mortality.

The characteristics of the IHD patient validation cohort are shown in Supplemental Table 2. Patients with 
IHD as the primary modality had significantly lower ICU and hospital mortality, severity of illness scores, lactate, 

Table 2.   Final multivariable models for ICU mortality and hospital mortality developed in the CRRT patient 
cohort. ICU intensive care unit, CRRT​ continuous renal replacement therapy. *loge-transformed.

ICU mortality Hospital mortality

ICU admission model The MALEDICT RRT initiation model ICU admission model The MALEDICT RRT initiation model

AUC​

0.79 (range 0.78–0.79) 0.83 (range 0.81–0.84) 0.76 (range 0.75–0.77) 0.79 (range 0.78–0.80)

Sensitivity

0.51 0.61 0.57 0.63

Specificity

0.87 0.88 0.78 0.80

Negative predictive value

0.77 0.81 0.71 0.75

Positive predictive value

0.67 0.72 0.65 0.70

Hosmer–Lemeshow

GOF 2.98, p = 0.92 GOF 9.70, p = 0.35 GOF 5.18, p = 0.73 GOF 6.42, p = 0.61

Brier score

0.171 0.155 0.197 0.182

Adjusted R square

0.31 0.39 0.26 0.33

Misclassification rate

0.25 0.22 0.31 0.27

Variables in model

Surgical patient Age Age Age

Coronary artery disease Coronary artery disease Coronary artery disease Coronary artery disease

Immunosuppression Immunosuppression Immunosuppression Immunosuppression

Mechanical ventilation Mechanical ventilation Mechanical ventilation Mechanical ventilation

Hourly diuresis at admission* Hourly diuresis at CRRT start* Hourly diuresis at admission* Hourly diuresis at CRRT start*

Thrombocytes at admission* Thrombocytes at CRRT start* Bilirubin at admission* Thrombocytes at CRRT start*

Lactate at admission* Lactate at CRRT start* Lactate at admission* Lactate at CRRT start*

Equations for risk assessment

Logit (ICU mortality 
risk) =  − 1.324 + 0.603(Surgical 
patient) + 0.986(Immunosuppres-
sion) + 0.790 (Coronary artery dis-
ease) + 1.461(Mechanical ventilation)–
0.348[loge (Hourly diuresis)] − 0.435[loge 
(Thrombocytes)] + 0.778[loge (Lactate)]

Logit (ICU mortality risk) =  − 1.473 + 1.565 
(Mechanical ventilation) + 0.025 
(Age) + 0.976 [loge (Lactate)] − 0.375 
[loge (Hourly diuresis)] + 0.864 (Immu-
nosuppression) + 0.683 (Coronary artery 
disease) − 0.639 [loge (Thrombocytes)]

Logit (Hospital mortality risk) =  − 4.3
50 + 0.027(Age) + 0.737 (Immunosup-
pression) + 0.503 (Coronary artery 
disease) + 1.442(Mechanical ventila-
tion) − 0.265[loge(Hourly diure-
sis)] + 0.289[loge (Bilirubin)] + 0.495[loge 
(Lactate)]

Logit (Hospital mortality 
risk) =  − 1.000 + 1.287 (Mechanical 
ventilation) + 0.031 (Age) + 0.711 [loge 
(Lactate)] − 0.336 [loge (Hourly diure-
sis)] + 0.678 (Immunosuppression) + 0.550 
(Coronary artery disease) − 0.585 [loge 
(Thrombocytes)]
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bilirubin, vasopressor requirement and incidence of invasive mechanical ventilation and prevalence of coronary 
artery disease compared to the CRRT cohort whereas creatinine, thrombocytes and hourly diuresis were higher 
in IHD patients both at ICU admission and at the start of IHD. In spite of significant differences between the 
CRRT and the IHD cohorts, the predictive power of the models developed in CRRT patients and the best IHD 
models developed using the most significant variables in CRRT patients were, however, acceptable to excellent 
in both cohorts (Table 3).

The best IHD initiation model risk prediction equation for ICU mortality in IHD patients using the same 
variables as in the CRRT models was: Logit (ICU mortality risk) =  − 0.33 + 0.75 (Mechanical ventilation) − 0.01 
(Age) + 0.69 [loge (Lactate)] − 0.34 [loge (Hourly diuresis)] + 0.63 (Immunosuppression) + 0.27 (Coronary artery 
disease) − 0.57 [loge (Thrombocytes)]. Correspondingly, the best IHD initiation model risk prediction equation 
for hospital mortality in IHD patients was: Logit (Hospital mortality risk) =  − 1.89 + 0.80 (Mechanical ventila-
tion) + 0.04 (Age) + 0.38 [loge (Lactate)] − 0.08 [loge (Hourly diuresis)] + 0.678 (Immunosuppression) + 0.550 
(Coronary artery disease) − 0.585 [loge (Thrombocytes)].

The AUCs of the best IHD ICU admission models (applying the same variables used in the CRRT models) 
were 0.82 (0.72–0.92) and 0.81 (0.72–0.91) and the AUCs of the best IHD initiation models were 0.80 (0.68–0.92) 

Figure 1.   Receiver operating characteristics (ROC) curves for the final multivariable models for ICU and 
hospital mortality in the CRRT model development cohort. (A) ICU admission model for ICU mortality; (B) 
the MALEDICT RRT initiation model for ICU mortality; (C) ICU admission model for hospital mortality and 
(D) the MALEDICT RRT initiation model for hospital mortality.
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and 0.81 (0.71–0.91) for ICU and hospital mortality, respectively in the IHD validation cohort. The discrimina-
tion performances of the original CRRT ICU admission models in the IHD validation cohort were also acceptable 
and similar compared to the best IHD ICU admission model for ICU mortality [AUC 0.78 (0.66–0.90), p = 0.31] 
and hospital mortality [AUC 0.80 (0.70–0.89), p = 0.37]. The discrimination performance of the MALEDICT 
model in the IHD validation cohort was acceptable and similar compared to the best IHD initiation model for 
ICU mortality [AUC 0.74 (0.59–0.89, p = 0.24], and hospital mortality [AUC 0.77 (0.68–0.87), p = 0.20] (Fig. 3).

Discussion
Our current results implicate that the novel predictive models developed in the present study using multiple 
laboratory, clinical and demographic data at both ICU admission and CRRT initiation, exceed the predictive 
power of traditional intensive care prognostic scores such as APACHE, SAPS and SOFA even when these scores, 

Table 3.   Comparisons between the predictive power of the new developed risk estimate models versus 
APACHE-II, SAPS-II, SOFA and MOSAIC scores in the complete case CRRT population. Values for the 
ICU admission and RRT initiation models and comparisons between prediction models are mean values for 
25 multiple imputations. CL confidence limit, ICU intensive care unit, SOFA-score Sequential Organ Failure 
Assessment score, APACHE Acute Physiology and Chronic Health Evaluation II score, SAPS Simplified Acute 
Physiology II score, CRRT​ continuous renal replacement therapy, RRT​ renal replacement therapy. Significant 
values are in bold.

ICU mortality Hospital mortality

Prediction model AUC​ Contrast estimate (95% CL) P-value Prediction model AUC​ Contrast estimate (95% CL) P-value

CRRT patients n = 462

ICU admission model 0.79 ICU admission model 0.76

SOFA admission 0.57  − 0.22 (− 0.29 to − 0.16)  < 0.0001 SOFA admission 0.57  − 0.18 (− 0.25 to − 0.12)  < 0.0001

APACHE-II admission 0.62  − 0.17 (− 0.23 to − 0.11)  < 0.0001 APACHE-II admission 0.60  − 0.15 (− 0.22 to − 0.09)  < 0.0001

SAPS-II admission 0.65  − 0.14 (− 0.20 to − 0.09)  < 0.0001 SAPS-II admission 0.65  − 0.11 (− 0.16 to − 0.06)  < 0.0001

CRRT patients n = 408

The MALEDICT RRT initiation 
model 0.82 The MALEDICT RRT initiation 

model 0.78

SOFA RRT initiation 0.69  − 0.13 (− 0.19 to − 0.06) 0.0001 SOFA RRT initiation 0.67  − 0.11 (− 0.17 to − 0.05) 0.0003

APACHE-II RRT initiation 0.68  − 0.14 (− 0.19 to − 0.08)  < 0.0001 APACHE-II RRT initiation 0.68  − 0.10 (− 0.16 to − 0.05) 0.0004

SAPS-II RRT initiation 0.63  − 0.19 (− 0.26 to − 0.12)  < 0.0001 SAPS-II RRT initiation 0.61  − 0.17 (− 0.24 to − 0.10)  < 0.0001

MOSAIC RRT initiation 0.69  − 0.13 (− 0.19 to − 0.07)  < 0.0001 MOSAIC RRT initiation 0.63  − 0.15 (− 0.21 to − 0.09)  < 0.0001

IHD patients n = 193

The best IHD ICU Admission model 0.82 0.81

The best IHD initiation model 0.80 0.81

The CRRT ICU Admission model 0.78 0.80

The MALEDICT RRT initiation 
model 0.74 0.77

Figure 2.   Calibration of the MALEDICT model for ICU and hospital mortality in the CRRT cohort. Average 
predicted probabilities of death and observed mortality according to decile of predicted probability of death.
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are recorded at both ICU admission and CRRT initiation, respectively. The predictive power of our new models 
for ICU mortality had higher AUCs compared to that recently reported using a machine learning algorithm13. 
Furthermore, our models showed acceptable external validity when applied to the ICU patients started on IHD 
as the primary modality for RRT during the same time period between 2010 and 2019.

It has been conclusively shown, that traditional intensive care prognostic scoring systems such as APACHE, 
SAPS and SOFA are of insufficient accuracy for predicting mortality in patients with AKI, especially in patients 
requiring RRT​15. In critically ill patients AKI even without the need for RRT indisputably increases mortality as 
well as treatment costs and the length of hospital stay in survivors10,11,16. Furthermore, even the ICU survivors 
with AKI show an increased risk for developing chronic kidney disease (CKD) leading to a continuous increased 
need for medical services and costs. The incidence of RRT dependent AKI and associated mortality has remained 

Figure 3.   Receiver operating characteristics (ROC) curves for the final multivariable models for ICU and 
hospital mortality in the intermittent hemodialysis (IHD) validation cohort. (A) The best ICU admission 
and RRT initiation models for ICU mortality in IHD patients and the CRRT ICU admission and CRRT RRT 
initiation (MALEDICT) models in the IHD validation cohort; (B) the best ICU admission and RRT initiation 
models for hospital mortality in IHD patients and the CRRT ICU admission and CRRT RRT initiation 
(MALEDICT) models in the IHD validation cohort.
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high and unaffected by advances in intensive care medicine during recent years potentially due to increasing age 
and comorbidity of the ICU patient population17. Therefore, it would be invaluable to be able to assess patients’ 
individual mortality risk more reliably to target treatment to those more likely to survive past ICU and hospital 
care and to avoid futile treatment efforts and individual unwarranted suffering related to continued high inten-
sity care when prognosis is dismal. Some previous studies have suggested that combining physicians’ clinical 
estimates and a predictive model for mortality risk assessment may increase detection of patients with high or 
low survival probability compared to mere clinical judgment12.

During recent years some observational studies have assessed the validity and predictive power of predic-
tion models for early mortality in critically ill AKI patients requiring CRRT including conventional intensive 
care scoring systems such as APACHE, SAPS and SOFA or new models including machine learning based 
algorithms13,15,18. Most studies have examined the significance of risk factors assessed at a single time point during 
intensive care and the performance and external validation of the prediction models has been limited. In a recent 
study Kim et al. developed a Mortality Scoring system for AKI with CRRT (MOSAIC) for one-week mortality 
in 828 critically ill patients undergoing CRRT. All model data was gathered at CRRT initiation and the model 
development was based on modifying the APACHE and SOFA scores and then combining seven of the variables 
with the highest predictive power to yield the MOSAIC score. The model was validated using an independent 
cohort of CRRT patients and yielded AUCs of 0.77 (0.74–0.81) and 0.77 (0.73–0.82) for the original and the 
validation cohort, respectively18. The MOSAIC score was also examined in a later study in addition to machine 
learning models and showed acceptable predictive power for ICU mortality although the AUC was somewhat 
lower 0.72 (0.68–0.77) compared to the original MOSAIC cohort. The machine learning models showed slightly 
higher AUCs ranging between 0.75 and 0.78 compared to the MOSAIC score13. In the present study cohort, the 
performance of the MOSAIC score was poor and comparable to SOFA, APACHE and SAPS scores. In another 
previous study da Hora Passos and coworkers developed the Hepatic failure, LactatE, NorepInephrine, medi-
cal Condition and Creatinine (HELENICC) score for 7-day mortality prediction in 186 septic AKI patients on 
CRRT, which, outperformed the general ICU scores with an AUC of 0.82 (0.76–0.88) but has not been validated 
in an independent cohort15. As opposed to these previous studies, we aimed to develop models for predicting 
hospital mortality in addition to short-term ICU mortality. Furthermore, we examined over forty different risk 
factors for mortality in the primary univariate models measured both at ICU admission and at CRRT initiation, 
and the final models included only significant multivariable predictors of mortality. Continuous variables were 
used in the models without classification. The AUC of the MALEDICT model for ICU mortality exceeded and 
the AUC for hospital mortality was similar to the AUCs of previously reported mortality prediction models for 
one-week mortality13,15,18.

Not surprisingly the models developed for clinical and laboratory parameters examined at CRRT initiation 
were more accurate in predicting incident mortality compared to models constructed using parameters measured 
on ICU admission. Models using data at the time of CRRT initiation are especially of clinical relevance in affected 
patients as they may aid the clinician in estimating whether or not the patient is likely to benefit from CRRT 
initiation. Surprisingly the AUC of the ICU admission model slightly exceeded the AUC of the MALEDICT 
model in the IHD validation cohort. The predictive power of the models for hospital mortality, showed acceptable 
predictive value although AUCs were inferior compared to models for ICU mortality. It is easy to comprehend 
that the models predicted ICU mortality more accurately than hospital mortality, as when the patient survives 
through ICU care and is discharged to the ward it is likely that long term medical conditions and overall health 
and fitness prior to ICU admission become more important for future prognosis compared to variables measured 
during intensive care. The models constructed in the current study therefore apply best for short to medium term 
mortality risk prediction in critically ill patients with RRT dependent AKI. All of the models had, significantly 
higher predictive value compared to the APACHE, SAPS and SOFA scores.

We aimed to validate the developed MALEDICT model in an independent patient cohort of critically AKI 
patients receiving IHD as the first RRT modality. Furthermore, we developed individual specific equations for 
mortality prediction in IHD patients using the same variables that were included in the CRRT models. The IHD 
patients differed markedly and significantly from the CRRT patients in terms of disease severity as well as ICU 
and hospital mortality. This selection of patients to different modalities of RRT in critical care is natural as CRRT 
is considered the modality of choice for hemodynamically unstable patients with the highest severity of illness. 
The number of patients in the IHD validation cohort was somewhat limited as CRRT is the primary modality in 
approximately 70% of all RRT initiations in ICUs in Finland14. Nevertheless, the predictive value of the models 
for mortality was acceptable to excellent in both the CRRT and the IHD cohorts.

The current study has all the limitations of an observational study. The retrospective single center study design 
may increase the possibility of residual confounders and limit the generalizability of the findings. However, the 
patients were extensively studied and we examined over forty variables in the primary univariate models for each 
mortality event, and time point respectively. The quality of data was good due to the electronic patients records 
used at our center and the missingness in the entire data set was low. Furthermore, we employed multiple impu-
tation with 25 consecutive imputations for each model and the resulting models are based on a summary of all 
the imputations. Both internal and external validity of the models was assessed and found to be acceptable. As 
our models are however, based on retrospective data from a single center the new models need to be validated 
in a prospective study in other centers in the future.

Although the predictive value of the models was between acceptable and excellent according to AUCs of the 
models, it is worth to notice that even the in the MALEDICT model with the highest AUC of 0.83 for ICU mor-
tality, the rate of misclassification was still considerable 22%. This emphasizes the additive role of the prediction 
models/equations and scores for clinical decision-making which should not be blindly based on mere prediction 
modelling as no model will exactly predict whether a single patient will decease or not.
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In conclusion, the models developed in the present study, show promise for mortality prediction in critically 
ill patients with RRT dependent AKI. After further validation in another independent cohort the MALEDICT 
model might serve as an additional clinical tool for estimating individual mortality risk of affected patients at 
the time of CRRT initiation.
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