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Abstract—Timely diagnosis of cardiovascular diseases (CVD)
is crucial to prevent morbidity and mortality. Atrial fibrillation
(AFib) and heart failure (HF) are two prevalent cardiac dis-
orders that are associated with a high risk of morbidity and
mortality, especially if they are concurrently present. Current
approaches fail to screen many at-risk individuals who would
benefit from preventive treatment; while others receive unnec-
essary interventions. An effective approach to the detection of
CVDs is mechanocardiography (MCG) by which translational
and rotational precordial chest movements are monitored. In
this study, we collected MCG data from a study sample of
300 hospitalized cardiac patients using multidimensional built-
in inertial sensors of a smartphone. Our main objective was to
detect concurrent AFib and acute decompensated HF (ADHF)
using smartphone MCG (or sMCG). To this end, we adopted
a supervised machine learning classification using multi-label
and hierarchical classification. Logistic regression, random forest,
and extreme gradient boosting were used as candidate classifiers.
The results of the analysis showed the area under the receiver
operating characteristic curve values of 0.98 and 0.85 for AFib
and ADHF, respectively. The highest percentages of positive and
negative predictive values for AFib were 91.9 and 100; while for
ADHF, they were 56.9 and 88.4 for the multi-label classification
and 69.9 and 68.8 for the hierarchical classification, respectively.
We conclude that using a single sMCG measurement, AFib can
be detected accurately whereas ADHF can be detected with
moderate certainty.

Index Terms—Acute decompensated heart failure, atrial fibril-
lation, gyrocardiography, machine learning, seismocardiography,
smartphone mechanocardiography

I. INTRODUCTION

ATRIAL fibrillation (AFib) and heart failure (HF) are two
of the most prevalent cardiac disorders. They frequently

occur simultaneously and are associated with an elevated risk
of morbidity and mortality [1]. The association between AFib
and HF is important as each disease entity may complicate the
diagnosis and treatment of the other [2]. AFib is a common
arrhythmia characterized by chaotic electrical activation of the
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atria leading to a rapid and irregular heartbeat which in turn
impedes the mechanical functioning of the heart. HF refers to
impaired cardiac function, and unlike AFib, HF has no single
characteristic feature. The clinical characteristics of HF are
more complex when compared to AFib; involving the presence
of multiple symptoms and signs that occur simultaneously,
such as orthopnea and abnormal heart sounds [3]. Chronic
HF can be compensated or decompensated. In compensated
HF, the symptoms are stable with no sign of fluid retention
and pulmonary edema. In decompensated HF (ADHF) the
symptoms can be acute, as in cases where acute episodes
of pulmonary edema, reduction of exercise tolerance, and
increasing breathlessness on exertion are present [4]. The
cause or causes of ADHF may include recurrent ischemia,
arrhythmias, infections, and electrolyte disturbances [4].

Today, many invasive and non-invasive cardiac condition
assessment tests are used for the diagnosis of cardiovascular
diseases. Electrocardiography (ECG) is a common technique
and considered the gold standard for a non-invasive diagnosis
of cardiac arrhythmia. While abnormal ECG increases the
likelihood of HF, it still lacks sufficient specificity [5], [6],
[3]. Other tests such as echocardiography, stress testing, car-
diac catheterization, biochemical testing, chest X-ray, cardiac
magnetic resonance imaging, and radionuclide ventriculog-
raphy are used to detect HF. These tests, however, require
advanced equipment and sophisticated medical interpretations
which makes them inapplicable for day-to-day life or home
monitoring purposes [7], [8].

Ballistocardiography (BCG) measures the ballistic forces
induced by the heart. Recently, BCG has been shown effective
in tracking the clinical status of HF patients [9]. Seismocar-
diography (SCG) is an accelerometer-based sensing method
that measures precordial translational movements [10], [11].
SCG is known to have the potential for detecting the presence
of multiple heart diseases [12], [13], [14]. It has been recently
used to assess the status of HF patients by analyzing cardiac
response to exercise [15]. We considered the use of another
sensor, similar to accelerometer, a gyroscope, to measure pre-
cordial rotational vibrations. This new measurement technique,
also known as gyrocardiography (GCG), can yield information
on myocardial mechanical motions [16]. Jointly, SCG and
GCG together constitute the concept of mechanocardiography
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(MCG). Using the built-in inertial sensors of smartphones, it
is possible to collect MCG data which may help to detect
heart arrhythmia, myocardial infarction, and coronary artery
diseases [17], [18], [19], [20].

In this study, we considered a sample size of 300 individuals
having either AFib, both AFib and ADHF, or neither of them.
We investigated the ability of smartphone mechanocardio-
graphy (sMCG) to detect potentially concurrent AFib and
ADHF by measuring MCG signals using a smartphone and
deploying (1) a multi-label classification framework [21] as
well as (2) a hierarchical classification framework. A multi-
label classification framework was used as our intention was
to provide the means to classify every subject into multiple
categories using an identical feature vector. In contrast, when
the hierarchical classification framework was used, the AFib
classification was first performed and later the ADHF clas-
sification was executed. The rationale behind the hierarchical
classification approach is that those individuals who have AFib
are more likely to develop ADHF [1]. Therefore, we tended
to restrict the search for ADHF to only the AFib patients.
A schematic diagram of the implemented study procedure is
presented in Fig. 1. To the best of our knowledge, this is the
first time that sMCG signals have been used for the detection
of a simultaneous presence of AFib and ADHF.

II. METHODS

A. Study protocol

Data collection for this paper was accomplished by placing
a smartphone on the chest of the patients while lying down in a
supine position on a hospital bed. Although the measurements
were made by a single study investigator, it is possible for
patients to carry out the measurement themselves as the
method does not require specialized equipment and training.
The study protocol was approved by the Ethics Committee of
the Hospital District of Southwest Finland (ClinicalTrials.gov:
NCT03274583). Written informed consent was acquired from
all participants. The Helsinki declaration was strictly followed
throughout the study.

A group of cardiac patients (n=300) was recruited and
studied at Turku University Hospital, Turku, Finland. Of the
300 participants in this study, there were 75 ADHF cases and
150 AFib cases. As depicted in Fig. 1, all of the ADHF cases
also had AFib. This data set was originally collected for a
study on AFib detection; therefore, not all types of ADHF are
present in this data set. The demographics of the subjects are
presented in Table I.

B. Data acquisition

An MCG recording of three minutes was acquired using
a Sony Xperia either Z1 or Z5 smartphone running on the
Android operating system. Each recording contains simulta-
neous data streams from both a triaxial accelerometer and a
triaxial gyroscope (altogether six channels) sampled with 200
Hz. The anonymity of the subjects was assured by assigning
an ID number to each subject inside the signal acquisition
smartphone application.

The recording was performed by placing the smartphone
longitudinally on the subject’s bare chest with the screen
facing upwards and the bottom edge of the phone at the
level of the lower edge of the sternum. The subjects were
asked to remain still and avoid speaking while measurement
was in progress. Termination of the measurement was handled
automatically in the signal acquisition smartphone application.
In addition to the MCG data recorded by the smartphone, a
continuous 5-lead telemetry ECG (Philips IntelliVue MX40)
was also acquired. The ECG recordings were used as the
benchmark for assessing cardiac rhythm and the number of
possible supraventricular (SVES) or ventricular extrasystoles
(VES). The rhythm of each telemetry ECG was classified
as either non-AFib, AFib or other by two independent car-
diologists. In cases where there was disagreement between
the classification of the two cardiologists, a third independent
cardiologist – blinded to the original rhythm classification –
made the final decision [18]. The presence of HF and its
type was later decided by a cardiologist who went through
the background data of the participants, as well as their
echocardiography, and B-type natriuretic peptide (BNP) test
results.

The data was then transferred to the facilities of the Depart-
ment of Future Technologies, University of Turku, Finland.
Pre-processing, feature extraction, and classification were per-
formed with Matlab and Python.

C. Data Analysis Pipeline

1) Signal pre-processing: The signal pre-processing started
with filtering each of the six channels by a bandpass filter. A
brick-wall FFT (Fast Fourier Transform) filter with a passband
of 1-45 Hz was applied to the SCG and GCG signals, allowing
the removal of baseline wander and high-frequency noise.
These frequency bands were obtained empirically. Breathing
removal was also carried out separately on each channel of
the inertial sensors by subtracting the low-pass filtered signal
(moving average filter of length 50 samples) from the bandpass
filtered signal.

2) Machine learning: Two different machine learning ap-
proaches were adopted for this study, namely multi-label and
hierarchical classification as described below.

There are many different multi-label classification ap-
proaches, each having their advantages and disadvantages.
Depending on how the multi-label classification method takes
advantage of the correlations between the classes, there are
more computationally complex and more relaxed versions of
the algorithms. Perhaps, the most well-known method is the
binary relevance [22], [23], [24], [21], where the evaluation
of the multi-label classifier with k binary classes is based on
simply implementing the k two-class classifiers. The results
of the binary relevance are then combined into a multi-
label vector/array. In our study, the hierarchical classification
approach [25] describes the case where we first classify AFib
and then classify ADHF for those participants who had been
classified as AFib. Detecting ADHF for those individuals who
have AFib is crucial as the risk of developing ADHF increases
if AFib is present.
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Fig. 1: Schematic diagram of the implemented research process in this study.

TABLE I: Demographics of the participants in the study. Mean and standard deviation of each variable are provided.

Count Age (years) Gender (M) Weight (kg) Height (cm) BMI (kg/m2)

AFib 150 75.0 (9.7) 83 85.5 (19.4) 171.5 (10.0) 29.0 (5.7)
Non-AFib 150 74.5 (9.5) 85 78.7 (14.6) 169.2 (9.0) 27.5 (4.7)

ADHF 75 77.0 (7.9) 39 84.5 (18.5) 170.3 (9.7) 29.0 (5.6)
Non-ADHF 225 74.0 (9.9) 132 81.3 (17.1) 170.4 (9.6) 27.9 (5.1)

The feature matrix formation process is presented in Fig. 2
which contains signal pre-processing, signal segmentation,
feature extraction, and feature matrix formation. First, the raw
signals were pre-processed by bandpass filtering for noise re-
moval. Next, the pre-processed signals were divided into non-
overlapping segments of length 10 s [17]. There was a total
of 5244 unique segments which translated into 17.5 segments
(std = 1.3) per subject on average. Then, a feature vector was

calculated using the data from each of the six channels of
the SCG and GCG signals in each 10 s segment. The feature
vector corresponding to each segment is a concatenation of the
feature vectors derived from each of the 6 channels [17]. Next,
for every subject, the feature vectors - from all 10 s segments
- were placed into the rows of a matrix. The median value of
each feature over all the segments was calculated afterwards.
As a result, the whole feature matrix for each subject was
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Fig. 2: Diagram of the feature matrix formation process. Following the flow of the diagram, there are six blocks from the top
left to the bottom right. From the top left, the blocks represent (A) data acquisition, (B) pre-processing, (C) signal segmentation,
(D) feature extraction (88 features (f) from each channel in each segment), (E) feature vector concatenation (one feature vector
for each 6-channel segment comprising of 528 (6 ∗ 88) features), and (F) the final median averaging over the segments (one
feature vector for the whole measurement). Note that, the plotted MCG signals correspond to a control participant.

abstracted into a single feature vector. The median averaging
has shown better generalization in previous studies [26], [27].
Lastly, all abstracted feature vectors were placed into a feature
matrix with a single row corresponding to each study subject.

Three different classifiers, namely random forest (RF) [28],
extreme gradient boosting (XGB) [29], and logistic regression
(LR) [30] were deployed for the multi-label classification
task. Evaluation of the classifier was done using leave-one-
subject-out cross-validation [31]. The cross-validation was
nested [32] so that the inner cross-validation was used for
hyper-parameter optimization and selection and the outer for
testing the classifier with a fully unseen subject’s data. In
nested-cross validation, the classification process is done in
a 7-step procedure. The procedure includes: (1) leaving out
one subject’s features from the feature matrix, (2) using the
remaining feature set (F ), optimizing the classifier parameters
deploying stratified K-fold cross-validation [33] and random-

ized grid search [34] over the parameter space, (3) training
the classifier using the identified set of optimal parameters
and F , (4) predicting the label of the left-out subject (unseen
subject), (5) storing the predicted label and the true label of
the left-out subject, (6) placing the left-out subject’s features
back into the feature matrix, and (7) repeating steps 1 to 6 for
all subjects. Please see Fig. 3 for a visual representation of
the nested cross-validation in the multi-label and hierarchical
classification approaches.

The classification tasks were all performed with Scikit-learn
package in Python [34].

3) Feature extraction: Heart rate (HR) and heart rate
variability (HRV), can be of relative help in distinguishing
the regular or irregular patterns of the heart rhythm (e.g.
in the case of AFib) as well as cardio-pulmonary condition
assessment [35]. However, there are other major determinants
of HR irregularity which need to be considered. Hence, to
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Fig. 3: Flowcharts of the nested cross-validation implemented for (a) multi-label and (b) hierarchical classification approaches.

obtain better discrimination accuracy, we considered the use
of other contributors such as a self-similarity index and a
distribution of spectral content within the signal by calculating
approximate and spectral entropies, respectively. Additionally,
we measured the complexity of the mechanical signals in
terms of statistical significance testing by calculating turning
point ratios to detect abnormal episodes in the cardiac signals.
Moreover, random behavior in the characteristics of the signal
waveform, obtainable by texture spectrum analysis, was as-
sumed to convey information related to the present cardiac
mechanical performance. Interested readers are encouraged
to see [36] for the mathematical description of the extracted
features explained below.

Heart rate (HR) features: HR approximation was achieved
by computing short segment auto-correlations from 10 s signal
portions. Each 10 s portion was further divided into 2.5 s
segments with a 1.5 s overlap (yielded in eight sub-segments).
Each sub-segment was cross-correlated within its instant time-
domain neighborhood, resulting in eight series of cross-
correlation coefficients. From each of the cross-correlation
series, the beat time intervals were extracted by computing the
deviation of the first side peak. Finally, HR was obtained by
calculating the median of these deviations. HRV was obtained
by computing the median absolute difference (MEAD) of the
obtained beat-to-beat intervals. Furthermore, two additional
variants of HRV were formed by calculating the second-order
difference and absolute second-order difference of the beat-to-
beat intervals [17].

Approximate entropy: Approximate entropy can be used
to analyze time-series signal complexity. We used approximate
entropy to evaluate the irregularity of the signal segments.
First, the signal was down-sampled to 8 Hz to reduce the

computation time, and all-against-all matching was performed
for short signal sub-segments of length 2. A counter C was
updated one-by-one logarithmically (log(C) added at each
iteration) based on the number of matching sub-segment pairs
C above a threshold. Afterwards, the length of the sub-
segment was incremented by one and the procedure repeated.
The approximate entropy was calculated by subtracting the
normalized second counter result from the first one [37], [17].

Spectral entropy: Spectral entropy measures the random-
ness of a time series. From the power spectral density, the
frequency band in the range from 1 to 11 Hz was extracted. An
approximate noise floor removal was then applied by removing
frequency components that have an amplitude smaller than 1/6
of the maximum spectral amplitude. The resulting spectra was
normalized to have an area of 1, representing a probability
density of P . Finally the spectral entropy was computed with
SPent = −

∑
P (f)log(P (f)). A larger SPent value indicate

more aperiodic signal, typically for AFib condition [17].
Turning-point ratios: The number of increasing or decreas-

ing signal sub-segments denoted as α were used to compute
a turning-point ratio as TPR(x) = α/(N − 2), where n
was the number of samples in the signal segment. The TPRs
were computed with different filtering schemes applied to the
signal before the TPR operator, including bandpass filtered
versions of the signal with five different passband ranges and
the same bandpass filters accompanied by convolution using
a long triangular shaped window (to smoothen the signal). In
addition, one TPR feature was calculated without filtering with
only pre-processing being applied and another was computed
based on the beat-to-beat time intervals (total of eight) [17].
As a result, a total of 12 TPR features were found.

Energy features: For each signal segment, 11 energy
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features were computed taking the mean square of the signal.
The distinct features were obtained by using different bandpass
filters with passbands similar to the ones used to derive the
TPR features. The energy features were targeted to measure
the signal amplitude volume possibly related to either normal
or abnormal heart operation.

Local binary patterns: Local binary pattern (LBP) features
are typically used for texture classification in images. In our
case, a 1D variant of LBP was implemented and used [38].
A 9-point kernel centered at a signal value was exploited to
form a local neighborhood. Within each local neighborhood,
the central point is compared to its neighboring points. For
each neighbor, a value is assigned, either 1 if the neighbor
is larger or 0 otherwise. Eight bits were generated for each
local neighborhood resulting in an LBP. The LBPs were then
converted to a decimal. As a final step, a histogram of these
decimals in a pre-determined window of the signal (e.g. 10 s)
was used as the feature vector. The 8 bit LBP, when converted
to decimals, contains 256 bins. We used a subset of these
bins, called uniform LBPs [38] by reducing the number of
bins to 59. We also applied different distances between the
elements/bits of the LBP i.e. the neighboring bits are not
directly adjacent but separated by a fixed number of samples.
This results in a widening of the window and subsequently a
longer part of the signal is covered by a single LBP. In our
case, the final length of the LBP histogram was 59, which
contains one LBP histogram with a distance of 3 samples.

The overall length of the feature vector is 88 for a single 10 s
segment and a single channel. This means that for all the SCG
and GCG channels there are altogether 6 ∗ 88(528) features
which are concatenated to form the final feature vector.

III. RESULTS

Samples of smartphone SCG and GCG cardiac waveforms
are plotted in Fig. 4. In this figure, the three different wave-
forms correspond to the three different disease groups in the
analyzed data set. The three categories are (a) controls [non-
AFib, non-ADHF], (b) AFib cases who did not have ADHF
[AFib, non-ADHF], as well as (c) cases with both AFib and
ADHF [AFib, ADHF]. As shown, in the control case, both
rotational and translational signals follow a regular rhythm and
fairly monomorphic repeating patterns; whilst in [AFib, non-
ADHF] and [AFib, ADHF] conditions, cardiac signals appear
irregular in terms of rhythm with abnormal morphological
characteristics.

The validation of the classifiers for each disease was
performed with nested cross-validation [32]. The receiver
operating characteristic (ROC) curves and area under the ROC
curve (AUC) were obtained from the nested cross-validation
predictions using the pooling approach [39], [40]

A. Multi-label classification approach

In the multi-label classification approach, the two diseases
are classified independently by two two-class classifiers. For
each disease, three different classifiers namely RF, XGB, and
LR were tested. The ROC curves obtained from the nested
cross-validations are shown in Fig. 5a and Fig. 5b. For each
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Fig. 4: Example signals of the subjects in the three possible
categories namely (a) non-AFib and non-ADHF, (b) AFib and
non-ADHF, as well as (c) AFib and ADHF.

disease, there are three ROC curves each corresponding to
one of the three classifiers. Figure 5a corresponds to AFib
classification and Fig. 5b corresponds to ADHF classification.
AUC values of 0.98, 0.98, and 0.96 were achieved by RF,
XGB, and LR for AFib; while, the same classifiers resulted in
AUC values of 0.85, 0.82, and 0.83 for ADHF, respectively.
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(b) ROC curve for ADHF classification.
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(h) LR for ADHF.

Fig. 5: ROC curves of the independent AFib (a) and ADHF (b) classification in the multi-label classification mode. Normalized
confusion matrices (percentages) of the classification performed by three classifiers for AFib (c to e) and ADHF (f to h) are
provided.

The confusion matrices for both diseases and the three
classifiers can be seen in Fig. 5c to Fig. 5h. Table II sum-
marizes the performance metrics for the two diseases and the
deployed classifiers in the multi-label classification approach.
The highest percentages of the sensitivity and the specificity
values [41] for AFib were 100 and 91.3 obtained by RF and
XGB, respectively. The highest percentages of sensitivity and
specificity values for ADHF were 68.0 and 86.2 obtained by
LR and XGB, respectively. As far as sensitivity is concerned,
RF provided the best performance for AFib, whilst LR had
the best performance for ADHF.

According to Table II, the highest percentages of positive
predictive and negative predictive values for AFib classifi-
cation were equal to 91.9 and 100 which were obtained
by XGB and RF, respectively. The highest percentages of
the positive predictive and the negative predictive values for
ADHF classification were equal to 56.9 and 88.4 which were
obtained by XGB and LR, respectively.

The highest exact match score (EMS), which is defined as

the proportion of subjects whose predicted set of labels (both
AFib and ADHF) match exactly their set of true labels, was
equal to 75.7% using the combination of RF classifier for AFib
and either of XGB or LR classifiers for ADHF. The highest
micro-average F1-score (F1-micro) [21] was equal to 86.8%
obtained by the combination of RF classifier for AFib and
either of RF or XGB classifiers for ADHF. The highest macro-
average F1-score (F1-macro) was equal to 78.1% obtained by
the combination of RF for AFib and LR for ADHF.

B. Hierarchical classification approach

In the case of hierarchical classification, the classification of
ADHF was made only for those patients who were predicted
as having AFib. The motivation for adopting such an approach
is that AFib patients are at a higher risk of acquiring ADHF.
Therefore, after a person is classified as AFib, it is crucial to
determine whether the patient is also suffering from ADHF.
For this purpose, we chose the classifier which provided
the best performance on the AFib classification and let that
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Disease groups Classifier AUC SE SP PPV NPV

[AFib] vs [non-AFib]
RF 0.98 100 90.7 91.5 100
XGB 0.98 98.7 91.3 91.9 98.6
LR 0.96 96 90.7 91.2 95.8

[ADHF] vs [non-ADHF]
RF 0.85 60.0 84.4 56.2 86.4
XGB 0.82 54.7 86.2 56.9 85.1
LR 0.83 68.0 81.3 54.8 88.4

TABLE II: Sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV) for the two
diseases, AFib and ADHF, accomplished by the three deployed classifiers in the multi-label classification framework. Except
for the AUC values, all the other values are normalized to percentages.

classify the study subjects into AFib and non-AFib categories.
Then, we selected those subjects who fell into the AFib
category and proceeded to classify them into ADHF and non-
ADHF classes. There were 164 (150 true positives + 14 false
positives) AFib cases in our data set who were classified
as AFib by the RF classifier (see Fig. 5c). These subjects
were, therefore, considered as the target group for ADHF
classification. The results obtained from the three deployed
classifiers are presented in Figure 6 and Table III. In the case of
the hierarchical classification of ADHF, AUC values of 0.64,
0.63, and 0.67 were achieved by RF, XGB, and LR classifiers,
respectively.

The highest F1-micro and F1-macro in the hierarchical
classification of ADHF was equal to 84.7% and 84.5%,
respectively. It is worth noting that in hierarchical classification
mode, the EMS is undefined since we only consider a subset
of the data.

IV. DISCUSSION

This paper presents two machine learning frameworks to
tackle the clinically important issue of simultaneous AFib and
ADHF, which is a worldwide cause of morbidity and mortality.
We studied the feasibility of using sMCG for supervised
multi-label classification as well as supervised hierarchical
classification in a patient group that included both single and
multi-disease patients. This study was accomplished using
only a smartphone without any extra hardware. The built-in
inertial sensors, i.e. triaxial accelerometer and gyroscope, of
the smartphone were used to measure the precordial trans-
lational and rotational micro-vibrations generated from the
heart movements in a study sample of 300 cardiac patients.
A beneficial application of the multi-label classification of
cardiac diseases would be, for example, in the follow-up of
high-risk patients, where this method could provide a risk
estimate and encourage patients to seek further help and care
if needed.

The presented method differs from earlier contributions in
that the multi-label classification allows the presence of simul-
taneous cardiac disorders to be estimated. The more typical
multi-class classification approach considers all conditions as
mutually exclusive. In the presented case, as illustrated in
Fig. 1, 75 of the subjects had two cardiac diseases, highlighting
the importance of the multi-label classification approach.

The classifiers were chosen after a thorough experimentation
and literature analysis. LR is a simple generalized linear model

that has been nonetheless shown to be very competitive in
many diagnostic classification tasks [42], [43]. RF [26], [44]
and XGB [45] are more advanced state-of-the-art methods
that have outperformed other classification methods in many
computer science competitions and research studies.

In the multi-label classification scheme, the best classifiers
according to accomplished AUC, EMS, and F1-score values
are XGB for AFib (Fig. 5d) and LR for ADHF (Fig. 5h),
respectively. The best classifier as regards sensitivity and
negative predictive value is RF for AFib and LR for ADHF
(Table II), respectively. In the hierarchical classification ap-
proach, the best classifier was LR according to all the calcu-
lated performance metrics. Restricting the ADHF detection to
only the AFib patients had no effect on the sensitivity score,
however, it resulted in lower levels of specificity, negative
predictive value, and AUC. In contrast, the positive predictive
value rose to close to 70% in comparison with 56.9% which
was achieved by using the multi-label classification approach.

According to the presented results of the multi-label classifi-
cation framework in Fig. 5, AFib was detected with a compara-
ble sensitivity and specificity values to photoplethysmography-
based (PPG) methods, as shown in Table IV. The performance
of the proposed AFib classification is also comparable to ECG-
based methods as indicated in Table IV. The studies outlined in
Table IV were obtained from a literature search among articles
published after 2017. An article was selected if it involved a
machine learning based classification of AFib and contained
performance metrics values. It is worth noting that for a fair
comparison of all these studies, sample size variations must
be taken into account.

According to the results of multi-label classification frame-
work provided in Fig. 5, ADHF was detected with moderate
sensitivity and specificity values but a fairly high negative
predictive value. The fairly high negative predictive value for
ADHF detection suggests the possibility of using smartphone-
derived MCG analysis for ruling out the existence of ADHF.
Similar approaches using PPG and ECG signals have been
presented by a number of recent studies; these can be accessed
in Table V. The most common diagnostic examinations for
ADHF are based on echocardiography, BNP and n-terminal-
proBNP, ECG, and chest X-ray [5], [60]. Echocardiography
is the most feasible and widely used diagnostic tool to
demonstrate different cardiac diseases causing the symptoms
of clinical ADHF [61]. The other techniques and examina-
tions are mostly used to either complement the findings of
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(a) ROC curve for hierarchical ADHF classification.
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(c) XGB for ADHF.
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(d) LR for ADHF.

Fig. 6: ROC curve of the hierarchical classification of ADHF (a) only for AFib category. The corresponding normalized
confusion matrices (percentages) of the classification performed by three classifiers for ADHF (b to d) are provided.

Disease groups Classifier AUC SE SP PPV NPV

[AFib, ADHF] vs [AFib, non-ADHF]
RF 0.64 49.3 68.0 60.7 57.3
XGB 0.63 50.7 66.7 57.5 60.3
LR 0.67 68 70.7 69.9 68.8

TABLE III: Sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV) for
hierarchical classification of ADHF, accomplished by the three deployed classifiers. Except for the AUC values, all the other
values are normalized to percentages.

echocardiography or provide a diagnosis in the absence of
echocardiography [5]. BNP and NT-proBNP showed 100%
and 70% sensitivity and specificity values [62]. Therefore,
BNP and NT-proBNP are mostly used for ruling out HF,
but not establishing a diagnosis [5]. ECG-based methods in
contrast provide 77-95% sensitivity and 46-66% specificity
values [3], [63], [62]. Examinations based on chest X-ray
reported 40-88% sensitivity as well as 66-93% specificity rates
[3], [64], [62]. The recently introduced SwellFit, which is
a wearable sensor for monitoring congestive HF, has been
shown effective in detecting ankle swelling of a few ADHF
patients [65]. However, as there has not been any clinical study
utilizing that device, the reliability is unknown and remains an
open question.

The negative predictive value of ADHF detection consider-
ing all 300 patients in this data set, as outlined in the multi-
label classification approach, was equal to 88.4%. Whereas,
if we only consider the AFib patients – [AFib, ADHF] and
[AFib, non-ADHF] categories – the negative predictive value,
as outlined with hierarchical classification, decreases to 68.8%.
These results imply that in a population of cardiac patients,

for those who do not have ADHF, the multi-label classification
technique can rule out the presence of ADHF with a fairly
high probability. However, if the target population is limited
to only AFib patients, ADHF can be ruled out with a lower
confidence level mainly due to the greater complexity of the
sMCG signals when AFib and ADHF are both present.

AFib detection was performed with high classification accu-
racy [18]. This is mainly because AFib is an arrhythmia with
fully random beat-to-beat interval variations (as is visually
observable in Fig. 4b and Fig. 4c). In the case of ADHF,
however, no clear morphological patterns – such as beat
morphology and/or beat rhythm – can be easily observed by
the human eye from the MCG signals.

Considering the number of ADHF cases in this data set and
the complexity of ADHF diagnosis, the presented framework
reveals a reasonable performance for the ADHF classification.
The data set was gathered from elderly adults in a clinical
environment. The MCG signals for these individuals are typi-
cally weaker than for younger and healthier adults. Therefore,
further studies are required to prove the generalizability of
the proposed method for the entire population. One future
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Author (year) [ref.] Sample size Signal type Methodology Performance metrics
SE SP ACC AUC

Aliamiri et al. (2018) [46] 19 PPG 1D CRNN - - 0.982 0.997
Tison et al. (2018) [47] 9801 PPG 1D CRNN 0.980 0.902 - 0.970
Poh et al. (2018) [48] 4386 PPG 1D CNN 0.952 0.990 0.961 0.997
Gotlibovych et al. (2018) [49] 53 PPG 1D CRNN 0.999 0.998 - 0.999
Shashikumar et al. (2018) [50] 2947 PPG 2D CRNN - 1.00 0.950 0.970
Kwon et al. (2019) [51] 75 PPG 1D CRNN - - 0.979 0.998
Fallet et al. (2019) [52] 17 PPG DT 0.997 0.924 0.981 -
Shen et al. (2019) [53] 81 PPG 1D CNN - - - 0.950
Kora et al. (2017) [54] 44 ECG LMNN 0.999 0.987 0.993 -
Acharya et al. (2017)[55] 47 ECG 1D CNN 0.991 0.814 0.949 -
Tripathy et al. (2017) [56] 40 ECG DBN 0.978 0.987 0.983 -
Yao at al. (2017) [57] 608 ECG 1D CNN 0.982 0.981 0.982 0.996
Xia et al. (2018) [58] >23 ECG 2D CNN 0.988 0.979 0.986 -
Mousavi et al. (2020) [59] >23 ECG RNN 0.998 0.985 0.988 0.999

TABLE IV: Recent studies in which PPG-based and ECG-based AFib detection was conducted using machine learning
techniques. DBN stands for deep belief networks, DT stands for decision tree, LMNN stands for Levenberg-Marquardt neural
network, RNN stands for recurrent neural networks, SVM stands for support vector machines, 1D CNN stands for 1-dimensional
CNN, 1D CRNN stands for 1-dimensional CNN coupled with RNN, and 2D CRNN stands for 2-dimensional (image-based)
CNN coupled with RNN.

Author (year) [ref.] Sample size Signal type Methodology Performance metrics
SE SP ACC AUC

Baldoumas et al. (2017) [66] 99 PPG SVM 0.810 0.900 0.930 0.953
Sudarshan et al. (2017) [67] 73 ECG KNN 0.998 0.999 0.999 -
Acharya et al. (2017) [68] 73 ECG KNN 0.970 0.982 0.976 -
Al Abdi et al. (2018) [69] 40 ECG LR - - 0.950 -
Bhurane et al. (2019) [70] 76 ECG SVM 0.998 0.993 0.997 -
Acharya et al. (2019) [71] 73 ECG 1D CNN 0.989 0.990 0.990 -

TABLE V: Recent studies in which PPG-based and ECG-based HF detection was handled using machine learning techniques.
KNN denotes K nearest neighbor, LR denotes logistic regression, SVM denotes support vector machines, and 1D CNN stands
for 1-dimensional CNN.

direction would be to further evaluate the mechanical motion
signals in different clinical settings with even larger study
groups. Moreover, no [non-AFib, ADHF] sample was present
in this data set therefore this group needs to be considered
in future studies. In this study, we used a limited number of
smartphone models, and the results, in this case, may only
apply to this setting. Further tests are required with other
smartphones.

Motion artefact is generally a major issue in MCG signals
and needs to be considered in the final application; although,
it was not considered a major concern in this study mostly
because the data acquisition process was well controlled and
supervised. In general, the varying location of the smartphone
on the chest may affect, e.g. the amplitude of the acquired
signals. In an optimal case, a smartphone application would
tolerate major changes in the smartphone placement. On
the whole, the most notable limitation of this technique is
the necessity of lying in a supine position and remaining
motionless during the data collection.

In comparison with other diagnostic examinations, a new
recording modality which requires as little professional knowl-
edge and special equipment as possible is favorable as it can be
adopted for self-monitoring outside the clinical environment.
Self-screening used directly by the patients themselves would

be highly beneficial for early interventions.

V. CONCLUSION

This paper presents a new machine learning paradigm to
tackle the clinically important issue of simultaneous AFib
and ADHF, which are a major cause of morbidity and mor-
tality worldwide. We employed two state-of-the-art machine
learning frameworks, multi-label classification and hierarchical
classification, to facilitate the automatic detection of the two
cardiac abnormalities in 300 patients. The built-in inertial
sensors, i.e. triaxial accelerometer and gyroscope, of the
smartphone were used to measure precordial translational and
rotational micro-vibrations generated from heart movement.
In the paper, we have indicated the feasibility of recognizing
simultaneous cardiac abnormalities such as AFib and ADHF
using automated analysis of the cardio-mechanical signals.
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