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Electronic transitions involving core-level orbitals offer a localized, atomic-site and element specific
peek window into statistical systems such as molecular liquids. Although formally understood, the
complex relation between structure and spectrum – and the effect of statistical averaging of highly
differing spectra of individual structures – render the analysis of an ensemble-averaged core-level
spectrum complicated. We explore the applicability of machine learning for molecular structure –
core-level spectrum interpretation. We focus on the electronic Hamiltonian using the H2O molecule
in the classical-nuclei approximation as our test system. For a systematic view we studied both pre-
dicting structures from spectra and, vice versa, spectra from structures, using polynomial approaches
and neural networks. We find predicting spectra easier than predicting structures, where a tighter
grid (even unphysical) of the spectrum improves prediction, possibly inviting for over-interpretation
of the model. The accuracy of the structure prediction worsens when moving outwards from the
center of mass of the training set in the structural parameter space, which can not be overcome by
model selection based on generalizability.

I. INTRODUCTION

Machine learning (ML) is becoming a standard tool
in research questions where numerous repeated evalua-
tions of a complicated model are required. In such cases
using ML as an emulator may provide enormous relief
in computational burden [1]. In the context of physics,
ML means building a fundamentally unphysical model
such as a neural network (NN) to describe data and to
make predictions for new input. Light evaluation cost
of a model would then allow for numerous predictions
to be performed to simulate a statistical average, or to
iteratively solve a given problem.

Statistical studies of core-level spectra fit to the cat-
egory of repeatedly evaluated physical models by their
definition. Core-level spectroscopic methods can be used
for characterization of materials and their function on
the atomic level [2–4]. The spectra reflect transitions
between electronic states and, therefore, their energies
and transition probabilities are dictated by quantum me-
chanics. The benefit of using core-level excitations is,
that the initial orbital for the electronic transition is lo-
calized at one atomic site in the system, which means
that the process is a local probe, although the measured
signal represents an explicit ensemble average. In inter-
pretations it is a typical approximation to consider only
the electronic system (fixing the positions of the nuclei),
which renders the underlying quantum mechanics, and
the resulting spectra, to be functions of the atomic co-
ordinates. Although the connection of the two is clear,
the interpretation of these spectra in terms of underly-
ing atomistic structure or changes therein is not trivial.
One reason for this difficulty rises from complexity, as the
data linking the individual structural parameters to the
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line intensities, can be heavily scattered due to statistical
phenomena [5, 6].

The idea of collaborative action of the structural pa-
rameters as predictors of X-ray spectra raises hope that
more structural information from experiments could be
obtained with simulations of X-ray spectra and ML, as
found in the works of Refs. [7–9]. In addition, application
of the machine learning approaches demonstrated great
performance in the prediction of the electronic structures
of the atomic systems [10] as well as in the prediction of
UV/Vis [11] and X-ray absorption spectra [12] of sim-
ple molecules. In this work, we study the use of ML to
yield predictions for oxygen K-edge spectra and struc-
tures for the H2O molecule from a statistical simulation.
The problem belongs to the supervised regression learn-
ing category as two separate tasks: (i) training ML on
known data to predict spectra for new configurations, and
(ii) training ML on known data to predict configurations
for new spectra.

We benchmark these ideas for a simple system, H2O
in the gas phase, which provides a manageable system
both for calculations and for human intuition, owing to
the few structural degrees of freedom, the two OH bonds
and one H-O-H angle. Although not achieved here, our
work is motivated by the interpretation of structures from
spectra in condensed phases, where the classical-nuclei
model is the contemporary standard. Therefore, we de-
liberately choose to use the classical framework for the
nuclear subsystem even though more accurate calculation
with quantum vibrations would also be possible [13, 14].

II. METHODS

We trained ML systems with structure–spectrum data
based on ab initio molecular dynamics (AIMD) simula-
tions and spectrum evaluation for obtained structures.
We study the effect of spectral binning by presenting the
data either on a 0.1-eV-spaced grid and by coarsening
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FIG. 1. The H2O molecule and its structural parameters (a),
linked by a multilayer feed-forward perceptron (b) (polyno-
mial models were also studied), to the lines in the O K-edge
absorption spectrum (c). Intensity in spectral regions of in-
terest (ROI) I, II, and III is studied. A neural network for
the reversed direction addresses the structure prediction from
the ROI intensities.

it to a few values by integration over regions of interest
(ROI) that were chosen to match the minima of the en-
semble averaged spectrum. We first trained the models
with data obtained at initial kinetic energy equivalent
to 480 K (low-E set). To study the generalizability of
the estimators, we repeated the structural and spectral
simulation at initial kinetic energy equivalent to 10000 K
(high-E set). This study provided us with a data set of
the same size with larger coverage of the configuration
space.

We applied mean-standard-deviation normalization
(based on values of the training set) for both input and
output variables and applied the inverse transform to the
output after prediction. Contrary to the coarsened spec-
tral ROI data, the tight-gridded data has channels of near
zero intensity and no spectral information (e.g. below 533
eV), which caused instabilities with independent normal-
ization of channel intensities. Therefore we standardized
the tight-gridded spectral data by using the mean and
the standard deviation of all channels and spectra col-
lectively, instead of individual transformation for each
channel.

We divided the data to training sets (80%), and to
test sets (20%) and used cross-validation (CV) to eval-
uate the goodness of a particular model – and choose
the best-performing model from this hypothesis space.
Then we evaluate the final learning ability of the model
by using the test set. For NN with rectified linear unit
(ReLU) activation, we ran a 3-dimensional grid-search
model selection. We studied the regularizing parame-
ter alpha (α = 10n, n = −10,−9, . . . , 4), as well as
the network depth (2,. . .,5) and width (5, 10, 50, 100,
200, 500) to obtain 360 NN models in each case. We
used the scikit-learn [15] package, and the Adam [16]
solver, with upper limit for the number of iterations of
107. For comparison, polynomial models up to the 9th
order were used, with regularizing parameter α = 10n,

n = −10,−9, . . . , 4. Here, a singular-value decomposi-
tion algorithm was used.

For the structures we performed independent 100 1-
ps-long AIMD runs sampling the NVE ensemble (ini-
tial T=480 K, ∆t=0.5 fs) to sample a set of phase
space points (basis TZV2P-MOLOPT-GTH [17], pseu-
dopotentials: GTH-PBE [18], exchange-correlation po-
tential PBE [19], cutoff 300 Ry). From each of these
trajectories (first 250 fs ignored) 100 structures were sam-
pled randomly. As structural parameters we use the bond
angle, the length of the shorter bond, and the length of
the longer bond as from this information the molecular
electronic Hamiltonian, and its excitation spectrum, are
uniquely defined. For the high-E data, the simulation
time step ∆t=0.1 fs was used.

We used transition-potential density functional theory
(TP-DFT) in the half-core-hole approximation to evalu-
ate 10000 O K-edge spectra (energies and intensities) for
the structural data sets. We apply an explicit ∆-DFT en-
ergy correction for each spectrum by finding the shift for
the lowest excited state. The δ-peak spectra were convo-
luted by a Gaussian of 1 eV full-width-at-half-maximum
(FWHM). The aug-cc-pV5Z [20, 21] basis was used for
all atoms in the spectrum evaluation. Calculations for
structures and spectra were carried out using the CP2K
software [22].

III. RESULTS

Figure 2 shows the average of simulated K-edge spectra
of H2O for the two data sets, in comparison experimen-
tal gas phase spectrum (black solid line; raw data from
[23, 24]). Figure 3 shows the corresponding structural
data in the three-dimensional phase space. Higher energy
allows the system to cover a wider region in the configu-
ration space. The results are divided to two sections ac-
cording to the spectral binning (ROI or tight grid), and
the optimal models in each studied case are listed in Ta-
ble I. For our set of hyperparameters, we observed a va-
riety of NN architectures to converge with similar good-
ness. Moreover, for different grid search runs, the ‘best’
configuration was observed to vary with score differences
within the tolerance interval, which we interpret to rise
from the stochastic nature of the used algorithms. Learn-
ing curves for the best-performing models are presented
in the Appendix, and show convergence with training set
size in all studied cases.

A. Coarsened spectral data

The studied ROIs are indicated by gray shading in Fig-
ure 2. Figure 4 shows the ROI intensities as a function of
the three structural parameters: the data is transferred
into structural-parameter –ROI-intensity representation
as in Ref. 6. This view, however, misses the collaborative
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TABLE I. Typical best-performing models found in the work; several NNs performed equally well and the result depended on
the stochastic search. The average cross-validation mean squared error (MSE) for the scaled target values is also provided. For
structure prediction, the optimal parameter-limited models are given. For details, see text.

3 ROIs 75-point grid
Prediction Training Data Best Model CV-MSE Best Model CV-MSE
Spectra low-E 3rd order Poly, α = 10−1 0.027 4th order Poly, α = 1 0.0003
Spectra high-E 9th order Poly, α = 10−1 0.0016 9th order Poly, α = 10−1 0.0004
Structure low-E 2 × 500, ReLU, α = 10−4 0.084 3 × 200, ReLU, α = 10−1 0.0044
Structure high-E 4 × 200, ReLU, α = 10−4 0.053 2 × 500, ReLU, α = 10−2 0.001
Structure (lim) low-E 3 × 100, ReLU, α = 10−1 0.083 2 × 50, ReLU, α = 10−1 0.0053
Structure (lim) high-E 3 × 100, ReLU, α = 10−7 0.055 3 × 100, ReLU, α = 10−1 0.0013

FIG. 2. Simulated low-E and high-E excitation spectra of
H2O compared to experimental O K-edge excitation spec-
trum. The standard deviation (±σ) of the simulation results
are shown as shading.

effect of parameters as the analysis focuses on individual
structure–ROI dependencies.

Spectrum ROI-intensity prediction via polynomial
models is more accurate than any NN configuration.
Given the dimensions of the argument vector, the stud-
ied polynomial models are always overdefined. For an
accurate model, we observe an expected feature of bad
generalization outside the training data, as shown in Fig-
ure 5. A good correspondence with the test set data is
obtained by training with data of the same spread.

For structure prediction from the 3 ROIs, NNs are
more accurate (Table I) than polynomials. Even with
training data covering the region of prediction, perfor-
mance on the level of the corresponding spectrum ROI
prediction is not observed, although the match is im-
proved compared to training with a set of smaller cover-
age (Figure 6).

Unlike the studied polynomial models, for the stud-
ied NN architectures the number of free parameters can
exceed that of the training points. Here, among the
top-performing models we found architectures of notably
different complexity, especially for low-E structure pre-

FIG. 3. Sampling of the phase space in the two simulations.
For clarity, only 1000 points are shown for the high-E simu-
lation.

diction. For example, a NN built of 3 layers with 100
neurons in each (∼20000 trainable parameters) can show
the same performance as the network of 2 layers with 500
neurons (> 250000 trainable parameters).

Although the presented top performers do not show
drastic overfitting in the respective learning curves (see
the Appendix), we investigated the NN configurations
which have smaller number of parameters than the num-
ber of training samples themselves. The results of this
study are presented in Figure 7. From the average cross-
validation MSE scores (Table I), as well as from the plot,
we conclude that a performance similar to the unlimited-
parameter-number case can be obtained. From the learn-
ing curves (Appendix) we conclude quite similar behavior
of the parameter-limited models: a few thousand train-
ing samples are needed when spectral data was coarsened
to three regions of interest.
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FIG. 4. The ROI intensities in regions (I, II, III) plotted
against the underlying structural parameters for the simula-
tion of O K-edge spectrum of H2O of these structures.

FIG. 5. Spectrum ROI prediction for the two test sets pre-
sented in different colors. Model trained with low-E data
(a,b,c) and model trained with high-E data (d,e,f). Complete
match is represented by the gray line.

B. Tight-gridded spectral data

Polynomial models, as implemented in this work, are
independent for each target parameter, whereas NNs are
not. As polynomials excelled in predicting the spectral
channel intensity for the 3-ROI case, it is not tremen-
dously surprising to find polynomials similar to those for
the coarsened data to perform best, as summarized in
Table I. Figure 8 depicts sample predicted spectra using
either the low-E or high-E training data sets. In addi-
tion histograms of root-mean-square errors for the test
set are depicted. As in the case for the coarse-gridded
data, good prediction is obtained using polynomials with
adequately broad training sets. We note however, that

FIG. 6. Structure prediction for the two test sets presented
in different colors. Model trained with low-E data (a,b,c) and
model trained with high-E data (d,e,f). Complete match is
represented by the gray line.

FIG. 7. Free-parameter-limited structure prediction for the
two test sets presented in different colors. Training with low-
E data 3 × 100 layers, 20903 parameters (a,b,c). Training
with high-E data 3 × 100 layers, 20903 parameters (d,e,f).
Performance equal to the unlimited case can be obtained using
models with limited number of parameters. Complete match
is represented by the dashed line.

for a tight-gridded spectrum generalized high-E spectra
are somewhat better produced by NN models from the
low-E training data, i.e. NN generalize slightly better.

However, polynomials contain cross terms of the in-
put features. Therefore the number of the free coeffi-
cients grows rapidly with their number, causing a draw-
back for prediction of structure. For structure prediction
we studied the polynomial models up to the second or-
der and did not limit the architecture of the neural net-
work. In all 4 cases of structure prediction (low-E/high-
E,limited/unlimited), we observed better accuracy with
NN-based models (see Table I for details). The results
for structural prediction are presented in Figure 9 and for
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FIG. 8. Full spectrum prediction by generalized polynomial
model for a sample spectrum (a, b, d, e). Labels in the
top left corner of each panel indicate the prediction model,
e.g. H→L shows low-energy spectrum predicted by the high-
energy-trained model. Distributions of RMSE for all pre-
dicted spectra with target value scaling (c, f).

the limited-parameter case in Figure 10. Again, sufficient
training set spread plays a crucial role on the goodness
of the prediction.

FIG. 9. Structure prediction for the two test sets presented
in different colors for tight-gridded spectra. Model trained
with low-E data (a,b,c) and model trained with high-E data
(d,e,f). Complete match is represented by the gray line.

Training of NNs to their full potential with tight-
gridded spectra may require a slightly larger dataset
when compared to the coarse spectra (see the learning
curves in Appendix). Moreover, we find a model with
limited number of parameters, that has performance sim-
ilar to the optimal choice from our full grid search. Anal-
ogously to the integrated-ROI case, the training data set
must cover the points of prediction. Most interestingly
for structural prediction, we find extremely good perfor-
mance with tight-gridded spectra, when compared to the

FIG. 10. Free-parameter-limited structure prediction for the
two test sets presented in different colors for tight-gridded
spectra. Model trained with low-E data (a,b,c) and model
trained with high-E data (d,e,f). Complete match is repre-
sented by the gray line. Performance equal to the unlimited
case can be obtained using models with limited number of
parameters.

ROI intensities.

IV. DISCUSSION

Owing to the Taylor expansion, polynomial models are
typical approximators in physics, and sometimes coined
a particular physical property (such as ‘heat capacity’).
The drawback of polynomials is their poor extrapolation
capability, especially of the higher degree models. In the
models of this work, the number of degrees of freedom
of polynomials explodes with increasing number of input
features, but the model is not sensitive to the number of
target variables.

For an alternative approach, we also used multi-layered
perceptrons (MLP) [25, 26] of 2 to 5 layers, which was
motivated by their known ability to capture and approx-
imate nonlinear behavior. In many learning tasks, MLPs
are nowadays common, including physical sciences [27–
29]. The classic MLP serves as a reasonably well under-
stood test case for a neural network, and its properties
have also been studied analytically for a long period. It
has, for example, been shown that multilayer feedforward
networks are universal approximators with saturating ac-
tivation functions [30, 31] and also with a wider set of
activation functions [32]. Even in the conceptually sim-
ple feedforward networks there are crucial free param-
eters such as its architecture and the chosen activation
functions. The potential for using such a network for in-
terpretation of quantum-transitions is clear: it is able to
learn complex, non-linear behavior from a limited set of
data.

By using a test set separate from training and model
selection data, independent ‘correct’ data points are used
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for evaluation of prediction goodness. We observe that
for good performance, the training data must cover the
region for which predictions are made. Indeed, predicting
the low-E values works well for all cases, as the training
set is from equal or from larger cover of configuration
space. When predicting the high-E case, we observe that
the low-E-trained model can not generalize well.

We also observe that spectrum prediction is easier than
structure prediction. A potential reason for this is that
while there is a function (Hamiltonian and its spectrum)
from structure to spectrum, the inverse function is not
guaranteed to exist. Moreover, the degree of spectrum
coarsening has a significant effect on the spectrum-to-
structure predictions, and thus crucial detail may be hid-
den from the learner by inadvertently combining sepa-
rable features. As a counter argument, integration to
broader ROIs captures considerable detail from the un-
derlying system and sums over spectral details (e.g. vi-
brational profiles) that are not produced with the ade-
quate level of theory. Indeed, such calculations are typ-
ical for X-ray spectra in the condensed phase. Further-
more, spectra can be simulated with arbitrarily tight grid
spacing beyond any experimental meaning, which should
not affect the analysis. Even though superior perfor-
mance is obtained by tight-gridded spectra, it can be
argued that this might be sensitive to the ad hoc line
shape used for convolution and which could cause biases.
How sensitive this procedure is to the used line shape
remains an open question to us, as a study using asym-
metric line shapes would intrinsically assume vibrational
effects, that are omitted in the setting of this work. Note-
worthily, the corresponding quantum effects would also
be manifested by the ground state.

In the ideal case, a model trained with a limited set
of samples would predict accurately beyond its training
set. Good generalizability would obviously be beneficial,
because sufficient coverage of relevant structures of the
training set may be difficult to guarantee a priori. For
this purpose, we studied the generalization performance
of the structure-prediction approach. We quantify error
of prediction for a data point against its known distance
from the low-E mean value Pcen in the units of standard
deviations (σi) of the parameters Pi in the low-E training
data. For points P and P′ in the structural parameter
data, we defined this deviation χ as mean-absolute devi-
ation (MAD):

χ(P,P′) =
1

N

∑
i

∣∣∣∣Pi − P ′i
σi

∣∣∣∣ (1)

where σi are their standard deviations in the low-E train-
ing set (i = α, bs, bl, N = 3). This choice allows for
studying the high-E set in the same units, in which the
high-E data set has larger spread.

Figure 11 shows that with the chosen metrics the error
for structural prediction grows with distance from low-E
training set mean. As expected, use of the broader (high-
E) training set results in superior performance, especially

FIG. 11. Mean structure prediction error (in low-E training-
set standard deviations) of the parameters as a function of
deviation of the known structure from the low-E training set
mean. The performance of the models for tight-gridded spec-
tral data are marked with dashed lines.

when tight-gridded data is used. The latter also holds for
low-E-trained models set within their training set.

The apparent problem with generalizability could, in
principle, be solved by model selection. We studied this
idea by selecting the low-E-trained model with the best
mean squared error on high-E training data. We find the
performance obtained is somewhat better than that of
the low-E model, and list the best performing models in
table II. We observe that the best generalizing models are
simpler than their counterparts used within the training
set; the intuitively clear phenomenon that complicated
models are best for interpolative use, whereas simpler
models generalize best (i.e. least badly).

TABLE II. The best-generalizing models for the two
paradigms.

Prediction Best Model
Spectra 2nd order polynomial, α = 103

Structure 4 × 10 unit ReLU, α = 10−6

Spectra (tight grid) 1st order polynomial, α = 104

Structure (tight grid) 3×5 ReLU, α = 10−4

In this work we opted to run the simplest simulations
(NVE) to produce data of different configuration-space
coverage, but see no objections to use thermostatted
AIMD for the canonical ensemble. For the microcanoni-
cal and the canonical ensembles, a configuration obtained
at a lower-temperature-simulation run is possible also in
a simulation with higher temperature. Thus temperature
increase might provide a way to sample a large enough
configuration space for a training set of sufficient cover-
age. However, reasonable sampling may be hindered be-
cause numerical simulation may visit relevant structures
rarely if at all. This problem is intuitively clear when
one considers the example of predicting ice-like structures
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from a simulation of supercritical water. Therefore, sim-
ulations with different thermodynamic parameters would
possibly be needed to provide enough configurational cov-
erage to reliably interpret the spectra of the system. This
thought possibly points to the methods of manifold learn-
ing.

It might be an appealing idea to teach an ML system
and then apply it for prediction of structures in the ex-
periment. We see a large potential for error in this kind
of mixed approach. First, such an idea is intrinsically
assuming that spectrum evaluation (for ML learning) is
accurate enough for the system and the question at hand,
which it rarely is. Second, ensemble averaging effects
will pose a hard problem, that may potentially be under-
determined (due to number of possible structures) with
any number of ROIs. Third, the experiment comes with
instrumental errors, biases, and statistical noise, which
could affect the outcome of the interpretation. To us it
remains an open question, how surmountable these con-
ditions are for reliable interpretation of experiments with
ML trained by simulated data. As a safer route towards
structural interpretation of spectral trends we propose
the following method: (i) simulate over sufficient config-
uration space and (ii) train an ML model based on this
data. Now the lightness of evaluation of the model allows
for iterative algorithms to (iii) optimize the parameters of
a model structural distribution for an ensemble-averaged
simulated spectrum. Last, to avoid the mismatch of ex-
periment to skew interpretation, we propose to (iv) ap-
ply changes to the simulated ensemble averaged spectrum
(as seen from the corresponding experiment) and observe
changes in the predicted structural distribution.

V. CONCLUSIONS

Collaborative action of structural parameters in core-
level excitation spectra of discrete transitions can be
captured by the simplest machine learning applications.
This holds both for the prediction of a spectrum (or re-

gion of interest therein) and the prediction of a structure,
as long as the training set covers the portions of phase
space within which predictions are made. The latter
shortcoming could not be cured by model selection based
on best generalizability. For the interpretation of spec-
tra from more complicated systems, this coverage may
be hard to guarantee or prove, but molecular dynamics
at different thermodynamic conditions may constitute a
feasible means of covering sufficiently large yet physically
meaningful portions of parameter phase space.

The task of predicting spectra is simpler than predict-
ing structures, in agreement with the fact that to this
direction of prediction a function is guaranteed to exist,
via solution of the Schrödinger equation. This finding
favors statistical interpretation algorithms that root on
repeated prediction of spectra rather than structure. In
the test system, we even found polynomial models to out-
perform neural networks in the former question, and vice
versa for the latter one.

Simulations are always inaccurate although it is possi-
ble to present their results on an arbitrarily dense grids.
This may invite for over-interpretation, as we found tight-
gridded machine learning models to outperform coarse-
gridded ones with the same data. Since spectrum cal-
culations always fail in exact reproduction of experimen-
tal data, direct application of simulation-trained models
on them is problematic; creative ways of interpretation
are called for. While accurate predictions were obtained
in this work, it seems clear that all structural informa-
tion of a condensed-phase system may not be recoverable
from its core-level spectrum. It remains an open question
how to reliably identify the relevant structural parame-
ters with spectroscopic sensitivity.
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Appendix: learning curves

FIG. 12. Structure to spectrum learning curves for the
parameter-number-unlimited ROI-integrated case.
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FIG. 13. Spectrum to structure learning curves for the
parameter-number-unlimited ROI-integrated case.

FIG. 14. Spectrum to structure learning curves for the
parameter-number-limited ROI-integrated case.
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FIG. 15. Structure to spectrum learning curves for the tight-
gridded case, polynomial models.

FIG. 16. Spectrum to structure learning curves for the
parameter-number-unlimited tight-gridded case.
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FIG. 17. Spectrum to structure learning curves for the
parameter-number-limited tight-gridded case.


