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In response to the problem that the detection precision of the current 3D object detection algorithm is low when the object is
severely occluded, this study proposes an object detection algorithm based on the reconstruction of sparse point clouds in the
viewing frustum.­e algorithm obtains more local feature information of the sparse point clouds in the viewing frustum through
dimensional expansion, performs the fusion of local and global feature information of the point cloud data to obtain point cloud
data with more complete semantic information, and then applies the obtained data to the 3D object detection task. ­e ex-
perimental results show that the precision of object detection in both 3D view and BEV (Bird’s Eye View) can be improved
e�ectively through the algorithm, especially object detection of moderate and hard levels when the object is severely occluded. In
the 3D view, the average precision of the 3D detection of cars, pedestrians, and cyclists at a moderate level can be increased by
7.1p.p., 16.39p.p., and 5.42p.p., respectively; in BEV, the average precision of the 3D detection of car, pedestrians, and cyclists at
hard level can be increased by 6.51p.p., 16.57p.p., and 7.18p.p., respectively, thus indicating the e�ectiveness of the algorithm.

1. Introduction

In recent years, with the continuous development of electric
vehicles, automated driving technology has been tending to
maturity, and 3D object detection has also become partic-
ularly important. In actual tra�c scenes, various problems
will be encountered, such as variations in illumination and
bad weather conditions, which will cause the failure to fully
perceive objects. If automated vehicles wanted to be reliable
and safe, their observation systems must have at least the
following features: high accuracy, high certainty, and high
reliability. Nowadays, single sensor systems (e.g., radar,
camera, and LiDAR) cannot provide this, and thus, sensor
fusion [1] (e.g., combining camera and LiDAR) is needed.
For example, LiDARs are excellent at providing rich, depth,
and accurate information without interference from the light
environment. On the contrary, camera systems are more

cost-e�ective and capable of providing e�ective visual rec-
ognition when color or texture attributes have challenges in
long-detection range, ¢eld-of-view, and dim conditions [2].
Hence, compared with traditional 2D object detection [3],
the LiDAR point cloud data used for 3D object detection
have richer semantic information. However, since the point
clouds are discrete and random and possibly sparse, it is
challenging to detect object instances from point clouds.

At present, for the processing of point cloud data, Chen
et al. [4] proposed Multi-View 3D networks (MV3D) which
can convert the 3D point clouds into 2D images through the
projection of di�erent views and then fuse them with RGB
images to obtain the 3D bounding boxes. However, the
networks use the views converted from point cloud data, not
the original point cloud data, which will cause the loss of
some information. In order to solve the problem of infor-
mation loss, Yin and Tuzel [5] proposed VoxelNet which
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uses VFE (voxel feature encoding) network to encode the
points in each voxel and then performs 3DRPN(3D Region
Proposal Network) detection without any artificial pro-
cessing such as projection. However, due to the large point
cloud data in space and the 3D convolution involved in the
convolutional layer of the neural network, the computa-
tional burden is heavy, and the requirements for real-time
detection in automatic drive scenes could not be met. Ku
et al. [6] proposed the AVOD algorithm which takes RGB
images and BEV (Bird’s Eye View) as input, uses the FPN
(Feature Pyramid Networks) to obtain the feature images of
the two, and then performs feature fusion of the two to
generate the 3D box estimation of the object. Since the
algorithm uses low-level and high-level semantic informa-
tion, it can improve the object detection effect, especially for
small objects. However, due to poor point cloud processing,
part of the point cloud information is lost, resulting in only a
moderate detection effect for pedestrians and cyclists. Qi
et al. [7] proposed a 3D object detection algorithm PointNet
which can directly consume point cloud data, ensure the
rotational invariance of the point cloud by multiplying each
point with a transformation matrix, use multilayer per-
ceptron to generate the global feature, and finally generate
the 3D bounding box of the object. Although PointNet can
make full use of the semantic information of point clouds, it
could not process the local information of the point clouds
well. On this basis, Qi et al. [8] proposed PointNet++ which
can iteratively extract features from local areas of the point
cloud with a density-adaptive feature extraction method and
can learn deep point set features efficiently and robustly.

,e Frustum-Pointnets [9] model is used in this study;
that is, a 2D bounding box is generated through relatively
mature 2D object detection at first; then, the viewing
frustum is formed according to the positions of the camera
and the 2D bounding box, and then, 3D object detection is
performed for the original point cloud data within the
viewing frustum. ,rough this method, the efficiency of 3D
object detection can be greatly improved and the compu-
tational burden can be reduced.

,e 3D point cloud reconstruction approaches can be
mainly divided into the completion approach based on
geometrical relationships and the complete approach based
on deep learning.

,e completion approach based on geometrical rela-
tionship is often to repair and complete incomplete 3D
geometry information by adding various constraints.
Kazhdan and Hoppe [10] proposed the approach of Poisson
surface reconstruction which adopts the strategy of incor-
porating the points as interpolation constraints and obtains
the surface reconstruction of the underlying 3D model by
solving the Poisson equation. ,e completion approach
based on geometrical relationship often requires that the
missing part of the 3D model to be completed could not be
too large; otherwise, the shape information of the part could
not be inferred from the geometrical information of the
model surface or adjacent parts. Pauly et al. [11] proposed
the use of a 3D model database for providing geometrical
information for the missing data region: similar models can
be found in the database, and then, a complete 3Dmodel can

be obtained by mixing and distorting the models. Chaudhuri
et al. [12] proposed 3D model assembly by learning the
relationship between semantic encoding and geometrical
model components. However, these approaches are more
dependent on the number of models in the database.
Alhashim et al. [13] proposed an algorithm for generating
novel 3D models via topology-varying shape blending.
Given a source and a target shape, the method can blend
them topologically and geometrically, producing continuous
series of in-betweens as new shape creations.

,e completion approach based on deep learning is often
used to restore 3Dmodels using various types of deep neural
networks. Dosovitskiy et al. [14] trained generative ‘up-
convolutional’ neural networks on rendered 3D models of
chairs, tables, and cars, allowing them to interpolate between
given views to generate the missing ones. Firman et al. [15]
proposed an algorithm that can complete the unobserved
geometry of tabletop-sized objects, based on a supervised
model trained on already available volumetric elements. ,e
model maps from a local observation in a single-depth image
to an estimate of the surface shape in the surrounding
neighborhood. Soltani et al. [16] proposed the following
approach: learning a generative model over multiview depth
maps or their corresponding silhouettes and using a de-
terministic rendering function to produce 3D shapes from
these images. ,ey also demonstrated that their model has
out-of-sample generalization power for real-world tasks
with occluded objects. However, these networks are mainly
based on voxel data input, rather than direct processing of
point cloud data, which will easily lead to local information
loss of the point clouds. Sarmad et al. [17] presented RL-
GAN-Net, where a reinforcement learning (RL) agent
provides fast and robust control of a generative adversarial
network (GAN).,is is the first attempt to train an RL agent
to control the GAN, which effectively learns the highly
nonlinear mapping from the input noise of the GAN to the
latent space of the point cloud. In this case, the point cloud
completion task can be completed without any prior
knowledge about visibility or noise characteristics. Huang
et al. [18] proposed a Point Fractal Network (PF-Net) which
estimates the missing point cloud hierarchically by utilizing
a feature-points-based multiscale generating network and
adds up multistage completion loss and adversarial loss to
generate more realistic missing region(s). Yu et al. [19]
proposed a geometrically sensitive point cloud completion
Transformer network (PoinTr) that adopts a Transformer
Encoder-Decoder architecture for point cloud completion.
By representing the point cloud as a set of unordered groups
of points with position embeddings, they converted the
point cloud to a sequence of point proxies and employ the
transformers for the point cloud generation. At present,
point cloud completion methods are mainly used in the 3D
reconstruction direction of the target and are rarely used in
3D object detection.

In the scene of automatic drive, a point cloud missing
may occur when the object is occluded or too far away [20].
,erefore, in order to obtain more accurate 3D object de-
tection results, the deep learning method is adopted in this
study to learn the multilevel features of each point in the
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viewing frustum, different convolution operations are made
use of for expansion in the feature space, and then the
expanded features are decomposed and reconstructed into
new point cloud data.

2. Modeling

,e Frustum-Pointnets model is used in this study to di-
rectly process the original point clouds and achieve 3D
object detection. ,e Frustum-Pointnets algorithm is a
network framework for achieving end-to-end 3D object
detection, as shown in Figure 1. At present, the 3D object
detection algorithm which can achieve the fusion of images
and point cloud data has become a hotspot in the academic
research of the automatic drive field. However, the point
cloud information collected by LiDAR is not complete [21];
reasons such as data missing, the occlusion of the object,
insufficient threads of the LiDAR, and too far distance will
cause the information loss of object point clouds [22], which
will greatly affect the precision of the object detection al-
gorithm [23]. ,erefore, a 3D object detection algorithm
based on sparse point cloud reconstruction in the viewing
frustum is proposed in this study to improve the perfor-
mance of object detection when the point clouds in the
viewing frustum are severely occluded. Figure 2 shows the
flow of the algorithm proposed in this study.

2.1. Frustum Point Cloud Region Generation. ,e overall
structure of the 3D frustum point cloud region generation
network is shown in Figure 3. First, we use mature 2D CNN
for object detection in RGB images [24], obtain 2D bounding
box region and object classification, and then use the known
camera projection matrix to extend the 2D bounding box to
the 3D point cloud data of the viewing frustum. ,e viewing
frustum is normalized by rotating the frustum toward the
central view so that the central axis of the viewing frustum is
orthogonal to the image plane. Such a method can improve
the rotational invariance of the algorithm. In addition, since
the method can segment the point clouds outside the
viewing frustum and process only the point clouds inside the
viewing frustum, the computational efficiency can be im-
proved significantly. ,e finally obtained 3D object frustum
point cloud region is shown in Figure 4.

2.2. Reconstruction of Point Cloud Data in the Viewing
Frustum. We adopt the deep learning approach and take the
point clouds in the viewing frustum as input, assume n
points, and make use of different convolution operations for
expansion in the feature space through a 2-layer shared
multilayer perceptron (MLP). ,e dimensions of the first
layer are (128, 256), and the dimensions of the second layer
are (516, 1024). In this case, the local feature information of
the point clouds can be fully obtained, and then, the greatest
feature of the dimensions of each point cloud data can be
extracted through the maximum pooling layer. ,e shared
MLP can play a very effective role in extracting the features
of the point cloud data. ,en, through the fusion of ex-
panded local feature information and the global feature

information obtained after the maximum pooling, the new
point cloud features after reconstruction can be obtained via
a layer of sharedMLPwith the dimensions of (1024, 1024), as
shown in Figure 5.

2.3. 3D Instance Segmentation for Point Cloud Data in the
Viewing Frustum. ,e PointNet is used for 3D instance
segmentation, and the fusion of the local features and global
features of the point clouds in the viewing frustum can be
achieved so that the features of the point clouds can be better
extracted and more accurate semantic information can be
obtained. ,e structure is shown in Figure 6.

2.4. 3D Object Bounding Box Regression. After 3D instance
segmentation, points classified as objects are extracted.,en,
these segmented object points are obtained, and their co-
ordinates are further normalized to enhance the translation
invariance of the algorithm, following the same basic
principle in obtaining the frustum point clouds. By sub-
tracting the XYZ value from the centroid, the point cloud is
converted into local coordinates, a special type of spatial
transformation network [25]. T-Net is used to estimate the
true center of the entire object, and then, the coordinates are
transformed to make the predicted center become the origin.
,e 3D object detection is performed on the object point
clouds in the viewing frustum, and the estimation of the 3D
object bounding box of the object instance point clouds is
achieved by PointNet and residual regression.,e regression
parameters include the center coordinates, length, width,
and height of the 3D object bounding box [26], and the
heading angle of the object [27]. ,e structure is shown in
Figure 7.

2.5. Loss Function. ,e improved Frustum-PointNets model
uses the same multitask loss function “Lmulti-task” as the
original network, which includes the 3D object prediction
loss function “Lmask” and the 3D object bounding box
prediction loss function “Lbbox.” ,e 3D object bounding
box prediction loss function is the same as that of the
original network, including the loss function Lc1-reg gen-
erated by T-Net, the loss function Lc2-reg predicted by the
object bounding box center, the object heading loss func-
tions Lh-cls and Lh-reg, and the size loss functions Ls-cls
and Ls-reg. ,e corner loss function of 8 vertices in the
bounding box of the object is Lcorner, and the 3D seg-
mentation loss function is Lseg. ,e computational formula
of Lmulti-task is as follows:

depth to point cloud
3D box (from PointNet)

2D region (from CNN) to 3D frustum

Figure 1: Overall framework of F-PointNet [9].
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Lmulti−task � Lmask + Lbbox

� Lseg + λ Lc1−reg + Lc2−reg + Lh−cls + Lh−reg + Ls−cls + Ls−reg + cLcorner􏼐 􏼑,
(1)

where the corner loss is the sum of the distance between the
eight corners of the predicted 3D bounding box and the
ground truth bounding box. Since the corner is determined
by the center, size, and orientation, the corner loss can
constrain the training of each parameter of the 3D bounding
box very well. Firstly, we define NS calibration bounding box
and NH orientation angle and then convert them to the

center of the estimated 3D bounding box. Pij

k is the 3D vector
of the kth corner of the calibration bounding box, where the
index i stands for the serial number of the calibration object
bounding box of 8 sizes and j stands for the 12 orientation
angles. P∗k is the 3D vector of the kth corner of the truth 3D
bounding box. ‖P

ij

k − P∗k ‖ is the distance between the kth
corner of the 3D calibration bounding box and the kth
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Reconstruction of Point 
Cloud Data in the
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Figure 2: Algorithm flowchart.
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Figure 3: 3D frustum point cloud region generation network.

Figure 4: Initially obtained 3D object frustum point cloud region.
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corner of the truth 3D bounding box; P∗∗k is the 3D vector of
the kth corner after the 3D bounding box is flipped by π
angles.,is vector is introduced to avoid great loss caused by
the flipped heading estimation. ‖P

ij

k − P∗∗k ‖ is the distance
between the kth corner of the 3D calibration bounding box
and the kth corner of the flipped 3D bounding box. ,e
computational formula of Lcorner is as follows:

Lcorner � 􏽘
NS
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⎭ , (2)

where Hij is the Huber loss regression function, which can
enhance the robustness to outliers compared with the mean
square error loss function MSE (mean square error). ,e
parameter “a” stands for the residual; δ is the parameter of
the Huber loss regression function: square error shall be
adopted for parameter a (residual) less than δ and linear
error for parameter a (residual) more than δ. ,e compu-
tational formula of Hδ(a) is as follows:

Hδ(a) �

1
2
a
2
, for|a|≤ δ,

δ · |a| −
1
2
δ􏼒 􏼓, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

3. Experimental Results and Analysis

3.1. Experimental Environment Configuration and Dataset.
In order to verify the improved 3D object detection algo-
rithm proposed in this study, the data used are the 3D KITTI
dataset in the automatic drive scene [28]. ,e dataset has
RGB images and point cloud data in different scenes and
classifies the object detection difficulty into three levels (easy,
moderate, and hard) based on the occlusion of the objects.
,ere are a total of 7481 scenes in this dataset, corresponding
to 7481 RGB images and relevant point cloud data. ,e
computer configuration used for the calculation is GTX
2080ti. ,e operating system is Ubuntu 16.04, the language
used is Python 2.7, and the deep learning framework is

TensorFlow 1.13. Training parameter setting: we divide the
KITTI dataset into 3712 training sets and 3769 validation
sets. ,e optimizer of the model selects the Adam algorithm,
with an initial learning rate of 0.001, an initial attenuation
rate of 0.5, and an attenuation rate of 800,000; that is, the
learning rate is halved every 800,000 iterations; the
batch_size is set to 32; that is, 32 point clouds are processed
each time; num_point is 1024 (specify that, for each sample,
only 1024 points are extracted from the point cloud frustum
for training), and max_epoch is 200 (the number of training
executions).

3.2. Evaluation Index. ,e evaluation index is the average
precision (AP). ,e AP value is one of the most widely used
evaluation indexes in the field of deep learning. It is the
average value of the multiclassification precision P and can
be calculated by the following formula:

P �
TP

TP + FP
, (4)

where TP stands for true positive, that is, the number of
samples whose predicted and true values are both true, and
FP stands for false positive, that is, the number of samples
whose predicted value is true but true value is false.

3.3. Verification Results and Comparison. We make a
comparison between the obtained results and those of other
algorithms with the same evaluation index and set the de-
tection IoU (Intersection over Union) for vehicles to 0.7 and
that for pedestrians and cyclists to 0.5. ,e larger the IoU is,
the smaller the error required for detection will be and the
stricter the evaluation will be.,e results are listed in Table 1
and Table 2. It can be seen that this algorithm has improved
performance in both 3D view and BEV (Bird’s Eye View).
For the detection of pedestrians, cyclists, and vehicles that
are difficult to be detected, greater improvement can be
achieved. In the 3D view, the AP of “easy” level vehicles in
the 3D view has been improved less by 3.19 p.p., but greatly
for detection of vehicles at the “moderate “and “hard “levels
increased by 7.1 p.p. and 8.1 p.p., respectively, especially for
the detection of pedestrians at the “moderate “level and
cyclists at the “easy” level (the AP is increased by 16.39p.p.
and 9.39p.p, respectively). In BEV (Bird’s Eye View), for the
detection of pedestrians and cyclists at the “easy” level, the
AP is improved by 17.57 p.p. and 10.92 p.p.; for the detection
of pedestrians and cyclists at the “hard “level, the AP is
increased by 16.57 p.p. and 7.18 p.p. Compared with other
fusion algorithms, our algorithm achieves a great im-
provement in the 3D object detection of pedestrians and
cyclists. ,e detection results are shown in Figure 8, and
distant cyclists can also be accurately identified.

We divide the algorithm in this study into four steps,
namely, the view frustum point cloud area generation, the
sparse point cloud reconstruction, the 3D instance seg-
mentation, and the 3D box regression. ,e time required for
the four steps is obtained through experiments, as shown in
Table 3.
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Figure 6: 3D instance segmentation network of point clouds in the
viewing frustum.
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,rough the experimental results, we can find that the
reconstructed part of the sparse point cloud takes less time,
but the experimental results are greatly improved. ,e
proportion of each part is shown in Figure 9. ,e com-
parison with other algorithms is shown in Table 4.

Figure 10 shows a PR (Precision-Recall) curve chart for
the detection precision and regression of vehicles, pedes-
trians, and cyclists. By selecting different confidence
thresholds, different points can be obtained on the PR co-
ordinate system, and the PR curve can be obtained by
connecting these points. ,e recall rate is the correct pro-
portion predicted in the real positive example data. For a
certain recall rate, the higher the detection precision is, the
better the detection performance of the algorithm will be.
,rough experimental comparison and analysis, compared

with the original algorithm, our algorithm improves the
regression rate and detection precision of 3D object de-
tection for vehicles, pedestrians, and cyclists.

Table 1: 3D object detection AP values of various algorithms in the 3D view with the KITTI test set.

Method
Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
MV3D 71.29 62.68 56.56
VoxelNet 81.97 65.46 62.85 39.48 33.69 31.50 61.22 48.36 44.37
Pointpillars 79.05 74.99 68.30 52.08 43.53 41.47 75.78 59.07 52.92
F-PointNet 80.62 64.70 56.07 50.88 41.55 38.04 69.36 53.50 52.88
Ours 83.81 71.80 64.17 65.57 57.94 50.77 78.75 58.92 55.70

Table 2: 3D object detection AP values of various algorithms in the BEV with the KITTI test set.

Method
Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
MV3D 86.02 76.90 68.49
VoxelNet 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55
AVOD 88.53 83.79 77.90 58.75 51.05 47.54 68.09 57.48 50.77
F-PointNet 87.28 77.09 67.90 55.26 47.56 42.57 73.42 59.87 52.88
Ours 87.98 83.60 76.26 72.83 66.56 59.14 84.34 64.57 60.06

Figure 8: Visualization of 3D object bounding box.

Table 3: Algorithm running average time (ms).

,e algorithm part of this study Time (ms)
View frustum point cloud area generation 45
Sparse point cloud reconstruction 6
3D instance segmentation 22
3D box regression 15
Total 88

�e algorithm part
of this paper

View frustum point
cloud area generation

Sparse point
cloud reconstruction

3D instance
segmentation

3D box
regression

Figure 9: ,e proportion of the algorithm part of this study.
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4. Conclusion

Since RGB images have rich color information, the object
detection precision of vehicles, pedestrians, and cyclists with
RGB images has always been higher than that with point
cloud data. While, on the contrary, since point cloud data
will not be easily affected by external factors such as illu-
mination and weather changes, through using point cloud
data, the safety of automatic drive can be improved and
traffic accidents can be reduced. However, point cloud data
also have shortcomings. Due to the threads and distance of
the LiDAR, the collected point clouds may be relatively
sparse so that it will be difficult to identify a specific object.
Due to the shortcomings of different sensors, automated
vehicles are already now equipped using varying configu-
ration of machine vision sensors. Ultimately, it is matter of
calculation time cost and performance of sensor, and hence,
there is growing need for finding not only more reliable and
accurate but also cost effective solutions. ,erefore, a 3D
object detection algorithm based on the reconstruction of
sparse point clouds in the viewing frustum is proposed in
this study, which can effectively improve the precision of
small object detection. We increase the dimensions of the
point cloud data for the sparse point clouds in the viewing

frustum with shared MLP, perform the fusion of the ob-
tained local point cloud data features and the global point
cloud data features, and then obtain the point clouds after
reconstruction with the shared MLP again. Finally, exper-
iments prove that, in the 3D view, compared with the
original F-PointNet model. ,e improvement of the 3D
object detection rate of the car at three different difficulty
levels is 3.19p.p., 7.1p.p., and 8.1p.p., respectively. ,e
precision of 3D object detection for pedestrians is increased
by 14.69p.p., 16.39p.p., and 12.73p.p., respectively. In BEV
(Bird’s Eye View), compared with the original F-PointNet
model, the precision of 3D object detection for pedestrians is
increased by 17.57p.p., 19p.p., and 16.57p.p., respectively.
,e improvement of 3D object detection rate for cyclists at
three different difficulty levels is 10.92p.p., 4.7p.p., and
7.18p.p., respectively. In the process of automatic driving,
the target is often blocked or dynamically changed, and the
target object cannot be accurately identified. ,e algorithm
in this study improves the detection accuracy of the target to
reduce the occurrence of accidents. However, compared
with the precision of 2D object detection, the precision of 3D
object detection still has a large room for improvement, and
in-depth studies on the features of point clouds will be
continued in the next stage.

Table 4: 3D detector runtime for various algorithms.

Method MV3D (ms) F-ConvNet (ms) AVOD (ms) F-PointNet (ms) Ours (ms)
Time 243 476 80 81 88
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Figure 10: 3D object detection P-R curve comparison. (a) Original algorithm. (b) Our algorithm.
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