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Ordinal Potential Differential Games to Model Human-Machine
Interaction in Vehicle-Manipulators

Balint Varga1, Jairo Inga1, Markus Lemmer2 and Sören Hohmann1

Abstract— Potential games have some useful characteristics
related to the existence and computability of their Nash
equilibria, which make their use attractive also in the context of
modelling interactions. This paper presents the use of potential
differential games to model human-machine interaction. We
extend the definition of static ordinal potential games to
differential games for modelling and analysing human-machine
interaction in the control of large vehicle-manipulators. We
provide sufficient and necessary conditions for the existence
of a potential differential game. In addition, we present an
optimization formulation finding a linear-quadratic (LQ) po-
tential differential game to a original game. The suitability of
the proposed modelling approach is verified using simulation
examples.

I. INTRODUCTION

A Vehicle-manipulator (VM) includes a mobile platform
(vehicle) and a robotic arm (manipulator) that can be ap-
plied in numerous applications like teleoperated robots for
nuclear waste cleaning [1], working vessels [2] or mobility
assistants [3]. A further area in robotics is the application
of large VMs. Large VMs are systems in which a large,
hydraulically actuated manipulator is attached to a tractor
or mid-size heavy-duty vehicle, see e.g. [4] or [5]. They
are common in roadside maintenance or farming works.
A human operator controlling the manipulator is inevitable
due to its widespread use in complex and unstructured
working environments. In addition, the applied sensors are
unreliable [6] and the models of the hydraulic actuator are
inaccurate due to their non-linearities [6]. Therefore, full
automation of the system is not possible in the near future [7]
and the operator has to control both the vehicle and the
manipulator nowadays.

With promising research results in the field of autonomous
vehicles and field robots [8], [9], it is conceivable to develop
automated vehicles, leading to a lower workload of the
operator. However, in contrast to autonomous field robot
applications, the automation of the vehicle of a VM also
has to take into account the motion of the human-controlled
manipulator in order to fulfill the dedicated task with the
manipulator. The challenge in this setup is the realization of
a support for the operator without measuring the reference
and the states of the manipulator.

To overcome this challenge, the so-called limited infor-
mation control (LIC) method has been proposed by the
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authors [10], [11]. The benefit of the LIC is that it does not
require the trajectory measurements of the manipulator, only
the inputs of the human operator controlling the manipulator.
However, the heuristic design of the LIC, which is suggested
in [12], impedes a generalization of the concepts and requires
a time intensive manual tuning of controller. For that reason,
a systematic derivation of the parameters of the LIC is
necessary. The basic idea is that first, an identification with
full information is carried out for the VM, which serves
as a basis for the design of the LIC parameters. Such an
identification is also possible in practice, for example in a
test area, where all the states and references are measurable.
The systematic design has the following steps, see Fig. 1:

1 Design a cooperative shared controller with methods
based on the theory of differential games, see e.g. [13]
that satisfies higher-level requirements on the controller.

2 Modelling this cooperative setup as an ordinal potential
game.

3 Designing of a LIC with help of the potential game

This paper presents the second step of this overall process.
In [13], a systematic approach utilizing differential games
is proposed to design a cooperative controller for human-
machine interactions that enables a faster configuration and
a better understanding of the emerged human-machine co-
operative system. However, this method is not practical for
VMs, since all system states must be measured to apply the
feedback control law designed with the approach of [13].
Therefore, this is utilized as a baseline for the derivation,
because [13] provides an automatic computation of the
parameters of the cooperative controller with full information
from high level requirements. The goal of the design of the
LIC having such an overall behaviour as a full-information
controller designed with the method of [13].

For that, a novel modelling approach of the cooperative
setup by VMs is proposed. This modelling happens by
the use of a special class of games, the ordinal potential
games. The benefits of a potential game is its more compact
representation of the original game and simpler computation
of the equilibrium of the game. Furthermore, this modelling
approach with potential games enables the systematic design
of the LIC. In our framework, no uncertainties of the system
states and trajectories can be taken into account, as they
are not measurements with uncertainties. Therefore, the class
of the robust games (see e.g. [14]) are not suitable for our
applications.

Potential games are games in which all the players and
their objective functions can be replaced by one player and
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Fig. 1: The systematic design procedure for limited informa-
tion cooperative controller [20]

one single objective function. The optimum of this single
objective function yields the Nash equilibrium (NE) of the
original N-player game. This means that there is no need for
solving a coupled optimization problem to find a NE and
therefore it is easier to determine.

The theory of the ordinal potential games for static games
has intensively been investigated [15], [16] and used for
technical applications like wireless network management
[17] and energy optimization in smart grid system [18].
In [19], ordinal potential games are proposed with an un-
derlying state space dynamics. However, the concept is not
taken into consideration the differential games and the main
results relate to better reply games with binary log-linear
learning and Markov games. The authors did not provide
any concept or results associated with differential games
due to their application focus. To the best our knowledge,
there is no contribution in the literature addressed to ordinal
potential differential games. Therefore, this paper provides
the extension of the ordinal potential games for differential
games, which enables a broader use of the potential games
in engineering applications. We provide the necessary and
sufficient conditions for the existence of a linear-quadratic
(LQ) potential differential game. Furthermore, an optimiza-
tion method is given to find a potential game for a given a
cooperative shared control setup defined by [13].

The remaining of the paper is structured as follows: Sec-
tion II presents the state-of-the-art. Section III is addressed to
potential differential games and the novel extension to ordi-
nal potential differential games. The necessary and sufficient
conditions for their existence are discussed in Section IV.
A method finding an ordinal potential differential game is
given in Section V. The application to two exemplary VMs
is demonstrated with simulations in Section VI. Finally, a
short summary and outlook is given in Section VII.

II. DIFFERENTIAL GAMES FOR HUMAN-MACHINE
INTERACTION

In a cooperative control setup, both human and machine
interact with the control system to achieve a common goal
[21]. As mentioned in Section I, an established hypothesis
is the use of optimal control theory for the description of
human movements. In [22], it was shown that in a shared
controller setup between two humans a NE is reached. A
cooperative controller, in which both the human and the
machine minimize their individual cost function and control
one system can be analysed by means of game theory.

Generally, game theory is used to describe and model the
interactions between several agents e.g. in economy or stock
markets. In this paper, a strategic game is denoted by a tuple:
Γ = (P, J,U) with the set of N players P = {1, 2, ..., N}
players. J =

{
J (1), J (2), ..., J (N)

}
is denoted as the set of

their cost functions and U = {U (1) × U (2) × ... × U (N)}
is the joint strategy set of the players. The optimal control
strategies u(i) ∈ U (i) are determined by the players as the
result of minimizing their cost function J (i). As the costs of a
player also depend on the actions of other players, a coupled
optimization problem has to be solved to obtain the NE of
the game. The widely used concept of the NE is defined as
(see. e.g. in [23]):

Definition 1 (Nash-Equilibrium): The strategy u∗(i) of a
strategic game Γ is called a Nash-Equilibrium if

J∗(i)(u∗(i),u∗(¬i)) = min J (i)(u(i),u∗(¬i)) (1)

for all players i ∈ P. The strategies of all
players expect player i is denoted with
u(¬i) =

[
u(1), ...,u(i−1),u(i+1), ...,u(N)

]
. A NE means

that there is no incentive for a player to unilaterally deviate
from his chosen strategy.

The theory of differential games was introduced by R.
Isaacs in [24]. A differential game Γd = (P, J,U,f) is a
extension of a static game, in which the control inputs1 of the
players

(
u(i)

)
are determined by the optimization of the cost

function J (i)(t, τ,x(t),u(t)) with respect to the dynamic
system

ẋ(t) = f(t,x(t),u(t)), t ∈ [0, τ ], (2)

Where the vector u is a combined input and defined as

u =
[
u, (1)

T
u, (2)

T
...,u(N)T

]T
. (3)

The dynamic system is defined for the time horizon [0, τ ].
In the following, the focus is set on linear time-invariant
systems

ẋ(t) = Ax(t) +

N∑
i=1

B(i)u(i)(t), (4)

x(t0) = x0

where A is the system matrix and B(i) are the input matrices
of the single players. Furthermore, it is assumed that the
players have quadratic cost functions

J (i) =
1

2

∫ τ

0

xTQ(i)x+ uTR(i)u dt, (5)

where the matrices Q(i) are positive semi-definite, R(i) are
positive definite.

III. POTENTIAL DIFFERENTIAL GAMES

The theory of potential games is introduced in [25].
The characteristics of the static exact potential and the
static ordinal potential games are studied in [25], [15]. The
advantage of the games lies in their simplified modelling:
The game with many control strategy profiles U (i) is reduced

1In this contribution, the terms ”strategy” and ”input” are used inter-
changeably.



to a single optimization of the potential function J (p), in
which the optimum provides the NE of the original game
that enables a simpler computation of that NE. In LQ-case,
the potential function is

J (p) =
1

2

∫ τ

0

xTQ(p)x+ uTR(p)u dt, (6)

Q(p) and R(p) are positive semi-definite, positive definite
respectively. There are some approaches in the literature
how to extend exact potential games for dynamic systems
(see [26], [27]). We extend their definitions for Potential LQ-
differential Games.

Definition 2 (Exact Potential LQ-differential Game):
A differential game Γd is called an exact potential
differential game if a potential function H(p) exists such
that

∂H(p)

∂u(i)
=

∂H(i)

∂u(i)
(7)

for i ∈ P, where the Hamiltonian function of the player i is

H(i) =
1

2
xTQ(i)x+

1

2
uTR(i)u+ λ(i)Tf(t), (8)

where λ is the co-state variable.
A similar definition to the Definition 2 for special system
classes is given in [26], in which the so-called Hamilto-
nian potential is introduced. According to their definition,
∂H(p)

∂x(i) = ∂H(i)

∂x(i) must hold in addition to (7) in Definition 2,
which means that the dynamic system can be decoupled with
respect to the control dynamics and system states. A general
use of the exact and the Hamiltonian potential games for
engineering applications is limited as (7) requires a special
structure of the game, see e.g. Chapter 5.2 in [28]. Therefore,
it is helpful to use a less restrictive sub-class of potential
games, the so-called ordinal potential game [25], which has
a less restrictive definition than the exact potential games.
An extension for differential games of the ordinal differential
potential games does not exist. Therefore, a novel extension
of the ordinal potential games for LQ-games is given. This
definition requires neither the decoupled dynamics of the
underlying system nor a rigorous equality of the derivates
of the Hamiltonian functions, which enables a more general
use of the potential games theory.

Definition 3 (Ordinal Potential Differential Game):
The differential game Γd is called an ordinal potential
differential game if a potential function H(p) exists such
that

sign
(
∂H(p)

∂u(i)

)
= sign

(
∂H(i)

∂u(i)

)
. (9)

for all players i ∈ P. If the players’ Hamilton functions have
a form as given in (8) and the potential function is quadratic
as suggested in (6), then the game is an ordinal potential
LQ-differential game.

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR AN
ORDINAL POTENTIAL LQ-DIFFERENTIAL GAME

The following derivation is restricted to the two-players
case with scalar inputs, the cost function given in (5) and
infinite optimization horizon (τ → ∞).

A. Computation of the NE in LQ-differential games

For the derivation of the sufficient and necessary con-
ditions of ordinal potential differential games, some as-
sumptions are taken into account. The matrices of the cost
functions of the players have a diagonal structure Q(i) =

diag[q(i)1 , q
(i)
2 , ..., q

(i)
n ] and R(i) = diag[r(i)1 , r

(i)
2 ]. The result-

ing solution of the coupled optimization problem of the two-
player case [23] is

0 = (ATP(i) +P(i)A+Q(i) −P(i)S(i) (10)

−P(i)S(¬i)P(¬i))x,

S(i) = B(i)R(i)−1
B(i)T

for i ∈ 1, 2. It can be solved for P(i) according to [23]. Its
result is the control law of the players

u(i) = −K(i)x, (11)

where K(i) = R(i)−1
B(i)TP(i) is the feedback gain of

player i. The Hamiltonian of the potential game is

H(p) =
1

2

(
xTQ(p)x+ u(p)TR(p)u(p)

)
(12)

+λ(p)T
(
Ax(t) +B(p)u(p)(t)

)
,

where

Q(p)=

q
(p)
11 · · · q

(p)
1M

...
. . .

...
q
(p)
1M · · · q

(p)
MM

 and R(p)=

[
r
(p)
11 r

(p)
21

r
(p)
21 r

(p)
22

]
.

The matrix Q(p) is positive semi-definite and R(p) is positive
definite. The control law of the potential game is

u(p) = −K(p)x,

with K(p) = R(p)−1
B(p)P(p). The matrix P(p) is obtained

from the solution of the Ricatti equation [23]

0 =
(
ATP(p) +P(p)A+Q(p) −P(p)S(p)

)
x, (13)

S(p) = B(p)R(p)−1
B(p)T.

Lemma 1: Necessary condition of an ordinal potential
LQ-differential game
Let a potential function according to (12) be given. In
addition, let u(1)∗, u(2)∗ denote a NE solution of a LQ-
differential game, which stabilizes the system (4). If H(p)

defines an ordinal potential differential game associated to
the LQ problem then

[u(1)∗T , u(2)∗T ]T ≡ u(p). (14)

holds.
Proof: As [u(1)∗T , u(2)∗T ]T stabilize the system

dynamics the input trajectories must be bounded. According
to Theorem 2.3 in [28], an ordinal potential game with
bounded inputs and with a continuous potential function has
at least one NE. The solution of (4) is obtained from the
integral expression

x∗(t) = eA·t · x0 +

2∑
i=1

∫ t

0

e(t−s)AB(i)u(i)∗(s) ds.



If the differential game is a potential game, the solution of
(4) can be obtained from the optimization of the potential
function (6) such that

x(p)(t) = eA·t · x0 +

∫ t

0

e(t−s)AB(p)u(p)(s) ds

that lead to the same trajectories, which means∣∣∣x(p)(t)− x∗(t)
∣∣∣ = 0 ∀t. (15)

Substituting x(p) and x∗ in (15), the following is obtained∣∣∣∣∣
∫ t

0

e(t−s)AB(p)u(p)(s) ds

−
2∑

i=1

∫ t

0

e(t−s)AB(i)u(i)∗(s) ds

∣∣∣∣∣ = 0. (16)

From Definition 3,

B(p) = [B(1),B(2)], (17)

holds for a potential LQ-differential game, which can be
shown straightforward from the definition of the matrix
multiplication (see any linear algebra book, e.g. Chapter 2.
in [23]):

N∑
i=1

B(i) · u(i) = B(p) · u,

where u is given in (3). Substituting (17) in (16) leads to∣∣∣∣∣
∫ t

0

e(t−s)A[B(1),B(2)]u(p)(s) ds

−
2∑

i=1

∫ t

0

e(t−s)AB(i)u(i)∗(s) ds

∣∣∣∣∣ = 0, (18)

which is true if
[
u(1)∗T , u(2)∗T

]T
≡ u(p) holds.

Lemma 2: Sufficient condition of an ordinal potential dif-
ferential game
If for a two-player linear-quadratic game,(

B(i)TP(p)x
)
·
(
B(i)TP(i)x

)
≥ 0 (19)

holds for i ∈ P and ∀x then the game is an ordinal potential
differential game with a Hamiltonian function given in (12).

Proof: For the proof, the Definition 3 is used:

sign
(
∂H(p)

∂u(i)

)
= sign

(
∂H(i)

∂u(i)

)
. (20)

Assuming a quadratic potential function (12) and a linear
system (4) dynamics,

∂H(p)

∂u(p)
= R(p)u(p) +B(p)Tλ(p) (21)

holds, where λ(p) = P(p)x can be applied. The control law
of the potential game is obtained from the solution of (13) but
it is modified to a sub-optimal solution. The reason for that is
the following: An optimal control law means that ∂H(p)

∂u(p) = 0,
which is not suitable for the analysis of the existence of a
potential game as in that case (20) yields 0 = 0. The sub-

optimal control law of the potential game is

u(p) = −(1 + ε)R(p)−1
B(p)TP(p)x, (22)

in which ε > 0 is an arbitrary scalar. With ε → 0, the optimal
control law is obtained. Substituting (22) in (21) gives

∂H(p)

∂u(p)
= −R(p)(1 + ε)R(p)−1

B(p)TP(p)x+B(p)TP(p)x,

(23)
which can be simplified with R(p). From Lemma 1, it follows
that the derivates of the potential function H(p) are

∂H(p)

∂u(p)
=

[
∂H(p)

∂u(1)
,
∂H(p)

∂u(2)

]T
, (24)

which is a vector with two scalar elements and therefore (23)
can be split with (24) into

∂H(p)

∂u(i)
= −εB(i)TP(p)x, (25)

for the two players i ∈ P.

For the players of the original game, the derivates of the
Hamiltonians are expressed as

∂H(i)

∂u(i)
= R(i)u(i) +B(i)Tλ(i) (26)

holds for i ∈ P and λ(i) = P(i)x can be substituted.
Analogously, an optimal control law of the players would
mean ∂H(i)

∂u(i) = 0. The optimal control law is obtained with
ε → 0. Therefore, the applied sub-optimal control laws of
the original game is

u(i) = −(1 + ε)R(i)−1
B(i)TP(i)x, (27)

where ε > 0 is arbitrary and i = {1, 2}. The control law (27)
yields the behaviour of players around the optimal solution.
Substituting (27) in (26) gives

∂H(i)

∂u(i)
= −R(i)(1 + ε)R(i)−1

B(i)TP(i)x+B(i)TP(i)x,

(28)
which can be simplified to

∂H(i)

∂u(i)
= −εB(i)TP(i)x. (29)

Substituting (25) and (29) in (20) and simplifying with ε
yields

sign
(
B(i)TP(p)x

)
= sign

(
B(i)TP(i)x

)
. (30)

The equality of two sign can be reformed to the multiplica-
tion of the arguments of the sign functions such that(

B(i)TP(p)x
)
·
(
B(i)TP(i)x

)
≥ 0, (31)

for i ∈ P, which proofs the lemma.

Remark 1: The sufficient condition requires solely a so-
lution of the Ricatti equation (13) P(p), which satisfies
(19). This means that the pair

(
Q(p) and R(p)

)
is suit-

able for a potential game. Therefore, any further pairs(
κQ(p) and κR(p)

)
with κ > 0 also yield an optimization

problem that has the same solution.



V. METHOD FOR FINDING AN ORDINAL POTENTIAL
LQ-DIFFERENTIAL GAME

For the derivation of an ordinal differential potential game,
the deviation of the input of the potential games from the NE
is defined such that

eu = u(p)(t,x,Q(p),R(p))− u(t,x∗) (32)

where x∗ are the trajectories of the NE with the correspond-
ing inputs of the original two-players games. To find a ordinal
potential differential game of the original game, the deviation
(32) is minimized, which is carried out with the following
optimization:

Q̂(p), R̂(p) = arg min
Q(p),R(p)

|eu|2 (33a)

s.t. ATP(p) +P(p)A+Q(p) −P(p)S(p)P(p) = 0 (33b)(
B(i)TP(p)x

)
·
(
B(i)TP(i)x

)
> 0, (33c)

where S(p) = B(p)R(p)−1
B(p)T . The minimization of (33a)

ensures that the necessary condition for a ordinal potential
game given in Lemma 1. The constraint (33b) ensures the
minimization of the potential function J (p), which means
that u(p) is provided by the LQ-optimization of (6). The con-
straint (33c) guarantees the sufficient condition of Lemma 2.

Note that |eu|2 can be also interpreted as a potential func-
tion since its minimum yields the NE of the original game.
A similar consideration is suggested in [27], however the
authors do not use this property for any further computations
or identification. Here, we extend this idea and use it to find
a LQ optimization problem that is a potential function of the
original game. The optimization (33) is provides the weights(
Q(p),R(p)

)
of the LQ potential function (6) that is suitable

to model the original game. The optimizer is an interior-point
optimizer algorithm provided by MATLAB [29].
VI. APPLICATIONS TO SIMPLE VEHICLE-MANIPULATOR

SYSTEMS

Two simplified vehicle-manipulator models are used to
verify the Lemmas and the proposed method. The two
examples are considered as generalizations of a holonomic
VM and a non-holonomic VM modelled in Frénet Frame2:
Some states represent the vehicle deviation from its reference
(xv) and other states correspond to the manipulator deviation
from its reference (xm). The operator can only control the
manipulator and the automation has an impact on both the
vehicle’s and the manipulator’s states. The motion of the
vehicle has an impact on the motion of the manipulator, but
the manipulator has no influence on the vehicle’s dynamics.
This characteristic can be observed in the structure of the
matrices A,B. The zero elements in these matrices ensure
the property described above. The VM states consist of the
states of the manipulator and the vehicle, i.e. x = [xm,xv]

T .
The system dynamics is modelled as a linear time-invariant
system such that

ẋ = Ax+B(h)u(h) +B(a)u(a). (34)

2Systems modelled in Frénet Frame are characterized relative to the
reference. For further details see Chapter 49. in [9].

where the first player □(h) represents the human operator,
who controls the manipulator, and the second player □(a)

is the automation, which controls the vehicle. Moreover, the
parameters of A and B(i) can be computed from the velocity
of the vehicle and the actual configuration of the manipulator.
Further details of the modelling VMs can be found e.g. in [5],
[30].

To enable a detailed comparison, the ground truth game
is defined for both examples. The root-mean-square error
(RMSE) and the maximal absolute error (MAE) of the
system state x are used as additional quantitative measures
for the evaluation of the deviation from these ground truth
game’s trajectories.

A. First example

1) Dynamic System: The first example specifies a VM
with holonomic vehicle modelled in a Frénet Frame. For
more detail about the control models for holonomic wheeled
robots, we refer to Chapter 49.3 in [9]. The first state rep-
resents the deviation of the manipulators from its reference.
The second state describes the distance between the vehicle
and its reference. The dynamic system is generated as a
general example for holonomic VMs, which have the system
state vector x = [xm, xv]

T . The linear dynamic system of
the first example has the system matrix

A =

[
0.2 2
0 1.5

]
and its input matrices are B(h) =

[
1.5 0

]T
and

B(a) =
[
1 1

]T
.

2) Ground Truth Players: The game has two players with
the following Hamiltonian function given in (5). The cost
function matrices are

Q(h) = diag
[
5, 0

]
, R(h) = diag

[
1.5, 0.3

]
Q(a) = diag

[
5, 1

]
, R(a) = diag

[
0, 1.2

]
.

The resulting cooperative feedback control law of the original
game is

K(h) = [1.89, −0.47] and K(a) = [0.59, 3.14],

which is obtained by numerically solving the coupled Riccati
equation (10).

3) Results: Fig. 2 outlines that the trajectories of the
ground truth game (GTG) are equivalent to the trajectories
of the potential game (PG). The deviation from the original
game is is in the numerical error range: The RMSE(x) =
10−5 · [8.68, 4.86] and the MAE(x) = 10−6 · [8.75, 5.03].
The identified potential function has the weighting matrices

Q(p) =

[
2.27 0.06
0.06 0.77

]
and R(p) =

[
1.00 0.001
0.001 0.63

]
.

Figures 3a and 3b show that the sufficient condition for a
potential game is fulfilled, cf. (9), as the sign of the derivates
of the cost functions are identical to the potential function,
so in case of holonomic VMs (19) holds ∀t.



B. Second example

1) Dynamic System: This second example represents a
VM with a non-holonomic vehicle modelled along its refer-
ence trajectory. The first state models again the manipulator’s
deviation xm. The second state xdv is the lateral deviation
from the reference and the third state is the orientation error
x∆θ. For more detailed about the modelling and control of
non-holonomic vehicles, we refer to Chapter 49.4 in [9]. The
system matrix of the VM is

A =

0.5 1.6 0
0 0 1.6
0 0 0


and the input matrices are B(1) =

[
1.25 0 0

]T
and

B(2) =
[
0 0 0.85

]T
. The parameters correspond to the

geometry and the velocity of VM relative to its reference.
The last row of A filled with 0-s is the result of the non-
holonomic setup of the VM in Frénet Frame.

2) Ground Truth Players: In the second example, the ma-
trices of the Hamiltonian functions (5) of the two players are

Q(h) = diag
[
8, 0, 0

]
, R(h) = diag

[
0.8, 0

]
Q(a) = diag

[
25, 4, 4

]
, R(a) = diag

[
0.3, 1

]
.

The resulting cooperative feedback control law of the original
game is computed as in the first example:

K(h) = [3.59, 1.31, 0.30] and K(a) = [−0.06, 2.12, 3.47].

3) Results: The matching trajectories of the ground truth
game (GTG) of the potential game (PG) are given in Fig. 4.
The deviations from the original game’s trajectories is again
small, which can be seen in the quantitative measures:
The RMSE(x) = 10−2 · [0.10, 0.86, 1.27] and the
MAE(x) = 10−3 · [0.21, 0.85, 1.83]. The identified poten-
tial game has a Hamiltonian function with the weighting
matrices

Q(p)=

[
8.94 0.04 0.04
0.04 7.01 0.33
0.04 0.33 8.04

]
and R(p)=

[
1.83 0.0
0.0 0.88

]
.
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Fig. 3: The dynamics of Hamiltonian functions

The Figures 5a and 5b show that the sufficient condition
for a potential game is fulfilled, cf. (9), as the sign of the
derivate of the cost functions are identical to the potential
function, so (19) also holds ∀t for a general, non-holonomic
VM.

VII. CONCLUSION AND OUTLOOK

This paper presented an extension of the ordinal potential
games for differential games to model human-machine inter-
actions by the cooperative control of VMs. The concept of
the potential games enables a constructive controller design
of limited information controller, in which some system
states and trajectories are not measurable. The necessary and
sufficient condition for the existence of an ordinal potential
differential game are derived. A method is given how to
find an ordinal potential game to an original game. The
correctness of the modelling with ordinal potential games
is verified with the simulative applications of VMs.

This proposed method will be used for the systematic
derivation of the limited information cooperative controller
presented in [11] and [10], which enables a better under-
standing of the limited information cooperative controller and
eliminates the heuristic tuning of the controller.
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Fig. 4: Trajectories of the Ground Truth game (GTG) and of
the potential game (PG)
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Fig. 5: The dynamics of Hamiltonian functions
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