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1. Introduction

In this technical report, we present the supplementary information for the evaluation

of the Layered Reference Architecture for Model-based Quality Analysis. In chapter 2, we

present the case studies, �rst in their monolithic and then in their modular form. We

present installation instructions for the tools required to reproduce the evaluation results

in chapter 4. In chapter 5, we provide detailed information about the evolution scenarios.

The tooling and the results of the scenarios can be found online [9].
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2. Case Studies

In this section, we present the four case studies we modularized according to our reference

architecture for model-based analyses. The model-based analyses we used are SimuLizar,

Camunda, KAMP4aPS, and SmartGrid. We built modular versions of the scenarios we ex-

tracted from the case study model-based analyses for the evaluation and we only refactored

them according to the reference architecture’s guidelines. We did not �x bad smells that

the reference design does not address because doing so would jeopardize the evaluation’s

internal validity.

2.1. So�ware Architecture Quality Prediction – Palladio
Simulator SimuLizar

The Palladio Simulator is an established software architecture quality analysis tool based

on the Palladio Component Model (PCM). Contrary to its name, the Palladio Simulator

consists of three performance analyses capable of determining the performance of software

architecture: SimuCom, EventSim, and SimuLizar. Each of these analyses has a distinct

set of features with di�erent priorities. SimuCom covers most features of the PCM, it

generates the analysis code based on the model, but it has performance issues for large

software architectures. EventSim interprets instances of the PCM, and only supports the

performance analyses of software architecture while ignoring many features of the PCM.

In contrast to SimuCom, EventSim has fewer issues with large software architectures due to

its event-based nature [12]. SimuLizar interprets the PCM, and it supports most of the PCM

features. Due to their di�erent approaches, their source code is not interchangeable; thus,

the three analyses are incompatible. We focus on SimuLizar, as it is actively maintained.

One of the main issues the developers had before the maintenance and development

stopped were that changes in the PCM required changes in all three analyses. All three

are historically grown model-based analyses, with the typical deterioration of the internal

quality over time. SimuLizar is a historically grown model-based analysis, with the typical

deterioration of the internal quality over time. Other historically grown model-based

analyses show similar problems. As the quality of the analysis deteriorated, more and

more e�ort was required to sustain all three.

2.1.1. SimuLizar Overview

The Palladio Simulator consists of three analyses (SimuLizar, SimuCom, and EventSim),

each of which employs a distinct analysis approach and can make performance predictions

based on the PCM. SimuLizar is the most sophisticated of the three analyses; thus, we

have selected it for our case study. SimuLizar is developed since 2013; it is written in the
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2. Case Studies

programming language Java. SimuLizar consists of 75 packages, 306 classes, 69 interfaces,

and three enums; it is divided into 36 java-projects. SimuLizar has doubled in size since

2015, with classes increasing from around 150 to over 300. It also has a long history of

evolutionary changes. SimuLizar features ten openly available extensions
1

and many

extensions that are not fully disclosed (e. g., student theses, experimental extensions).

SimuLizar represents a historically grown and versatile model-based analysis that can

analyse multiple aspects of software quality. If not stated otherwise, when we mention the

term component we refer to analysis component, and when we mention the term feature
we refer to analysis feature. Before the refactoring of SimuLizar, all dependencies on the

metamodel PCM were consolidated in one analysis component, see �g. 2.1. We exclude

the components that have no representation in the PCM due to the size of SimuLizar.

2.1.2. SimuLizar Refactoring

We started the modularisation with the release version 4.3 of the Palladio-Simulator, and

used the modularised PCM presented in [6, 15]. Before we modularised SimuLizar, we had

to change the dependencies of SimuLizar on the modular PCM. Changing the dependencies

is necessary, as the modular PCM is not used in the Palladio-Simulator. After changing

the dependencies, we analysed SimuLizar regarding the bad smells of Language Blob and

Feature Scatter. We used the Language Blob bad smell to identify which classes we have to

separate the components into the three desired layers. The Feature Scatter smell indicates

which classes and components could be merged, as the refactoring of the Language Blobs

results in many small classes. The Language Blob analysis resulted in 18 occurrences, and

the Feature Scatter analysis resulted in 33 occurrences. First, we focused on the language

blobs of components that are supposed to be on di�erent layers. Therefore, we applied a

horizontal-split refactoring to separate the analysis component in the layers π , ∆, and Ω,

which resulted in three components. Then, we applied vertical-split refactorings to the

three layers to separate the language blobs still present on these layers. The �nal step was

to merge the components where the language features were scattered over di�erent classes

and components. We could not �x all occurrences of the Feature Scatter bad smell; for

certain analysis operations, multiple language features are required. The model observing

part of SimuLizar requires the modelobserver language feature and the software usage
language feature. This resulted in nine components on π , 22 components on ∆, and one

component on Ω. The component count increased from one component to 32 components.

We reduced the number of Language Blobs from 18 to zero, and the number of Feature

Scatters from 33 to ten. In the following sections 2.1.3.1 and 2.1.3.2, we present detailed

information about the modular structure of SimuLizar after the refactoring.

2.1.3. Modular SimuLizar (mSimuLizar)

Figure 2.2 depicts the structure of SimuLizar after the modularisation. In the �gure,

we exclude the analysis components that have no representation in the language, e.g.

events, the interpreter component, or the recon�guration component, as most analysis

1
https://sdqweb.ipd.kit.edu/wiki/SimuLizar
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org.palladiosimulator
.simulizar

Language
Feature analyses optional mandatory

Figure 2.1.: SimuLizar dependencies on mPCM, simpli�ed

components have dependencies on them. Including these additional components renders

the already complex �gure unintelligible.

2.1.3.1. Paradigm

Composition: The composition component handles the assembly of resources of the PCM.

On the paradigm layer, the functionality of the composition component is prepared to

handle any type of resources. The assembly of component types includes the preparation

of resources. Preparing a resource means, setting the context and the context hierarchy of

the resource. The composition component provides functionality for adding or deleting a

resource and it also provides the connectors required to compose resources.

Constants: The constants component provides the constants required throughout the

analysis of PCM instances.

Repository: The repository component on the paradigm layer manages the roles de�ned in

the PCM. The PCM de�nes required and provided roles for components. In this component,

the roles, e.g. provided and required roles, are managed. It provides interfaces to receive

these roles, and also it provides interfaces to receive the signatures de�ned in the PCM.

The main portion of the repository component is the repository switch. The switch contains

the interpretation of the roles. It also contains the analysis code concerning the required

and provided roles. The signatures are implicitly used throughout the analysis code.

Runtimestate: The runtimestate component provides abstract classes and interfaces for

managing the state of the analysis. It holds the PCM instance, the event noti�cation helper,

and a registry of the analysed components. The component registry is an interface for

validating whether a component is available for the analysis. It also provides add and fetch

operations for the PCM components. The event noti�cation helper is an interface for �ring

events and removing listeners.

Se�: The Service E�ect Speci�cation (SEFF) in the PCM represents the basic actions of

a component. The se� component provides the interpretation and the analysis code for

the elements of the se� language feature of the PCM. The se� component contains the

interpreter for the se� types. For each se� type, the se� component contains the analysis

code required for the elements.

Usage: The usage component provides the handling of probabilities de�ned in the usage

language feature of the PCM. Probabilities are required when the analysis encounters a

5
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runconfig

paradigm 
runtimestate

paradigm 
utils

domain 
utils

constants

composition

repositoryseff usage variables

behavior seff

Infrastructure 
composition

modelobserver

modelobserver 
environment

domain 
repository

runtimestate simulated 
component

software 
composition

software repositorysoftware usage

usage 
model

notification

Paradigm π
Domain Δ

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain 

Figure 2.2.: mSimuLizar structure refactored, simpli�ed

branch. The usage component determines in which direction the analysis must proceed.

Besides branches, the usage component also provides the scheduling of delays. Another

part of the usage component is the handling of loops. Based on the size of a loop, it

determines the time required to �nish the loop. Furthermore, the usage component

provides an interface to manage user actions.

Variables: The variables component provides the evaluation of the model instance. It

creates an evaluator instance containing the variable characterisation of the PCM and

the model evaluator. The evaluation provides a condition checker, which checks whether

a boolean expression in a condition holds. The variable component also provides the

generation of random variables.

2.1.3.2. Domain

Behaviour se�: The behaviour se� component provides the analysis code for the PCM

model elements external call action, acquire action, collection iterator action, set variable
action, and release action. The analysis code requires information about the infrastructure;
thus, in this component, remain dependencies on the infrastructure language feature. The
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2.1. Software Architecture Quality Prediction – Palladio Simulator SimuLizar

behaviour se� component also provides analysis code which determines probabilistic

transitions when encountering branches.

Domain repository: The domain repository component provides an interface for imple-

menting the analysis code for the PCM model elements provided role and signature.

Infrastructure composition: The infrastructure composition component provides the

analysis code for the PCM model elements assembly infrastructure connector and required
infrastructure delegation connector. The component utilises the composition and repository

component of the π layer.

Modelobserver: The modelobserver component provides the analysis code for the PCM

model elements communication link resource speci�cation, linking resource, processing
resource speci�cation, resource container, workload, closed workload, open workload, and

usage scenario. The component requires, in addition to the modelobserver language feature,

the software usage language feature, thus it holds dependencies on PCM types of these

two language features.

Modelobserver environment: The modelobserver environment component provides the

analysis code for the PCM model element resource environment. This component handles

the modelobserver component, and it provides observers for the said model and the

resource environment.

Noti�cation: The noti�cation component provides the analysis code for the PCM model

elements operation provided role, operation signature, external call action, entry level system
call, and usage scenario. This component has dependencies on four language features to

perform the analysis.

Runtimestate: The runtimestate component provides the analysis code for the PCM

model elements resource environment, and assembly context. The runtimestate component

has only two dependencies on two language features, but it consolidates the state of the

analysed system. It utilises direct knowledge (i.e., usage model component), or it utilises

the modelobserver component to manage the runtime state of the analysis.

Simulated component: The simulated component provides the analysis code for the

PCM model element passive resource. It represents two types of components mSimuLizar

can analyse. The �rst component is a basic component that can be monitored, and it

can acquire and release resources. The second component is a composite component,

consisting of a set of basic components.

Software composition: The software composition component provides the analysis code

for the PCM model elements assembly connector, required delegation connector, and com-
posite component.

Software repository: The software repository component provides the analysis code for

the PCM model elements basic component and service e�ect speci�cation.

Software usage: The software usage component provides the analysis code for the PCM

model elements entry level system call, usage scenario, and usage switch.

Usage model: The simulated component provides the analysis code for the PCM model

elements usage model, usage scenario, workload, closed workload, open workload, software
usage package.

7



2. Case Studies

2.2. Business Process Simulation – Camunda

The analysis Camunda is a work�ow and simulation engine based on the Business Process
Modelling Notation 2 (BPMN2)Domain-Speci�cModelling Language (DSML). The BPMN2 is

developed by the Object Management Group (OMG). It is also an International Organization
for Standardization (ISO) standard for modelling business processes. We selected Camunda

as a case study because it covers the additional domain of business process analysis, and it

can be used for further refactorings since, besides the standard BPMN2, it also supports

the Case Management Model and Notation (CMMN 1.1) and the Decision Model Notation

(DMN 1.1). Camunda is a fork of the free work�ow management system Activiti, developed

in 2010. In 2013 Camunda BPM was forked from Activiti as an open-source project by

the company Camunda in Berlin. Our refactorings focus on the Camunda BPM Platform,

which consolidates the dependencies on the metamodel. Due to the size of the Camunda

BPM Platform
2

(over 500,000 lines of code), we were unable to refactor it in a reasonable

time frame; therefore, we focused our refactorings on the a�ected analysis components

and �les of our scenarios.

2.2.1. Camunda Overview

The Camunda BMN Platform consists of 15 modules that also contain modules. It has 52

modules in total. The model-api module consolidates the dependencies on the BPMN2

metamodel. Figure 2.3 depicts the internal dependency structure of the Camunda BPM

Platform. Turquoise nodes represent dependencies on org.camunda.bpm modules. Purple

nodes represent dependencies on org.camunda.bpm.model modules. Black nodes represent

dependencies on the remaining org.camunda modules.

2.2.2. Camunda Refactoring

Before we could refactor the Camunda BPM Platform, we had to adapt the dependencies

of the analysis code to the modular BPMN2 DSML [6, 15]. The turquoise nodes in �g. 2.3

are the modules that had to be modi�ed. The dependencies of the Camunda BPM Platform

regarding the mBPMN2 metamodel are similar to the structure shown in �g. 2.1. In

the org.camunda.bpm.model module are the dependencies on the mBPMN2 metamodel

consolidated. As we did not refactor the whole analysis, details regarding the refactoring

will be presented in chapter 5.

2
https://github.com/camunda/camunda-bpm-platform
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analysis components
to modify

language components remaining analysis
components

Figure 2.3.: Camunda BPM Platform Dependency Structure
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2. Case Studies

2.3. Change Propagation Analysis – KAMP and KAMP4aPS

The Karlsruhe Architecture Maintainability Prediction for Automated Production Systems
(KAMP4APS) analysis is a single-purpose analysis; its metamodel is only used by a sin-

gle analysis. Although the Karlsruhe Architecture Maintainability Prediction (KAMP)-

Frameworks methodology [5] is built to support the domains of software systems [7],

business processes [14], production systems [8], and Programmable Logic Controller (PLC)

software [2], each domain requires a dedicated analysis and metamodel. Due to the

selection of the KAMP4APS metamodel in our previous work, we will focus solely on

the KAMP4APS analysis. KAMP4APS covers an additional domain, which extends the

diversity of our case studies. The KAMP4APS metamodel and analysis has been under

development since 2016; it contains six analysis components, one of which consolidates

the dependencies on the metamodel.

2.3.1. KAMP4APS Overview

KAMP4APS has a generic part that provides the framework for the change impact analysis.

This framework is the foundation of the KAMP Methodology [5]. It provides a domain-

independent part, consisting of a domain-independent modi�cation metamodel, a set of

algorithms to derive a task list, eliminate duplicates and sort elements in the task list. It also

provides a metamodel and algorithms to support decision-making regarding changes in

the analysed domain. Based on the domain-independent part, each domain has to provide

a metamodel of the domain that will be analysed. The change impact analysis requires a

structural metamodel and a non-structural metamodel. In the context of KAMP4APS the

structural parts of the metamodel are the electrical and mechanical parts in a production

system. Non-structural parts are, for example, documentation, drawings or tests. These

models are used in the rule engine of KAMP to determine the impact of changes to the

structural and non-structural parts of the system. Although KAMP4APS is separated into a

domain-independent and a domain-dependent part, and the further separation into models,

algorithms, structural and non-structural elements, it consists of a module containing

the domain-independent part (KAMP) and a model containing the domain-speci�c part

(KAMP4APS).

2.3.2. KAMP4APS Refactoring

Before we could refactor KAMP4APS, we had to adapt the dependencies of the analysis

code to the modular KAMP4APS metamodel [6, 15]. The dependencies of the KAMP4APS

regarding the modular KAMP4APS metamodel are like the structure shown in �g. 2.1. The

dependencies on the modular KAMP4APS metamodel are consolidated in the KAMP4APS

module. As we did not refactor the whole analysis, details regarding the refactoring will

be presented in chapter 5.

10



2.4. Energy Network Simulation – SmartGrid

2.4. Energy Network Simulation – SmartGrid

As the KAMP4aPS analysis, the SmartGrid analysis is also a single-purpose analysis. The

SmartGrid energy network simulation performs an impact and resilience analysis. The

metamodel is used to model topologies of smart grid energy networks. It also adds the

domain of energy network analysis to our case studies; it is the second-youngest analysis,

the development started in 2014. Compared to the analysis SmartGrid, the size of the

SmartGrid analysis is smaller by a factor of ten. The SmartGrid contains 15 analysis

components, one of which consolidates the dependencies on the metamodel.

2.4.1. SmartGrid Overview

The Smart Grid Resilience Framework allows modelling and analyse critical infrastructures.

With metamodel of this analysis, the topology of a smart grid can be modelled. The analysis

allows for simulating cyberattacks; it also allows for determining the impact of such attacks

on the infrastructure. These simulations can be coupled with a power load simulation and

a simulation of critical infrastructures, which are developed by our research partners. In

contrast to the previous case studies, the metamodel is integrated into the analysis.

2.4.2. SmartGrid Refactoring

Before we could refactor the SmartGrid analysis, we had to adapt the dependencies of

the analysis code to the modular SmartGrid metamodel [6, 15]. The dependencies of the

SmartGrid regarding the modular SmartGrid metamodel are like the structure shown

in �g. 2.1. The dependencies on the modular SmartGrid metamodel are consolidated

in the smartgrid.attackersimulation and the smartgrid.impactanalysis module. Although

technically, these two modules represent two di�erent analyses, we consider them as one.

Each represents a analysis feature of the SmartGrid analysis. As we did not refactor the

whole analysis, details regarding the refactoring will be presented in chapter 5.
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3. Refactorings

In this chapter, we present the refactorings that analysis developers can use to apply our

reference architecture for model-based analyses. We split the refactorings in analysis class
refactorings and analysis component refactorings. Class refactorings are intended for the

refactoring of classes of an analysis component and component refactorings are intended

for the refactoring of analysis components. The split and merge of classes, the breaking of

dependency cycles, and the inversion of dependencies are part of class refactorings. The

component split refactorings (i. e., vertically and horizontally), and component merges

are part of the analysis component refactorings. To apply the structure of the DSML, the

following refactorings can be used. Figure 3.1 shows the legend for the �gures used in this

chapter.

3.1. Analysis class refactorings

Class refactorings are the foundation for the decomposition of the model-based analysis

and adapt it to the structure of the corresponding DSML. It is not always necessary to apply

all in this section presented refactorings to reach the desired result. These class refactorings

equip the user with a set of refactoring operations to break the monolithic structure of

model-based analysis and make it modular without changing existing behaviour. We

distinguish four types of analysis class level refactorings: splitting a class, merging a class,

breaking dependency cycles, and reversing dependencies.

3.1.1. Class split

Splitting a class is a typical refactoring operation where class elements, such as attributes

and methods, are extracted and transferred into one or more new classes [4]. In language-

and object-oriented design, the goal of the class split refactoring is to separate di�erent

concerns into separate classes to improve the comprehensibility of individual classes. The

refactoring operation class split is shown in �g. 3.2. The class C has dependencies on the

two language components L1 and L2. Our approach assumes that the underlying language

is already modularised and partitioned. Therefore, if possible, a class should be split with

more than one language component as a dependency. Additionally, whether the language

Extension

Analysis Class

Reference

Analysis Component

Dependency

Language Component

Inheritance

Refactoring Operation

Figure 3.1.: Legend for the notational elements used to depict the refactoring operations
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C
E

C

L2

L1
L1

L2

C1

C2
S

L2

L1

(i) (ii)

Figure 3.2.: Class split

components are at one layer or distributed over several layers in the architecture must

be distinguished. Namely, when a class is split according to the structure of the language

components, the refactored classes must be distributed according to their dependencies in

the same architecture layers. It is shown in �g. 3.2(i) class C is extended by a new class E.

Also, E takes properties of C ; for this, the required properties are factored out from C to E.

Incoming dependencies remain on C .

From a purely syntactical view, attributes, methods, references, containments, and

inheritance can be factored out on the class level without complications. In the case of

model-based analysis, it is often not possible to split a class according to the language

structure. An analysis feature might need di�erent language features to perform an analy-

sis, but the structure of the DSML requires, that the analysis feature has no dependency to

the language feature i. e., has no knowledge about the language feature. However, given

the structure of the language, it is not always possible to separate a class as demanded

by the reference architecture of the metamodel. This can occur if, for example, language

components from di�erent layers are used with dependencies on each other. Besides

the elements that can be cleanly separated from a class and the components that do not

have dependencies on the language component, we propose encapsulating the inseparable

elements in a class and then placing them in the most speci�c layer. As it is shown in

�g. 3.2(ii), instead of an extension class E, a specialisation class S is introduced and the

incoming dependencies are shifted to S . In the worst-case scenario, the classes cannot be

fully split, so that S holds dependencies of L1 and L2.

3.1.2. Class merge

Like the class split, the class merge is also a refactoring operation that originates in

object-oriented design [4]. A class merge transfers attributes and methods of a class to

another already existing class. The class merge is intended to consolidate concerns that

C
C2

C1
L L

Figure 3.3.: Class merge

are distributed across classes. The class merge refactoring is shown in �g. 3.3. When a
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3.1. Analysis class refactorings

language component of the DSML is scattered, i. e., types of a language component are

referenced by multiple classes and levels, the class merge can be used to merge these

dependencies. This operation is applied by extracting attributes and methods of one class

and then inserting them into another class. The result is an extended target class with

attributes and behaviour of the source class. C1 and C2 have dependencies on the same

language component L; the merge combines C1 and C2 into one new class, C which as a

result, shares the dependencies on the desired language component L.

3.1.3. Breaking dependency cycles

Model-based analysis modelled according to our reference architecture must be cycle free. If

the bad smell cyclic dependencies, known from object-oriented design, occurs the following

refactoring operations show, how developers can break such cycles. Dependency cycles

C1 C2
C1

C2
E

(i)

…
C1 C2

…
(ii)

Figure 3.4.: Breaking dependency cycles

prevent easy extension of software systems [13], and according to Fowler [3], dependency

cycles make a system harder to understand, thus, harder to maintain. The refactoring

of breaking dependency cycles is shown in �g. 3.4 We assume, that the DSML does not

contain any dependency cycles [6], and thus, the model-based analysis should also not

contain any dependency cycles. As in language- and object-oriented design, we distinguish

two refactoring operations to break dependency cycles. On the one hand, the previously

presented class split can be used; on the other hand, the dependency inversion is also

a valid option to break dependency cycles. The initial state is, that C1 and C2 depend

on each other. The outgoing dependency of C1 is factored out into E if they contributed

to the cycle. As a result, C1 is split, and C1 has no dependency on E; thus, the cycle no

longer exists see �g. 3.4(i). The dependency inversion is described in the following section.

Dependency inversion is one technique to tackle dependency cycles, as exempli�ed in

�g. 3.4(ii).

3.1.4. Dependency inversion

According to Martin [11], abstractions (A) must not depend on speci�cs (S); instead,

speci�cs must depend on abstractions. This statement is known as the dependency inver-

sion principle. It originated in the object-oriented design and was later adapted to suit

the design of DSMLs [6]. To tackle the problem when dependencies violate the reference

architecture constrains, we present a refactoring solution that transfers the reference ar-

chitecture for DSMLs to model-based analyses. The refactoring operations for dependency

inversion are illustrated in �g. 3.5.
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A

S

A

S

Figure 3.5.: Dependency inversion

If A is a specialisation of S , the inheritance is wrong and must be inverted; occurrences

of S and A in the analysis also must be switched �g. 3.6(i). The inheritance is removed

A

S

A

S

A

N
S

A

S
(i) (ii) (iii)

Figure 3.6.: Dependency inversion – Inheritance

if an atomic analysis feature is implemented by A and S . The new subclass of A and S ,

N , is introduced �g. 3.6(ii). Dependencies must be redirected to either A, S , or N ; for

this, incoming dependencies of A and S are used. If S is not a specialisation of A but a

�rst-class analysis feature, the inheritance is removed and replaced by a reference from S
to A �g. 3.6(iii).

A reference �g. 3.7 can be inverted using a class split �g. 3.7(i). When inverting the

reference, a new class E is introduced. E replaces the reference from A to S . This option

A

S

A

E
S

A

S

A

S

N
…

(i) (ii) (iii)

Figure 3.7.: Dependency inversion – Reference

should be chosen if S is a �rst-class analysis feature (i. e., an instance of S is not dependent

on an instance of A). When numerous other classes refer to an instance of S , this is an

indication. If S is a second-class analysis feature, which extends the functionality of

A but is no further extended, a simple extends relation can be implemented �g. 3.7(ii).

However, if S needs to be further specialised, introducing a common superclass N is

advised �g. 3.7(iii). A bidirectional reference between two classes A and S is the simplest

form of a dependency cycle (see �g. 3.4, and a special case of �g. 3.7). The bidirectional

16



3.2. Analysis component refactorings

(i) Bidir. Ref.

A

S

A

S

(ii) Containment

A

S

A

S

Figure 3.8.: Dependency inversion – Bidirectional Reference and Containment

nature implies a redundant reference, which can be removed so that only one reference

remains, see �g. 3.8(i). Containment references can be removed by extracting an extension

class S representing the desired feature. That way, features can be strictly separated, see

�g. 3.8(ii).

3.2. Analysis component refactorings

Our approach uses several refactorings to adjust analysis components, dependencies, and

classes. Many of these refactorings perform a split of an analysis component, which

RefactorLizar supports. When splitting an analysis component, the analysis architect �rst

selects the analysis component which needs to be split and then selects the corresponding

language. RefactorLizar then automatically refactors the component accordingly to the

corresponding language. If the analysis architect wants to perform a speci�c refactoring

operation, RefactorLizar also supports manual evocation of all class level and component

level refactorings.

3.2.1. Horizontal split

An analysis component must be split horizontally by the analysis architect if parts of an

analysis component can be used independently of each other (cf. Single Responsibility

Principle [10]). An initial indicator to split an analysis component is when an analysis

component has dependencies on multiple language components. �g. 3.9(i) shows the

potential best-case outcome; the components are unrelated. In �g. 3.9(ii), one of the

analysis components is dependent on the other. In �g. 3.9(iii), the potential worst case is

shown. The new components M and N may still share the original component’s common

part P . The parenthesis around P indicates that this component does not necessarily exist.

All the analysis components may be mutually dependent. The dependencies of M and N
must be adjusted according to the dependencies of the analysis feature they implement.

The adjustment of the dependencies must be done by the analysis architect and the analysis

component developer, in �g. 3.9(iv) the components M and N dependent on a common

component P . The common analysis component of P also indicates an additional feature,

which is an addition to the analysis feature graph.
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M N M N

(i) (ii)

P

M N

P

M N

(iii) (iv)

[ ]

Figure 3.9.: Horizontal split

3.2.2. Vertical split

The vertical split is illustrated in �g. 3.10. The analysis architect performs this refactoring if

Figure 3.10.: Vertical split

the layer an analysis component could be assigned to is not clear. An indicator to vertically

split an analysis component is when said component has dependencies on language com-

ponents on di�erent layers. A horizontal split is recommended if the language components

are on the same layer. The analysis architect divides the analysis component so that

each resulting analysis component can be assigned to one layer. The analysis component

developer must split classes if necessary. After the refactoring, each resulting analysis

component is assigned to its layer by the analysis architect. The resulting architecture

could have dependencies that point from an abstract to a more speci�c layer. If this is the

case, the analysis component developer must perform dependency inversion.

3.2.3. Merge

A merge refactoring could be advisable when more than one analysis component depends

on the same language component and if the analysis components are located on the same
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3.2. Analysis component refactorings

layer. The analysis developer checks whether the dependent language features have a

Figure 3.11.: Merge

mandatory feature relation or if the analysis components form a dependency cycle. If one

of these constructs can be found in the architecture, the analysis architect should consider

merging those features and their analysis components �g. 3.11.

3.2.4. Extension extraction

The analysis architect uses extension extraction refactoring if an analysis component

contain content that does not belong to the feature it implements. An indicator for refac-

M
M’

P

M’

P’

M’

P’

M’

P’

M’

P’

(i) (ii)

(iii) (iv)

Figure 3.12.: Extension extraction

toring is if the optional content cannot be used independently. The extension extraction

refactoring is depicted in �g. 3.12 – the analysis architect factors out the optional content of

M into a new analysis component P . The remainder of M is denoted as M′
. The classes of

component M must be split if they should be located in P but contain optional properties

that belong to M′
. The analysis component developer also does this refactoring. If a

class has dependencies on multiple language components, which cannot be factored out,

the class must be put in the most specialised analysis component. The following step

reverses all dependencies from elements of M′
to P . Incoming dependencies on P must be
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3. Refactorings

considered for dependency inversion. The result of the dependency inversion is shown as

outgoing dependencies of P ′. The refactoring can be performed if the analysis components

have no dependencies on any language component. However, if M has dependencies on

multiple language components, each dependency should be refactored into one dedicated

analysis component (see �g. 3.12(ii)). If the optional content of P ′ represents a dedicated

analysis component that has no representation in the language, P ′ must be refactored into

a dedicated analysis component with no dependencies on the language (see �g. 3.12(iii)).

If it is reasonable to separate optional content, P ′ but the dependencies on one language

component cannot be separated �g. 3.12(iv) must be applied.

3.2.5. Feature support extraction

The refactoring feature support extraction is still a form of extension extraction refactor-

ing [6]. The refactoring is depicted in �g. 3.13. It has the same impact as separating P

M N
M’

P

N

M’

P

NM’

P

N M’

P

NM’

P

N

(i)

(ii) (iii)

Figure 3.13.: Feature support extraction

shown in �g. 3.12. The analysis architect performs the feature support extraction if a part

P of an analysis component M is dependent on another analysis component N , and M
cannot be used without N . The analysis architect separates P into its analysis component.

The remainder of M is denoted as M′
. P is dependent on M′

, and N . Dependencies must

be inversed if M′
has dependencies to P . To separate the content of both analysis features,

the analysis component developer performs class split refactorings. P , the extension of

M′
contains content of N , P adds support for N to M′

. Thus, it is referred to as feature

support extraction.
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We have developed a Java library to support the evaluation of our case studies. Besides the

evaluation, the library also supports the analysis and refactoring of model-based analyses.

The library supports Java- and EMF-based analyses. The library, called RefactorLizar
1
,

serves three purposes. Determining cohesion, coupling, and complexity of model-based

analyses, see section 4.1. Analysis of model-based analyses regarding reference architecture

violations, see section 4.2. Automated refactoring of model-based analysis, see section 4.3.

4.1. RefactorLizar – Evaluation Library

RefactorLizar allows developers to determine cohesion, coupling, and complexity of model-

based analyses using the hypergraph metrics of Allen et al. [1]. The evaluation of meta-

models is not supported by RefactorLizar Evaluation Library.

4.2. RefactorLizar – Analysis Library

The analysis part of RefactorLizar provides information about a modularized model-based

analysis. In order for the analysis to function, the developer must provide a DSML and

a corresponding model-based analysis as input. RefactorLizar consists of the follow-

ing four analyses: 4.2.1 Feature Scatter identi�cation, 4.2.2 Language Blob identi�cation,

4.2.3 Identi�cation of layer violations, and 4.2.4 Identi�cation of dependency cycles.

4.2.1. Feature Scatter identification

When multiple analysis components have dependencies on the same DSML language type,

we de�ne it as Feature Scatter. A Feature Scatter violates our reference architecture, as an

analysis component should only depend on one language feature. Besides the multiple

dependencies, the feature and its corresponding component must be located on a single

layer. RefactorLizar can identify the scattering of features; it provides the developer with

a list of components that depend on a single feature.

4.2.2. Language Blob identification

When analysis components have multiple dependencies on DSML language types, we

de�ne it as Language Blob. A Language Blob violates our reference architecture, as an

analysis component should have only one DSML feature as dependency. RefactorLizar

1
https://github.com/MoSimEngine/RefactorLizar
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supports the developer to identify components that have dependencies to more than one

DSML feature. The analysis result provides the developer with a list of language features,

a component depends on. The developer can de�ne a threshold to set the minimal amount

of dependencies before a component is added to the list.

4.2.3. Identification of layer violations

When a model-based analysis feature is on a di�erent layer than its corresponding model-

based analysis component, we de�ne it as a layer violation. Also, when a model-based

analysis feature is on a di�erent layer than its corresponding DSML feature, we de�ne it as

a layer violation. RefactorLizar allows the developer to detect when dependencies between

layers point in the wrong direction or surpass adjacent layers. The layer identi�cation

of analysis components requires further annotation by the analysis developer, while the

layer identi�cation of referenced DSML types is made automatically.

4.2.4. Identification of dependency cycles

A bidirectional dependency between analysis components is the simplest form of a de-

pendency cycle. RefactorLizar can detect dependency cycles on class and component

level.

4.3. RefactorLizar – Refactoring Library

RefactorLizar supports the following basic refactorings: Move type members, introduce in-

heritance, adapt interface extension, change the visibility of methods and attributes, delete

classes, delete methods and attributes, and create new types. RefactorLizar can provide

these refactorings automatically: Class Split, Class Merge, Breaking Dependency Cycle,

Dependency Inversion, Horizontal Split, Vertical Split, Merge, and Extension Extraction.

4.4. RefactorLizar – Reference implementation

This project provides a command-line interface for the RefactorLizar library. We made

a reference implementation to demonstrate the analysis features of RefactorLizar. The

reference implementation is available on our GitHub page
2

and supplementary material [9].

The implementation is provided as a Command Line Interface (CLI) tool. We also plan to

provide a visual interface for the RefactorLizar library as a Visual Studio Code extension.

4.4.1. Commands

RefactorLizarCLI utilizes PicoCLI
3

and GraalVM
4

thus, commands can be started via the

provided binary or via gradle run -args="<command/s>".

2
https://github.com/MoSimEngine/RefactorLizarCLI

3
https://picocli.info/

4
https://www.graalvm.org/

22



4.4. RefactorLizar – Reference implementation

4.4.1.1. evaluateCode

The command evaluateCode evaluates hypergraph code metrics for the given source path .

The arguments data-types and observed-system is the path to �le for ignored/included

types. Every line in this �le is seen as a regex tested against the quali�ed type names. The

data-types parameter represents the ignored types and the observed-system parameter

represents the included types. The code argument provides the path to the analysis to

evaluate.

4.4.1.2. adaptDependencies

The command adaptDependencies changes imports of simulator code according to the new,

modular metamodel. The command requires a CSV �le that contains the mapping of the

modular metamodel types mapped to the monolithic metamodel types. The argument

csv-path provides the path to the CSV �le. The argument simulator-code provides the

path to the analysis.

4.4.1.3. findDependencyCycleSmell

The command �ndDependencyCycleSmell �nds occurrences of the dependency cycle smell.

The analysis-level argument sets the detail level of the result. Available analysis levels

are type, component and package. The language argument is the path to the metamodel.

The simulator argument is the path to the analysis code. If the code is eclipse-based the

�ag input-type-eclipse allows to handle eclipse-based analyses.

4.4.1.4. findDependencyDirectionSmell

Find occurrences of the dependency direction smell. Layers must be ordered from bottom

to top and separated by ’,’. Available analysis levels are type, component and package. The

analysis-level argument sets the detail level of the result. Available analysis levels are

type, component and package. The language argument is the path to the metamodel. The

simulator argument is the path to the analysis code.

4.4.1.5. showTypesInMetamodels

The command showTypesInMetamodels lists all metamodel types. The argument language-root

points to the root of the metamodel. The result can be used to determine the utilisation

of a metamodel in a model-based analysis. The utilisation is the number of all types in a

metamodel in relation to the types of a metamodel used in a model-based analysis.

4.4.1.6. findFeatureScatteringSmell

Find occurrences of the feature scattering smell. The analysis-level argument sets the

detail level of the result. Available analysis levels are type, component and package. The

language argument is the path to the metamodel. The simulator argument is the path

to the analysis code. If the code is eclipse-based the �ag input-type-eclipse allows to

handle eclipse-based analyses.
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4.4.1.7. findDependencyLayerSmell

Find occurrences of the improper simulator layering smell. Available analysis levels are

type, component and package. The analysis-level argument sets the detail level of the

result. Available analysis levels are type, component and package. The language argument

is the path to the metamodel. The simulator argument is the path to the analysis code.

If the code is eclipse-based the �ag input-type-eclipse allows to handle eclipse-based

analyses.

4.4.1.8. findLanguageBlobSmell

Find occurrences of the language blobs smell. Available analysis levels are type, component

and package. The analysis-level argument sets the detail level of the result. Available

analysis levels are type, component and package. The language argument is the path to

the metamodel. The simulator argument is the path to the analysis code. If the code is

eclipse-based the �ag input-type-eclipse allows to handle eclipse-based analyses.
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5.1. Evolution Scenarios

In this section, we present the evolution scenarios of our four case studies. We identi�ed

ten scenarios per case study, ergo 40 scenarios in total. Each case study provided historical

evolution scenarios; we did not have to de�ne potential or random evolution scenarios.

Historical evolution scenarios can a�ect �les without dependencies on the DSML; thus, we

did not apply any refactoring to these �les. Also, we did not consider these �les when we

calculated the metrics cohesion, coupling, and complexity. For each case study, we provide

sources for the DSML and model-based analysis in their monolithic and modular state.

The scenarios can also be found in our reproduction package [9]. To correctly identify the

scenario in the source code, we provide a commit hash or revision number and the date

when the commit occurred.

5.1.1. SimuLizar

For the model-based analysis SimuLizar, we identi�ed ten historical evolution scenarios.

The reproduction data for SimuLizar contains the refactored code of the model-based

analysis. Table 5.1 contains links to the monolithic and modular model-based analysis.

Name Source Branch
Language PCM [15] –

Modular Language mPCM [15] –

Analysis SimuLizar Palladio-Analyzer-SimuLizar
1

master: b6b69b4f1

Modular Analysis mSimuLizar mSimuLizar [9] –

Table 5.1.: Overview SimuLizar Projects

5.1.1.1. Scenario 01 – RepositoryComponentSwitch uses Extensible RDSe�Switches

The �rst scenario is the commit 7542134. The commit occurred on Monday, April 24th

2017. In the monolith, four �les are changed. The following �les are a�ected by the

commit: RDSe�Switch, RepositoryComponentSwitch, AbstractRDSe�SwitchFactory, and

IComposableSwitch.

1 https://github.com/PalladioSimulator/Palladio-Analyzer-SimuLizar
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5.1.1.2. Scenario 02 – Deleted ModelAccess Class

The second scenario is the commit 534d5521. The commit occurred on Friday, August 17th

2018. In the monolith, 28 �les are changed. The following �les are a�ected by the com-

mit: IModelAccess, ModelAccess, ModelAccessUseOriginalReferences, InterpreterDefault-

Context, AbstractProbeFrameworkListener, ProbeFrameworkListener, EvaluateResultsJob,

PCMStartInterpretationJob, AbstractResourceEnvironmentObserver, AbstractUsageEvo-

lutionObserver, AbstractUsageModelObserver, ResourceEnvironmentSyncer, Abstrac-

tRecon�gurationLoader, AbstractRecon�gurator, AbstractRecon�gurator, IRecon�gura-

tionEngine, IRecon�gurationLoader, Recon�gurationProcess, Recon�gurator, Abstract-

SimuLizarRuntimeState, SimuLizarRuntimeState, SimulatedBasicComponentInstance, Pe-

riodicallyTriggeredUsageEvolver, SimulatedUsageModels, UsageEvolverFacade, FileUtil,

PCMPartitionManager, and ResourceUtil.

5.1.1.3. Scenario 03 – Fix Project Structure - Migrate RDSe�Switch to Tycho

The third scenario is the commit 02511a37. The commit occurred on Monday, July 30th 2018.

In the monolith, three �les are changed. The following �les are a�ected by the commit:

AbstractRDSe�SwitchFactory, ExplicitDispatchComposedSwitch, and IComposableSwitch.

5.1.1.4. Scenario 04 – Added Mechanism to Explicitly Switch Based on Superclass

The fourth scenario is the commit d973511. The commit occurred on Tuesday, December

12th 2017. In the monolith, three �les are changed. The following �les are a�ected by

the commit: RepositoryComponentSwitch, AbstractRDSe�SwitchFactory, and ExplicitDis-

patchComposedSwitch.

5.1.1.5. Scenario 05 – Add Monitorrepository to Feature Dependencies

The �fth scenario is the revision r34181. The commit occurred on Monday, April 24th 2017.

In the monolith, four �les are changed. The following �les are a�ected by the commit:

AbstractRDSe�SwitchFactory, IComposableSwitch, RDSe�Switch, and RepositoryCompo-

nentSwitch.

5.1.1.6. Scenario 06 – Fixed Metadata for the HDD Patch

The sixth scenario is the revision r33820. The commit occurred on Friday, November 11th

2016. In the monolith, one �les are changed. The following �le is a�ected by the commit:

RDSe�Switch.

5.1.1.7. Scenario 07 – Include New Aggregation Plugin into Simulizar Feature

The seventh scenario is the commit r32804. The commit occurred on Friday, August 5th

2016. In the monolith, six �les are changed. The following �les are a�ected by the commit:

AbstractProbeFrameworkListener, PRMRecorder, AbstractModelObserver, ResourceEnvi-

ronmentSyncer, AbstractSimuLizarRuntimeState, and MonitorRepositoryUtil.
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5.1.1.8. Scenario 08 – Only Record Runtime Measurements

The eighth scenario is the revision r32416. The commit occurred on Wednesday, July 6th

2017. In the monolith, 23 �les are changed. The following �les are a�ected by the commit:

InterpreterDefaultContext, AbstractProbeFrameworkListener, AbstractRecordingProbe-

FrameworkListenerDecorator, ProbeFrameworkListener, PRMRecorder, AbstractMod-

elObserver, AbstractResourceEnvironmentObserver, AbstractUsageEvolutionObserver,

AbstractUsageModelObserver, IModelObserver, ResourceEnvironmentSyncer, Abstract-

SimuLizarRuntimeState, IRuntimeStateAccessor, SimuLizarRuntimeState, SimuLizarRun-

timeStateAbstract, SimulatedComponentInstance, SimulatedCompositeComponentInstance,

LoopingUsageEvolver, PeriodicallyTriggeredUsageEvolver, StretchedUsageEvolver, Us-

ageEvolverFacade, FileUtil, and MonitorRepositoryUtil.

5.1.1.9. Scenario 09 – Generalized Response Times Aggregator

The ninth scenario is the revision r32166. The commit occurred on Tuesday, Mai 31st

2016. In the monolith, four �les are changed. The following �les are a�ected by the

commit: AbstractSimuLizarRuntimeState, ComponentInstanceRegistry, SimulatedBasic-

ComponentInstance, and SimulatedComponentInstance.

5.1.1.10. Scenario 10 – Added Missing Reconfiguration Rule

The tenth scenario is the revision r31800. The commit occurred on Tuesday, April 19th 2016.

In the monolith, six �les are changed. The following �les are a�ected by the commit: Event-

Noti�cationHelper, RepositoryComponentSwitch, AbstractInterpreterListener, Abstrac-

tRecordingProbeFrameworkListenerDecorator, AssemblyProvidedOperationPassedEvent,

and IInterpreterListener.
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5.1.2. Camunda

For the model-based analysis Camunda, we identi�ed ten historical evolution scenarios.

The reproduction data for Camunda contains the classes of the ten scenarios. Each scenario

is divided into two folders, the classes of the monolithic version is contained in the folder

before and the classes of the modular version after the refactoring is contained in the after
folder. Table 5.2 contains links to the monolithic and modular model-based analysis.

Name Source Branch
Language BPMN/Camunda [15] –

Modular Language mBPMN/Camunda [15] –

Analysis Camunda Camunda GitHub
2

master:f5c2d559d

Modular Analysis mCamunda mCamunda [9] –

Table 5.2.: Overview Camunda Projects

5.1.2.1. Scenario 01 – Add Timeout Task Listener

The �rst scenario is the commit d53583a. The commit occurred on Wednesday, August

21st 2019. In the monolith, �ve �les are changed. See �g. A.1 and �g. A.2. The following

�les are a�ected by the commit: AbstractBaseElementBuilder, AbstractCatchEventBuilder,

AbstractUserTaskBuilder, CamundaTaskListenerImpl, and CamundaTaskListener.

5.1.2.2. Scenario 02 – Introduce errorMessage for Error Definitions

The second scenario is the commit b129522. The commit occurred on Friday, July 5th 2019.

In the monolith, six �les are changed. See �g. A.3 and �g. A.4. The following �les are

a�ected by the commit: AbstractBaseElementBuilder, AbstractBoundaryEventBuilder, Ab-

stractEndEventBuilder, AbstractErrorEventDe�nitionBuilder, AbstractStartEventBuilder,

and BpmnModelConstants.

5.1.2.3. Scenario 03 – Add Variable Specification to Conditional Event

The third scenario is the commit 14ad97ae. The commit occurred on Wednesday, Oc-

tober 5th 2016. In the monolith, four �les are changed. See �g. A.5 and �g. A.6. The

following �les are a�ected by the commit: AbstractConditionalEventDe�nitionBuilder,

BpmnModelConstants, ConditionalEventDe�nitionImpl, and ConditionalEventDe�nition.

5.1.2.4. Scenario 04 – Remove incrementalIntervals Property

The fourth scenario is the commit a337b8f6. The commit occurred on Friday, September

8th 2017. In the monolith, four �les are changed. See �g. A.7 and �g. A.8. The following

�les are a�ected by the commit: Bpmn, AbstractFlowNodeBuilder, BpmnModelConstants,

CamundaIncrementalIntervalsImpl, and CamundaIncrementalIntervals.

2 https://github.com/MoSimEngine/camunda-bpm-platform
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5.1.2.5. Scenario 05 – Set Marker to Visible for Exclusive Gateway

The �fth scenario is the commit 7cf3cd�. The commit occurred on Thursday, June 1st 2017.

In the monolith, one �le is changed. See �g. A.9 and �g. A.10. The following �le is a�ected

by the commit: AbstractFlowNodeBuilder.

5.1.2.6. Scenario 06 – Removed errorMessage Attribute in endErrorEvent

The sixth scenario is the commit 4a5d7bc7c. The commit occurred on Monday, June

6th 2016. In the monolith, eight �les are changed. See �g. A.11 and �g. A.12. The fol-

lowing �les are a�ected by the commit: AbstractBaseElementBuilder, AbstractBound-

aryEventBuilder, AbstractEndEventBuilder, AbstractErrorEventDe�nitionBuilder, Ab-

stractStartEventBuilder, BpmnModelConstants, ErrorImpl, and Error.

5.1.2.7. Scenario 07 – Added Error Definition Variables

The seventh scenario is the commit 31e9a1324. The commit occurred on Thursday, June

2nd 2016. In the monolith, eleven �les are changed. See �g. A.13 and �g. A.14. The

following �les are a�ected by the commit: AbstractBaseElementBuilder, AbstractBound-

aryEventBuilder, AbstractEndEventBuilder, AbstractErrorEventDe�nitionBuilder, Ab-

stractStartEventBuilder, ErrorEventDe�nitionBuilder, BpmnModelConstants, ErrorEvent-

De�nitionImpl, ErrorImpl, Error, and ErrorEventDe�nition.

5.1.2.8. Scenario 08 – Add Convenience Methods to Allow Using Classes Instead

The eighth scenario is the commit 1d2a508c. The commit occurred on Friday, March 24th

2017. In the monolith, six �les are changed. See �g. A.15 and �g. A.16. The following �les

are a�ected by the commit: AbstractBusinessRuleTaskBuilder, AbstractCallActivityBuilder,

AbstractFlowNodeBuilder, AbstractSendTaskBuilder, AbstractServiceTaskBuilder, and

AbstractUserTaskBuilder.

5.1.2.9. Scenario 09 – Create and Reference Message with the Fluent Builder

The ninth scenario is the commit 677b3c6. The commit occurred on Monday, February

1st 2016. In the monolith, six �les are changed. See �g. A.17 and �g. A.18. The following

�les are a�ected by the commit: AbstractBaseElementBuilder, AbstractCatchEventBuilder,

AbstractFlowNodeBuilder, AbstractReceiveTaskBuilder, AbstractSendTaskBuilder, and

AbstractThrowEventBuilder.

5.1.2.10. Scenario 10 – Add Support for camunda:connector Extension Element

The tenth scenario is the commit c30dbc8e. The commit occurred on Tuesday, August

5th 2014. In the monolith, six �les are changed. See �g. A.19 and �g. A.20. The following

�les are a�ected by the commit: Bpmn, BpmnModelConstants, CamundaConnectorIdImpl,

CamundaConnectorImpl, CamundaConnector, and CamundaConnectorId.
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5.1.3. KAMP4aPS

For the model-based analysis KAMP4aPS, we identi�ed ten historical evolution scenarios.

The reproduction data for KAMP4aPS contains the classes of the ten scenarios. Each

scenario is divided into two folders, the classes of the monolithic version is contained in

the folder before and the classes of the modular version after the refactoring is contained

in the after folder. Table 5.3 contains links to the monolithic and modular model-based

analysis.

Name Source Branch
Language KAMP4aPS Lang [15] –

Modular Language mKAMP4aPS Lang [15] –

Analysis KAMP4aPS KAMP4aPS GitHub
3

master: HEAD

Modular Analysis mKAMP4aPS mKAMP4aPS [9] –

Table 5.3.: Overview KAMP4aPS Projects

5.1.3.1. Scenario 01 – Add Lookup for Interface Elements

The scenario is the commit 3126580b. The commit occurred on Sunday, March 19th 2017.

In the monolith, four �les are changed. See �g. A.21 and �g. A.22. The following �les are

a�ected by the commit: ArchitectureAnnotationLookup, AbstractKAPSDi�erenceCalcula-

tion, AbstractKAPSEnrichedWorkplanDerivation, and SwitchChanges.

5.1.3.2. Scenario 02 – Add Super Type to Mechanical Assembly

The scenario is the commit 2d37dc02. The commit occurred on Monday, October 23rd

2017. In the monolith, four �les are changed. See �g. A.23 and �g. A.24. The follow-

ing �les are a�ected by the commit: APSArchitectureModelLookup, ModuleChanges,

MicroSwitchModuleChange, and RampChange.

5.1.3.3. Scenario 03 – Add Class for Micro Switch Change

The scenario is the commit c17f986e5. The commit occurred on Friday, August 18th

2017. In the monolith, six �les are changed. See �g. A.25 and �g. A.26. The following

�les are a�ected by the commit: APSArchitectureModelLookup, APSChangePropagation-

Analysis, APSSubactivityDerivation, MicroSwitchModuleChange, SwitchChanges, and

LabelCustomizing.

5.1.3.4. Scenario 04 – Add Meta Class for Change

The scenario is the commit 1f78d0c0. The commit occurred on Friday, August 18th 2017.

In the monolith, ten �les are changed. See �g. A.27 and �g. A.28. The following �les are

a�ected by the commit: Change, ComponentChanges, InterfaceChanges, ModuleChanges,

3 https://github.com/KAMP-Research/KAMP4APS
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StructureChanges, BusChanges, RampChange, SensorChanges, SignalInterfacePropaga-

tion, and SwitchChanges.

5.1.3.5. Scenario 05 – Update Ramp Change Scenario

The scenario is the commit 3f5acd29. The commit occurred on Monday, May 14th 2018.

In the monolith, two �les are changed. See �g. A.29 and �g. A.30. The following �les are

a�ected by the commit: APSChangePropagationAnalysis, and RampChange.

5.1.3.6. Scenario 06 – Refactoring Names of Change Classes

The scenario is the commit 8491dd9b. The commit occurred on Tuesday, August 15th 2017.

In the monolith, four �les are changed. See �g. A.31 and �g. A.32. The following �les are

a�ected by the commit: BusChanges, SensorChanges, SignalInterfacePropagation, and

SwitchChanges.

5.1.3.7. Scenario 07 – Introduce HMI

The scenario is the commit d54511fe. The commit occurred on Thursday, April 26th 2018.

In the monolith, six �les are changed. See �g. A.33 and �g. A.34. The following �les

are a�ected by the commit: APSArchitectureVersion, APSArchitectureVersionPersistency,

APSChangePropagationAnalysis, and APSDi�erenceCalculation.

5.1.3.8. Scenario 08 – Adapt Change Propagation Analysis Regarding PLC Entry Points

The scenario is the commit 5dae880b. The commit occurred on Tuesday, February 27th

2018. In the monolith, �ve �les are changed. See �g. A.35 and �g. A.36. The following

�les are a�ected by the commit: APSArchitectureModelFactoryFacade, APSArchitec-

tureVersion, APSArchitectureVersionPersistency, APSChangePropagationAnalysis, and

InterfaceChanges.

5.1.3.9. Scenario 09 – Introduce Duplicate Removal

The scenario is the commit a5dcc00c. The commit occurred on Wednesday, January 11th

2017. In the monolith, �ve �les are changed. See �g. A.37 and �g. A.38. The following �les

are a�ected by the commit: AbstractKAPSChangePropagationAnalysis, ArchitectureAn-

notationLookup, ArchitectureModelLookup, ArchitectureVersion, and ArchitectureVer-

sionPersistency.

5.1.3.10. Scenario 10 – Refactor Function Names and Introduce Version

The scenario is the commit 1d2a508c. The commit occurred on Wednesday, Januray

11th 2017. In the monolith, three �les are changed. See �g. A.39 and �g. A.40. The

following �les are a�ected by the commit: AbstractKAPSChangePropagationAnalysis,

ArchitectureModelLookup, and BusChanges.
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5.1.4. SmartGrid

For the model-based analysis SmartGrid, we identi�ed ten historical evolution scenarios.

The reproduction data for SmartGrid contains the classes of the ten scenarios. Each

scenario is divided into two folders, the classes of the monolithic version is contained in

the folder before and the classes of the modular version after the refactoring is contained

in the after folder. Table 5.4 contains links to the monolithic and modular model-based

analysis.

Name Source Branch
Language SmartGridLang [15] –

Modular Language mSmartGridLang [15] –

Analysis SmartGrid SmartGrid GitHub
4

master: HEAD

Modular Analysis mSmartGrid mSmartGrid [9] –

Table 5.4.: Overview SmartGrid Projects

5.1.4.1. Scenario 01 – Pass Data to Power Load Sim Properly

The scenario is the commit dfe199815. The commit occurred on Friday, November 24th

2017. In the monolith, one �le is changed. See �g. A.41 and �g. A.42. The following �le is

a�ected by the commit: ReactiveSimulationController.

5.1.4.2. Scenario 02 – Added Report Generation for Attacker Simulation

The scenario is the commit c8280939. The commit occurred on Sunday, April 23th 2017. In

the monolith, one �le is changed. See �g. A.43 and �g. A.44. The following �le is a�ected

by the commit: ReportGenerator.

5.1.4.3. Scenario 03 – Fixed to Support String IDs

The scenario is the commit 72ecaa73. The commit occurred on Tuesday, October 17th

2017. In the monolith, two �les are changed. See �g. A.45 and �g. A.46. The following

�les are a�ected by the commit: GraphAnalyzer, and Tarjan.

5.1.4.4. Scenario 04 – Added Init Methods with Maps as Parameter

The scenario is the commit 2d7a9c46. The commit occurred on Friday, February 7th 2020.

In the monolith, eight �les are changed. See �g. A.47 and �g. A.48. The following �les

are a�ected by the commit: LocalHacker, ViralHacker, HashMapHelper, GraphAnalyzer,

IAttackerSimulation, IImpactAnalysis, ImpactAnalysisMock, and NoAttackerSimulation.

4 https://github.com/kit-sdq/Smart-Grid-ICT-Resilience-Framework
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5.1.4.5. Scenario 05 – Added rootNode Search Viral Hacker

The scenario is the commit 1648636e. The commit occurred on Friday, November 22nd

2019. In the monolith, �ve �les are changed. See �g. A.49 and �g. A.50. The follow-

ing �les are a�ected by the commit: LocalHacker, ViralHacker, ScenarioModelHelper,

ReactiveSimulationController, and TestClientRMI.

5.1.4.6. Scenario 06 – Finalizing the RCP Commands

The scenario is the commit aae4a894. The commit occurred on Monday, July 27th 2020. In

the monolith, eleven �les are changed. See �g. A.51 and �g. A.52. The following �les are

a�ected by the commit: FileSystemHelper, Activator, SmartgridRCPApplication, Controller-

Command, GetModi�edPowerspecsCommand, InitTopoCommand, SimControlCommands,

EObjectsHelper, LocalController, ReactiveSimulationController, and RCPCall.

5.1.4.7. Scenario 07 – Local Controller Without a Launch Configuration

The scenario is the commit 63ae1f4. The commit occurred on Friday, February 7th 2020.

In the monolith, four �les are changed. See �g. A.53 and �g. A.54. The following �les are

a�ected by the commit: ITimeProgressor, NoOperationTimeProgressor, LocalController,

and ReactiveSimulationController.

5.1.4.8. Scenario 08 – Nodes are Now Randomly HackedWhen Using Full Meshed Hacking

The scenario is the commit 3d81da9e. The commit occurred on Friday, January 15th 2016.

In the monolith, one �le is changed. See �g. A.55 and �g. A.56. The following �le is

a�ected by the commit: ViralHacker.

5.1.4.9. Scenario 09 –Modified Attacker Simulation to Support Disabling Root Node for Virus

The scenario is the commit 5ee72f70. The commit occurred on Tuesday, December 15th

2015. In the monolith, two �les are changed. See �g. A.57 and �g. A.58. The following

�les are a�ected by the commit: LocalHacker, and ViralHacker.

5.1.4.10. Scenario 10 – Added Boolean Method to Attacker Simulation that Indicates if
Attributes Can be Used or Not

The scenario is the commit 4c257bea. The commit occurred on Friday, November 13th

2015. In the monolith, two �les are changed. See �g. A.59 and �g. A.60. The following

�les are a�ected by the commit: LocalHacker, and ViralHacker.
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A.1. Camunda
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A. Appendix

Figure A.1.: Camunda scenario 01 - before refactoring
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A.1. Camunda

Figure A.2.: Camunda scenario 01 - after refactoring
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Figure A.3.: Camunda scenario 02 - before refactoring
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Figure A.4.: Camunda scenario 02 - after refactoring

Figure A.5.: Camunda scenario 03 - before refactoring
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Figure A.6.: Camunda scenario 03 - after refactoring
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A.1. Camunda

Figure A.7.: Camunda scenario 04 - before refactoring
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Figure A.8.: Camunda scenario 04 - after refactoring

44



A.1. Camunda

Figure A.9.: Camunda scenario 05 - before refactoring
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Figure A.10.: Camunda scenario 05 - after refactoring
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A.1. Camunda

Figure A.11.: Camunda scenario 06 - before refactoring
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Figure A.12.: Camunda scenario 06 - after refactoring
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A.1. Camunda

Figure A.13.: Camunda scenario 07 - before refactoring
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Figure A.14.: Camunda scenario 07 - after refactoring
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A.1. Camunda

Figure A.15.: Camunda scenario 08 - before refactoring
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Figure A.16.: Camunda scenario 08 - after refactoring
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A.1. Camunda

Figure A.17.: Camunda scenario 09 - before refactoring
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Figure A.18.: Camunda scenario 09 - after refactoring
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A.1. Camunda

Figure A.19.: Camunda scenario 10 - before refactoring
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Figure A.20.: Camunda scenario 10 - after refactoring
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A.2. KAMP4aPS

A.2. KAMP4aPS
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Figure A.21.: KAMP scenario 01 - before refactoring
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A.2. KAMP4aPS

Figure A.22.: KAMP scenario 01 - after refactoring

Figure A.23.: KAMP scenario 02 - before refactoring
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Figure A.24.: KAMP scenario 02 - after refactoring
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A.2. KAMP4aPS

Figure A.25.: KAMP scenario 03 - before refactoring
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A. Appendix

Figure A.26.: KAMP scenario 03 - after refactoring

Figure A.27.: KAMP scenario 04 - before refactoring
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A.2. KAMP4aPS

Figure A.28.: KAMP scenario 04 - after refactoring

Figure A.29.: KAMP scenario 05 - before refactoring
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Figure A.30.: KAMP scenario 05 - after refactoring

Figure A.31.: KAMP scenario 06 - before refactoring
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A.2. KAMP4aPS

Figure A.32.: KAMP scenario 06 - after refactoring

Figure A.33.: KAMP scenario 07 - before refactoring
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Figure A.34.: KAMP scenario 07 - after refactoring
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A.2. KAMP4aPS

Figure A.35.: KAMP scenario 08 - before refactoring

Figure A.36.: KAMP scenario 08 - after refactoring
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Figure A.37.: KAMP scenario 09 - before refactoring
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A.2. KAMP4aPS

Figure A.38.: KAMP scenario 09 - after refactoring
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Figure A.39.: KAMP scenario 10 - before refactoring
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A.2. KAMP4aPS

Figure A.40.: KAMP scenario 10 - after refactoring
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A.3. SmartGrid

Figure A.41.: SmartGrid scenario 01 - before refactoring

Figure A.42.: SmartGrid scenario 01 - after refactoring
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A.3. SmartGrid

Figure A.43.: SmartGrid scenario 02 - before refactoring

Figure A.44.: SmartGrid scenario 02 - after refactoring

Figure A.45.: SmartGrid scenario 03 - before refactoring
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Figure A.46.: SmartGrid scenario 03 - after refactoring

Figure A.47.: SmartGrid scenario 04 - before refactoring
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A.3. SmartGrid

Figure A.48.: SmartGrid scenario 04 - after refactoring

Figure A.49.: SmartGrid scenario 05 - before refactoring
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Figure A.50.: SmartGrid scenario 05 - after refactoring
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A.3. SmartGrid

Figure A.51.: SmartGrid scenario 06 - before refactoring
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Figure A.52.: SmartGrid scenario 06 - after refactoring
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A.3. SmartGrid

Figure A.53.: SmartGrid scenario 07 - before refactoring
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Figure A.54.: SmartGrid scenario 07 - after refactoring

Figure A.55.: SmartGrid scenario 08 - before refactoring
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A.3. SmartGrid

Figure A.56.: SmartGrid scenario 08 - after refactoring

Figure A.57.: SmartGrid scenario 09 - before refactoring
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Figure A.58.: SmartGrid scenario 09 - after refactoring

Figure A.59.: SmartGrid scenario 10 - before refactoring

Figure A.60.: SmartGrid scenario 10 - after refactoring
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