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Abstract: Triply periodic minimal surface (TPMS) structures have a very good lightweight potential,
due to their surface-to-volume ratio, and thus are contents of various applications and research
areas, such as tissue engineering, crash structures, or heat exchangers. While TPMS structures with a
uniform porosity or a linear gradient have been considered in the literature, this paper focuses on the
investigation of the mechanical properties of gyroid structures with non-linear porosity gradients.
For the realisation of the different porosity gradients, an algorithm is introduced that allows the
porosity to be adjusted by definable functions. A parametric study is performed on the resulting
gyroid structures by performing mechanical simulations in the linear deformation regime. The
transformation into dimensionless parameters enables material-independent statements, which is
possible due to linearity. Thus, the effective elastic behaviour depends only on the structure geometry.
As a result, by introducing non-linear gradient functions and varying the density of the structure over
the entire volume, specific strengths can be generated in certain areas of interest. A computational
design of porosity enables an accelerated application-specific structure development in the field
of engineering.

Keywords: TPMS structures; sheet-based gyroid; mechanical simulation; modelling; PACE3D

1. Introduction

Triply periodic minimal surfaces (TPMS) are three-dimensional cell structures that
occur in nature in many forms: for example, in butterfly wings [1] or on the skeletal plate
of a sea urchin [2]. There are a variety of different structures: for example, gyroid, Schwarz
diamond, and Schwarz primitive structures [3], which are defined by a mathematical
periodic function and whose surfaces have a mean curvature of zero. This results in a
smoothly curved surface, while the periodic cells are divided into two disjointed continuous
channels that are intertwined. In addition to their lightweight potential, these cell structures
are characterised by unique properties and shapes that make them attractive for a wide
range of engineering applications. For example, the high surface-to-volume ratio and the
two-phase system are very preferable properties for the development of heat exchangers [4–6].
In particular, the work by Weihong Li et al. [5] has shown that a comparison between
a printed circuit heat exchanger (PCHE) and a heat exchanger with TPMS structures
(Schwarz diamond and gyroid) shows both a higher thermal performance and a higher
Nusselt number [5]. Furthermore, TPMS structures are of great interest in the field of tissue
engineering, as their topological structure is similar to that of trabecular bone [7]. The
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introduction of a porosity gradient on the TPMS structures opens up new engineering
possibilities. In Dawei Li’s research [8], for example, it was shown that sheet-based linear
graded gyroid structures have a high energy absorption potential, which is a crucial
property in applications with regard to crash safety. Moreover, the introduction of the
gradient offers a new freedom of design. As such, the work of [9] aims to use linear graded
cell gradients to replicate the natural environment of bones. Since structures with gradients
have so far mostly been investigated with linear gradients and are interesting for a variety
of applications, it is desirable to put more emphasis on non-linear porosity adjustments.
In the following, the group of double gyroid structures is considered, which is exemplified
in Figure 1, with the characteristic two-tunnel system. For example, in [8,10], this structure
is referred to as ’sheet-based gyroid’ (in the remainder of this article, it will only be referred
to as ’gyroid’).

Figure 1. (a) Sheet-based gyroid structure; (b) gyroid structure with labelled two-tunnel system.

The following equation is used to approximate the surface of the gyroid structure by
trigonometrical functions [4].

0 =
[

sin
2πx
Lx

· cos
2πy
Ly

+ sin
2πy
Ly

· cos
2πz
Lz

+ sin
2πz
Lz

· cos
2πx
Lx

]2
− t2 (1)

The number of cell repetitions in the x-, y-, and z-directions and the absolute sizes
of the unit cells Lx, Ly, and Lz define the cell space [11]. The thickness of the cell wall
is controlled by the variable t. Thus, t has an effect on the volume fraction (v∗) of the
lattice structure [12]. According to [13,14], the volume fraction (v∗) and the closely related
parameter porosity Φ are defined as follows:

Φ = (1 − v∗) · 100[%] (2)

with
v∗ =

v
vs

, (3)

where v and vs denote the volume of the pore structure and the volume of the solid struc-
ture, respectively [13,14]. In the literature, v∗ is also referred to as ’relative density’ [14,15].
As can be seen from equation (2), the higher the porosity, the thinner the cell walls. Accord-
ing to Gibson and Ashby [16], the mechanical properties of porous structures of the same
topology are directly influenced by their porosity. They propose a correlation between the
effective Young modulus and the relative density, which is known as Gibson–Ashby corre-
lation. In addition to the porosity, the mechanical properties are also strongly influenced
by the topology of the structure [11,17]. With respect to gyroid structures with imposed
porosity gradients, the question therefore arises as to how different geometries with non-
linear porosity gradients influence the resulting effective behaviour of the structures. Since
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the complex manufacture of gyroid structures is cost and time intensive, it is desirable to
answer these questions through digital modelling and simulations.

In this work, an algorithm for generating gyroid structures with imposed porosity gra-
dients is introduced, and the resulting mechanical properties of the gyroids are investigated
by performing a simulation study. For the structure generation, a constant porosity and
two different functions are considered: a linear and a quadratic function. The numerical
simulations are performed in the linear elastic regime, which is a common approach in the
field of open cell foams. Kaoua et al. [18] use finite element (FE) simulations on Kelvin
unit cells to investigate different ligament cross section geometries. In the work by Gan
et al. [19] and Zhu et al. [17], elastic FE simulations are also applied to Voronoi-based foams,
whereby in the latter work, the influence of geometry irregularities is investigated. The
aim of the work is to enable the digital design of gyroid structures with tailored porosity
gradients for specific applications.

2. Computational Design

Before mechanical simulations of the structures can be performed, the digital structures
are created on the basis of a spatial algorithm. For the structure creation, a MatLab [20]
source was programmed, which enables the creation of TPMS structures with and without
gradients. The aim of the MatLab program is to create gyroid structures with adjustable
porosities and definable porosity gradients, using mathematical functions. The TPMS
structures are stored in vtk files, while the further preprocessing of the structures as well as
the simulations are realised with the simulation framework PACE3D [21]. The simulation
software “Parallel Algorithms for Crystal Evolution in 3D” (PACE3D) is a massive parallel
in-house software package [21] which is developed at the Institute for Digital Materials
Science (IDM) of the Karlsruhe University of Applied Sciences, Germany. The objective
of PACE3D is to provide a package for large-scale multiphysics simulations, so as to solve
coupled problems such as solidification, grain growth, mass and heat transport, fluid flow
and mechanical forces (elasticity, plasticity), etc. The use of dimensionless quantities enables
a scale-independent representation of the results, so that the simulations are performed
with a non-dimensionalisation. With the help of a conversion table, physical quantities
can be obtained from the results. The corresponding flowchart from the creation of the
structures in the MatLab program to the mechanical simulation is summarised in Figure 2.
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Figure 2. Schematic representation of the computational design of the structures. Generation of the
gyroid structures in the MatLab program (left) and the workflow for the mechanical simulations with
PACE3D (right).
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2.1. Structure Generation
2.1.1. Input Parameters

The MatLab program offers the possibility of creating structures with constant and
graded porosity. Table 1 lists and briefly describes the required input parameters for the
the structure generation, while the individual parameters and their influence are discussed
more specifically in the following.

Table 1. Input parameters of the MatLab program and their function for the creation of a gyroid
structure.

Input Parameter Function

numx
numy Number of unit cells to be repeated in the x-, y-, and z-direction
numz

unitCellSize Size of the unit cells (in mm)
nsteps Resolution of the unit cell
Φmax Maximum and minimum porosity of the cellΦmin
f unc Gradient function
grad With/without gradient function (1, 0)
delta Tolerance range

The input parameters numx, numy, and numz specify the number of unit cells to
be repeated in the corresponding direction, while the parameter unitCellSize defines the
physical dimension of the created gyroid unit cell. By multiplying unitCellSize with the
input parameters numx, numy, and numz, the quantities Lx, Ly, and Lz of Equation (1) are
obtained, which also represent the total domain size of the resulting structure in physical
dimensions. The parameter nsteps defines the number of voxels that are used to discretise
the gyroid in all directions of one spatial unit cell.

With Φmin and Φmax, the range of the minimum and maximum porosity is defined. In
the MatLab program, the porosity is specified in the range between [0; 1], which represents
the more commonly used expression of 0% and 100% for the porosity. When creating a
gyroid structure with a constant overall porosity, the value from Φmax is used. The porosity
function is defined with the parameter f unc. The polynomial degree of the gradient
function can be selected between 0 and 2, corresponding to a constant (0), a linear (1), and
a quadratic (2) representation. The input parameter grad determines whether the gyroid
structure is generated with or without gradient by the integer values 1 and 0, respectively.
Per default, the gradient occurs in the z-direction.

The parameter delta is mainly responsible for the iterative adjustment of the actual
porosity to the target porosity. A tolerance range is defined that describes the maximum
permissible deviation between the actual porosity of the current layer and the target porosity.
For instance, if the parameter is set to a value of 0.02, this corresponds to a deviation of
the actual data of 2%, compared to the target porosity function. The smaller the number
of this parameter, the more accurate and longer the program takes to calculate. The target
porosity per cell layer is calculated by the gradient function.

Figure 3 shows four different gyroid unit cell structures with a cell size of 2.5 mm,
which is generated with 200 steps and a delta parameter of 0.02. Figure 3a,d illustrate
a gyroid unit cell with a constant porosity of 0.8 (a) and 0.4 (d). By looking at the two
structures, the influence of the porosity on the cell thickness becomes evident. The higher
the porosity, the thinner the wall thickness. The structures Figure 3b,c refer to different
gradient functions: linear (b) and quadratic (c) functions. The structures are in a porosity
interval between 0.4 and 0.8.
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Figure 3. Unit cell of the gyroid structure; gradient with (a) constant function, with a porosity of 0.8;
(b) linear function, with a porosity from 0.4 to 0.8; (c) quadratic function, with a porosity from 0.4 to
0.8; (d) constant function, with a porosity of 0.4.

2.1.2. Algorithm

In the algorithm, the porosity is adjusted step by step. First, the total volume of
an initially generated cell structure is calculated as a starting point, while the discrete
voxel values in the domain vary between −1 and 1, according to Equation (1). Once the
gradient function is selected, the superimposition begins in an iterative process. Three
encapsulated for-loops are used to iterate over the spatial domain and a while-loop is
responsible for adjusting the porosity to the target porosity. The adjustment is made
by applying a threshold with values between −1 and 1, which divides the domain into
structure space and tunnels. The specified tolerance limits are used as the termination
criterion of the while loop. In this way, the target porosity for each 2D layer of the 3D
structure can be adjusted according to the gradient function. If no gradient is selected,
the porosity adjustment is not applied per layer but to the entire cell structure. For the
definition of the gradient function (Φtarget), a choice between the following three functions
is possible so far.

Constant function:
Φtarget = Φmax (4)

Linear function:
Φtarget = −Φmax − Φmin

nstepsz

· q + Φmax (5)

Quadratic function:

Φtarget = −Φmax − Φmin

(nstepsz − 3)2 · (q − 2)2 + Φmax (6)

The constant function calculates a structure with a constant porosity along each spatial
direction. For the linear cell gradient, a linear function with the usual linear structure
y = a ∗ x + b is used. The first part of the equation calculates the stepwise increase in the
cell volume in each cell level (or the decrease in the porosity). Here, the calculation depends
on the number of discrete points (nsteps) in whose direction the gradient is imposed. In
this case, the gradient extends into the z-direction. The second part of the formula is used
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to determine the initial porosity Φmax. In the first layer, the structure has the porosity of
Φmax, which is gradually decreased until the final porosity Φmin is reached. q is the index
parameter for the outermost for-loop and at the same time the spatial position of the current
2D layer.

For the quadratic cell gradient, a quadratic function of the structure y = a ∗ x2 + b ∗
x + c is used with (b = 0). As with the linear function, a stepwise decrease in the porosity
(increase in the cell volume) is determined at each cell level, except that the decrease should
be quadratic. Since the quadratic gradient is defined as an inverted parabola with an offset
on the y-axis, at the level of maximum porosity, the gyroid structure with a quadratic
gradient is thickened more slowly than those with a thickening linear structure, as can be
seen in Figure 4.

Figure 4. Porosity function of the constant, linear, and quadratic function.

In Figure 4, the three different gradients (constant, linear, and quadratic) are compared
with their target and actual values of a single-cell gyroid structure. In each case, 50 actual
and 50 target values per porosity function (input parameter: nsteps = 50) are mapped over
’Cell size’ [5 mm], in the z-direction [x-axis], and ’Porosity’ [y-axis]. The maximum porosity
is 0.6, and the minimum porosity is 0.4. The actual values are an approximation of the
target values. As already mentioned, the fit of the objective function mainly depends on
the delta parameter.

2.2. Model and Setup for Mechanical Simulations

For the mechanical simulations, the static momentum balance in the small deformation
regime is solved with a finite element discretisation. This is done using the PACE3D frame-
work, which employs a phase-field method for the geometry parametrization. Therefore,
the structures generated in the MatLab program (see Section 2.1) are discretised on a Carte-
sian grid, and a diffuse interface is employed between the metal and the surrounding air.

From the micromechanics-microstrcture simulations, the stress tensor σ and the strain
tensor ε are obtained as full field information. This gives rise to the normalised von Mises
stresses σVM, whose maximum value determines the start of local plastification if it reaches
the yield strength of the materials. Through homogenisation, an effective Young modulus
can additionally be obtained from the stress and strain field [22]. This is done using the
volume-averaged stress and strain over the whole computational domain and relating them
via the effective Young modulus.

Simulations of compression tests are performed with the specified stress σBC, which
is applied in the z-direction, as the boundary condition on both sides of the simulation
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domain. All other boundaries are set to be stress-free. The domain is discretised using
a Cartesian grid with 200 × 200 × 200 elements. The air phase between the structure is
modelled with a stiffness of zero, while the solid phase is considered to exhibit an isotropic
elastic material behaviour.

3. Results and Discussion
3.1. Structure Consideration

Table 2 lists all 13 gyroid unit cells created for the subsequent investigation by mechan-
ical simulations. Overall, the structures differ only in their porosity and gradient function.
As can be seen from Table 2, the structures range in porosity from 0.4 to 0.8. For the struc-
tures with graded porosity (linear and quadratic), the thickening of the structures always
ends at a porosity of 0.4. It should be mentioned that when the volume decreases, the
influence on the mechanical stability should be considered, so as to optimise the lightweight
potential. Since the porosity has a significant influence on the surface-to-volume ratio, and
thus on the mechanical stability, it is also taken into account. The other input parameters
that do not change are listed in Table 3. Assuming that the gyroid structures are charac-
terised by the periodicity of their unit cell in all directions, it should be possible to apply
the results of the mechanical simulation to multicell structures. In all three directions (x,
y, z), the size of the analysed cell is set to 2.5 mm. A unit cell is divided into 200 voxels
per spatial direction (nsteps = 200). The possible deviation from the target function is 2%
(delta = 0.02).

Table 2. Created gyroid structures: constant gradient, linear gradient, quadratic gradient.

Constant Gradient Linear Gradient Quadratic Gradient

0.4 - -
0.5 0.4 to 0.5 0.4 to 0.5
0.6 0.4 to 0.6 0.4 to 0.6
0.7 0.4 to 0.7 0.4 to 0.7
0.8 0.4 to 0.8 0.4 to 0.8

Table 3. Non-varying input parameters across all structures.

Input Parameter Value

numx 1
numy 1
numz 1

unitCellSize [mm] 2.5
nsteps 200
delta 0.02

3.2. Surface Area-to-Volume Ratio

The surface area-to-volume (SA/V) ratio is an important technical aspect. A high
SA/V ratio, for example, favours more efficient heat exchange [23] but usually has negative
effects on the mechanical properties, which is why the SA/V ratio of the gyroid cells is
investigated. To calculate the surface area-to-volume ratio, the stl files created in the MatLab
program were imported into the Ansys workbench [24], where the volume and surface
area of each structure were output.

The bar chart Figure 5 lists the SA/V ratio from the gyroid structures in ascending
order, with and without gradients. There, it can be seen that a high porosity favours the
ratio. For this reason, the gyroid cell with a constant porosity of 0.8 has the highest SA/V
ratio of all structures. In contrast, the gyroid with a porosity of 0.4 has the lowest ratio.
The structures with a quadratic gradient have a higher SA/V ratio than those with a linear
gradient. This is due to the fact that the structure with a quadratic gradient thickens more
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slowly, as can be seen in Figure 4. Between the gyroid structures with a constant porosity of
0.5 and 0.6, there are four structures with gradients. In the course of this work, a possible
correlation between the SA/V ratio and the mechanical properties will be considered.

5 6 7 8 9 10 11 12 13 14

Constant: 0.8

Quadratic: 0.4 to 0.8

Constant: 0.7

Quadratic 0.4 to 0.7

Linear: 0.4 to 0.8

Constant: 0.6

Linear: 0.4 to 0.7

Quadratic: 0.4 to 0.6

Linear: 0.4 to 0.6

Quadratic: 0.4 to 0.5

Constant: 0.5

Linear: 0.4 to 0.5

Constant: 0.4

Figure 5. Surface [mm2]/volume [mm3] of gyroid structures in ascending order.

3.3. Mechanical Simulation

Material-independent and relative statements depending on the porosity type can
be made about the structures with the same load scenario. For this reason, scaled data
are used. For the analysis of the structures, a steady-state case with an applied load of
σBC = 400 MPa is considered. Since the simulations are performed within the linear-elastic
regime, the results are independent of the structure material and the characteristic length,
due to the linear scalability. The effective Young modulo as well as the maximum and mean
values of the von Mises stress are evaluated. The latter values correspond respectively to
the volume average σ̄VM of the von Mises equivalent stress field and its maximum value
σVM,max within the domain. Note that both quantities are given normalised with the load
σBC and can thus be interpreted as mean and maximum values of a stress amplification
factor. Dividing the yield strength of the material under consideration (e.g., AlMg7Si0.6) by
this amplification factor gives the actual limit for local plastification and thus an effective
yield strength. The effective Young modulus is given normalised with the one of the
structure materials. In order to obtain physical quantities, a multiplication can be carried
out with the material value under consideration. For example, ĒAlMg7Si0.6 = EAlMg7Si0.6Ē,
with EAlMg7Si0.6 = 59 GPa, if the structure is made of the alloy AlMg7Si0.6. The use of these
normalised quantities allows a comparison between the structures without specifying the
material or length scale.

Tables 4–6 represent the material-independent and scaled values of the respective
structures. For better clarity and comprehensibility of the results, they are also shown in
the bar charts Figures 6–8. The structures in the charts are all labelled according to the
following pattern: ’Type of gradient function: Porosity interval’. ’Quadratic: 0.4 to 0.8’, for
example, means that a gyroid structure with a quadratic gradient function and a porosity
interval between 0.4 and 0.8 is considered.
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Table 4. Scaled results of the gyroid structure with a constant gradient [dimensionless] of the
normalised effective Young modules Ē, a mean von Mises stress σ̄VM, and a maximum von Mises
stress σVM,max, which is given for different porosities.

Porosity Ē σ̄VM σVM,max

0.4 0.10 0.88 10.40
0.5 0.05 0.99 14.92
0.6 0.03 1.09 19.50
0.7 0.02 1.18 23.94
0.8 0.01 1.24 28.74

Table 5. Scaled results of the gyroid structure with a linear gradient [dimensionless] of the normalised
effective Young modules Ē, a mean von Mises stress σ̄VM, and a maximum von Mises stress σVM,max,
which is given for different porosities.

Porosity Ē σ̄VM σVM,max

from 0.4
to
0.5 0.06 0.97 14.99
0.6 0.04 1.02 18.94
0.7 0.03 1.07 22.82
0.8 0.02 1.11 28.01

Table 6. Scaled results of the gyroid structure with a quadratic gradient [dimensionless] of the
normalised effective Young modules Ē, a mean von Mises stress σ̄VM, and a maximum von Mises
stress σVM,max, which is given for different porosities.

Porosity Ē σ̄VM σVM,max

from 0.4
to
0.5 0.06 0.99 15.07
0.6 0.04 1.05 18.75
0.7 0.02 1.11 23.86
0.8 0.02 1.16 29.64

0 5 10 15 20 25 30 35

Quadratic: 0.4 to 0.8

Constant 0.8

Linear: 0.4 to 0.8

Constant: 0.7

Quadratic 0.4 to 0.7

Linear: 0.4 to 0.7
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Linear: 0.4 to 0.6

Quadratic: 0.4 to 0.6

Quadratic: 0.4 to 0.5

Linear: 0.4 to 0.5
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Constant: 0.4
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Surface area[mm2]/Volume [mm3] Maximum normalised stress [scaled]

Figure 6. Dimensionless, scaled maximum normalised stress σVM,max [scaled] of gyroid structures in
ascending order, in comparison to the SA/V ratio of the same structure.
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0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

Constant: 0.8
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Quadratic: 0.4 to 0.8

Quadratic 0.4 to 0.7

Linear: 0.4 to 0.8
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Linear: 0.4 to 0.7

Quadratic: 0.4 to 0.6

Linear: 0.4 to 0.6

Constant: 0.5

Quadratic: 0.4 to 0.5

Linear: 0.4 to 0.5

Constant: 0.4

Figure 7. Dimensionless, scaled mean normalised stress σ̄VM of gyroid structures in ascending order.

0 0.02 0.04 0.06 0.08 0.1

Constant: 0.8

Quadratic: 0.4 to 0.8

Constant: 0.7

Linear: 0.4 to 0.8

Quadratic 0.4 to 0.7

Constant: 0.6

Linear: 0.4 to 0.7

Quadratic: 0.4 to 0.6

Linear: 0.4 to 0.6

Constant: 0.5

Quadratic: 0.4 to 0.5

Linear: 0.4 to 0.5

Constant: 0.4

Figure 8. Dimensionless, scaled effective Young modules Ē of gyroid structures in decreasing order.

In Figure 6, the black bars represent the maximum normalised stresses (σVM,max) of
the gyroid structures, sorted in ascending order. In addition, the corresponding SA/V ratio
is shown in striped bars.

The gyroid structures with a quadratic porosity have the highest (quadratic: 0.4 to 0.8)
and the gyroid structure with constant porosity has the lowest (constant: 0.4) maximum
stresses, respectively. In addition, the bar graph illustrates that the linear gradient structures
have lower scaled normalized maximum stresses than the quadratic gradient structures,
but higher than the constant gradient structures. A structure with a linear porosity of 0.4 to
0.6 corresponds to an average of a constant porosity of 0.5. Here, it becomes clear that by
adjusting the gradient, a higher SA/V ratio is achieved, but also higher maximum stresses.
This observation also applies to the structure with a linear porosity from 0.4 to 0.8, which
corresponds to an average porosity of 0.6.

As in Figure 6, the dimensionless, scaled, and normalised stresses [σ̄VM] of the struc-
tures are also sorted in ascending order in Figure 7. This allows for a faster comparison
of the diagrams. The structural arrangements of the two diagrams are not in the same
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order, since there is a deviation between the highest and the lowest values of the maximum
normalised stress and the mean normalised stress.

Compared to the structures with quadratic or linear porosity, the structures with
constant porosity have higher normalised stresses. The higher the porosity level of the
structures, the higher the normalised stresses. This may indicate a more uniform stress
distribution in the structures with gradients or that the structure has more unstressed
regions. The gyroid structure ’quadratic: 0.4 to 0.8’, for example, has a higher SA/V ratio
than ’constant: 0.7’, but a lower mean normalised stress.

The structures with a linear gradient generally exhibit the lowest mean stresses,
compared to the other structures, which is also reflected in the scaled, dimensionless elastic
modulus (see Figure 8).

The structures with a linear gradient have a higher effective Young modulus [Ē] than
the other structures in the same porosity range. This can be partly explained by the fact
that the linear gradient structures are thickened more quickly and more evenly, which
means that the initiating force can be better distributed. The Figure 8 lists the scaled and
dimensionless effective Young modulus of the considered structures in decreasing order.
It becomes clear that the porosity has a high influence on the effective Young modulus.
Between the structures ’constant: 0.4’ and ’constant: 0.8’, for example, the effective Young
modulus is reduced by a factor of about 11. In contrast, the effective Young modulus for the
structures ’quadratic: 0.4 to 0.5’ (’linear: 0.4 to 0.5’) and ’quadratic: 0.4 to 0.8’ (’linear: 0.4 to
0.8’) decreases by a factor of 3.9 (quadratic) or 3.4 (linear). A clear relationship between the
SV/A ratio and the effective Young modulus can be seen when comparing Figures 5 and 8.
The sorted effective Young modulus is almost in the same order as the sorted SV/A ratio.

The evaluation of the von Mises stress field on the gyroid structures revealed that it is
generally located at the rounded edges of the structure. It was noticed that the stress peaks
for the gyroid structures with gradients are on the side with the highest porosity, due to the
difference in porosity, while the stress peaks for the structures with constant porosity are
on both sides, which can be seen in Figure 9. The stressed areas are marked in red and are
located at the rounded edges, as described previously. Accordingly, the loaded edges are
likely to fail first in compression tests. In addition, the one-sided loading of the structures
with gradients would explain the higher stress distributions given in Figure 6.

von Mises stress

19.3

23.2

27.0

30.9

y

x

z

a. b.

Figure 9. Maximum stresses on the surface of the gyroid structure with (a) a constant porosity of 0.8;
(b) a quadratic porosity function between 0.4 and 0.8.

The mechanical simulation has shown that the structures with gradients enable new
design and lightweight construction possibilities. The structures with gradients can be
better adapted to the required properties. Depending on the choice of the new and the
original structure, one property can be specifically improved, while another property can
be reduced. In general, it can be said that the SA/V ratio increases with increasing porosity,
while the effective Young modulus decreases. By choosing the structure ’linear: 0.4 to 0.5’,
for example, instead of ’constant: 0.5’, the effective Young modulus increases by about 22%
[quadratic gradient 16%], while the surface-to-SA/V ratio and the mean normalised stress
would decrease by about 2% [quadratic about 0%].
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If only the mechanical stability is of interest and not the lightweight potential or the
surface area-to-volume ratio, the gyroid with the lowest porosity—in our case 0.4—is still
unbeatable.

Likewise, the gyroid with a constant porosity of 0.8 would be interesting for ap-
plications where only the surface-to-volume ratio is of central importance, but not the
mechanical properties.

4. Conclusions

In this study, gyroid structures, which are associated with the TPMS family, were in-
vestigated. In addition to the used structures with constant porosity, graded structures were
produced. For the graded structures, a distinction was made between structures with linear
and quadratic gradients. For the mechanical simulation, the created structures were im-
ported into PACE3D. The results were converted into dimensionless, material-independent
indices, so that a general statement could be made. In addition to the mechanical simulation,
the SV/A ratio was also analysed.

The mechanical simulation shows that the introduction of the gradient multiplies
the range of engineering design possibilities. Depending on the desired property and
application, it is worthwhile to integrate a gradient into the structure. In general, it can be
said that the structures with gradients usually have higher stress peaks, but lower mean
normalised stresses.

For future applications, it would be interesting to create more gradient functions.
One possibility, for example, would be to create a structure with a gradient which is
thickened hourglass-like in terms of volume fraction, since the stress peaks all occur in the
outer edge region. In addition, an experimental validation of the results would also be
important, which is part of the ongoing work. The combination of experimental data and
dimensionless indices will allow a tailor-made design for individual parts in the future.

Author Contributions: Conceptualization, B.N. and F.P.; Data Curation, P.A. and M.R.; Investigation,
L.W.; Methodology, L.W.; Software, P.A. and M.R.; Supervision, B.N. and F.P.; Writing – original draft,
L.W. All authors have read and agreed to the published version of the manuscript.

Funding: The paper was written as part of the project “InSeL—Innovative Schaumstrukturen für
den effizienten Leichtbau” (Innovative foam structures for efficient lightweight construction), which
is funded by the European Regional Development Fund (EFRE) and the state of Baden-Württemberg,
as part of the Centre for Applied Research ZAFH. Furthermore, the authors would like to thank the
Ministry of Science, Research, and Art Baden-Württemberg (MWK-BW) in the project MoMaF–Science
Data Center, with funds from the state digitization strategy digital@bw (project number 57).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Leon Geisen for his editorial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Michielsen, K.; Stavenga, D. Gyroid cuticular structures in butterfly wing scales: Biological photonic crystals. J. R. Soc. Interface

2008, 5, 85–94. [CrossRef] [PubMed]
2. Lai, M.; Kulak, A.N.; Law, D.; Zhang, Z.; Meldrum, F.C.; Riley, D.J. Profiting from nature: Macroporous copper with superior

mechanical properties. Chem. Commun. 2007, 34, 3547–3549. [CrossRef] [PubMed]
3. Kladovasilakis, N.; Tsongas, K.; Tzetzis, D. Mechanical and FEA-Assisted Characterization of Fused Filament Fabricated Triply

Periodic Minimal Surface Structures. J. Compos. Sci. 2021, 5, 58. [CrossRef]
4. Alketan, O.; Abu Al-Rub, R. Multifunctional mechanical-metamaterials based on triply periodic minimal surface lattices: A

review. Adv. Eng. Mater. 2019, 21, 1900524. [CrossRef]
5. Li, W.; Yu, G.; Yu, Z. Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles. Appl.

Therm. Eng. 2020, 179, 115686. [CrossRef]

http://doi.org/10.1098/rsif.2007.1065
http://www.ncbi.nlm.nih.gov/pubmed/17567555
http://dx.doi.org/10.1039/b707469g
http://www.ncbi.nlm.nih.gov/pubmed/18080540
http://dx.doi.org/10.3390/jcs5020058
http://dx.doi.org/10.1002/adem.201900524
http://dx.doi.org/10.1016/j.applthermaleng.2020.115686


Materials 2022, 15, 3730 13 of 13

6. Torquato, S.; Donev, A. Minimal surfaces and multifunctionality. Proc. R. Soc. A Math. Phys. Eng. Sci. 2004, 460, 1849–1856.
[CrossRef]

7. Dong, Z.; Zhao, X. Application of TPMS structure in bone regeneration. Eng. Regen. 2021, 2, 154–162. engreg.2021.09.004.
[CrossRef]

8. Li, D.; Liao, W.; Dai, N.; Xie, Y.M. Comparison of Mechanical Properties and Energy Absorption of Sheet-Based and Strut-Based
Gyroid Cellular Structures with Graded Densities. Materials 2019, 12, 2183. [CrossRef]

9. Liu, F.; Mao, Z.; Zhang, P.; Zhang, D.Z.; Jiang, J.; Ma, Z. Functionally graded porous scaffolds in multiple patterns: New design
method, physical and mechanical properties. Mater. Des. 2018, 160, 849–860. [CrossRef]

10. Jin, Y.; Kong, H.; Zhou, X.; Li, G.; Du, J. Design and Characterization of Sheet-Based Gyroid Porous Structures with Bioinspired
Functional Gradients. Materials 2020, 13, 3844. [CrossRef]

11. Maskery, I.; Sturm, L.; Aremu, A.; Panesar, A.; Williams, C.; Tuck, C.; Wildman, R.; Ashcroft, I.; Hague, R. Insights into the
mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing.
Polymer 2018, 152, 62–71. SI: Advanced Polymers for 3DPrinting/Additive Manufacturing,

12. Maskery, I.; Aboulkhair, N.; Aremu, A.; Tuck, C.; Ashcroft, I. Compressive failure modes and energy absorption in additively
manufactured double gyroid lattices. Addit. Manuf. 2017, 16, 24–29. [CrossRef]

13. Chen, Z.; Xie, Y.; Wu, X.; Wang, Z.; Li, Q.; Zhou, S. On hybrid cellular materials based on triply periodic minimal surfaces with
extreme mechanical properties. Mater. Des. 2019, 183, 108109. [CrossRef]

14. Feng, J.; Liu, B.; Lin, Z.; Fu, J. Isotropic porous structure design methods based on triply periodic minimal surfaces. Mater. Des.
2021, 210, 110050. [CrossRef]

15. Zaharin, H.; Abdul-Rani, A.M.; Azam, F.; Ginta, T.; Sallih, N.; Ahmad, A.; Yunus, N.A.; Zulkifli, T.Z.A. Effect of Unit Cell Type
and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds. Materials 2018, 11, 2402.
[CrossRef]

16. Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge Solid State Science Series; Cambridge Univ.
Press: Cambridge, UK, 1997. [CrossRef]

17. Zhu, H.; Hobdell, J.; Windle, A. Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater. 2000, 48,
4893–4900. [CrossRef]

18. Kaoua, S.A.; Boutaleb, S.; Dahmoun, D.; Azzaz, M. Numerical modelling of open-cell metal foam with Kelvin cell. Comput. Appl.
Math. 2016, 35, 977–985. [CrossRef]

19. Gan, Y.; Chen, C.; Shen, Y. Three-dimensional modeling of the mechanical property of linearly elastic open cell foams. Int. J.
Solids Struct. 2005, 42, 6628–6642. [CrossRef]

20. MATLAB. Version 9.6.0.1072779 (R2019a); The MathWorks Inc.: Natick, MA, USA, 2019.
21. Hötzer, J.; Reiter, A.; Hierl, H.; Steinmetz, P.; Selzer, M.; Nestler, B. The parallel multi-physics phase-field framework Pace3D. J.

Comput. Sci. 2018, 26, 1–12. [CrossRef]
22. John, A.; John, M. Foam metal and honeycomb structures in numerical simulation. Ann. Fac. Eng. Hunedoara 2016, 14, 27–32.
23. Planinsic, G.; Vollmer, M. The surface-to-volume ratio in thermal physics: From cheese cube physics to animal metabolism. Eur. J.

Phys. 2008, 29, 369. [CrossRef]
24. Ansys. Version 2021 R2; Ansys Inc.: Canonsburg, PA, USA, 2021.

http://dx.doi.org/10.1098/rspa.2003.1269
http://dx.doi.org/10.1016/j.engreg.2021.09.004
http://dx.doi.org/10.3390/ma12132183
http://dx.doi.org/10.1016/j.matdes.2018.09.053
http://dx.doi.org/10.3390/ma13173844
http://dx.doi.org/10.1016/j.addma.2017.04.003
http://dx.doi.org/10.1016/j.matdes.2019.108109
http://dx.doi.org/10.1016/j.matdes.2021.110050
http://dx.doi.org/10.3390/ma11122402
http://dx.doi.org/10.1017/CBO9781139878326
http://dx.doi.org/10.1016/S1359-6454(00)00282-2
http://dx.doi.org/10.1007/s40314-015-0217-4
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.002
http://dx.doi.org/10.1016/j.jocs.2018.02.011
http://dx.doi.org/10.1088/0143-0807/29/2/017

	Introduction
	Computational Design
	Structure Generation
	Input Parameters
	Algorithm

	Model and Setup for Mechanical Simulations

	Results and Discussion
	Structure Consideration 
	Surface Area-to-Volume Ratio
	Mechanical Simulation

	Conclusions
	References

