
A Genetic Algorithm for Finding Microgrid Cable Layouts
Max Göttlicher

max.goettlicher@kit.edu
Karlsruhe Institute of Technology

Karlsruhe, Germany

Matthias Wolf
matthias.wolf@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

ABSTRACT
Microgrids play a crucial role in the electrification of rural areas.
Designing a microgrid comprises of multiple parts including finding
suitable sites for generation units, sizing the components of the
microdgrid, and determining the layout of the cables to connect
the components. In this work we focus on the latter part, which
we formalize as the Microgrid Cable Layout problem. In this
problem we assume that the locations and sizes of the generators
and consumers are already given. The goal is to find a cost-minimal
cable layout that connects these locations and that is sufficient
to handle the consumer demands. The cables may be of different
cable types, and we may connect multiple cables not only at the
locations of the generators and consumers but also at any other
point. Microgrid Cable Layout is a stronglyNP-hard, non-linear
optimization problem.

We present a hybrid algorithm for the Microgrid Cable Layout
problem, which employs a genetic algorithm for optimizing the
topology of the layout and a heuristic for assigning the cables to
the edges of the topology. An evaluation on a set of benchmark
instances indicates that this algorithm is able to find good solutions
within a short amount of time. We further evaluate the performance
of the algorithm in a case study on a real-world microgrid in the
Democratic Republic of the Congo.

CCS CONCEPTS
• Theory of computation→ Algorithm design techniques; Graph
algorithms analysis.

KEYWORDS
Microgrids, Cable Layout, Genetic Algorithm, Cable Types, Steiner
Points

1 INTRODUCTION
In 2015 the United Nations have presented an agenda for sustainable
development [28], which formulates 17 goals to reach until 2030.
Sustainable Development Goal 7 is to “ensure access to affordable,
reliable, sustainable and modern energy for all” [28]. Part of this
goal is to provide everyone with access to electricity. According to
a case study in rural Kenya [17] access to electricity significantly
improves the productivity per worker by up to 200 %. Providing
access to electricity is particularly challenging in rural areas in
the global south. According to the 2021 report on the sustainable
development goals [27] there were still 471 million people in rural
areas of sub-Saharan Africa without access to electricity in 2019.

In particular in these rural areas microgrids can play a crucial
role in providing access to electricity. They do not require possibly
long and costly transmission lines to the main power grid to be
built. Instead, they can be installed anywhere and work completely
autonomously provided that there is an energy source available.
Traditionally, diesel generators were used to power microgrids,
but also more sustainable sources like small hydropower plants,
photovoltaic systems, or wind turbines can be used. They do not
require expensive fuel, but can be less reliable.

Designing a microgrid is a complex task (see e.g., the guide by
Sumanik-Leary et al. [26]), and one needs to answer many questions
such as: Where should the microgrid be built? Which places shall
be connected to the microgrid? Howmuch power is needed?Which
generators shall be placed where? How does the cable layout look
like? In this work we focus on the last question, which deals with
routing the cables efficiently. We formalize this problem as the
Microgrid Cable Layout problem. In this problem we assume
the locations and sizes of the generators and consumers to be fixed
by a previous step of the microgrid design process. The goal is
to find a cost-minimal cable layout that connects these locations
subject to certain electrical constraints. There are multiple cable
types to choose from, and we may introduce additional distribution
nodes, which may be placed not only at the location of a generator
or consumer in the input but also at any other point in the plane.
Microgrid Cable Layout further includes costs for poles, which
need to be placed to support the cables. We give a formal definition
of this problem in Section 2. Note that this problem should be
thought of as a part of the full microgrid design problem. While
solving the full problem,multiple instances of theMicrogrid Cable
Layout problem may need to be solved.

We present a hybrid genetic algorithm for the Microgrid Cable
Layout problem, with which we aim to achieve the following two
main goals.

(1) The algorithm should find good solutions reasonably quickly
such that it can be included as a part of a software that con-
siders the full microgrid design problem.

https://orcid.org/0000-0002-5556-4140
https://orcid.org/0000-0003-1411-6330

Max Göttlicher and Matthias Wolf

(2) The algorithm should be flexible, i.e., it should be easy to
add further constraints that needs to be considered. It is
infeasible to gather a set of constraints beforehand that
suffices for all possible use cases.

1.1 Related Work
Determining good designs for microgrids encompasses a lot of
different steps, which range from determining the size of the com-
ponents over finding a good topology to computing a suitable strat-
egy to control the operation of the microgrid. For an overview on
this large range of topics we refer to two surveys by Al-Ismail [2]
and by Gamarra and Guerrero [10]. In the following we focus on
works that are related to the cable layout design aspect of migrogrid
design.

Lambert and Hittle [21] tackle the problem of designing a good
low- andmedium voltage grid layout for the electrification of a rural
village.They consider the design of the low-voltage layout and of the
medium-voltage layout as two separate layers of their optimization
algorithm. They use a single cable in each layer and limit resistive
losses by constraining the maximum distance between demand
points and transformers. For the low-voltage layout they propose
to use an approach based on simulated annealing. Their medium-
voltage layout is always a minimum spanning tree between the
transformers, which connect the two voltage levels.The number and
placement of the transformers is part of their optimization problem.
However, these transformers may only be placed at demand nodes.

Kahveci et al. [16] present a heuristic for finding cable layouts for
microgrids. Their heuristic includes three steps: computing a mini-
mum spanning tree, adding Steiner points in triangles if they reduce
the costs, and finding clusters that may form independent islands.
They insert Steiner points to reduce the total network length but do
not take into account different cable types or electric constraints.

Corigliano et al. [8] present an approach to identify good electri-
fication strategies in rural ares. Within this approach they apply
an algorithm to compute good grid layouts considering the ter-
rain. They first discretize the problem by defining a grid graph
with weights that represent the difficulty of the terrain. Then, they
compute a minimum spanning tree between the populated vertices
(the metric they use is not stated explicitly however), and finally,
they replace the edges in the tree by shortest paths in the grid.
Similar approaches were used in case studies in Nigeria [5] and
in the Philippines [4]. Another case study for a rural an urban mi-
crogrid in India [25] uses Homer [1] to optimize the sizing of the
components but does not consider the geographic layout.

In contrast to the works above, Nolan et al. [24] consider mul-
tiple cable types. They present a genetic algorithm using Prim-
predecessor encoding [22]. Unlike our algorithm, their algorithm
does not consider adding additional points to the network. That is,
their resulting network topology is always a spanning tree on the
input points.

A complementary version of the microgrid layout problem we
consider in this work is studied by Vallem andMitra [29] and Vallem
et al. [30]. They consider the problem where to place distributed
generation units given a grid topology. They solve this problem
with a simulated annealing approach. Note that this approach is
not directly comparable to the one we use since it solves a different

problem.We assume the locations of the generation units to be fixed
in order to include cases where, e.g., the generators already exist
or where there is only one sensible place for a small hydroplant.

TheMicrogrid Cable Layout problem is closely related to other
geometric layout optimization problems such as the Euclidean
Minimum Steiner Tree problem.1 A survey on the history of this
problem is written by Brazil et al. [7]. Genetic algorithms have been
used both for this problem [3] and the Capacitated Minimum
Spanning Tree problem in graphs Jesus et al. [14], another related
network design problem.

1.2 Contribution and Outline
In this work we present a hybrid genetic algorithm for the Mi-
crogrid Cable Layout problem, which splits the problem into
two parts. The outer part aims at find a good cable layout topology
(represented as an undirected graph), for which we use a genetic
algorithm. To assess the quality of a topology, the inner part is to as-
sign suitable cable types to the edges of the topology. For the inner
part we design multiple heuristics and formulate a mixed-integer
linear program, which yields optimal cable assignments for given
topologies. The combination of the algorithms for the two parts is
able to find very good cable layouts within seconds. This makes
the algorithm viable to be used within a larger framework that
optimizes the whole micogrid design including siting and sizing of
the equipment. Moreover, the chosen approach is very flexible in
the sense that additional constraints or changes to the cost function
may be included with little effort, which is one of our main design
goals.

We formally define the Microgrid Cable Layout problem and
give a short analysis of its computational complexity in Section 2.
In Section 3 we then describe our algorithmic approach in detail,
including both the genetic algorithm for finding a topology and the
algorithms for the cable assignment. We evaluate the algorithms in
Section 4 on a set of benchmark instances.This evaluation includes a
comparison of the layout computed by the hybrid genetic algorithm
with the planning of a real-world microgrid in the Democratic
Republic of the Congo. We conclude the work with a summary and
outline possible further research directions in Section 5.

2 THE MICROGRID CABLE LAYOUT
PROBLEM

As input we are given a set % of points in the plane, which represent
the positions of the available generators and the consumers. Each
point ? ∈ % has a maximum power generation 6(?) ∈ R≥0 and a
maximum power demand 3 (?) ∈ R≥0. We may assume that for
each point ? one of6(?) and3 (?) is non-zero since we can ignore all
points where both are zero. A point ? ∈ % is a generator if 6(?) > 0
and a consumer if 3 (?) > 0. Moreover, we are given a set � of
cable types. Each cable type 2 ∈ � has a cost per meter 2line (2), a
resistivity d (2) measured in Ωm−1, and a thermal capacity cap(2)
measured in kW, which represents the maximum power that can
be transferred via a cable of type 2 .

1The (Euclidean) Minimum Steiner Tree problem is often called the Steiner Mini-
mum Tree problem and abbreviated by (E)SMT to distinguish it from the Minimum
Spanning Tree problem (MST). We stick to the name Minimum Steiner Tree and
prevent ambiguities by always writing the full problem name.

A Genetic Algorithm for Finding Microgrid Cable Layouts

A topology is an undirected graph � = (+ , �) with % ⊆ + ⊆ R2,
i.e., the vertices are a set of points in the plane that contains % .
Borrowing from the nomenclature for Steiner trees, we call the
points in + \ % Steiner points. All topologies that we consider in
this work are trees, i.e., they are connected and contain no cycles.
The length ℓ (4) of an edge 4 ∈ � is the euclidean distance between
its endpoints. A cable assignment is a function 0 : � → � . Each
edge is assigned exactly one cable type. Note however that placing
multiple cables in parallel can be modeled by including cable types
in � that represent placing multiple cables of (actual) cable types
in parallel.

Typically, the installed power generation capacity, which is equal
to the sum of the maximum power generations at all points, is less
than the total maximum demand. That is, based on the generation
capacity, we cannot fulfill all demands if all points try to consume
their maximum demands at the same time. But we want to prevent
the grid infrastructure and especially the cables from being the
limiting factor instead of the generation capacity. Hence, we want
to design the grid such that it allows for all possible distributions
of generation and consumption within the bounds given by the
maximum generations and demands. This does not only include
the cable power rating but also losses of power and voltage within
the network [26].

Therefore, we compute for each directed edge (E,F) ∈ ®� (where
®� = {(E,F), (F, E) | EF ∈ �}) the maximum power ? (E,F) that
may need to be transmitted via (E,F) from E toF . Recall that for
? ∈ % the values 6(?) and 3 (?) give bounds for the maximum
generation and maximum demand at ? , respectively. The actual
generation and consumption may (and usually will) differ from
these values. These two functions can naturally be extended to +
by setting their values to 0 outside of % . As� is a tree, removing an
edge EF disconnects � into two components �E

EF and �F
EF , where

the former contains E and the latter contains F . The maximum
flow ? (E,F) on the edge from E to F is limited by both the total
generation in �E

EF and the total demand in �F
EF . We have

? (E,F) = min

∑

G ∈+ (�E
EF)

6(G),
∑

G ∈+ (�F
EF)

3 (G)
 . (1)

Note that in general ? (E,F) and ? (F, E) may differ. We can compute
these values for all edges in O(|+ |) time by performing a single
depth-first search of � ; see Appendix A for details. Since we want
the cables to not limit the amount of power transmitted, we must
ensure that their capacity is large enough in any cable assignment 0,
i.e., for every edge EF ∈ � we require

max{? (E,F), ? (F, E)} ≤ cap(0(4)) . (2)

We further want the line losses and the maximum voltage drop
along any generator-consumer-path to be small. For a given topol-
ogy � = (+ , �) and a cable assignment 0 we bound these values
as follows. The maximum voltage drop *3 (E,F) along a single
edge EF from E toF in a three-phase transmission system is given
by A (EF) · 8 (E,F), where A (EF) = ℓ (EF)d (0(EF)) is the resistance
of the edge according to the cable assignment 0 and 8 (E,F) =

? (E,F)/(
√
3* cosi) is the maximum current on EF from E to F .

Here, * is the grid voltage, i is the load factor. The voltage drop

along a path & is then bounded by

*3 (&) =
∑

(E,F) ∈ ®� (&)

*3 (E,F)

=
∑

(E,F) ∈ ®� (&)

ℓ (EF)d (0(EF)) · ? (E,F)
√
3* cosi

,

where ®� (&) are the edges of & in the same direction as & .
The maximum power loss ?; (EF) on a single edge EF ∈ � is

3A (EF) · 8max (EF)2, where 8max (EF) = max{8 (E,F), 8 (F, E)} is the
maximum current along the edge in either direction. The sum of all
these values is then an upper bound for the total power loss %; .

%; =
∑
EF∈�

?; (EF)

=
∑
EF∈�

ℓ (EF)d (0(EF)) ·
(
max{? (E,F), ? (F, E)}

* cosi

)2
.

Our goal is find a topology � with a cable assignment 0 of
minimum costs such that the maximum voltage drop along any
generator-consumer-path is at most Udrop · * , and the total line
losses %; are at most a factor of Uloss of the total maximum gener-
ation and consumption. More formally, we want for each path &

from a generator to a consumer that

3 (&) ≤ Udrop · , (3)

and

%; ≤ Uloss ·min

∑
?∈%

6(?),
∑
?∈%

3 (?)
 (4)

We call any cable assignment that satisfies Eqs. (2) to (4) a feasible
cable assignment.

A topology � = (+ , �) with cable assignment 0 incurs certain
costs. In this work we consider the costs for the cables, the poles
the cables are placed on, and the equipment needed to connect
the cables together. We assume that these include both the costs
of the materials and the installation. Some costs like the costs of
the generators depend neither on the topology nor on the cable
assignment and can be ignored for the purpose of determining
a good topology and cable assignment. Note that the algorithms
described in the following section are designed to be flexible such
that additional costs may be introduced easily if the need arises.

To compute that cable costs, recall that each cable 2 ∈ � has a
cost per meter 2line (2). Hence, we have

costcables (�, 0) =
∑
4∈�

ℓ (4) · 2line (0(4)) .

To support the cables we need to place poles such that two poles
along a line are at most 3max (measured in m) apart. We further
have one pole at each vertex. We consider a fixed cost of 2pole per
pole. We have

costpoles (�) = 2pole ·
(
|+ | +

∑
4∈�

⌈
ℓ (4)
3max

⌉
− |� |

)
.

Further we need equipment at each vertex to connect the incident
lines. The cost of this equipment at E ∈ + is determined by a
function 2equip, which is given as an input. This function depends

Max Göttlicher and Matthias Wolf

on the degree deg� (E) of E and the maximum power on any edge
incident to E , which is defined as

?̂� (E) = max{? (E,F), ? (F, E) | F ∈ #� (E)}.

We then have

costvertex (�) =
∑
E∈+

2equip (deg� (E), ?̂� (E)) .

In our experiments we assume that 2equip depends linearly on its
parameters, i.e., we have

2equip (G,~) = U + V · G + W · ~,

for some values U, V,W ∈ R≥0. In total, the costs are

cost(�, 0) = costcables (�, 0) + costpoles (�) + costvertex (�).

The Microgrid Cable Layout problem can be summarized
as follows. We are given a set of points % ⊆ R2 with generation
function 6 : % → R≥0 and demand function 3 : % → R≥0, a set
of cables � with their properties (2line, d , cap), and the properties
of the desired grid (voltage * , load factor i , maximum voltage
drop factor Udrop, maximum power loss factor Uloss, maximum dis-
tance between poles 3max, and costs of poles 2pole and other equip-
ment 2equip). Find a tree topology� = (+ , �) and a cable assignment
0 : � → � that satisfy Eqs. (2) to (4) and minimize cost(�, 0).

This problem generalizes the stronglyNP-hard EuclideanMin-
imum Steiner Tree problem [7, 11]; see Appendix B for details of
the reduction. Hence, Microgrid Cable Layout is strongly NP-
hard as well. In fact, even finding a cost-minimal cable assignment
given a fixed topology is already NP-hard; see Appendix C.

3 ALGORITHMS
We want to compute good solutions for the Microgrid Cable
Layout problem. A solution consists of a topology and an assign-
ment of cables to the edges of the topology. Computing a topology
is related to the Euclidean Steiner Tree problem and various
constraint spanning tree problems (e.g., the Constrained Mini-
mum Spanning Tree), for which genetic algorithms have proven
to work well [3, 14, 23]. However, one major difference to these
problems is that we also need to find a cable assignment. The in-
troduction of Steiner nodes makes the problem difficult to solve
using a general purpose optimizer such as Gurobi as they result in
a non-convex problem. Current combinatoric algorithms for the
Euclidean Steiner Tree problem [15] do not work with weighted
edges and thus cannot model different cable types. We therefore
adapt the genetic operators for these problems to the Microgrid
Cable Layout problem and use a hybrid approach, in which a ge-
netic algorithm computes the topology (see Section 3.1) but not the
cable assignments. We base the operators of the genetic algorithm
on the genetic algorithms by [3, 23]. Within the selection phase our
genetic algorithm uses one of several cable assignment algorithms
(see Section 3.2) to evaluate the quality of the computed topologies.

One could also envision a combined genetic algorithm that com-
putes both the topology and the cable assignment. We describe how
to include the cable assignment directly in our genetic algorithm
in Section 3.4.

3.1 Genetic Algorithm for the Topology
A genetic algorithm maintains a set of individuals (the population)
and repeatedly creates new individuals by either modifying the
individuals slightly (mutation) or by combining parts of two indi-
viduals (crossover). Based on a fitness function it then selects some
old and some new individuals to form the next generation; see the
book by Kramer [19] for a more detailed introduction to genetic
algorithms.

The population of our genetic algorithm consists of topologies.
Each topology is represented by a singly-linked adjacency list. To as-
sess the quality of these topologies, we compute cable assignments
according to one of the approaches that we explain in Section 3.2.
These cable assignments then allow us to compute the costs of the
topologies (with these cable assignments).

3.1.1 Initialization. We want the topologies in our initial popula-
tion to have a reasonable structure. In particular, we want them
to be trees without edge crossings, since edge crossings are likely
suboptimal. However, we do want a variety of such trees in order
to be able to explore the solution space. To achieve both goals we
compute random spanning trees on a planar triangulation of the
input points. More precisely, we use the Delaunay triangulation as
the planar triangulation, and we compute a random spanning tree
by first choosing an order of the edges uniformly at random and
then adding edges in this order to our topology unless the insertion
of an edge forms a cycle.

3.1.2 Crossover. All our crossover operations work on two parent
topologies�1 = (+1, �1) and�2 = (+2, �2). In the separate crossover
we choose which Steiner points and edges of the two parent topolo-
gies to keep in two separate phases. In a third phase we ensure that
the created topologies are connected. Let (1 and (2 be the Steiner
points in the two parent topologies. In the first phase we select a
subset (of max{|(1 |, |(2 |} Steiner points from (1 ∪ (2 uniformly at
random, which we keep. Then, + = % ∪ (is the set of vertices of
the new topology. Not keeping all Steiner points ensures that the
number of Steiner points remains bounded.

In the second phase we select a subset of the edges to insert. This
phase is based on an operator for constrained balanced trees [23].
However, due to the first phase an edge of a parent may have end-
points that are not present in + . We therefore map each edge EF ∈
�1 ∪ �2 to the edge ` (EF) between the point of + closest to E

and the point of + closest toF and work with the mapped edges.
First, we insert all of ` (�1). Then, we select a random subset � ′2 of
` (�2) \ ` (�1) by first selecting the desired cardinality : and then
: edges uniformly at random. We insert each of these edges into
the child topology, breaking each cycle � that occurs by deleting
random edge on � except the newly added edge.

Finally, we check in the third phase whether the resulting topol-
ogy is connected. If not, we randomly add edges between the con-
nected components until the topology is connected.

In the subtree crossover we aim to maintain (possibly optimal)
local substructures.Themain idea is to take one subtree of�2 and to
add it to�1 removing all edges of�1 in this process that would cause
cycles. We select a subtree of �2 by first choosing an edge EF ∈ �2
uniformly at random and then picking the subtree) = (+) , �)) to
one side of EF . We initialize the child topology with (+1 ∪+) , �)).

A Genetic Algorithm for Finding Microgrid Cable Layouts

Then, we consider the edges of �1 in a random order, and insert
those edges that connect disconnected components. Since �1 is
connected, the resulting topology is connected as well.

3.1.3 Mutations. Note that neither the initialization nor the two
crossover operators introduces new Steiner points. This only hap-
pens in the mutation operators, which we describe next. All muta-
tion operators operate on a single topology � = (+ , �).

The close endpoint mutation is an adaptation of a mutation op-
erator for diameter constrained spanning tree problems [23]. The
operator is parameterized by a mutation probability ce. Before the
mutation we temporarily insert Steiner points in the middle of all
edges of� resulting in a topology� ′ = (+ ′, � ′). Then, each edge is
considered individually and mutated with probability ce. To mutate
an edge EF , we randomly select on of its endpoints G as the first
endpoint of the new edge and remove EF . We then select another
point ~ ∈ + ′ as the second endpoint, where the probability that
a point I is chosen is proportional to dist(G, I)−2. However, the
insertion of G~ may create a cycle and disconnect the topology. As
in separate crossover, we break cycles by randomly deleting an edge
on the cycle. To repair a disconnected topology, we re-insert EF .
Finally, we revert the introduction of many Steiner points in the
beginning by contracting all Steiner points of degree at most 2; see
Section 3.1.4 how to do this efficiently.

To move Steiner points we apply the following two operators.
Both decide for each Steiner point independently whether to move
it with probability cs. They differ in how they move the Steiner
point then. The nudge mutation (called compress by Barreiros [3])
moves the Steiner point to random point on an incident edge. The
link-length minimizationmutation tries to reduce the total weighted
length of the incident edges, where we set the weight as the unit
costs of the assigned cable types before themodification.We employ
an iterative algorithm for finding the generalized Weber point [20];
the number of iteration is another input parameter of this operator.
Note that link-length minimization disregards the poles on the
incident edges. Moreover, during the minimization we ignore the
option of assigning different cable types. Both restrictions may
cause the iterative algorithm to converge to a non-optimal position.

3.1.4 Pruning Steiner points. The operators may cause the topolo-
gies to contain Steiner points of degree at most 2. Such Steiner
points are never necessary in an optimal topology, and they can be
removed by contracting an incident edge. They can be determined
by a single traversal of the tree in O(|% |) time. Note that removing
points also reduces the number of options the operators have, e.g.,
for deciding where to move an edge in the close endpoint mutation.
However, we artificially subdivide the edges before performing
such operations. Hence, pruning Steiner points in this way has only
a small impact on these operators. Pruning has the benefit that it
keeps the number of Steiner points bounded by a constant factor
of the number of points. Otherwise, the number of Steiner points
could increase with each iteration, which degrades the performance
of the operators.

3.1.5 Selection. At the end of every iteration we have a set of par-
ent topologies and a new set of child topologies, which have been
created by applying the operators. To choose which topologies to
keep, we need to assess their quality, which we interpret as the total

cost of the topology. Since the cost depends both on the topology
and a cable assignment, we first compute a cable assignment for
each topology; we present different exact and heuristic methods
for this in Section 3.2. We then use tournament selection [19] with
elitist reinsertion to determine the set of topologies to keep. More
precisely, 95 % of the new population is obtained by repeatedly
selecting a random subset of : child topologies and inserting the
cheapest of these. The remaining 5 % are the 5 % best parent topolo-
gies. Keeping these implies that the quality of the best topology in
the population does nott decrease over time.

3.2 Cable Assignment
The formulation of the constraints of the cable assignment in Sec-
tion 3.2 suggests formulating the cable assignment problem as
a mixed-integer linear program (MILP). In this formulation we
have one binary variable I (4, 2) ∈ {0, 1} per edge 4 ∈ � and cable
type 2 ∈ � . All other values that occur in the formulation are con-
stant for a given topology and can be precomputed; see Appendix A
for a linear-time computation of the power flows on the edges. We
ensure that exactly one cable type is selected per edge with the
following constraints.∑

2∈�
I (4, 2) = 1, ∀4 ∈ �. (5)

The resistance of an edge 4 ∈ � can then be described by the
expression

'(4) =
∑
2∈�

I (4, 2) · ℓ (4)d (2) . (6)

Replacing ℓ (4)d (0(4)) with the expression for '(4) in Eq. (6) above,
Eqs. (3) and (4) give linear constraints that ensure that the voltage
drops and the line losses stay within the desired range. Note that it
suffices to formulate the voltage drop constraint only for maximal
paths from a generator to a consumer, i.e., they are not part of any
longer path from a generator to a consumer.

To ensure that the capacity of the selected cables is sufficiently
large, we use the following constraints, which adapt Eq. (2).

max{? (E,F), ? (F, E)} ≤
∑
2∈�

cap(2) · I (4, 2) ∀4 ∈ �. (7)

Finally, we want to minimize the cost of the cable assignment
cost(�, 0), which can be described by∑

4∈�

∑
2∈�

ℓ (4) · 2line (2) · I (4, 2). (8)

Note that this objective function just includes the costs that depend
on the cable assignment and ignores the costs that only depend on
the topology. In total, we obtain a mixed-integer linear program
with |+ | · |� | binary variables.

In the genetic algorithm that computes the topology, we repeat-
edly compute cable assignments for topologies in order to assess
their qualities. Hence, we need a fast way to compute a good ca-
ble assignment, and even though our experiments show that the
MILP can typically be solved within seconds (see Section 4.1), this
is not fast enough for our purpose. We therefore employ a heuristic,
which extends the work by Kraft [18] and works as follows.

As for formulating the MILP, we first determine the maximum
flows on all edges (? (E,F) and ? (F, E), as well as ?max (EF) =

Max Göttlicher and Matthias Wolf

max{? (E,F), ? (F, E)} for all EF ∈ �). We further compute for each
edge EF the length ℓ̂path (EF) of the longest path from a generator
to a consumer that goes through EF . These lengths can be computed
in O(|+ |) time by traversing the tree twice; see Appendix D for
details.

We then allocate each edge EF a portion of the allowed voltage
drop that is proportional to the length of the edge relative to the
length of the longest path with EF . That is, we set

*max
3
(EF) = ℓ (EF)

ℓ̂path (EF)
Udrop* .

Similarly, we allocate a portion of the allowed line losses propor-
tional to the edge length, i.e.,

?max
;
(EF) = ℓ (EF)∑

4∈� ℓ (4)
Uloss ·min

∑
?∈%

6(?),
∑
?∈%

3 (?)
 .

We then assign the cheapest cable to EF that has sufficient capacity
and complies with the bounds above, i.e., we have for the final
assignment 0 and all EF ∈ �

*3 (EF) ≤ *max
3
(EF)

?; (EF) ≤ ?max
;
(EF) .

Since these requirements only strengthen the constraints in Eqs. (2)
to (4), the cable assignment 0 is feasible.

Lemma 3.1. The heuristic computes a feasible cable assignment in
O(|+ |) time.

This cable assignment may be improved upon by iterating over
the edges and greedily replacing the currently selected cable by
a cable of the cheapest cable type that suffices to satisfy all con-
straints. We distinguish between two variants based on the order
in which we iterate over the edges. Since the cost of an edge in
proportional to its length, we expect greater cost saving when we
can select a cheaper cable on a longer edge. Therefore, we consider
the edges in the order from the longest to the shortest. The running
time of the greedy improvement phase is dominated by computing
the maximum generator-consumer-paths. Since there may be a
quadratic number of such paths, each of linear length, we obtain a
cubic running time for the greedy improvement in the worst case.

Lemma 3.2. The heuristic with greedy improvement computes a
feasible cable assignment in O(|+ |3) time.

3.3 Summary of Hybrid Genetic Algorithm
To summarize, our algorithm consists of the main part, in which
the topology is optimized by a genetic algorithm (see Section 3.1).
It delegates computing suitable cable assignments to one of the
algorithms in Section 3.2. In principle, we may use any of the three
algorithms presented above (MILP, heuristic, heuristic with greedy
improvement). However, we need to compute a cable assignment
once per topology and iteration. It is therefore computationally
infeasible to solve the MILP every time we need a cable assignment.
We thus only consider the two heuristic cable assignment methods
for use during the execution genetic algorithm. However, we do
solve the MILP once at the end for the best topology found by the
genetic algorithm.

3.4 Combined Genetic Algorithm for Topology
and Cable Assignment

Instead of the hybrid scheme of combining a genetic algorithm for
the topology and a heuristic for the cable assignment, one could
also envision a genetic algorithm that includes the cable assign-
ment. To investigate the feasibility of such an algorithm, we extend
the genetic algorithm presented above as follows. An individual
now contains a cable assignment in addition to the topology. Note
that the cable assignment does not need to be feasible, i.e., it may
violate one of the constraints in Eqs. (2) to (4). We therefore penalize
infeasible individuals in the fitness function. More precisely, when
comparing two individuals, we first compare the number of cables
that violate the capacity constraint (Eq. (2)), then the violation of
the power loss constraint (Eq. (4)), then the violation of the voltage
drop constraint (Eq. (3)), and only then the costs of the cable assign-
ments. In particular, this ensures that a feasible cable assignment is
always better than an infeasible one.

The combined genetic algorithm includes all operators of the
hybrid genetic algorithm (see Section 3.1). However, they need
to be slightly adapted in order to deal with the cable assignment.
Whenever they move edges, they now simply keep the cable type
the same.

Additionally, we introduce a new mutation operator called cable
mutation, which changes the cable assignment but not the topol-
ogy. It is paramterized by a mutation probability cc. The operator
performs the following steps independently for all edges. With
probability cc it changes the cable type of the current edge to a
cable type chosen uniformly at random. We often have cable types
than are derived from placing the same cable type in parallel. If we
know that this is the case, we determine whether to increment or
decrement the number of cables in parallel with probability cc; the
choice between incrementing and decrementing is done uniformly
at random. If we did not increment or decrement (which happens
with probability 1 − cc), we halve or double the number of cables
in parallel with probability cc; again the direction of the change is
chosen uniformly at random.

4 EVALUATION
We implemented the algorithms described in the previous section
in Rust using a modified version of genevo2 as a framework for our
genetic algorithm. We parallelized the application of the genetic
operators by using rayon3. The experiments were performed on a
SuperMicro H8QG6 Server with four 12-core AMD Opteron 6172
processors clocked at 2.1GHz with 256GB RAM running Open-
SUSE Leap 15.3.

Due to a lack of suitable input instances, we resorted to adapting
instances for the related Minimum Steiner Tree problem, which
were supplied in the DIMACS 11 implementation challenge [9].
These benchmark instances come in sets of different sizes. In our
evaluation we chose the sets of sizes 10, 20, 50 and 100. We ran-
domly selected between 5 % and 20 % of the points as generators
with a maximum generation of 80 kW. All other points are con-
sumers with a maximum consumption of either 4 kW (with 50 %

2https://github.com/innoave/genevo
3https://github.com/rayon-rs/rayon

https://github.com/innoave/genevo
https://github.com/rayon-rs/rayon

A Genetic Algorithm for Finding Microgrid Cable Layouts

Table 1: The base cable types we use in the evaluation [18].

cross section cost capacity resistivity
[mm] [USDm−1] [A] [Ω km−1]

16 2.5 66 1.91
35 5.0 132 0.87
70 8.0 205 0.44
95 11.18 245 0.32

probability), 10 kW (30 % probability), or a uniformly randomly cho-
sen value in [15, 75] (20 % probability). This distribution was chosen
to resemble a collection of many households, some smaller and few
larger workshops. We assume a cost of 180USD per pole and a
maximum distance between two poles of 50m. Each distribution
point incurs a fixed cost of U = 100USD plus V = 200USD per
connection and an additional W = 30USDkW−1. The properties of
the cables are given in Table 1. In addition, we assume that multiple
cables of the same type may be placed in parallel to each other. We
further set Uloss = Udrop = 0.1 and assume cosi = 0.8. We refer to
the benchmark set with : ∈ {10, 20, 50, 100} points by B: .

4.1 Cable Assignment
In this section we analyze the quality of the cable assignment heuris-
tics compared to the optimal assignment. We used the points from
the first 51 instances in our benchmark sets B: and evaluated the
heuristic and its greedy improvement. For each instance we used
three different topologies for cable assignment: the minimum span-
ning tree, the minimum Steiner tree and a random spanning tree
consisting of edges in the Delaunay triangulation of the terminals.
We compared the results to the minimum cost cable assignment we
obtained by solving the MILP using Gurobi [13]. We repeated this
5 times for each set of points.

We find that in all test instances from B50 and B100 the heuristic
always yielded the minimum cost cable assignment on all three
topologies. On the test instances fromB10 the heuristic was optimal
on all minimum spanning tree andminimum Steiner tree topologies.
The results were optimal in 80 % of all random topologies with the
most expensive being around 1.3 times more expensive than the
optimum. Using the greedy improvement this number increased
further to above 90 % with the most expensive being 1.1 times more
expensive than the optimum. The heuristic did not perform as well
on B20, the results of which are presented in Fig. 1. While there are
still instances where the heuristic yielded the optimum result, it
performed particularly bad on the random spanning trees. There,
the base heuristic found the optimum solution in only 3 out of all
255 runs. Using the greedy improvement could, however, increase
this to 49 runs or 19 %. With all three topology variants we see a
large decrease in the final cost when using the greedy improvement
phase.

This behavior does not seem to depend on the instance size but
on the distribution of edge lengths. We scaled the coordinates of
the instances in B20 by 0.25 and found that this resulted in the
heuristic always finding the optimum solution. Similarly, we scaled
B50 and B100 by 4 and 10, respectively, and got results similar to
the ones in Fig. 1; see Fig. 6. These scaling factors were chosen to

0 50 100 150 200 250

1

1.1

1.2

1.3

1.4

instance rank

re
la
tiv

e
co

st

20 terminals

rand/he
rand/gr
mst/he
mst/gr
smt/he
smt/gr

Figure 1: Distribution of the cost of the heuristic cable as-
signments relative to the optimal assignment on different
generated topologies on instances from B20. Markers are
placed every 25 runs corresponding to 5 instances repeated 5
times each.

Table 2: Average running times of each cable assignment
method on different benchmark sets B: .

mean running time (µs)

: heuristic greedy gurobi

10 27 53 58 345
20 62 108 223 979
50 120 332 908 331
100 220 1 094 5 070 330

resemble the differences in average edge length among the instances
of the different benchmark sets. With fewer terminals than B50
and B100, but covering the same area, the average edge length in
B20 is higher than in the other two instances. The longer the edges
become on average, the more the constraints for the voltage drops
and line losses become relevant. But these constraints are non-local,
and the heuristic complies with stricter, localized versions of them.
This is the reason why the heuristic may fail to find optimal cable
assignments. In contrast, the capacity constraints are already local
and are handled optimally by the heuristic. Moreover, they are
independent of the edge lengths.

In terms of running time the heuristic performed best, closely
followed by the heuristic with greedy improvement. The mean run-
ning times of the algorithms are given in Table 2. For the smaller in-
stances adding the greedy improvement phase roughly doubles the
running time. But we can also clearly see the super-linear growth
of the running time for the greedy improvement that is predicted
by the theoretical analysis in Lemma 3.2. The long running time

Max Göttlicher and Matthias Wolf

Table 3: Comparison of different mutation rates on B20 and
B50. A value in row c1 and column c2 indicates the percentage
of instances on which the genetic algorithm performed at
least as good as with mutation rate c1 than with rate c2.

c 0.01 0.02 0.03 0.04 0.05 0.075

0.01 – 43.8 41.5 40.2 39.2 44.2
0.02 68.2 – 57.1 55.6 54.6 57.4
0.03 69.1 56.0 – 58.5 54.0 58.5
0.04 69.5 58.2 57.0 – 54.8 61.0
0.05 70.4 58.5 60.8 60.8 – 62.8
0.075 65.0 53.6 56.3 56.9 55.8 –

of Gurobi compared to the heuristic renders it less suitable for the
evaluation phase of a genetic algorithm and is the reason for our
use of a heuristic.

4.2 Selecting Parameters for the Hybrid Genetic
Algorithm

The hybrid genetic algorithm has several parameters that may
influence its performance. More specifically, we have the popu-
lation size B and the mutation probabilities in the close endpoint
mutation ce and in the Steiner points mutation operator cs. To
find good values for these parameters we evaluated the result of
the algorithm with different parameter choices. We call a choice
of the parameters a configuration. Based on preliminary exper-
iments we selected B ∈ {5000, 10 000, 15 000, 20 000, 25 000} and
ce, cs ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.075}. To limit the amount of
combinations, we always set ce = cs. We ran each combination of
parameters on 45 randomly selected instances, 15 each from B20,
B50, and B100; to limit the running time we skipped B10 in our
formal study since the smaller instances tend to be easier, and they
depend less on the choice of the parameters. Moreover, we test both
choices of the cable assignment (heuristic with and without greedy
improvement).

We first determine a suitable value for the mutation rate. Table 3
shows for each pair of mutation rates c1 and c2 in which percentage
of the runs on B20 and B50 the algorithm with mutation rate c1
obtained a result that is at least as good as with mutation rate c2.
According to these results a rate of 0.05 gives at least as good results
on a majority of the instances compared with all other choices of
mutation rates. The same is true for B20 and B50 individually. For
B100 the results change (see Table 6 in Appendix F), and a smaller
mutation rate of 0.03 performs better. This makes sense since the
mutation rate describes the probability that any individual edge
or Steiner point is mutated. As the instances become larger, the
probability that some mutation occurs increases as well. If there
are many changes at once, some bad changes may overpower the
good ones. This may cause the good changes to be discarded even
though they would improve the topology.

Next, we compare the results with respect to the population sizes.
Table 4 (and Table 7 in Appendix F for B100) present a comparison
of the population sizes similar to the tables for the mutation rates.
On B20 and B50 the results are not as clear as for the mutation rates,

Table 4: Comparison of different mutation rates on B20 and
B50. A value in row B1 and column B2 indicates the percentage
of instances on which the genetic algorithm performed at
least as good as with mutation rate B1 than with rate B2.

B 5000 10 000 15 000 20 000 25 000

5000 – 56.6 62.5 63.9 70.2
10 000 56.2 – 66.2 68.1 73.5
15 000 50.8 47.3 – 62.8 70.4
20 000 49.8 44.6 52.3 – 70.8
25 000 42.6 40.1 44.7 42.8 –

Table 5: Percentage of feasible solutionwith a population size
of 5000 after 60s by mutation probabilities ce and cc. Table 8
shows the data for all population sizes.

instance size (#terminals)
ce cc 10 20 50 100

0.005 0.005 100.00 100.00 100.00 66.67
0.005 0.010 100.00 100.00 100.00 100.00
0.005 0.020 100.00 100.00 100.00 100.00
0.010 0.005 100.00 100.00 100.00 0.00
0.010 0.010 100.00 100.00 100.00 8.33
0.010 0.020 100.00 100.00 100.00 41.67
0.020 0.005 100.00 100.00 100.00 0.00
0.020 0.010 100.00 100.00 100.00 0.00
0.020 0.020 100.00 100.00 100.00 0.00

but a population size of 10 000 seems to be the best choice. In con-
trast, on B100 the smaller population size of 5000 is a clear winner.
This is likely because a smaller population size allows for a larger
number of iterations. For larger instances, the number of iterations
is already lower than for smaller instances since each iteration is
slower. Hence, the larger number of iterations is more important
here than having a larger and more heterogeneous population.

4.3 Selecting Parameters for the Combined
Genetic Algorithm

In addition to the mutation rates ce and cs and the population size B ,
the combined genetic algorithm is parameterized by the mutation
rate cc of the cable mutation operator. To find good parameters,
we selected 12 instances from each benchmark set. Based on pre-
liminary experiments we chose ce, cs, cc ∈ {0.005, 0.01, 0.02} and
B ∈ {5000, 10 000, 20 000, 30 000}. As in Section 4.2 we only consid-
ered configurations with ce = cs to limit the computational effort.
We ran each configuration on each instance for 60 s.

Even though the combined genetic algorithm prefers topolo-
gies with feasible cable assignments, there are some configurations
on B50 and B100 for which feasible solutions were rarely (and
sometimes even never) found. Table 5 shows the percentage of
instances with a feasible solution for configuations with population
size B = 5000; the full table is Table 8 in Appendix F. In fact, the two
configurations in Table 5 that show 100 % for B100 are the only two

A Genetic Algorithm for Finding Microgrid Cable Layouts

configurations that resulted in feasible solutions for all instances.
This already indicates that it is hard to find suitable configurations.

Moreover, taking the solution qualities into account we were
not able to determine a configuration that performed consistently
well on all benchmark sets. In the end, we settled with ce = 0.02,
cc = 0.01, B = 30 000 for B10, ce = 0.02, cc = 0.01, B = 20 000 for
B20, and ce = 0.005, cc = 0.02, B = 5000 for both B50 and B100.

4.4 Evaluation of the SolutionQuality
In this section we analyze the quality of the results produced by
the genetic algorithm. We aim to answer two questions. First, how
good are the topologies produced by the genetic algorithms? And
second, how consistent is the output of the genetic algorithms?

We start by tackling the first question. To this end we randomly
selected 50 instances each from B10, B20, B50, and B100. Note that
we chose these instances independently from the instances used in
Sections 4.2 and 4.3 to determine the best configurations. This was
done to prevent giving the genetic algorithms an unfair advantage,
which would happen if we assessed the quality of the topologies and
determined the best configuration on the same instances. We ran
both variants of our hybrid genetic algorithm (ga_heuristic with
the heuristic cable assignment and ga_greedy with the additional
greedy improvement of the cable assignment) and the combined
genetic algorithm ten times on each instance for 60 s. A (relatively
short) running time was selected, since the cable layout algorithm
is meant to form a part of a larger algorithmic framework that
addresses the full microgrid design problem. In the hybrid genetic
algorithm the final cable assignment was found by solving the MILP
formulation with Gurobi [13]. To ensure a fair comparison we did
the same for the combined genetic algorithm even though it di-
rectly optimizes the cable assignment. In addition, we compare the
results with the optimal cable assignments (computed by solving
the MILP formulation) on the minimum spanning tree and the min-
imum Steiner tree. Both are solutions to geometric optimization
problems that are closely related to the Microgrid Cable Layout
problem. Moreover, there are approaches to similar microgrid de-
sign problems that use the minimum spanning tree [16, 21] and
a procedure introducing Steiner points [8]. We used the software
library geosteiner4 to compute minimum Steiner trees.

Figure 2 shows the results of the comparison of the algorithms.
As different instances have different costs, we normalize the values
by the cost of the optimal cable assignment on the minimum Steiner
tree. Each line in the plot corresponds to one algorithm, and each
point describes the median cost of that algorithm over the ten runs
divided by the costs of the minimum Steiner tree based layout. The
instances are sorted by increasing values independently for all lines.
We use the median cost as this is a good indicator for a typical result
of the algorithm. For example, the line for ga_greedy contains the
point (100, 0.193); this means that on 100 instances the costs of the
median result of ga_greedy are at most 19.3 % of the costs of the
minimum Steiner tree based layout.

Since all values are less than 1, we can clearly see that the layout
based on the minimum Steiner tree is the worst on all instances.
This can be explained by the high number and relative high cost
of Steiner points in these layouts. The two variants of the genetic

4http://www.geosteiner.com/

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

instance rank

m
ed

ia
n
co

st
/s

te
in
er

mst
combined
heuristic
greedy

Figure 2: The median costs of the topologies computed by
the algorithms (both the configurations of the genetic algo-
rithm and the minimum spanning tree with optimal cable
assignment) relative to the costs of the optimal cable assign-
ment on the minimum Steiner tree. Each line represents the
results of one algorithm on the different instances. For each
instance the median costs of the results has been selected.
The instances are sorted by increasing cost ratio.

algorithm have an almost identical performance. This is somewhat
surprising as the greedy improvement phase is able to improve
the heuristic cable assignment considerably; see Section 4.1. Note
however that we always compute the optimal cable assignment
via the MILP formulation for the final topology. Otherwise, we
would see the same gap between the two variants as in Section 4.1.
In fact, on B100, which contains most of the instances with the
largest improvement, ga_heuristic even produces better results
than ga_greedy (on average 9.3 % better). This can be explained
by the fact that the greedy improvement of the cable assignment
increases the time needed for one iteration so that ga_heuristic
is able to perform more iterations.

A more detailed analysis also reveals that the results by the
hybrid genetic algorithms are never worse than the layout based
on the minimum spanning tree. There are two instances on which
the minimum spanning tree is as good as the solution found by the
hybrid genetic algorithm. But on the vast majority of the instances
the minimum spanning tree is not optimal.

The combined genetic algorithm performs worse than both hy-
brid variants. On average the median costs are 19.9 % more ex-
pensive than the median costs of ga_heuristic and 20.7 % more
expensive than ga_greedy. This shows that it is hard to optimize
the topology and the cable assignment at the same time.

Multiple runs of the genetic algorithm on the same instance
may yield different results. If the costs of the results differed a
lot between different runs, this would imply that the algorithm
rarely finds (near-)optimal solutions. Conversely, if the results are
often of similar quality, this may suggest that the solutions are

http://www.geosteiner.com/

Max Göttlicher and Matthias Wolf

0 10 20 30 40
0

5

10

15

20

25

instance rank

st
d.

de
v.

/m
ea

n

10/heuristic
10/greedy
20/heuristic
20/greedy
50/heuristic
50/greedy

100/heuristic
100/greedy

Figure 3: The standard deviation over ten runs of each algo-
rithm per instance normalized by the mean cost of layouts
for the instance.

(near-)optimal, in particular, because the genetic algorithm starts
with different topologies every time. We compute the standard
deviations of the costs of the ten runs for each instance. To be
able to compare the standard deviations on different instances, we
normalize the values by the mean costs of the layouts for each
instance. The results are shown in Fig. 3. Each line represents the
normalized standard deviations of one algorithm on the instances
of one benchmark set sorted increasingly.

The comparatively large spread on B100 can likely be explained
by the fact that the results are not yet optimal after 60 s; in particular,
if ga_greedy is used.This fits to our observation that ga_heuristic
performs slightly better on B100. On B10, B20, and B50 the relative
standard deviation is small on the majority of instances; in all cases
it is below 1.2 % for more than half of the instances, and on average
below 4.5 %. As argued above, this may indicate that the results are
often close to optimal. We observe that the relative standard devi-
ation for ga_greedy (on average 0.0 % on B10, 4.5 % on B20, and
1.2 % on B50) is smaller than for ga_heuristic (on average 0.0 %
on B10, 2.2 % on B20, and 0.9 % on B50). This means that ga_greedy
seems to give more consistent results than ga_heuristic.

4.5 Case Study: Idjwi
We evaluate the results of the hybrid genetic algorithm on an in-
stance that is derived from a real-world microgrid in the Democratic
Republic of the Congo [6]. The microgrid is situated on the island
of Idjwi in lake Kivu and powers a small industrial campus. The
positions of the points in the instance resemble the real-world loca-
tions of the generators and consumers. We deviate from the actual
site by including a solar plant, which has not been built yet, and
excluding the diesel generator. The grid uses 400V AC line voltage
and is operated at 50Hz. We assume a load factor of cosi = 0.8
and limit the voltage drops and line losses to within a factor of
Udrop = Uloss = 0.1.

16 35 70 95 190
Cable cross section [mm2]

(a) Output of our hybrid genetic
algorithm. Cost: 23 671USD.

(b) Planned network topology.
Cost: 29 649USD.

Figure 4: A comparison of the topology found by our hybrid
genetic algorithm and a manually planned reference topol-
ogy on an instance derived from a real-world microgrid in
Idjwi. In both cases the optimal cable assignment for these
topologies is shown. The triangles represent generators, the
squares represent consumers, and the black dots are poles.

Figure 4 compares the solution of our hybrid genetic algorithm
(with mutation probabilities set to c = 0.05) with a manually
planned reference topoglogy.The cable assignments are the optimal
ones according to our model. The two topologies are in general
quite similar. They both include a long path from the generator in
the bottom left to a central point in the top right. The location of the
central point differs slightly in the two topologies. From this point
the consumers are connected mostly along paths; in the reference
solution some paths branch to two consumers.

The costs of our solution are 23 671USD, which is significantly
cheaper than the 29 649USD for the reference solution. The cost
decrease comes mainly from having fewer vertices with degree
larger than 2, which incur a significant cost according to our model.
Moreover, the reference topology represents a network that has
grown in multiple steps. Even if each step were to be optimal on
its own, the resulting topology very likely is not. Nevertheless, this
shows that our hybrid genetic algorithm is able to significantly
improve the topology.

5 CONCLUSION
In this work we present a hybrid genetic algorithm for the Mi-
crogrid Cable Layout problem. Within the algorithm we split
this problem into two parts: finding a topology and computing
a cable assignment for the topology. The former part is directly
optimized by the genetic algorithm; the latter is done by a heuristic.
The hybrid genetic algorithm achieves the two goals we formulated.
First, it is able to find good solutions quickly, which is evidenced
by its performance on a set of benchmark instances. It is able to
consistently find solutions within 60 s, which are much better than,

A Genetic Algorithm for Finding Microgrid Cable Layouts

e.g., using a minimum-spanning-tree based layout. Second, adding
more constraints or changing the cost function is comparatively
easy for a genetic algorithm. In that sense, the algorithmic approach
is very flexible, which was the second goal.

The goals for the algorithm are formulated with a larger algorith-
mic framework covering all aspects of microgrid design in mind.
Including the algorithm and studying the interactions with the
other components of such a framework is therefore the main fu-
ture task. This includes finding good locations for the generation
units. Another interesting modification would be to compute cable
capacities based on realistic generation and load scenarios. Load
scenarios also allow proper power flow models to be used to obtain
more accurate insights into the projected grid utilization. As in our
algorithm cable assignment is part of the evaluation this can be
implemented without major changes to other parts of the genetic
algorithm. The hybrid genetic algorithm itself may be extended to
include, e.g., obstacles, which restrict where the lines or poles may
be placed, or more detailed cost functions for the equipment. For
example, the choice of a pole and its foundation, and thus their
costs, may depend on the forces they are subject to.

For the Microgrid Cable Layout problem it would be interest-
ing to have an efficient algorithm for finding optimal solutions or at
least solutions with approximation guarantees. A natural extension
of the problem is to allow cycles in the network. One can then try
to adapt the algorithm to this more general setting.

ACKNOWLEDGMENTS
This work was funded (in part) by the German Research Foun-
dation (DFG) as part of the Research Training Group GRK 2153:
Energy Status Data – Informatics Methods for its Collection, Anal-
ysis and Exploitation. The authors would like to thank Johann Kraft
and Matthias Luh for discussing the planning of the microgrid in
Idjwi with them and for sharing the data on this microgrid. The
authors would further like to thank Sascha Gritzbach for helpful
discussions. Part of this work is based on the first author’s mas-
ter’s thesis (https://i11www.iti.kit.edu/_media/teaching/theses/ma-
goettlicher-21.pdf).

REFERENCES
[1] 2021. HOMER – Hybrid Renewable and Distributed Generation System Design

Software. https://www.homerenergy.com/ Accessed: 2021-12-09.
[2] Fahad Saleh Al-Ismail. 2021. DC Microgrid Planning, Operation, and Control: A

Comprehensive Review. IEEE Access 9 (2021), 36154–36172. https://doi.org/10.
1109/ACCESS.2021.3062840

[3] Jorge Barreiros. 2003. An hierarchic genetic algorithm for computing (near)
optimal Euclidean Steiner trees. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.319.3516&rep=rep1&type=pdf

[4] Paul Bertheau and Catherina Cader. 2019. Electricity sector planning for the
Philippine islands: Considering centralized and decentralized supply options. Ap-
plied Energy 251 (2019), 113393. https://doi.org/10.1016/j.apenergy.2019.113393

[5] Philipp Blechinger, Catherina Cader, and Paul Bertheau. 2019. Least-Cost Electri-
fication Modeling and Planning–A Case Study for Five Nigerian Federal States.
Proc. IEEE 107, 9 (2019), 1923–1940. https://doi.org/10.1109/JPROC.2019.2924644

[6] Engineers Without Borders. 2019. Hydroélectricité Idjwi: Bericht zur ersten
Bauphase, September – Dezember 2018. Technical Report. Engineers Without
Borders. https://www.ludwig-boelkow-stiftung.org/wp-content/uploads/2019/
08/EWB-Kongo-Bericht_Bauphase1.pdf

[7] Marcus Brazil, Ronald L Graham, Doreen A Thomas, and Martin Zachariasen.
2014. On the history of the Euclidean Steiner tree problem. Archive for history of
exact sciences 68, 3 (2014), 327–354. https://doi.org/10.1109/TPWRS.2012.2224676

[8] Silvia Corigliano, Tommaso Carnovali, Darlain Edeme, and Marco Merlo. 2020.
Holistic geospatial data-based procedure for electric network design and least-
cost energy strategy. Energy for Sustainable Development 58 (2020), 1–15. https:

//doi.org/10.1016/j.esd.2020.06.008
[9] Center for Discrete Mathematics and Computer Science. 2014. 11th DIMACS

Implementation Challenge. https://dimacs11.zib.de/downloads.html
[10] Carlos Gamarra and Josep M. Guerrero. 2015. Computational optimization

techniques applied to microgrids planning: A review. Renewable and Sustainable
Energy Reviews 48 (2015), 413–424. https://doi.org/10.1016/j.rser.2015.04.025

[11] M. R. Garey, R. L. Graham, and D. S. Johnson. 1977. The Complexity of Computing
Steiner Minimal Trees. SIAM J. Appl. Math. 32, 4 (1977), 835–859. https://doi.
org/10.1137/0132072

[12] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability, A
Guide to the Theory of NP-Completeness. Freeman, San Francisco.

[13] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

[14] Mário Jesus, Sérgio Jesus, and Alberto Márquez. 2004. Steiner Trees Optimization
using Genetic Algorithms. Technical Report 01. Centro de Simulação e Cálculo.
https://esght.ualg.pt/sites/ualg.pt/files/ise/tr_2004-01.pdf

[15] Daniel Juhl, David M Warme, Pawel Winter, and Martin Zachariasen. 2018.
The GeoSteiner software package for computing Steiner trees in the plane: an
updated computational study. Mathematical Programming Computation 10, 4
(2018), 487–532.

[16] Onur Kahveci, Thomas J. Overbye, Nathan H. Putnam, and Ahmet Soylemezoglu.
2016. Optimization Framework for Topology Design Challenges in Tactical
Smart Microgrid Planning. In 2016 IEEE Power and Energy Conference at Illinois
(PECI). 1–7. https://doi.org/10.1109/PECI.2016.7459262

[17] Charles Kirubi, Arne Jacobson, Daniel M. Kammen, and Andrew Mills. 2009.
Community-Based Electric Micro-Grids Can Contribute to Rural Development:
Evidence from Kenya. World Development 37, 7 (2009), 1208–1221. https:
//doi.org/10.1016/j.worlddev.2008.11.005

[18] Johann Kraft. 2020. Untersuchung der Kombination von Solar und Wasserkraft
zur Off-Grid-Stromversorgung. Fakultät für Elektrotechnik und Information-
stechnik.

[19] Oliver Kramer. 2017. Genetic Algorithms Essentials. Studies in Computational
Intelligence, Vol. 679. Springer. https://link.springer.com/book/10.1007%2F978-
3-319-52156-5

[20] Harold W. Kuhn and Robert E. Kuenne. 1962. An efficient algorithm for the
numerical solution of the generalized Weber problem in spatial economics.
Journal of Regional Science 4, 2 (1962), 21–33. https://doi.org/10.1111/j.1467-
9787.1962.tb00902.x

[21] T. W. Lambert and D. C. Hittle. 2000. Optimization of autonomous village
electrification systems by simulated annealing. Solar Energy 68, 1 (2000), 121–132.
https://doi.org/10.1016/S0038-092X(99)00040-7

[22] Lin Lin and Mitsuo Gen. 2006. Node-Based Genetic Algorithm for Communi-
cation Spanning Tree Problem. IEICE transactions on communications E89-B, 4
(2006), 1091–1098. https://doi.org/10.1093/ietcom/e89-b.4.1091

[23] Riham Moharam and Ehab Morsy. 2017. Genetic algorithms to balanced tree
structures in graphs. Swarm and Evolutionary Computation 32 (2017), 132–139.
https://doi.org/10.1016/j.swevo.2016.06.005

[24] Steven Nolan, Scott Strachan, Puran Rakhra, and Damien Frame. 2017. Optimized
Network Planning of Mini-Grids for the Rural Electrification of Developing
Countries. In 2017 IEEE PES PowerAfrica. 489–494. https://doi.org/10.1109/
PowerAfrica.2017.7991274

[25] Chitaranjan Phurailatpam, Bharat Singh Rajpurohit, and Lingfeng Wang. 2018.
Planning and optimization of autonomous DC microgrids for rural and urban
applications in India. Renewable and Sustainable Energy Reviews 82 (2018),
194–204. https://doi.org/10.1016/j.rser.2017.09.022

[26] Jon Sumanik-Leary, Milan Delor, Matt Little, Martin Bellamy, Arthur Williams,
and Sam Williamson. 2014. Engineering in Development: Energy. https:
//thewindyboy.files.wordpress.com/2014/10/energy-book-final-for-press.pdf

[27] United Nations. 2021. The Sustainable Development Goals Report 2021. https:
//unstats.un.org/sdgs/report/2021/

[28] United Nations General Assembly. 2015. Transforming our world: the 2030
Agenda for Sustainable Development. https://sdgs.un.org/2030agenda
A/RES/70/1.

[29] M.R. Vallem and J. Mitra. 2005. Siting and sizing of distributed generation for
optimal microgrid architecture. In Proceedings of the 37th Annual North American
Power Symposium, 2005. 611–616. https://doi.org/10.1109/NAPS.2005.1560597

[30] Mallikarjuna R. Vallem, Joydeep Mitra, and Shashi B. Patra. 2006. Distributed
Generation Placement for Optimal Microgrid Architecture. In 2005/2006 IEEE/PES
Transmission and Distribution Conference and Exhibition. 1191–1195. https:
//doi.org/10.1109/TDC.2006.1668674

https://i11www.iti.kit.edu/_media/teaching/theses/ma-goettlicher-21.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ma-goettlicher-21.pdf
https://www.homerenergy.com/
https://doi.org/10.1109/ACCESS.2021.3062840
https://doi.org/10.1109/ACCESS.2021.3062840
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.319.3516&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.319.3516&rep=rep1&type=pdf
https://doi.org/10.1016/j.apenergy.2019.113393
https://doi.org/10.1109/JPROC.2019.2924644
https://www.ludwig-boelkow-stiftung.org/wp-content/uploads/2019/08/EWB-Kongo-Bericht_Bauphase1.pdf
https://www.ludwig-boelkow-stiftung.org/wp-content/uploads/2019/08/EWB-Kongo-Bericht_Bauphase1.pdf
https://doi.org/10.1109/TPWRS.2012.2224676
https://doi.org/10.1016/j.esd.2020.06.008
https://doi.org/10.1016/j.esd.2020.06.008
https://dimacs11.zib.de/downloads.html
https://doi.org/10.1016/j.rser.2015.04.025
https://doi.org/10.1137/0132072
https://doi.org/10.1137/0132072
https://www.gurobi.com
https://www.gurobi.com
https://esght.ualg.pt/sites/ualg.pt/files/ise/tr_2004-01.pdf
https://doi.org/10.1109/PECI.2016.7459262
https://doi.org/10.1016/j.worlddev.2008.11.005
https://doi.org/10.1016/j.worlddev.2008.11.005
https://link.springer.com/book/10.1007%2F978-3-319-52156-5
https://link.springer.com/book/10.1007%2F978-3-319-52156-5
https://doi.org/10.1111/j.1467-9787.1962.tb00902.x
https://doi.org/10.1111/j.1467-9787.1962.tb00902.x
https://doi.org/10.1016/S0038-092X(99)00040-7
https://doi.org/10.1093/ietcom/e89-b.4.1091
https://doi.org/10.1016/j.swevo.2016.06.005
https://doi.org/10.1109/PowerAfrica.2017.7991274
https://doi.org/10.1109/PowerAfrica.2017.7991274
https://doi.org/10.1016/j.rser.2017.09.022
https://thewindyboy.files.wordpress.com/2014/10/energy-book-final-for-press.pdf
https://thewindyboy.files.wordpress.com/2014/10/energy-book-final-for-press.pdf
https://unstats.un.org/sdgs/report/2021/
https://unstats.un.org/sdgs/report/2021/
https://sdgs.un.org/2030agenda
https://doi.org/10.1109/NAPS.2005.1560597
https://doi.org/10.1109/TDC.2006.1668674
https://doi.org/10.1109/TDC.2006.1668674

Max Göttlicher and Matthias Wolf

A DEPTH-FIRST SEARCH FOR POWER
FLOWS ON EDGES

To assign cables to a given topology � = (+ , �) we need to deter-
mine the maximum amount of power that may need to be transmit-
ted along each edge. These amounts are given by Eq. (1). A direct
application of this equation allows us to compute each flow value in
linear time, which results in quadratic time for all edges. However,
we can do better than that by performing a single depth-first search;
see Algorithm 1.

Data: Tree � = (+ , �)
Result: Maximum power flow values ? : ®� → R≥0

1 6total ←
∑
?∈% 6(?)

2 3total ←
∑
?∈% 3 (?)

3 A ← arbitrary point in +
4 computeFlow(A , ⊥)
5 function computeFlow(E , D):
6 (6,3) ← (6(E), 3 (E))
7 forF ∈ #� (E) \ {D} do
8 (6,3) ← (6,3) + computeFlow(F , E)

9 if D ≠ ⊥ then
10 ? (D, E) ← min{3,6total − 6}
11 ? (E,D) ← min{3total − 3,6}
12 return (6,3)
Algorithm 1: The DFS to determine the maximum flows on
the edges.

We begin the DFS at an arbitrary vertex A (Lines 3 and 4). When
the function computeFlow() is called for a vertex E and its parent
in the search tree D, it first recursively calls computeFlow() on its
children (Line 8). These calls return the total amount of generation
and demands within the subtree rooted at the child. After the loop,
6 and 3 contain the sum of all generations and demands in the
subtree rooted at E (including the generation and demand of E).
These values suffice to compute the maximum flows on the edge
between E and its parentD (Lines 10 and 11). Note that in the calls to
the children (and recursively to their children and so on) the correct
flow values of all edges in the subtree rooted at D are determined.
Hence, when the algorithm finishes all desired values are computed,
and we have the following result.

Lemma A.1. For a given topology � = (+ , �), the maximum flow
values can be computed in O(|+ |) time.

B COMPLEXITY OF FINDING AN OPTIMAL
CABLE LAYOUT

We reduce the strongly NP-hard problem Euclidean Minimum
Steiner Tree [11] to Microgrid Cable Layout. The input of the
Euclidean Minimum Steiner Tree problem consists of a set of
points % ⊆ R2 in the Euclidean plane. The goal is to connect these
points by line segments (possibly ending at additional points called
Steiner points) such that the total length of the segments is minimum.
In the terms of Section 2 we aim to find a topology such that the
sum of all edge lengths is minimum.

Theorem B.1. Finding a cost-minimal solution to the Microgrid
Cable Layout problem is strongly NP-hard.

Proof. Let % ⊆ R2 be the points of the Euclidean Minimum
Steiner Tree instance. We use them as the points in the Micro-
grid Cable Layout instance we build. Let ? ∈ % be an arbitrary
point, which we use as the single generator, and all other points
are consumers. That is, we set 6(?) = 1, 3 (?) = 0, and for all
? ′ ∈ % \ {?} we set 6(? ′) = 0 and 3 (? ′) = 1. We have only one
cable type 2 with cap(2) = 1, d (2) = 1, and 2line (2) = 1. As the total
maximum generation is 1, the cable capacity is sufficient for every
edge in every topology. To ignore the voltage drop and power loss
requirements, we set Udrop = Uloss = 1. Hence, the resistivity of
the cable does not actually matter. Moreover, we have no costs for
the poles (2pole = 0) and do not require any poles in middle of the
edges (3max = ∞). In total, for each topology � = (+ , �) there is a
unique cable assignment 0, and we have

cost(�, 0) =
∑
4∈�

ℓ (4),

which is precisely the objective function of the Euclidean Min-
imum Steiner Tree problem. Hence, the Euclidean Minimum
Steiner Tree instance and the Microgrid Cable Layout instance
we constructed are equivalent. This transformation is possible
in linear time. Thus, the NP-hardness of Euclidean Minimum
Steiner Tree implies that Microgrid Cable Layout is NP-hard
as well. �

C COMPLEXITY OF CABLE ASSIGNMENT
We study the complexity of finding a cost-minimal cable assignment
that satisfies all constraints mentioned in Section 2.The correspond-
ing decision problem Cable Assignment Problem is defined by:
Given a topology, a set of cables, the grid properties (voltage, power
factor), and some B ∈ R≥0, is there a feasible cable assignment
costing at most B? We prove that this problem is NP-hard by a re-
duction from the NP-hard problem Subset Sum [12]. An instance
of Subset Sum consists of a set - ⊂ N and some : ∈ N. The ques-
tion then is, whether there is a subset . ⊆ - such that the sum of
all elements of . is equal to : .

Theorem C.1. The Cable Assignment Problem isNP-hard even
if the topology is a path.

Proof. Let (-,:) be an instance of Subset Sum. The topology
is a path � = (+ , �) of |- | edges, where each element G ∈ -

corresponds to one edge 4G of length G . The start vertex B of the
path has a generation of 6(B) = 1 and no demand, and the end
vertex C has a demand of 3 (C) = 1 and no generation. All other
vertices E ∈ + \ {B, C} have 6(E) = 3 (E) = 0. There are two cable
types 21 and 22 with

2line (21) = 1, d (21) = 2, cap(21) = 1,

2line (22) = 2, d (22) = 1, cap(22) = 2.

Note that 22 is equivalent to two cables of type 21 in parallel. Since
the topology is fixed, the costs of equipment other than the cables
is constant. Hence, we may assume those costs to be 0 in this proof.
Note that for EF ∈ �, we have ? (E,F) = ? (F, E) = 1. Hence, the

A Genetic Algorithm for Finding Microgrid Cable Layouts

capacities of both cable types are sufficient, and we can ignore them
in the remainder of this proof. We choose* and i such that

2 ·
∑
G ∈-

G − : =

√
3

10
* 2 cosi. (9)

We further set

Udrop =
1
10

and Uloss =

√
3

10 cosi
.

We claim that there is a cable assignment of cost at most
∑
G ∈- G +:

if and only if there is a solution to the Subset Sum instance (-,:).
Suppose there is . ⊆ - such that

∑
~∈. ~ = : . We claim that

assigning the cables by

0(4G) =
{
21, G ∉ .,

22, G ∈ . .

results in a feasible cable assignment. The costs of 0 are

cost(0) =
∑
4∈�

ℓ (4) · 2line (0(4))

=
∑
G ∈-

G · 2line (0(4G))

=
∑

G ∈-\.
G · 1 +

∑
~∈.

~ · 2

=
∑
G ∈-

G +
∑
~∈.

~

=
∑
G ∈-

G + :.

Moreover, taking into account that the power along each edge is 1,
we obtain the bound for the total power loss

%; =
∑
4∈�

ℓ (4)d (0(4)) · 1

(* cosi)2

=
∑
G ∈-

Gd (0(4G)) ·
1

(* cosi)2

=
©«

∑
G ∈-\.

G · 2 +
∑
~∈.

~ · 1ª®¬ · 1

(* cosi)2

=
©«2

∑
G ∈-

G −
∑
~∈.

~
ª®¬ · 1

(* cosi)2

=

(
2

∑
G ∈-

G − :
)
· 1

(* cosi)2

=

√
3

10 cosi
= Uloss · 1,

where the second to last equality uses Eq. (9), and the 1 in the final
row is the total generation in the grid. Hence, the cable assignment 0
satisfies the power loss constraint. A similar chain of equations
yields

*3 (�) =
∑
4∈�

ℓ (4)d (0(4)) · 1
√
3* cosi

= Udrop ·* .

Note that the whole path % is the only path we need to check for
the voltage drop constraint. Hence, the assignment 0 is feasible and
within the desired costs.

Conversely, suppose that there is a feasible assignment 0 of costs
at most

∑
G ∈- G + : . Let . = {G ∈ - | 0(4G) = 22} be the set of

elements whose corresponding edge has been assigned 22. We have∑
~∈.

~ =
∑
~∈.

2~ +
∑

G ∈-\.
G −

∑
G ∈-

G

= cost(0) −
∑
G ∈-

G

≤
∑
G ∈-

G + : −
∑
G ∈-

G

= :.

As for the converse above, we obtain

2
∑
G ∈-

G −
∑
~∈.

~ = %; · (* cosi)2 .

Applying the power loss bound, we then get

2
∑
G ∈-

G −
∑
~∈.

~ ≤ Uloss · (* cosi)2

=

√
3

10 cosi
(* cosi)2

=

√
3

10
* 2 cosi

= 2 ·
∑
G ∈-

G − :,

where the final equation holds by the definition of* and i . Rear-
ranging this inequality yields∑

~∈.
~ ≥ :.

In total, we have that the sum of . is equal to : , which shows that
the cable assignment instance and the instance of Subset Sum are
equivalent.

This transformation can clearly be done in polynomial time. As
Subset Sum is NP-hard [12], so is finding a cost-minimal feasible
cable assignment even if the topology is a path. �

D COMPUTING THE MAXIMUM PATH
LENGTHS

The algorithm to compute for each edge 4 ∈ � the maximum lengths
of generator-consumer-paths that contain 4 is given in Algorithm 2.
It consists of two tree traversals (Lines 2 and 3) and a final iteration
over all edges (Line 4). In the first two traversals, we compute
the values of ℓ̂6 and ℓ̂2 . For an edge EF ∈ �, the value ℓ̂6 (E,F)
is the length of the longest path from a generator to E via the
edge EF . Similarly, ℓ̂2 (E,F) is the length of the longest path from a
consumer to E via EF . In the first traversal (computeLengthsBelow)
we compute the values ℓ̂6 (E,F) and ℓ̂2 (E,F) whereF is the parent
of E in the search tree in a bottom-up fashion. In the second traversal
(computeLengthsAbove) the remaining values are computed. Based
on these values, we compute the desired maximum path lenghts
(computeLengths). The second traversal and the final iteration may
be combined in one traversal.

Max Göttlicher and Matthias Wolf

Data: Tree � = (+ , �)
Result: Maximum path lenghts ℓ̂path : � → R≥0 ∪ {−∞}

1 A ← arbitrary point in +
2 computeLengthsBelow(A , ⊥)
3 computeLengthsAbove(A , ⊥)
4 computeLengths()

5 function computeLengthsBelow(E , D):
6 forF ∈ #� (E) \ {D} do
7 computeLengthsBelow(F , E)

8 ℓ̂6 (E,D) ← max{ℓ̂6 (F, E) + ℓ (EF) | F ∈ #� (E) \ {D}}
9 ℓ̂2 (E,D) ← max{ℓ̂2 (F, E) + ℓ (EF) | F ∈ #� (E) \ {D}}

10 if 6(E) > 0 and ℓ̂6 (E,D) = −∞ then
11 ℓ̂6 (E,D) ← 0

12 if 3 (E) > 0 and ℓ̂2 (E,D) = −∞ then
13 ℓ̂2 (E,D) ← 0

14 function computeLengthsAbove(E , D):
15 forF ∈ #� (E) \ {D} do
16 ℓ̂6 (E,F) ← max{ℓ̂6 (G, E) + ℓ (EG) | G ∈ #� (E) \ {F}}
17 ℓ̂2 (E,F) ← max{ℓ̂2 (G, E) + ℓ (EG) | G ∈ #� (E) \ {F}}
18 if 6(E) > 0 and ℓ̂6 (E,F) = −∞ then
19 ℓ̂6 (E,F) ← 0

20 if 3 (E) > 0 and ℓ̂2 (E,F) = −∞ then
21 ℓ̂2 (E,F) ← 0

22 function computeLengths():
23 for EF ∈ � do
24 ℓ̂path (EF) ←

max{ℓ̂6 (E,F) + ℓ̂2 (F, E), ℓ̂2 (E,F) + ℓ̂6 (F, E)} + ℓ (EF)

Algorithm 2: The algorithm to compute the lengths of the
maximum paths containing an edge.

Note that a naive implementation of the maximum computations
in Lines 16 and 17 requires linear time per computation, which
results in quadratic running time of the algorithm in total. However,
observe that at each point E ∈ + only the two highest values
in {ℓ̂6 (E,F) | F ∈ #� (E)} are relevant (and likewise for {ℓ̂2 (E,F) |
F ∈ #� (E)}). Hence, we can compute these values before, which
allows us to compute the maxima in constant time each.This results
in a linear running time for the whole algorithm.

Lemma D.1. For all edges 4 ∈ � together the maximum lengths of
generator-consumer-paths that contain an edge 4 can be computed in
O(|+ |) time.

A Genetic Algorithm for Finding Microgrid Cable Layouts

E CABLE ASSIGNMENT RESULTS

0 50 100 150 200 250

0.9

1

1.1

1.2

instance rank

re
la
tiv

e
co

st

20 terminals scaled by 0.25

smt/he
smt/gr
rand/he
rand/gr
mst/he
mst/gr

Figure 5: Distribution of the cost of the heuristic cable as-
signment relative to the optimal assignment.

0 50 100 150 200 250

1

1.2

1.4

1.6

instance rank

re
la
tiv

e
co

st

50 terminals scaled by 4

rand/he
rand/gr
mst/he
mst/gr
smt/he
smt/gr

0 50 100 150 200 250

1

1.2

1.4

1.6

instance rank

re
la
tiv

e
co

st

100 terminals scaled by 10

smt/he
smt/gr
mst/he
mst/gr
rand/he
rand/gr

Figure 6: Distribution of the cost of the heuristic cable assign-
ment relative to the optimal assignment. Coordinates in 50
and 100 terminal instances are scaled to match edge length
distribution of 20 terminals.

Max Göttlicher and Matthias Wolf

F OMITTED TABLES

Table 6: Comparison of different mutation rates on B100. A
value in row c1 and column c2 indicates the percentage of
instances on which the genetic algorithm performed at least
as good as with mutation rate c1 than with rate c2.

c 0.01 0.02 0.03 0.04 0.05 0.075

0.01 – 43.8 41.5 40.2 39.2 44.2
0.02 68.2 – 57.1 55.6 54.6 57.4
0.03 69.1 56.0 – 58.5 54.0 58.5
0.04 69.5 58.2 57.0 – 54.8 61.0
0.05 70.4 58.5 60.8 60.8 – 62.8
0.075 65.0 53.6 56.3 56.9 55.8 –

Table 7: Comparison of different mutation rates on B100. A
value in row B1 and column B2 indicates the percentage of
instances on which the genetic algorithm performed at least
as good as with mutation rate B1 than with rate B2.

B 5000 10 000 15 000 20 000 25 000

5000 – 92.2 99.4 100.0 100.0
10 000 7.8 – 90.0 98.3 100.0
15 000 0.6 10.0 – 91.7 99.4
20 000 0.0 1.7 8.3 – 85.6
25 000 0.0 0.0 0.6 14.4 –

Table 8: Percentage of feasible solutions after 60s bymutation
probabilities ce and cc.

instance size (#terminals)
B ce cc 10 20 50 100

5,000 0.005 0.005 100.0 100.0 100.0 66.7
5,000 0.005 0.010 100.0 100.0 100.0 100.0
5,000 0.005 0.020 100.0 100.0 100.0 100.0
5,000 0.010 0.005 100.0 100.0 100.0 0.0
5,000 0.010 0.010 100.0 100.0 100.0 8.3
5,000 0.010 0.020 100.0 100.0 100.0 41.7
5,000 0.020 0.005 100.0 100.0 100.0 0.0
5,000 0.020 0.010 100.0 100.0 100.0 0.0
5,000 0.020 0.020 100.0 100.0 100.0 0.0
10,000 0.005 0.005 100.0 100.0 100.0 0.0
10,000 0.005 0.010 100.0 100.0 100.0 0.0
10,000 0.005 0.020 100.0 100.0 100.0 16.7
10,000 0.010 0.005 100.0 100.0 100.0 0.0
10,000 0.010 0.010 100.0 100.0 100.0 0.0
10,000 0.010 0.020 100.0 100.0 100.0 0.0
10,000 0.020 0.005 100.0 100.0 16.7 0.0
10,000 0.020 0.010 100.0 100.0 83.3 0.0
10,000 0.020 0.020 100.0 100.0 100.0 0.0
20,000 0.005 0.005 100.0 100.0 100.0 0.0
20,000 0.005 0.010 100.0 100.0 100.0 0.0
20,000 0.005 0.020 100.0 100.0 100.0 0.0
20,000 0.010 0.005 100.0 100.0 50.0 0.0
20,000 0.010 0.010 100.0 100.0 100.0 0.0
20,000 0.010 0.020 100.0 100.0 100.0 0.0
20,000 0.020 0.005 100.0 100.0 0.0 0.0
20,000 0.020 0.010 100.0 100.0 0.0 0.0
20,000 0.020 0.020 100.0 100.0 75.0 0.0
30,000 0.005 0.005 100.0 100.0 25.0 0.0
30,000 0.005 0.010 100.0 100.0 100.0 0.0
30,000 0.005 0.020 100.0 100.0 100.0 0.0
30,000 0.010 0.005 100.0 100.0 0.0 0.0
30,000 0.010 0.010 100.0 100.0 25.0 0.0
30,000 0.010 0.020 100.0 100.0 91.7 0.0
30,000 0.020 0.005 100.0 100.0 0.0 0.0
30,000 0.020 0.010 100.0 100.0 0.0 0.0
30,000 0.020 0.020 100.0 100.0 0.0 0.0

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Outline

	2 The Microgrid Cable Layout Problem
	3 Algorithms
	3.1 Genetic Algorithm for the Topology
	3.2 Cable Assignment
	3.3 Summary of Hybrid Genetic Algorithm
	3.4 Combined Genetic Algorithm for Topology and Cable Assignment

	4 Evaluation
	4.1 Cable Assignment
	4.2 Selecting Parameters for the Hybrid Genetic Algorithm
	4.3 Selecting Parameters for the Combined Genetic Algorithm
	4.4 Evaluation of the Solution Quality
	4.5 Case Study: Idjwi

	5 Conclusion
	Acknowledgments
	References
	A Depth-First Search for Power Flows on Edges
	B Complexity of Finding an Optimal Cable Layout
	C Complexity of Cable Assignment
	D Computing the Maximum Path Lengths
	E Cable Assignment Results
	F Omitted Tables

