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Capturing data about manual processes and manual machining
steps is important in manufacturing for better traceability, optimi
zation, and better planning. Current manufacturing research
focuses on sensor based recognition of manual activities across
multiple tools or power tools, but little on recognition within a ver
satile power tool type. Due to the strong influence of operator skill
on process performance and consistency as well as many distur
bance variables, activity recognition is a challenge in manual
grinding. It is unclear how accurately manual activities can be rec
ognized within one handheld grinder type across diverse trials.
Therefore, this article investigates how manual activities can be
recognized in diverse trials within an angle grinder type in a
leave one trial out cross validation in comparison to classical
cross validation to identify the effect of diverse trials with four dif
ferent classifies. An experimental study was conducted to collect
measurement data with data loggers attached to two angle grind
ers, four manual activities with different abrasive tools, and three
operators. Results show very good accuracies (97.68%) with
cross validation and worse accuracies (70.48%) with leave one
trial out cross validation for the ensemble learning classifier.
This means that recognition of the four chosen manual activities
within an angle grinder is feasible but depends on how much the
trial deviates from the reference training data. For further research
on activity recognition in manual manufacturing, we propose the
explicit consideration and evaluation of disturbance variables
and diversity in data collection for the training of machine learning
models. [DOI: 10.1115/1.4054905]
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1 Introduction
In the area of manufacturing, data collection on processes and

machining steps is very important for better traceability [1]. For
this purpose, systems are equipped with a growing number of
sensors. These sensors are connected via communication technolo
gies, which are described as the Internet of things (IoT). This
enables Industry 4.0, where it is essential to collect a wide range
of information to monitor, intervene in, and optimize production.
In manual manufacturing, it is important to capture manual produc
tion steps that are performed by humans [2,3]. These can be part of
assembly processes, screwdriving operations, or machining steps
such as manual grinding. The recognition of manual production
steps can be classified as human activity recognition (HAR). For
HAR, this work focuses on the approaches that use wearable
sensors opposed to external sensors.
The use of sensors and the evaluation of sensor data is the subject

of numerous research projects for assembly processes: The recogni
tion of individual steps of assembling a front lamp into a car bodywas
studied using wearable and environmental sensors [4 6]. The recog
nition of activities in terms of tools used was studied using IMUs on
both wrists of a worker in an assembly process of a piece of furniture
[7,8]. A combination of an inertial measurement unit (IMU) and
surface electromyography was used to recognize assembly tasks
and used tools [9]. The recognition of used tools was also performed
using sensor gloves [10] or a smartwatch [11]. For the production
step of manual grinding in the manufacturing industry, the recogni
tion of different activities was investigated in conjunctionwith a spe
cific handheld grinding machine (palm grip orbital sander, right
angle sander, trimming shear, jitterbug sander, polisher, stone
grinder, and rotating carbon blade cutter) [12].
The previous work on HAR in manufacturing has focused on rec

ognizing activities with different handheld tools and power tools
such as different grinders, screwdrivers, hammers, or wrenches.
With versatile power tools, such as a handheld grinding machine,
different activities can be performed within the same power tool.
Therefore, the general problem is to recognize manual activities
on a finer level within a power tool.
Manual grinding activities used in manufacturing, e.g., cleaning

up weld seams or abrasive finishing on complex surfaces is part of
the production of molds and dies in the foundry industry [13,14]
and the repair of turbine vanes in the aerospace industry [15].
Due to the strong influence of operator skill on process performance
and consistency [16], HAR is a challenge in manual grinding. A
case study of HAR was carried out on a small data set with one
operator and data collected with laboratory measurement technol
ogy with a sampling frequency of 25 kHz, including a contactless
distance sensor to measure the displacements of shaft, speed
sensor, and current sensor from one angle grinder [17]. An accuracy
of 99% for the activity recognition could be achieved for the small
data set with laboratory measurement. In another case study, the
activities “grinding” and “not in process” were distinguished with
an accuracy of 93%, and the activities “machining of steel” and
“machining of aluminum” were distinguished with an accuracy of
90% using an accelerometer, gyroscope, microphone, and current
sensor [18]. In a preliminary study by the authors, the detection
of the grinding, cutting, and roughing applications was investigated
in a small data set based on a current sensor, voltage sensor, an
IMU, and one operator with an accuracy of 80% [19]. In the
three studies on HAR in manual grinding, the measurement data
were randomly divided into training and validation or test data or
with classical cross validation (CV). Since individual trials in
manual grinding can deviate greatly due to the lack of process con
sistency [20] and disturbance variables such as deviating battery
level or grinding disc wear, there remains the problem that it is
unclear how accurately manual activities can be recognized
within one handheld grinder type across more diverse trials.
Therefore, this article investigates how accurately manual activ

ities can be detected in diverse trials within an angle grinder type
with different abrasive tools in a leave one trial out cross validation
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(LOTO CV) in comparison to classical CV, where the folds are ran
domly resampled. An experimental study was conducted to collect
measurement data in diverse trials with different data loggers using
two angle grinders, four manual activities, and three operators.

2 Materials and Methods
Section 2.1 describes the experimental study design and setup,

the angle grinders used, the method of data collection, the
methods of feature extraction and selection, and the classification
framework.

2.1 Experimental Study for Data Collection. The experi
mental study consisted of four different manual activities with dif
ferent abrasive tools: cutting with a cut off wheel, roughing with a
roughing disc, roughing with a fiber disc, and grinding with a flap
disc. The activity “cutting with a cut off wheel” consists of vertical
cuts through a mounted workpiece. The activities “roughing with a
roughing disc” and “roughing with a fiber disc” involve roughing
the edges of the workpiece to represent the activity of workers
roughing a weld in manufacturing. The activity “grinding with a
flap disc” involves the continuous two dimensional grinding of a
surface. The activities and abrasive tools are shown in Fig. 1.
The data for the manual activities were measured in independent

trials, in which the operator freely processes the workpiece with one
of the four manual activities and its respective abrasive tool. When
cutting with a cut off wheel, the trial was terminated after four cuts,
which corresponds to approximately 3 min. For grinding and rough
ing, the activity was terminated after 4 5 min of machining time.
The workpieces were replaced after one or two trials depending
on the material removal. The battery was changed during the trial
to represent a realistic work process, which resulted in interruptions
and different voltage levels during a trial. The abrasive tools were
replaced after one or two trials depending on wear. Due to the
long duration of the trials, the heat generated by the angle grinders
led to a short shutdown in some trials or even a termination of a trial.
These disturbance variables were accepted to allow realistic and
diverse trials.
In addition to the four activities with different abrasive tools, we

have added the class “not in process” because the real world appli
cation of an angle grinder consists of several additional steps before,
partly during, and after the actual activity. The actual activity such
as “cutting with a cut off wheel” includes only the time when the
grinding disc is in contact with the workpiece. The class
“not in process” includes all the time where the angle grinder
gets moved around, runs at idle speed, and is switched on and
off, but is not in contact with a workpiece. For two operators, the
trials contain a combination of the actual manual activity class
and, to a small extent, the “not in process” class. For these trials,

the measurement was started before the activity and stopped after
the activity. Since the trials of the two operators, as usual in a real
world application, only contain a small number of switch on and
switch off operations and the duration of load free motor running
was relatively short and is not user dependent, a third operator
was asked to perform these operations specifically in two separate
trials to generate more diverse training data for the recognition of
the class “not in process.” To compensate for this, only the
manual activity was measured for the third operator, without the
“not in process” before and after the actual activity.
We chose two different cordless angle grinders from two differ

ent manufacturers, the GWS18 (GWS18 125 V LI, Robert Bosch
GmbH, Leinfelden Echterdingen, Germany) and the CCG18
(CCG18 125 BL, C. & E. Fein GmbH, Schwäbisch Gmünd,
Germany), for the experimental study. Both work with 18 volt
battery packs.
For data collection, data loggers, which are mounted between the

battery and angle grinder, were used for both cordless angle grind
ers GWS18 and CCG18. The concept of the data logger was already
published [22,23]. The data logger includes a microcontroller, an
IMU, a current sensor, and a voltage sensor. In total, 11 sensor
signals can be measured with the data logger: acceleration in three
dimension, angular velocity in three dimensions, magnetic field in
three dimensions, current, and voltage of the battery. Due to three
different variations of the data logger in the study, different
sensors and sampling frequencies were used. In addition, two differ
ent test setups with three different workpieces were used to account
for diverse trials as well. The first test setup T1 is shown in Fig. 1.
The data loggers for both cordless angle grinder GWS18 and
CCG18, as well as test setup T2, are shown in Fig. 2.
The experimental study design to collect measurement data on

diverse trials with three operators can be summarized in Table 1.
A total of 26 trials were conducted. Two trials contain only the
“not in process” class and the remaining trials contain a combina
tion of the manual activity class and, to a small extent, the
“not in process” class.

2.2 Data Processing. In data processing, the sensor signals
were resampled to 1000 Hz using linear interpolation. The labeling
was done manually after data collection. The distinction between an
activity (class 2 5) and class 1 “not in process” was made based on
the current signal.
For segmentation, we used successive sliding windows with a

length of 2 s and a 75% overlap. This amount of overlap promised
a slightly better accuracy in HAR [24].
We decided to balance the “not in process” class because this

class was highly overrepresented (∼7500 segments) and the
easiest way to classify. Since the dataset size of the other classes
is very close, we did not balance them as this would have resulted
in a reduction of the valuable dataset. The amount and distribution

Fig. 1 Fourmanual activities and the corresponding abrasive tools were used in the study [21] (Creative Commons Attribution
4.0 (CC BY 4.0))



of the segments of the five classes for manual HAR, consisting of
the four manual activities and the “not in process” class, are pre
sented in Table 2. It is shown that the classes are equally distributed.
For feature extraction, 62 defined features were created for each

of the 11 sensor signals, since for angle grinders, manually defined
features are equivalent to better than automatic features when some
domain knowledge is utilized [19]. In total, we created 682 features
for every window. Among those features are:

• sum, minimum, maximum, mean, median of the absolute
values,

• variance, root mean square, interquartile range, several percen
tiles, skewness, kurtosis,

• zero crossing rate, mean crossing rate,
• root mean square of several Daubechies wavelets,
• mean frequency, median frequency,
• value of the three highest peaks in the amplitude spectrum, and
• spectral energy in defined sections of the amplitude spectrum
between 0.5 Hz to 25 Hz and 80 Hz to 150 Hz.

The result of the feature extraction is a feature table with 682 fea
tures and a corresponding label for each segment. All data process
ing and classification were done in MATLAB R2020b (The
MathWorks, United States).

2.3 Machine Learning Framework. The classification is
machine specific, which means that one machine learning model
is used for one angle grinder. This corresponds to the application
in manufacturing since one would also employ one machine learn
ing model per machine due to different gearing or control
algorithms.
To estimate the machine learning model’s ability to generalize

across more diverse trials, we used two validation methods: A
classic CV, in which folds are resampled randomly on all trials,
and a LOTO CV, in which a fold consists of one trial alone. For
better comparability, the number of folds for CV is chosen to be
26 to match the number of trials. Therefore, the only difference
between the two validation strategies is how the fold used to vali
date the machine learning model is drawn from the data set. The
classical CV is a common validation strategy to investigate if the
classes are separable on, for the model unknown, data based on
the data provided by the datalogger. The LOTO CV is used to esti
mate how well the created models will perform on unknown data
from a full diverse trial, which is probably skewed due to the lack
of process consistency [20] and disturbance variables. The assign
ment of the folds is illustrated for CV and LOTO CV in Fig. 3.
For better prediction performance and learning efficiency, as well

as a higher probability of avoiding overfitting, we used feature

Fig. 2 Left side: CCG18 with datalogger and test setup T2 with the workpiece for grinding with an abrasive flap disc.
Right side: GWS18 with datalogger and test setup T2 with the workpiece for roughing setup with abrasive roughing disc.

Table 1 Different aspects of the experimental study to generate diverse trials

Angle grinder Operator
Data
logger

Sampling
frequency (Hz)

Test
setup

Total time
(min)

Trials with manual
activities

Trials for class
“not in process”

GWS18 1 V1 1000 T2 26 2× 4 activities 2
GWS18 2 V1 1000 T1 49 2× 4 activities
GWS18 3 V2 300 T2 45 2× 4 activities
CCG18 1 V3 1000 T2 51 2× 4 activities 2
CCG18 2 V3 1000 T1 53 2× 4 activities
CCG18 3 V3 1000 T2 38 2× 4 activities

Table 2 Classes for classification and the segment distribution by angle grinder

Class
Angle
grinder

Not in process
(class 1)

Grinding with a
flap disc
(class 2)

Roughing with a
fiber disc
(class 3)

Roughing with a
roughing disc
(class 4)

Cutting with a
cut off wheel
(class 5)

GWS18 2559 segments 2559 segments 2533 segments 2528 segments 2363 segments
CCG18 2918 segments 2918 segments 2691 segments 2886 segments 2562 segments



selection by the minimum redundancy maximum relevance
(MRMR) algorithm [26]. With the MRMR algorithm, we filter
the 682 extracted features into the 50 most important features. To
improve the performance of the classification we used an automated
Naive Bayes hyperparameter optimization. The integration of
feature selection and hyperparameter optimization was solved
with a nested CV approach. This means that for each of the outer
26 fold CV loops, an inner 10 fold CV loop for feature selection
and hyperparameter optimization was performed. The nested CV
approach is shown in Fig. 4. Within the loops, the training data
are shown in green and the test data in orange.
Three classical machine learning algorithms were considered for

classification: ensemble learning (EL) classifier, k nearest neighbor
(kNN) classifier, and support vector machine (SVM). In our work,
the EL is restricted to tree based models, which are then aggregated
by bagging or boosting methods. Due to the size of the datasets, we
decided against using deep learning methods such as neural net
works because these require significantly more data. In addition
to the three classical multiclass classifiers, we evaluated a newly
adapted approach called multistage binary classification (MBC).

MBC has been introduced to improve accuracy by incorporating
domain knowledge and to account for the varying difficulty of rec
ognizing individual manual activities. The approach corresponds to
the concept of various algorithms to convert a multiclass classifica
tion problem into multiple binary classification problems [27]. The
main idea is to extract the two most distinguishable classes from the
rest. Thus, it is possible to perform a classification at a rough level,
such as cutting versus grinding/roughing, with higher accuracy, and
to perform a classification at a more precise level, such as different
tools for roughing, with lower accuracy within the same machine
learning model. The binary classification at each stage in the
MBC framework was performed with the EL classifier. The MBC
framework with the five classes is shown in Fig. 5.
The first stage exists to separate the “not in process” segments

(class 1) from the in process segments (class 2). This binary classi
fication was chosen because it can be based on the current signal,
which correlates to the additional load due to contact of the grinding
disc with the workpiece. In the second stage, the previously
in process classified segments should be distinguished into
cutting and grinding/roughing. This binary classification was

Table 3 Accuracy of the classical 26-fold CV and the LOTO CV in % for GWS18 and CCG18 angle grinder

Angle grinder GWS18 Angle grinder CCG18

Classical 26 fold CV LOTO CV Classical 26 fold CV LOTO CV

Accuracy (%)
Classifier

Mean of
accuracy (%)

Standard
deviation (%)

Mean of
accuracy (%)

Standard
deviation (%)

Mean of
accuracy (%)

Standard
deviation (%)

Mean of
accuracy (%)

Standard
deviation (%)

EL 97.87 0.49 72.29 31.06 97.50 0.84 68.67 35.17
kNN 94.55 1.45 62.76 28.96 89.21 2.32 61.84 31.36
SVM 94.91 2.02 68.08 26.98 86.29 4.66 60.65 29.23
MBC 98.09 69.89 97.11 71.49

Fig. 3 Assignment of the folds is illustrated for CV and LOTO CV

Fig. 4 Machine learning framework with nested CV approach



chosen due to the activity “cutting with a cut off wheel” taking
place mostly in a vertical plane. In the third stage, the grinding
and roughing should be distinguished. This binary classification
was chosen since the activity grinding is performed in a more two
dimensional way rather than in a linear way as is the case in the
roughing of a weld. In the fourth and last stage, the roughing appli
cation segments are examined to differentiate between the activity
“roughing with a fiber disc” and the activity “roughing with a
roughing disc.” For comparison with other classifiers, we perform
a binary classification at each stage, taking into account only
those classes that were not separated in a previous stage.
As a performance metric, we use accuracy due to having rela

tively balanced datasets. For the classical 26 fold CV as well as
the LOTO CV, we extracted the mean of the accuracy and the stan
dard deviation between the accuracy of the folds.

3 Results
This section presents the performance of the chosen classifiers in

each validation method. The results of the classical 26 fold CV and
the LOTO CV with both angle grinders are presented in Table 3.
The upper half of each table represents the GWS18 angle grinder
and the lower half the CCG18 angle grinder. The mean and the stan
dard deviation of the accuracy are shown in percent for all four clas
sifiers. For GWS18, the mean accuracy ranges between 94.91% and
98.09% for 26 fold CV and between 62.76% and 72.29% for LOTO

CV. The best accuracy (mean= 98.09%, std= 0.49%) for 26 fold
CV is achieved with MBC. For CCG18, the mean accuracy
ranges between 86.29% and 97.5% for 26 fold CV and between
60.65% and 71.49% for LOTO CV. The best accuracy (mean=
97.5%, std= 0.84%) for 26 fold CV is achieved with EL.
The individual accuracies of the individual stages, which are

illustrated in Fig. 5, are listed in Table 4. The representation of
the individual accuracies of the four stages of the MBC is done
for the LOTO CV for both angle grinders with the EL classifier.
The class “not in process” can be best distinguished from the rest
of the classes with an accuracy of 98.42%. The binary classification
in the fourth stage between “roughing with a fiber wheel” and
“roughing with a roughing disc” has the worst performance with
an accuracy of 75.82%.

4 Discussion
The results of the classical 26 fold CV, which contains all three

operators and all 26 trials, reached a very high accuracy for the
angle grinder GWS18 (mean= 96.36%, std= 1.32%) and for the
angle grinder CCG18 (mean= 92.53%, std= 2.61%). The small
standard deviation shows that the accuracy is consistent for each
fold. This means that the recognition of the four chosen manual
manufacturing activities with an angle grinder is feasible with
data measured by a data logger attached to the machine. The com
parison with the study of [18] regarding the binary classification of

Fig. 5 The MBC framework

Table 4 Accuracy of the stages in the MBC framework for the LOTO CV validation approach

Class Not in process
Cutting with a
cut off wheel

Grinding with
a flap disc

Roughing with
a fiber disc

Roughing with a
roughing disc

Stage 1. Stage 2. Stage 3. Stage 4. Stage

Angle grinder GWS18
Mean of accuracy (%) 98.52 96.41 76.91 70.90
Standard deviation (%) 2.69 11.42 37.05 35.94

Angle grinder CCG18
Mean of accuracy (%) 98.33 99.02 69.77 80.73
Standard deviation (%) 3.69 2.18 32.27 26.13



the activities “in process” and “not in process” of a handheld grinder
achieved an accuracy of 93.15%. As shown in the MBC in Table 4,
a slightly better result of 98.53% was achieved in this work. The
comparison with the study of Ref. [17] using laboratory measure
ment techniques achieved an accuracy of up to 100%. Although a
very high accuracy was achieved for six activities, the data were
recorded with a sampling frequency of 25 kHz, special metrics
such as the shaft displacement of the drive train were collected,
the data contain only one operator and a 70:30 split was used for
the validation/test data. Therefore, a direct comparison of the accu
racies due to the inferior validation approach is not possible. The
comparison with the results of the preliminary study by the
authors [19], which achieved an accuracy of 85% on the test set
for the angle grinders, indicates a better accuracy in this work
although one application was added and the experimental study
for data collection included several operators. In addition, this
study investigated cordless grinders instead of corded grinders,
resulting in a new disturbance variable of battery charge level.
The observed improvement in accuracy can be explained by a
more sophisticated and superior machine learning approach that
includes more comprehensive feature extraction, hyperparameter
optimization, and a nested CV approach.
The results of the LOTO CV reached worse mean accuracies than

the results of the classical 26 fold CV for the angle grinder GWS18
(mean= 68.36%, std= 29.00%) and for the angle grinder CCG18
(mean= 65.66%, std= 31.92%). The large standard deviations
show that the classification is very different for each individual
trial. The variance of the LOTO CV is affected by the uneven dis
tribution of the “not in process” class among the trials. To some
extent, the variance of the results with LOTO CV in Table 3 can
be explained by the uneven distribution of the “not in process”
class among the trials. However, the uneven distribution between
trials only affects the “not in process” class that is easiest to clas
sify. The breakdown of accuracy using MBC in Table 4 allows
an analysis of the variance excluding the first stage of the
“not in process” class. It shows that the variance is mainly due to
the difficulty of classifying stage 3 and stage 4. While high accuracy
was achieved in some trials, it was not feasible to recognize the
correct activity in other trials. This indicates that the recognition
of the manual manufacturing activities on a full unknown trial
depends on how much the trial deviates from the reference training
data.
This is consistent with the expected result since the experimental

study for data collection included many disturbance variables and
influencing factors. These are, for example, strongly varying pres
sure forces due to expertise and fatigue of the operators, different
working methods of the operators, wear of the grinding discs, and
the changing geometry and heating of the workpiece. A large distur
bance variable was the heat development of the drive train of the
angle grinders, which in various trials led to a brief shutdown or
a termination of the trial. Another large disturbance variable was
the battery state of charge of the cordless angle grinders, which
has a significant effect on the voltage measurement and current
measurement, especially since they were changed during the
trials. Another reason for the high standard deviation is that
the experiments contain only one application and, to some extent,
the “not in process” class. Since the classification of the application
varies in difficulty, as explained in the MBC framework, this also
contributes to the deviation in accuracy. However, this corresponds
to the real world application since the use of the angle grinder in
manufacturing usually contains only one application over one eval
uation phase.
The comparison of the classifiers shows that all four classifiers

have a comparable performance. However, it can be stated that
EL seems to perform best except for two exceptions. In this
work, we varied between several approaches to improve accuracies,
such as a different classifier and an automatic Naive Bayes hyper
parameter optimization. Therefore, we assume that the accuracy
of this data set is already well exploited. For our collected
dataset, we strongly hypothesize that the small size and lack of

diversity across all trials in the dataset are the major cause of the
declining accuracy of the LOTO CV compared to the CV.
It is possible that other methods, such as hidden mark models or

neural networks, could improve the accuracy significantly.
However, the use of neural networks requires a much larger
amount of data. Furthermore, neural networks are more difficult
to transfer to a similar problem. Last but not least, neural networks
require a significantly higher computation time. This is a problem
for an application in the field of manual manufacturing in the indus
trial sector, since often only few data are available, the computation
is partly done on less powerful hardware and the classification
models have to be retrained for different devices and application
areas.
While the classification with LOTO CV already works well for

the first two levels of MBC, it remains unclear whether the classifi
cation of deviating activities at a more precise level such as “rough
ing with a fiber disc” and “roughing with a roughing wheel” shows
a better performance with a larger and more diverse training set. It
should also be investigated how accurate the recognition of other
manual activities in manual grinding, such as different workpieces
and grinding discs. In addition, other manual activities and work
pieces for a specific area in manufacturing should also be investi
gated in further studies.
For the application of the presented HAR, training data must be

recorded for each power tool type to train a power tool specific
machine learning model. In our experiments, we used one grinder
for all trials of GWS18 and one grinder for all trials of CCG18. It
remains unclear to what extent an angle grinder of the same type
with possibly more wear represents a disturbance variable. An inter
esting research direction is the transfer and adaptation of machine
learning models, for example, from GWS18 to CCG18, so that
less training data need to be collected for each specific power tool
type.
When integrating the recognition of the manual manufacturing

activities of handheld grinders into the IoT in a manufacturing
system, the data rate for communication must be considered. To
reduce the data rate, a research direction would be to reduce the
measurement data by using fewer signals or a low sampling rate
for recognition. Another research direction is to employ feature
extraction or machine learning classification on a microcontroller
inside a handheld angle grinder. A very important research direction
for integrating manual manufacturing recognition into the IoT in
manufacturing systems is the speed and real time capability of the
classification. There is further relevant information for manual
grinding in Industry 4.0, such as wear [28], the tool force [18,21],
which can be linked to productivity [25], or the hand arm vibration
value [12,25,29,30], which describes the permissible vibration
value for an operator. The prediction of the information is based
on the recognized activity, which underlines the importance of
HAR in Industry 4.0.

5 Conclusions and Future Work
As the recognition of manual activities within power tools offers

great potential for the IoT in manufacturing, we investigated the fea
sibility of using a datalogger and machine learning for the recogni
tion of manual manufacturing activities on angle grinders. An
experimental study with two angle grinders with attached data
loggers and three operators was conducted to collect measurement
data from four manual manufacturing activities over a machining
time of 5 h. We evaluated four classifiers including a multistage
gate binary classification (MBC) approach to improve accuracy
by incorporating domain knowledge and to account for the
impact of increasingly precise activities on accuracy with a CV
and a LOTO CV. Results show very good accuracies (97.68%)
for CV and worse accuracies (70.48%) for LOTO CV with the
EL classifier. This means that recognition of the four chosen
manual activities within an angle grinder is feasible but depends
on how much the trial deviates from the reference training data.



For further research on activity recognition in manufacturing and
power tools, we propose the explicit consideration and evaluation
of disturbance variables and diversity in data collection for the cre
ation of the machine learning model.
In the future, recognition of activities within one grinder with

LOTO CV should be investigated in a larger training dataset with
more diversity across all trials. Another research direction is the
transferability and adaption of machine learning models for a spe
cific grinder to another grinder. For integration into the IoT, the
computational time and real time capability of activity detection
to reduce the data rate should be investigated. An alternative
approach is edge computing on a microcontroller inside the grinder.
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