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Kurzfassung

Eines der bekanntesten Planungsprobleme stellt die Planung von Aktivitäten
unter Berücksichtigung von Reihenfolgenbeziehungen zwischen diesen
Aktivitäten sowie Ressourcenbeschränkungen dar. In der Literatur ist
dieses Planungsproblem als das ressourcenbeschränkte Projektplanungsprob-
lem bekannt und wird im Englischen als Resource-Constrained Project
Scheduling Problem oder kurz RCPSP bezeichnet. Das Ziel dieses Problems
besteht darin, die Bearbeitungszeit einer Aktivitätsfolge zu minimieren,
indem festgelegt wird, wann jede einzelne Aktivität beginnen soll, ohne
dass die Ressourcenbeschränkungen überschritten werden. Wenn die Bear-
beitungsdauern der Aktivitäten bekannt und deterministisch sind, können
die Startzeiten der Aktivitäten à priori definiert werden, ohne dass die
Gefahr besteht, dass der Zeitplan unausführbar wird. Da jedoch die Bear-
beitungsdauern der Aktivitäten häufig nicht deterministisch sind, sondern auf
Schätzungen von Expertengruppen oder historischen Daten basieren, können
die realen Bearbeitungsdauern von den geschätzten abweichen. In diesem Fall
ist eine reaktive Planungsstrategie zu bevorzugen. Solch eine reaktive Strategie
legt die Startzeiten der einzelnen Aktivitäten nicht zu Beginn des Projektes
fest, sondern erst unmittelbar an jedem Entscheidungspunkt im Projekt, also
zu Beginn des Projektes und immer dann wenn eine oder mehrere Aktivitäten
abgeschlossen und die beanspruchten Ressourcen frei werden.
In dieser Arbeit wird eine neue reaktive Planungsstrategie für das
ressourcenbeschränkte Projektplanungsproblem vorgestellt. Im Gegensatz zu
anderen Literaturbeiträgen, in denen exakte, heuristische und meta-heuristische
Methoden zur Anwendung kommen, basiert der in dieser Arbeit aufgestellte
Lösungsansatz auf künstlichen neuronalen Netzen und maschinellem Lernen.
Die neuronalen Netze verarbeiten die Informationen, die den aktuellen Zus-
tand der Aktivitätsfolge beschreiben, und erzeugen daraus Prioritätswerte für
die Aktivitäten, die im aktuellen Entscheidungspunkt gestartet werden können.
Das maschinelle Lernen und insbesondere das überwachte Lernen werden für das
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Trainieren der neuronalen Netze mit beispielhaften Trainingsdaten angewendet,
wobei die Trainingsdaten mit Hilfe einer Simulation erzeugt wurden.
Sechs verschiedene neuronale Netzwerkstrukturen werden in dieser Arbeit be-
trachtet. Diese Strukturen unterscheiden sich sowohl in der ihnen zur Verfügung
gestellten Eingabeinformation als auch der Art des neuronalen Netzes, das diese
Information verarbeitet. Es werden drei Arten von neuronalen Netzen betra-
chtet. Diese sind neuronale Netze mit vollständig verbundenen Schichten, 1-
dimensionale faltende neuronale Netze und 2-dimensionale neuronale faltende
Netze. Darüber hinaus werden innerhalb jeder einzelnen Netzwerkstruktur ver-
schiedene Hyperparameter, z.B. die Lernrate, Anzahl der Lernepochen, Anzahl
an Schichten und Anzahl an Neuronen per Schicht, mittels einer Bayesischen Op-
timierung abgestimmt. Während des Abstimmens der Hyperparameter wurden
außerdem Bereiche für die Hyperparameter identifiziert, die zur Verbesserung
der Leistungen genutzt werden sollten.
Das am besten trainierte Netzwerk wird dann für den Vergleich mit anderen
vierunddreißig reaktiven heuristischen Methoden herangezogen. Die Ergeb-
nisse dieses Vergleichs zeigen, dass der in dieser Arbeit vorgeschlagene Ansatz
in Bezug auf die Minimierung der Gesamtdauer der Aktivitätsfolge die meis-
ten Heuristiken übertrifft. Lediglich 3 Heuristiken erzielen kürzere Gesamt-
dauern als der Ansatz dieser Arbeit, jedoch sind deren Rechenzeiten um viele
Größenordnungen länger.
Eine Annahme in dieser Arbeit besteht darin, dass während der Ausführung
der Aktivitäten Abweichungen bei den Aktivitätsdauern auftreten können,
obwohl die Aktivitätsdauern generell als deterministisch modelliert werden.
Folglich wird eine Sensitivitätsanalyse durchgeführt, um zu prüfen, ob die
vorgeschlagene reaktive Planungsstrategie auch dann kompetitiv bleibt, wenn
die Aktivitätsdauern von den angenommenen Werten abweichen.
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Abstract

One of the most popular scheduling problems is the scheduling of the activities
under precedence and resource constraints. In the literature, this problem is
called Resource-Constrained Project Scheduling Problem, or shortly RCPSP,
and its goal is generally to minimize the execution time of the entire activity
sequence by defining when each activity should start without exceeding the re-
source consumption. If the activity durations are known and deterministic, it is
possible to define their start time à priori with no risk that the schedule becomes
unfeasible. However, since the activity durations are often not deterministic and
roughly estimated by groups of experts and with historical data, the real un-
known activity durations may be different than the assumed ones. In this case,
it is generally preferred to use a reactive scheduling policy, i.e. a policy that
does not determine the starting time of each activity at the beginning of the
project but only determines step by step which activities should be immediately
started at each decision point, i.e. at the beginning and every time one or more
activities are completed and new resources are released.
In this thesis, a new reactive policy for the Resource-Constrained Project
Scheduling Problem is proposed. Unlike the other literature contributions,
where exact, heuristic and meta-heuristic methods are used, the proposed ap-
proach is based on artificial neural networks and machine learning. The neural
networks are used to process the information defining the current state of the
activity sequence and to generate priority values for the activities that could
be started at the current decision point. On the other hand, machine learning
and, in particular, supervised learning are used to train the neural network with
training data generated by simulation experiments.
Six different neural network structures are considered in this thesis. They differ
both in the input information and in the type of neural network they use to
process it. Three neural network types are considered, namely fully connected,
1-dimensional convolutional and 2-dimensional convolutional neural networks.
Moreover, within the same structure, different hyperparameters, for example
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Abstract

learning rate, number of epochs, number of layers and number of neurons per
layer, are considered and tuned using a Bayesian optimization. The tuning
process has also identified which ranges for the hyperparameter should be used
to improve the performance.
The best trained neural network is then considered for the comparison with
other thirty-four reactive heuristic methods. The results show that the pro-
posed approach is very competitive for what concerns the minimization of the
total duration since it outperforms most of the heuristics. Only three heuristics
achieved a better performance. However, they require computing times that
are many orders of magnitude bigger.
One assumption of this thesis is that, although the activity durations are mod-
eled as deterministic, some deviations may occur during the activity execution.
As a result, a sensitivity analysis is performed to test whether the proposed
reactive policy remains competitive even if the durations deviate from the as-
sumed value.

vi



Contents
Kurzfassung iii

Abstract v

1 Introduction 1
1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . 6

2 The resource-constrained project scheduling problem (RCPSP) 9
2.1 Project as an activity sequence . . . . . . . . . . . . . . . . . . 9
2.2 Representation of a project . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Activity-on-the-arc representation . . . . . . . . . . . . . 10
2.2.2 Activity-on-the-node representation . . . . . . . . . . . . 11
2.2.3 Activity representation with resource consumption . . . . 12

2.3 Definition of project management and project life cycle . . . . . 12
2.4 Basics of project scheduling . . . . . . . . . . . . . . . . . . . . 13
2.5 Resource-constrained project scheduling problem in the literature 14

2.5.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Concepts of activities . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Objective functions . . . . . . . . . . . . . . . . . . . . . 17
2.5.4 Availability of information . . . . . . . . . . . . . . . . . 19
2.5.5 Considered scheduling problems in this thesis . . . . . . 20

2.6 Scheduling algorithms for the deterministic RCPSP . . . . . . . 21
2.6.1 Formal definition of the Resource-Constrained Project

Scheduling Problem . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Scheduling algorithms . . . . . . . . . . . . . . . . . . . 23
2.6.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 28

2.7 Reactive scheduling with uncertain durations . . . . . . . . . . . 28
2.8 Project instances . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Literature analysis and research gaps . . . . . . . . . . . . . . . 31

2.9.1 Literature summary . . . . . . . . . . . . . . . . . . . . 31
2.9.2 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Projects in real-world applications . . . . . . . . . . . . . . . . . 34

vii



Contents

3 Deep neural networks 37
3.1 Introduction to machine learning . . . . . . . . . . . . . . . . . 37

3.1.1 Definition of task T . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Definition of performance measure P . . . . . . . . . . . 38
3.1.3 Definition of experience E . . . . . . . . . . . . . . . . . 39

3.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Generalization . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Underfitting and overfitting . . . . . . . . . . . . . . . . 41
3.2.3 Model capacity . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 43
3.2.5 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . 45
3.2.6 Bayesian optimization to support the hyperparameter

tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Introduction to deep neural networks . . . . . . . . . . . . . . . 48

3.3.1 From machine learning to deep learning . . . . . . . . . . 49
3.3.2 Artificial neural networks . . . . . . . . . . . . . . . . . . 50
3.3.3 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Fully connected neural network . . . . . . . . . . . . . . . . . . 51
3.4.1 Computational layers of fully connected neural networks 52
3.4.2 Hyperparameters of fully connected neural networks . . . 53

3.5 Convolutional neural networks . . . . . . . . . . . . . . . . . . . 54
3.5.1 Computational layers of convolutional neural networks . 56
3.5.2 Hyperparameters of convolutional neural networks . . . . 57
3.5.3 Typical design principles for convolutional neural networks 60

3.6 Learning in neural networks . . . . . . . . . . . . . . . . . . . . 61
3.6.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Gradient descent variants for neural networks . . . . . . 63

3.7 Deep neural network-based decision tools . . . . . . . . . . . . . 64
3.7.1 Application of DNN to resource-constrained problems . . 66

4 Applying deep neural networks to the RCPSP 69
4.1 Simulation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Simulation logics . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Decision-making process with a reactive policy . . . . . . . . . . 74

4.2.1 Available information . . . . . . . . . . . . . . . . . . . . 75
4.2.2 From the priority values to decision . . . . . . . . . . . . 77
4.2.3 Considered policies . . . . . . . . . . . . . . . . . . . . . 77

4.3 Deep neural network structure . . . . . . . . . . . . . . . . . . . 83
4.3.1 Input structure . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Output structure and decision process . . . . . . . . . . 92
4.3.3 Fully connected neural network without future resource

utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



Contents

4.3.4 Fully connected neural network with future resource uti-
lization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.5 Convolutional 1-dimensional neural network without fu-
ture resource utilization . . . . . . . . . . . . . . . . . . 96

4.3.6 Convolutional 1-dimensional neural network with future
resource utilization . . . . . . . . . . . . . . . . . . . . . 98

4.3.7 Convolutional 2-dimensional neural network without fu-
ture resource utilization . . . . . . . . . . . . . . . . . . 99

4.3.8 Convolutional 2-dimensional neural network with future
resource utilization . . . . . . . . . . . . . . . . . . . . . 102

4.4 Performance measurement . . . . . . . . . . . . . . . . . . . . . 103
4.5 Neural network design methodology . . . . . . . . . . . . . . . . 104

4.5.1 Training data generation . . . . . . . . . . . . . . . . . . 104
4.5.2 Tuning of the hyperparameter . . . . . . . . . . . . . . . 106
4.5.3 Evaluation on the test projects . . . . . . . . . . . . . . 108

4.6 Considered class of projects and project generator . . . . . . . . 109

5 Evaluation 113
5.1 Used hardware and software . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.2 Programming language . . . . . . . . . . . . . . . . . . . 114
5.1.3 Used libraries . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Default settings for the evaluations . . . . . . . . . . . . . . . . 115
5.3 Hyperparameter tuning for the chosen neural network configura-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 Hyperparameter tuning for the fully connected neural net-

work without FRU . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Hyperparameter tuning for the fully connected neural net-

work with FRU . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.3 Hyperparameter tuning for the convolutional 1-

dimensional neural network without FRU . . . . . . . . . 120
5.3.4 Hyperparameter tuning for the convolutional 1-

dimensional neural network with FRU . . . . . . . . . . 121
5.3.5 Hyperparameter tuning for the convolutional 2-

dimensional neural network without FRU . . . . . . . . . 123
5.3.6 Hyperparameter tuning for the convolutional 2-

dimensional neural network with FRU . . . . . . . . . . 124
5.3.7 Considerations on the results of the hyperparameter tuning126

5.4 Benchmark on the test projects . . . . . . . . . . . . . . . . . . 133
5.5 Further considerations . . . . . . . . . . . . . . . . . . . . . . . 136

5.5.1 Parameters of the GRU heuristics . . . . . . . . . . . . . 136
5.5.2 Number of runs to compute the AIP upper bound . . . . 138

ix



Contents

5.5.3 Number of runs to create training data . . . . . . . . . . 140
5.5.4 Number of training projects to create training data . . . 140
5.5.5 Use of the resource and activity conversion vector . . . . 142
5.5.6 Use of the input normalization . . . . . . . . . . . . . . . 143

6 Sensitivity analysis 145
6.1 Scope of the sensitivity analysis . . . . . . . . . . . . . . . . . . 145
6.2 Results of the sensitivity analysis . . . . . . . . . . . . . . . . . 146

7 Conclusions 149
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References 171

List of Figures 177

List of Tables 180

A Intermediate numerical results of the hyperparameter tuning 181

x



1 Introduction

Isn’t it remarkable that of all the
machines devised by the humans,
not one can replace imagination?

-A. Naskar

In the last decades the globalization has increased the competition among com-
panies, which are now concurring on a more and more global market. As a
result, they have been facing the need to both improve their productivity and
optimize their costs to survive in this highly dynamic environment. One way
to do that is to improve the decision-making processes (planning, scheduling,
etc.) in production, logistics, project management and so on. If properly done,
this can optimize the resource utilization, lower the time required to accomplish
tasks, minimize risks and, at the end, lower the overall expected costs.
One of the most popular scheduling problem in companies and in everyday
life is the scheduling of activity sequences under resource constraints. For in-
stance, it can be found in a variety of applications such as production planning,
project management, maintenance planning, computer resource management
and so on. This problem is often modeled as shown in Figure 1.1. Each circle
represents an activity and each arrow represents a precedence relation, namely
that the activity after the arrow cannot start if the activity before the arrow
is not completed. Moreover, every activity has a deterministic duration and a
list of required resources which are available in a limited quantity and shared
among all the activities. This problem is commonly called Resource-Constrained
Project Scheduling Problem (RCPSP), and the goal is to define scheduling poli-
cies that minimize the project makespan, i.e. the time required to complete
all the activities (Kolisch and Padman (2001)). As Moehring, Schulz, Stork,
and Uetz (2003) stated, due to its universality, this problem is one of the most
intractable problems in operations research and, therefore, it became a popular
playground for the latest optimization techniques, including virtually all local
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1 Introduction

search paradigms. Moreover, the solution of the problem is NP-hard (Blazewicz,
Lenstra, and Kan (1983)) according to the computational complexity theory,
which means that it cannot be solved in polynomial time.

Figure 1.1: Example of activity sequence represented according to activity-on-the-node con-
vention (Davis (1973)).

Apart from the standard version of this problem, many variations can be found
in the literature. In fact, a lot of effort has been done to study the so-called
multi-mode RCPSP (Sabzehparvar and Seyed-Hosseini (2008), Van Peteghem
and Vanhoucke (2011)), i.e. a resource-constrained project scheduling problem
where the single activities can be executed with different durations and/or a
different number of required resources. Another variation is the so-called multi-
skill RCPSP (Neron (2002), H. Zheng, L. Wang, and X. Zheng (2017)), i.e. a
resource-constrained project scheduling problem where the resources are able to
perform different functions and every activity requires a certain amount of each
function to be executed. Moreover, in the literature there are also works where
the objective function has been varied from the original version of the problem.
For example, Chand, Singh, and Ray (2016) proposed a solution for the RCPSP
that aims to achieve the best compromise between make-span and robustness,
which is the probability that the initial schedule (i.e. the starting times of the
activities) remains feasible through the project execution.
In real-world applications, the execution times of an activity can be rarely con-
sidered to be deterministic. Also in the context of the RCPSP, many literature
contributions have considered stochastic durations in the so-called Stochastic-
RCPSP (S-RCPSP). However, the expected value and distribution of the ac-
tivity durations are generally estimated either by a group of experts or using
historical data. In both cases, the estimation implies some deviations between
the assumed probability distributions and the real ones and an à priori sched-
ule, which implies the definition of the starting time of all activities prior to
the project’s begin, may become unfeasible. As a consequence, the scheduler

2



must either define some time buffers between two consecutively scheduled ac-
tivities (Van de Vonder, Demeulemeester, Herroelen, and Leus (2005)) or de-
fine a reactive scheduling policy to plan step by step (Rostami, Creemers, and
Leus (2015)). This second approach is considered in this thesis and consists
in defining which activities should be immediately scheduled at each decision
point, i.e. at the project’s beginning and whenever another activity has been
just completed and new resources have become available.
In the literature, the following 3 classes of solutions have been applied to the
RCPSP:

• Exact methods (Patterson (1984)): Exact methods can only be com-
puted for a limited number of activities, around 30 and 50 according to
Abdolshah (2014) and with deterministic durations, since the comput-
ing time rapidly increases with the number of considered activities in the
sequence and with its complexity (e.g. number of resource types).

• Heuristics (Kolisch and Hartmann (2006)): Heuristics generally provide
good solutions within a reasonable computing time and they are applicable
to much larger and more complex activity sequences and, most of them,
also with stochastic activity durations.

• Meta-Heuristics (Myszkowski, Skowronski, Olech, and Oslizlo (2015),
Jia and Seo (2013), Zamani (2013), Agarwal, Colak, Deane, and
Rakes (2014)): Meta-heuristics are general algorithmic frameworks, often
nature inspired, designed to solve complex optimization algorithms. They
generally provide better solutions than the heuristics, but they generally
require more computing time.

Although the literature on the RCPSP is very rich, no contributions could be
found where the RCPSP was tackled with machine learning-based algorithms
and, in particular, using deep artificial neural networks. Mao, Alizadeh, Men-
ache, and Kandula (2016) has already tested a similar approach in a similar
problem with promising results. In particular, artificial neural network are
characterized by a big training time but a low decision time, since only sim-
ple and highly parallelizable operations are required once the neural network
has been trained.
The goal of this thesis is to close this research gap by investigating the use of
deep neural networks as reactive scheduling policy for the deterministic resource-
constrained project scheduling problem (S-RCPSP) in its original formulation.

3
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This approach presents a great opportunity to design competitive, fast and gen-
eralized decision tools for a step by step scheduling. One of the main advantages
of this solution in comparison to other state-of-the-art algorithms is its capacity
to schedule completely new activity sequences without running a new optimiza-
tion, which implies faster decisions. Although the activity durations are modeled
as deterministic, it has been chosen to consider only reactive scheduling policies
and to assess in the last part of the thesis what happens if the durations are
affected by a certain level of uncertainty with a sensitivity analysis.

1.1 Problem description

Deep neural networks for decision-making are used more and more often in the
recent years. Since every problem has its own peculiarities and the possibility
to apply such neural networks to the resource-constrained project scheduling
problem has not been investigated yet, many research questions related to this
approach must be still answered.
Reactive algorithms can take into consideration the past, present and/or fu-
ture information in the decision-making process. In the RCPSP the available
information includes the already completed activities, the ones in progress and
ones to be started in the future. How exactly this information is prepared and
processed by the neural network to come out with a decision is still an open
issue in the RCPSP and will be tackled in this thesis with the following re-
search questions:

First cluster of questions: Deep neural network as a decision
tool for reactive decision making process.
Which input information can be used? How should the input infor-
mation be prepared before being processed by the neural network?
How does the input and output information structure look like? How
is the output information used to define which activities should be
immediately scheduled?

Once the input and output information structure has been defined, it is required
to generate and prepare the data for training of the neural network. This issue
will be tackled with the following research questions:

Second cluster of questions: Preparation of the data for
training.

4
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How to generate the training data? How to divide the set of activity
sequences to assure that the neural network learns in a generalized
way? How many projects are required to generate a sufficient number
of training data avoiding overfitting?

After the data have been prepared, the training takes place. Even for neural
networks applied to other problems in the literature there are no clear rules and
guidelines about which training parameters and which type of neural network
should be chosen for the training. As a result, these further research questions
will be answered in this thesis:

Third cluster of questions: Training.
Which hyperparameters of the neural networks (e.g. learning rate,
number of epochs, dropout values, number of layers, number of neu-
rons or filter per layer and so on) should be used? Which neural
network type (e.g. fully connected, convolutional, etc.) is the most
suitable one?

Once the best neural network topology and the best hyperparameters among
the tested ones have been chosen, it is interesting to compare the approach
proposed in this thesis with other algorithms in terms of both project makespan
minimization and computing time for activity sequences with different sizes.

Fourth cluster of questions: Benchmark after training.
How does the proposed scheduling policy perform in absolute terms?
How does it perform in comparison to other algorithms considering
both the makespan and the decision time?

The fifth and last cluster of questions verifies whether and how much the perfor-
mance of the proposed reactive scheduling policy decreases if the decisions are
taken using the assumed values for the durations but the real values are different.

Fifth cluster of questions: Sensitivity analysis.
How does the performance of the proposed approach change if the
estimated activity durations are affected by uncertainty? How does
the proposed approach perform compared to the other considered
reactive scheduling policies in these uncertain circumstances?

5
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1.2 Structure of the thesis

Based on the research questions and the problem statement just described, this
thesis is structured in seven chapters.
After the introduction of Chapter 1, where the motivation and the scope of the
thesis are presented, the Resource-Constrained Project Scheduling Problem is
presented in Chapter 2. Since many versions of the problem can be found in the
literature, it is explained which version will be considered and a formal definition
is given. Moreover, the concept of reactive scheduling policy is introduced.
In the final part of the chapter, the performances of different state-of-the-art
algorithms are analyzed and the research gaps are identified.
In Chapter 3, some basic knowledge about deep neural networks and the corre-
spondent decision models are provided. First of all, some key concepts like, for
example, the training of machine learning models and hyperparameter tuning
are introduced. After that, the author addresses specifically the artificial neu-
ral networks by introducing the types used in this thesis and by representing
how they have been used in previous literature contributions related to different
fields as decision models.
The methodology used to apply them to the RCPSP is presented in Chapter 4,
where the used input and output information and the neural network structure
is presented. In particular, it is explained how the current state of the activity
sequence can be converted into an input information of a fixed dimension, how
the information is processed by different neural networks to create the output
vector and how the latter is used to take decisions about the activities to be
immediately scheduled at each decision point. Moreover, the hyperparameters
considered in the hyperparameter tuning are presented. Finally, the project
generator used to randomly create new project instances is introduced and the
considered project class is defined.
Chapter 5 reports the results of both the hyperparameter tuning and the final
evaluation on the test projects. The first aims to find out which hyperparameter
values are suitable for the scheduling in the given class of projects, while the
goal of the second one is to measure the performance of the proposed approach
on activity sequences that have not been used during neither the training nor
the hyperparameter tuning and to compare the proposed scheduling policy with
the considered heuristics.
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1.2 Structure of the thesis

The fifth cluster of questions is answered in Chapter 6. Using a sensitivity
analysis, the performances of the reactive scheduling policies are measured con-
sidering different levels of uncertainty for the activity durations. In particular,
it is assumed that each policy schedules the activities at each decision point
considering the assumed values for the durations but the real ones are drawn
from a uniform distribution with expected value equal to the assumed one and
a standard deviation defined by different uncertainty levels.
The final chapter summarizes the results and an outlook on further research
areas related to the approach presented in this thesis is given.
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2 The resource-constrained
project scheduling problem
(RCPSP)

The world is one big data
problem.

-A. McAfee

In this chapter the resource-constrained project scheduling problem (RCPSP),
is presented and an overview about the related literature is given. First of all, a
definition of the problem is given, its graphical representation is described and
concrete examples of real-world applications of the problem are presented. Sec-
ondly, the state-of-the-art algorithms investigated in the literature are briefly
mentioned.

2.1 Project as an activity sequence

Projects nowadays are omnipresent and are encountered in many fields of
life, such as business, leisure or social activities (Schwindt and Zimmer-
mann (2015a)). According to Kerzner (2017) a project is any series of ac-
tivities and tasks that:

• has a specific objective to be completed within certain specifications
• holds defined start and end dates
• has funding limits (if applicable)
• requires human and nonhuman resources, for example people, money or

equipment
• is multifunctional, for example cut across several functional lines

9
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The Project Management Institute (PMI) defines a project as a temporary en-
deavor undertaken to create a unique product or service (Rose (2013)). Follow-
ing both definitions, a project can be understood as a one-time endeavor, con-
sisting of a set of activities, whose execution requires time, consumes resources
and leads to a cash flow or entails costs (Schwindt and Zimmermann (2015a)).
Moreover, precedence relations can exist between individual activities. These
precedence relations are defined by technological or organizational requirements
that constrain the activities to be executed in a specific order with respect to
their timing relative to each other. Thus, a precedence relation establishes a
constraint between two activities, not allowing the second activity to start before
the first activity has been completed (Schwindt and Zimmermann (2015a)).

2.2 Representation of a project

A network diagram has proven to be a solid method for displaying a wide variety
of activity planning and scheduling problems (Davis (1973)). A project whose
activities and precedence relations have been identified, can be illustrated as a
network diagram consisting of nodes and arcs and can be expressed by a graph,
denoted as G(N,A), where N represents the set of nodes and A represents the
set of arcs. A set of activities and their precedence relations can be displayed
as a network diagram using two formats: an activity-on-the-node (AoN) and an
activity-on-the-arc (AoA) (Vanhoucke (2012)). Both forms of representations
are introduced in the following paragraphs with Figure 2.1 and 2.2 representing
the same activity sequence modeled in the two formats.

2.2.1Activity-on-the-arc representation

In an AoA diagram, arcs represent activities and nodes are events or milestones
which represent the beginning and/or the end of a set of activities. Information
about the activities such as unique identifiers and activity durations are con-
tained on the arcs. In an AoA network, dummy activities are required in order
to be able to display all precedence relations between activities of a project.
Dummy activities are represented by dashed arrows and consume neither time
nor resources. While the AoN network always uniquely represents a network,
the AoA format cannot guarantee a unique representation of a project due the
use of dummy arcs. Figure 2.1 represents the graph for the AoA format.
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2.2 Representation of a project

Figure 2.1: Example of project represented according to activity-on-the-arc format.

2.2.2Activity-on-the-node representation

In an AoN network, the nodes denote activities while the arcs depict precedence
relations between activities. Unique identifiers and activity durations of the
activities are attached to the nodes. A directed arc between two activities
represents a precedence relation which implies, that the activity at the end of
the arc cannot be started before the activity at the beginning of the arc has been
finished. In the AoN diagram, dummy nodes with durations of zero represent the
start and the end of the project. Both dummy nodes are connected to the project
activities with dashed arrows. Figure 2.2 represents the graph for this format.

Figure 2.2: Example of project represented according to activity-on-the-node format.

Both formats are legitimate alternatives for displaying a project and contain
the same content of information Vanhoucke (2012). However, the AoN net-
work guarantees a unique representation of a project and, as a result, it will
be used in this thesis.
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2.2.3Activity representation with resource consumption

This thesis deals with the resource-constrained project scheduling problem
(RCPSP) which means that each activity, i.e. each node, has a specific re-
source consumption. The latter is represented as depicted in Figure 2.3 where
a generic activity j requires rj,1 pieces of resource type 1, rj,2 pieces of resource
type 2 and so on until resource type K.

Figure 2.3: Example of activity with resource consumption according to activity-on-the-node
format.

2.3 Definition of project management and project
life cycle

Project management entails all activities that deal with the initiating, planning,
decision making, executing, monitoring and controlling process in the context
of a project (Schwindt and Zimmermann (2015a)). Hence, project management
requires the application of knowledge, skills, tools and techniques to successfully
meet the project’s interests and control the achievement of a project’s objectives
(Munns and Bjeirmi (1996)). Seeing projects from a project management point
of view, most projects go through similar phases from their initiation until their
completion. The project life cycle usually consists of the project conception,
project definition, project planning, project execution and project termination.
However, these phases can be carried out differently in different organizations
and they also may vary in their size and complexity (Klein (1999)). An illus-
tration of the project life cycle phases is shown in Figure 2.4.
Again according to Klein (1999) the phases can be described as follows: during
the project conception phase a vague idea of a project is at hand and eco-
nomic and risk analyses are performed to prove the feasibility of the project and
whether to implement it or not. In the project definition phase the project’s
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2.4 Basics of project scheduling

Figure 2.4: Project life cycle phases.

objectives are set and the project’s general organization is laid out. The project
planning phase begins with breaking down a project’s workload into several sub-
activities and identifying precedence relations between these sub-activities in or-
der to create a project schedule that allows for processing these sub-activities in
a structured manner. While the so far described phases dealt with the prepara-
tion of a project for its implementation, in the following project execution phase
the project is executed and its progress is being monitored. In the final project
termination phase the project is being reviewed whether it has met its objectives
and it is evaluated in order to detect potential improvements for future projects.
The given information on the project life cycle phases are meant to give a general
overview and illustrate the role of the project scheduling among them. Because
of their relevance for this thesis, the next section covers more details on project
planning and scheduling.

2.4 Basics of project scheduling

As described in the previous section, during the planning phase of the project
life cycle a project is broken down into precedence-related sub-activities. The
objective of project scheduling is then to generate a timetable that assigns start
and end dates for these sub-activities while maintaining certain scheduling goals,
like, for example, minimizing the project duration, also called makespan (Van-
houcke (2012)). Additionally, the project schedule needs to adhere to the prece-
dence relations and the potential further project characteristics like resource
constraints or costs (Klein (1999)).
Depending on what kind of constraints are taken into account, the litera-
ture distinguishes between time-constrained and resource-constrained project
scheduling problems (Schwindt and Zimmermann (2015a)). In time-constrained
scheduling problems, precedence relations are the only constraints that need to
be considered for the creation of the project’s schedule. There are no limita-
tions regarding the availability of resources, hence all required resources for the
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sub-activities can be provided in any desired amounts. In resource-constrained
scheduling problems, each activity does not only requires some time to be com-
pleted but also a set of resources. The resources can be of the same type or
they can belong to different resource types. In general, in order to model the
resource request as a constraint, the resources must be available in a limited
amount and they must be shared among all the activities. In this thesis the
resource-constrained scheduling problem will be considered.

2.5 Resource-constrained project scheduling
problem in the literature

A huge number of variations of the problem and their corresponding solution
methods can be found in the literature. The simplest version is the time-
constrained problem, i.e. without considering the resource constraints. This
problem has been already formally defined in the 50s with the so-called Crit-
ical Path Method (CPM) and the Program Evaluation and Review Technique
(PERT). The first one is used when the activity durations are deterministic and
the second one when they are stochastic.
Nevertheless, the resource-constrained version of the problem (RCPSP), has
been much more investigated in the literature due to fact that optimal solutions
for sequences with a number of activities greater than 50 are generally unknown
(Abdolshah (2014)). According to Habibi, Barzinpour, and Sadjadi (2018), the
different problem sub-classes and the correspondent solution approaches can be
summarized in Figure 2.5.

2.5.1Resources

As mentioned in the previous sections, in the RCPSP limited amounts of re-
sources are available to perform the project activities. Prior to the beginning
of the project, all resources are available and are allocated in so-called resource
pools (one resource pool for each resource type). Each activity of the project
requires a certain amount of resource units and, as soon as it starts, these re-
sources are allocated to it.
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2.5 Resource-constrained project scheduling problem in the literature

Figure 2.5: Classification of resource-constrained project scheduling problems (Habibi, Barz-
inpour, and Sadjadi (2018)).

The resource use can be modeled in three different ways:

• Renewable resources. If each resource unit can be reused for an unlim-
ited amount of times along the project execution. After the completion
of each activity, the allocated resources are released back into the shared
resource pools. If an activity cannot start due to the lack of some re-
sources, it must wait until other activities are completed and they release
the resources back into the pools. In this regard, human resources and
machinery are generally considered to belong to this class of resources
(Carlier and Moukrim (2015)).

• Non-renewable resources. If a resource unit can be used only once,
namely that after the completion of a each activity, the allocated re-
sources are consumed and they are not release back into the pools (Slowin-
ski (1980)). If an activity cannot start due to the lack of some resources,
a deadlock occurs and the project cannot be completed. The required raw
material (Kyriakidis, Kopanos, and Georgiadis (2012)) and the project
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budget (K. Wang, Chi, and Wan (1993)) are two of the most significant
examples of non-renewable resources.

• Doubly constrained resources. This category of resources has the
properties of both renewable and non-renewable resources. In other words,
the access to these resources is limited both in each period and the to-
tal duration of the project (Kyriakidis, Kopanos, and Georgiadis (2012).
Other examples of this type of resources could be energy in a scenario
where there is a power limit (energy over time) and at the same time
there a limited project energy budget.

For all these three categories, it is generally assumed that the amount of resource
consumption and available capacity of each of them are in the form of integers
but it is also possible to find some contributions where the resource availability
and consumption are (positive) real numbers.

2.5.2Concepts of activities

A second important feature in characterizing the sub-class of considered RCPSP
problem is the characterization of the activities.

• Preemptive scheduling. One of the main assumptions related to the
basic RCPSP is that the activities of the project cannot be interrupted
or discontinued. In other words, an activity must continue till its end
without any interruption. However, in practice, it may happen that some
activities must be stopped during the processing, which can be due to
destruction or disabilities of resources, equipment repair, etc. (Chen and
Z. Zhang (2016)). As a result, a new kind of project scheduling arises,
namely the Preemption-RCPSP (P-RCPSP). Further variations of the P-
RCPSP also exist.

• Activity execution mode. In the basic RCPSP, it is assumed that the
activities can be performed only in one way, i.e. with a predefined process-
ing time and resource consumption. Elmaghraby (1977) proposed for the
first time the assumption of multi-mode activities, in which several tech-
niques or alternatives exist to complete them, each having its own specific
duration and resource consumption (Hartmann and Briskorn (2010)). The
project manager must not only choose which activities should be started
but also with which mode. This type of project scheduling problem is
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called the Multimode Resource-Constrained Project Scheduling Problem
(M-RCPSP). Further variations of the M-RCPSP also exist.

• Type of resource consumption. In the basic RCPSP, it is assumed
that the required amount of resources during each activity execution is
constant. This assumption can be changed into a more general one by
considering a resource consumption changing during the execution (Hart-
mann and Briskorn (2010)).

• Other characteristics. Many other variations of the basic RCPSP con-
cerning the characteristics of the activities can be found in the literature.
The complete list can be found in Habibi, Barzinpour, and Sadjadi (2018).
The last one which is noteworthy is the Multiskill RCPSP (MS-RCPSP)
(Neron (2002), H. Zheng, L. Wang, and X. Zheng (2017)). In this version
of the problem, the activities do not require a specific list of resources
directly but they require a predefined amount of skills. The available re-
sources provide a certain amount of one or more skills. As a result, the
same skill requirement of an activity can be satisfied by different sets of
resources. At each decision point, the project manager must decide which
activities will be started and which resource units will be allocated to each
of the chosen activities.

2.5.3Objective functions

As mentioned in the previous sections, the goal of the RCPSP is to use a policy
to schedule the activities in such a way that the project goal is met. The
project goal is generally an objective function that the project manager tries to
optimize (minimization or maximization). Various objective functions are used
in the literature and they can be classified in the following way:

• Time-based objective functions. The minimization of the project
completion time is the most popular type of time-based objective func-
tion in the RCPSP literature. In this case, the decision maker tries to
schedule the activities of the project in a way that the completion time
of the project reaches the minimum amount (Creemers (2015)). Another
time-based objective function is the tardiness of the activities. In this
problem, the project manager aims to minimize the delays of the activity
completions from the correspondent due dates.
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• Economic objective functions. Cost-based (Berthaut, Pellerin, Per-
rier, and Hajji (2014)) and Net Present Value (Wiesemann, Kuhn, and
Rustem (2010)) objective functions are the most used among the eco-
nomic ones. Both consider that the cash flows (revenues or costs) take
place while starting, completing or performing activities and consuming
resources and that there may be a trade-off between cost and time. For
instance, in the multi-mode project scheduling problems, the activity du-
rations and the costs may vary for each execution mode. Since the comple-
tion of an activity in a shorter duration is often associated with increased
costs, the decision maker must evaluate if the extra costs are compensated
by a significant advantage in terms of project duration. While the cost-
based objective function considers the total revenues (or costs) during the
project no matter when they occur, the Net Present Value objective func-
tion considers that they take place at different points in time and uses
the Net Present Value instead to have a better estimate of the financial
impact of the decisions during the project execution.

• Resource-based objective functions. The Resource-based objective
functions can be divided into renewable resource objective functions and
non-renewable resource objective functions. To the first group belongs, for
example, the minimization of the total costs related to the provision of a
specific level of resource capacity without exceeding the project deadline
(Moehring (1984)), while the second group deals with the minimization
of the consumed non-renewable resources without exceeding the project’s
due dates.

• Other objectives objective functions. For example, Abbasi,
Shadrokh, and Arkat (2006) presented a RCPSP model with two objec-
tives. On one hand, the minimization of the project execution time and,
on the other hand, the maximization of scheduling robustness, i.e. the
probability that the schedule stays feasible even if the activity duration
have some deviations.

• Multi-objective objective functions. In case more objective functions
are considered simultaneously and the decision maker aims to achieve the
best compromise by combining them in a unique objective function.
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2.5.4Availability of information

The aim of project scheduling is providing a baseline schedule for a more accu-
rate control of the project and an easier planning for project success. However,
it is noteworthy that this schedule is generally defined before the project’s begin-
ning and its accuracy depends on the information used to provide the scheduling
timetable. The availability level of the required information can be full or lim-
ited. If the available information is complete and reliable, the obtained schedul-
ing timetable remains valid for sure. Otherwise, the scheduling process must
be done in an uncertain environment (Habibi, Barzinpour, and Sadjadi (2018))
and, if needed, updated during the project execution.

• Deterministic. If all the information (e.g. activity durations, resource
availability and request and deadlines) is known in advance (Fang, Kolisch,
L. Wang, and Mu (2015)).

• Non-deterministic. If some pieces of information are missing. Ac-
cording to Habibi, Barzinpour, and Sadjadi (2018), a non-deterministic
scheduling can be further classified in the following subclasses:

– Reactive scheduling. This approach is applied during the project
execution and is based on the information available at the decision
moment. In this case, the decision maker tries to find the optimal
schedule by using the assumed deterministic values without taking
into account the uncertainties about the project’s characteristics.
Nevertheless, the chosen schedule is reviewed and re-optimized in
case of unexpected deviations, e.g. if an activity takes longer than
expected.

– Stochastic scheduling. In this approach, it is assumed that some of
the project’s parameters are randomly distributed with a known dis-
tribution. The literature related to stochastic project scheduling can
be categorized into four problems of Stochastic Resource-Constrained
Project Scheduling Problem (S-RCPSP) with the same assumptions
as the basic RCPSP but with stochastic activity durations, project
scheduling problems with stochastic activity interruptions, stochastic
discrete time/cost trade-off problems and stochastic project schedul-
ing problems with economic objective functions.
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– Fuzzy scheduling. In some cases, lack of historical data might lead
to inability to determine the probability distribution for duration
of activities. In addition, the duration of activities is estimated by
experts often under unique conditions of the project. In such con-
ditions, where there is more ambiguity than uncertainty, the use of
fuzzy numbers is more preferred for modeling, compared to random
variables. In other words, these values use membership functions
based on possibility theory as a replacement for probability distribu-
tions (Herroelen and Leus (2005)).

– Proactive (robust) scheduling. In contrast to the concept of reac-
tive scheduling, proactive scheduling aims to create robust schedules,
i.e. schedules that do not require major changes if some unexpected
events occur. For instance, it is possible to schedule a time buffer
between the expected completion of an activity and the beginning
of the following one. In this case, even if some activities have a de-
lay, the completion time of the project may not change (Palacio and
Larrea (2017)).

– Sensitivity analysis. This approach is not properly a scheduling
algorithm but more a verification tool to understand how good a
schedule or a scheduling algorithm remains, when some parameters
change, like for example the activity durations. The used scheduling
policy takes decisions and creates schedules considering the known
information about the project, while the real activity durations may
be different.

2.5.5Considered scheduling problems in this thesis

In this thesis two different problems are considered.
The first one will be denoted as deterministic RCPSP in the following chapters
and refers to the basic RCPSP, i.e. the Resource-Constrained Project Scheduling
Problem with the following characteristics:

• Deterministic activity durations.
• Renewable resources with known total availability.
• No Preemptions.
• Single-mode activities.
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• Predefined resource consumption for each activities.
• With the project total duration, or project makespan, as objective function

to minimize.
The second one is a sensitivity analysis to test the proposed decision tools when
the activity durations deviate from the assumed value. This second problem
has the following characteristics:

• Sensitivity analysis assuming random deviations of the activity durations.
In particular, the real unknown values are drawn from a uniform distri-
bution with expected values equal to the assumed ones, which are the
ones used by the scheduling policy in the scheduling process, and different
standard deviations related to 11 levels of uncertainty.

• Renewable resources with known total availability.
• No Preemptions.
• Single-mode activities.
• Predefined resource consumption for each activities.
• With the project total duration, or project makespan, as objective function

to minimize.

2.6 Scheduling algorithms for the deterministic
RCPSP

In the previous paragraphs the different classes of the RCPSP have been pre-
sented without considering the scheduling algorithms in detail. The purpose of
this section is to present some methodologies and algorithms used to schedule the
activities of the projects. First of all, a formal definition of the problem is given.
After that, the state-of-the-art algorithms to solve it are presented. Finally, the
literature contributions to the sensitivity analysis for the RCPSP are analyzed.

2.6.1Formal definition of the Resource-Constrained Project
Scheduling Problem

Formally, the deterministic RCPSP can be expressed like a single project consist-
ing of a set of J activities with known deterministic durations dj ∈ N for each
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activity j ∈ J. All activities are executed without preemption, which means
that once an activity is started, it is executed without interruption until its
completion. The project is finished when all the activities have been completed.
Furthermore, K is a set of renewable resource types and each resource type
k ∈ K has a finite capacity Rk that remains constant throughout the project
execution. Each activity j ∈ J requires rj,k units of each resource type k ∈ K
for the entire duration of its execution. It is assumed that 0 ≤ rj,k ≤ Rk. Two
additional dummy activities 0 and J + 1 are considered. They represent the
start and the end of the project and require neither time (d0 = dJ+1 = 0) nor
resources (r0,k = rJ+1,k = 0 for all k ∈ K) to be executed.
A solution to an instance of RCPSP is a schedule, which is denoted by a vector
s = (s0, ..., sJ+1), in which sj is the starting time of activity j ∈ J. Without
loss of generality, starting times are restricted to integer values. The starting
times must respect a given set of precedence constraints, which are described
by a directed an acyclic graph G(J,A) with A a set of partial-order relations on
J (a binary relation that is transitive and irreflexive). Such relations A on J are
called precedence relations. Activity 0 has no predecessors and activity J+1 has
no successors. The conceptual formulation of the RCPSP is the minimization
of sJ+1, i.e. the project completion time or project makespan MSp, under the
following constraints:

sj + dj ≤ si ∀(j, i) ∈ A (2.1)

∑
j∈J(s,t)

rj,k ≤ Rk ∀t ∈ N0,∀k ∈ K (2.2)

sj ∈ N ∀j ∈ J (2.3)

The constraint set 2.1 describes the precedence constraints between the activities
and are all finish-to-start (FS) constraints, namely that the successor activity
cannot be started before the predecessor is completed. The constraint set 2.2
represents the resource constraints, where the set J(s, t) contains the activities
that are in process during time period t (time interval [t − 1, t]) according to
schedule s (see equation 2.4).

J(s, t) = j ∈ J : sj ≤ (t− 1) ∧ (sj + dj) ≤ t (2.4)
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A schedule s that respects the constraints 2.1, 2.2, 2.3 and 2.4 is called a fea-
sible schedule.

2.6.2Scheduling algorithms

Surveys of solution methods for RCPSP are provided in Demeulemeester and
Herroelen (2002) and Neumann, Schwindt, and Zimmermann (2012) and, in
general, it is possible to divide the scheduling algorithms for the considered
problem in three classes: exact methods, heuristics and meta-heuristics. The
three classes are explained in the paragraphs below.

Exact methods

With exact methods it is possible to compute the best schedule (or schedules),
i.e. the one with the lowest possible makespan. However, they can compute the
optimal solution only for projects with a maximum number of activities around
30 and 50 (Abdolshah (2014)). In fact, their computing time increases exponen-
tially as the number of considered activities in the project and its complexity
(e.g. number of resource types or number of precedence constraints) increases.
Exact methods are based on enumeration algorithms, methodically searching the
set of possible solutions in such a way that not all possibilities need be considered
individually. Exact RCPSP solving methods comprise among others dynamical
planning and branch and bound methods Demeulemeester and Herroelen (1992).
In Patterson (1984), a set of those methods have been investigated and compared
on a set of project instances. The methods differ in how the tree representing
partial schedules is generated and saved, and in the methods used to identify
and discard inferior partial schedules.
Searching the entire problem space makes the exact methods most of the times
inapplicable for practical applications Agarwal, Colak, and Erenguc (2015). The
majority of the contributions on exact approaches mainly aim to generate bench-
mark solutions for small activity sequences to evaluate new approximate meth-
ods (Kolisch and Hartmann (1999)).
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Heuristics

While various exact methods have been described in the literature for obtaining
optimal solutions for the RCPSP, the development of heuristic procedures has
also received extensive attention as the computing time required for finding a
guaranteed optimal solution becomes unacceptably large as the size and com-
plexity of the instances increases. Heuristics generally provide a good solution
within a reasonable computing time and they are applicable to much larger and
more complex activity sequences and, most of them, also with known stochastic
activity durations or under uncertainty.
Heuristics compute and assign priorities to the activities according to an al-
gorithm. After the priorities have been assigned, it is possible to generate a
schedule step by step by scheduling the activities with a higher priority as soon
as possible without violating the resource and precedence constraints.
A lot of heuristic methods can be found in the literature and the following ones
have been considered in this thesis to create a benchmark:

• Shortest Imminent Operation (SIO) It schedules the activities based
on their duration, namely that the shorter the duration of an activity, the
higher its priority to be scheduled.

• Greatest Total Resource Demand (GTRD) It schedules the activ-
ities on the basis of the total resource demand, namely that the higher
the resource demand of an activity, the higher its priority to be sched-
uled. The idea behind this policy lies in scheduling potential bottleneck
activities as soon as it is possible.

• Greatest Resource Utilization (GRU) It schedules the activities at
time t to maximize the resource utilization within a predefined time hori-
zon.

Those methods were first introduced for the RCPSP already by Patterson (1973)
but then further used in many other later works such as, for instance, Adamu
and Aromolaran (2018). Further information on heuristics and priority rules
can be found in Kolisch and Hartmann (1999), Kolisch and Hartmann (2006)
and Vanhoucke (2012).
One may notice that most of the literature on heuristic methods for the deter-
ministic RCPSP is quite old. The reason is why the focus has moved either from
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heuristics to meta-heuristics or from the standard deterministic RCPSP to other
versions of the problem (multi-mode, multi-skill and so on) in the recent years.

Meta-heuristics

Meta-heuristics are general algorithmic frameworks, often nature inspired, de-
signed to solve complex optimization problems (Bianchi, Dorigo, Gambardella,
and Gutjahr (2009)). Applied to solve the RCPSP, they enhance and try to im-
prove heuristic methods by effectively extending and exploiting the problem’s
search space (Abdolshah (2014)). In contrast to heuristic approaches, which
generate RCPSP solutions with well-defined priority rules, meta-heuristic meth-
ods generate multiple solutions within the problem space while hoping to find a
near-optimum solution (Agarwal, Colak, and Erenguc (2015)). Therefore, their
underlying principle is to continuously create new solutions which become in-
creasingly better as long as the search process continues. The search process
finally terminates as soon as a certain stopping criteria is met. The most com-
monly used stopping criteria for the RCPSP in the literature is the maximum
number of generated schedules. This criteria has the advantage that it makes it
easier to compare different algorithms running on different hardware architec-
tures and implemented with different programming languages. The drawback is
that it does not consider the efficiency an algorithm generates a schedule with.
Some of the most noteworthy meta-heuristic algorithms applied to the RCPSP
are listed below (Agarwal, Colak, and Erenguc (2015)):

• Genetic Algorithms (GA). They are by far the most popular meta-
heuristic approach for optimization problems in general and the RCPSP
in particular. As previously stated, GAs are inspired by the phenomenon
of evolution of species observed in nature. In the evolution process, succes-
sive generations of populations of a species attempt to improve upon their
previous generations through certain genetic and survival-of-the-fittest
processes. For this reason, GAs are also called population-based meta-
heuristics. When applied to an optimization problem, GAs employ similar
processes to produce improved sets of solutions (generations of population)
as the search progresses from one generation to the next. When applying
GAs to the RCPSP, a set of activity lists acts as the population. From a
given population of activity lists, a new population is produced through
the reproduction process, involving an appropriate crossover mechanism.
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The survival-of-the-fittest process is employed by being selective about the
choice of parent activity lists used for producing a new offspring for the
next generation of population. Valls, Ballestin, and Quintanilla (2008) are
some of the most recent and relevant contributions of GA. Among all the
meta-heuristics, the GAs have produced some of the best results in the
literature for the RCPSP so far.

• Simulated Annealing (SA). The Simulated Annealing metaheuristics
have been inspired by the process of annealing used in metallurgy for hard-
ening metals. In the SA algorithm, a current solution is maintained at all
times. Neighborhood solutions from the current solution are evaluated
iteratively and, if a better solution is found, it becomes the new current
solution. Occasionally, with a certain acceptance probability, a worse so-
lution replaces the current solution as a mechanism to escape from a local
neighborhood. The SA metaheuristics are stronger for local search than
for a global search as shown in many works on this class of algorithms
(Bouleimen and Lecocq (2003), Bouffard and Ferland (2007)).

• Tabu search (TS). Tabu Search employs intelligent use of memory to
help exploit useful past experience in search. Memory is essentially a
list of previously visited solutions. Several types of lists are maintained,
each for a different purpose. A short-term tabu list includes recently
visited solutions. Its purpose is to help avoid cycling within the same
neighborhood. If a new solution is in this short-term list, it implies that
the current neighborhood should not be explored further and the search
should diversify to another neighborhood by using a different starting
point. A list of poor solutions is also maintained so that if the search
leads to a neighborhood of poor solutions, its presence can be detected
and the search directed away from the current neighborhood. Tabu search
based meta-heuristics for the RCPSP has been proposed by Thomas and
Salhi (1998) and Nonobe and Ibaraki (2002).

• Ant-Colony Optimization (ACO). Ant colony optimization meta-
heuristics are inspired by the observed foraging behavior of ant colonies
in which ants discharge a chemical substance called pheromone along the
path between its colony and the food source. The smell of pheromone
signals to the other ants in the colony the existence of previously followed
paths. A stronger smell signals that a larger number of ants have been on
that path more recently suggesting that food might be found there. After
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some elapsed time, all ants in a colony figure out the shortest path towards
food and they travel on the shortest possible path, thus optimizing their
collective efforts. When applied to the RCPSP, the ant’s paths are substi-
tuted by an activity lists and the pheromone signals are indicators of the
goodness of placing an activity at a particular position in the activity list.
This algorithm class was tested on the RCPSP, for example, by Merkle,
Middendorf, and Schmeck (2002) with good results.

Although the best results in the literature for the RCPSP have been achieved
with meta-heuristic methods, they are generally associated with a much higher
computing time (2 or 3 orders of magnitude higher) than traditional heuris-
tic methods. Moreover, in contrast to many heuristic methods they do not
schedule the activities one after each other according to assigned priority val-
ues but they try to optimize the entire schedule at once. That makes them
able to achieve better solutions in a purely deterministic scenario but makes
the schedule prone to disruptions if even small deviations in the activity dura-
tions occur like it may happen in a real case. Moreover, other meta-heuristic
methods relax this assumption by considering stochastic durations with known
distributions (Ballestín (2007), Li and Womer (2015), Fang, Kolisch, L. Wang,
and Mu (2015)). Again, in a real case this distribution may be unknown and
their results are as good as the assumptions they are based on.
The assumption for this thesis, is that, even though the problem is modeled
with deterministic times, a certain level of uncertainty is expected for the ac-
tivity durations.
As a result, only algorithms with a reactive scheduling policy (see Section 2.5.4)
will be considered for a comparison with the proposed machine-learning ap-
proach and their robustness will be assessed with a sensitivity analysis with
different levels of uncertainty.

Machine learning

Machine learning approaches have almost never been used in the literature to
solve the RCPSP. Only one contribution proposing machine learning approaches
for the project scheduling problem could be found. In Adamu and Aromo-
laran (2018) machine learning was used to dynamically choose the best reactive
scheduling policy among a set of predefined simple ones at every decision point.
However, only very small projects with 11 activities and 13 different priority
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rules were considered and there was no comparison with other algorithms. Nev-
ertheless, Mao, Alizadeh, Menache, and Kandula (2016) has already tested a
methodology based on machine learning in a similar problem with promising
results and, as a consequence, this class of methods seems promising for fur-
ther research contributions in the context of the RCPSP as well, like the one
presented in this thesis.

2.6.3Sensitivity analysis

Although the majority of the studies in the field of scheduling algorithms rely
on deterministic approaches, projects face various sources of uncertainty: some
activities may take more time than expected, some resources may become un-
available due to machine breakdowns and so on. The RCPSP is even charac-
terized by the so-called Graham anomalies, namely that the total duration can
increase if the duration of one activity decreases (Radermacher (1985)). In this
context, the sensitivity analysis plays an important role.
However, as stated by Habibi, Barzinpour, and Sadjadi (2018), the majority of
available studies in context of sensitivity analysis of scheduling problem have
been conducted on machinery and workshop scheduling. Therefore, raising and
answering similar questions for the project scheduling can be an interesting re-
search field for future studies. One of the few contributions on this topic is Her-
roelen and Leus (2005) where the focus is on determining the permitted chang-
ing intervals of parameters, in a way that the optimality of full rescheduling is
guaranteed by using simple modification techniques, such as right shift method.
In this thesis a different aspect of the sensitivity analysis will be analyzed,
namely how the goodness of different reactive scheduling policies changes if the
real activity durations deviates from the assumed ones.

2.7 Reactive scheduling with uncertain durations

When uncertainties about the activity durations come into play, it is still possi-
ble to compute the hypothetical starting time of each activity assuming deter-
ministic durations. For the activities starting at t = 0, the starting time remains
unchanged. However, since the deviations accumulate over time, the further in
the future the activities have been scheduled, the more likely is that the starting
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times and/or the scheduling order of the activities are no more feasible. In this
case, a so-called schedule disruption occurs.
As a result, instead of an algorithm that computes a good à priori schedule, a
reactive scheduling policy that decides at each decision point which activities
should be started, may be preferable (Rostami, Creemers, and Leus (2018)).
Decision points are typically the beginning of the project and whenever one
or more activities have been just completed and, consequently, some resources
become available again to start new ones. At each decision point t, a reactive
scheduling policy can only use information that has become available up to t,
together with à priori knowledge of the probability distributions of the project’s
parameters if known (Stork (2001)).
The main goal of this thesis is the design of reactive scheduling policies for
the RCPSP problem where the activity durations incorporate a certain level of
uncertainty and the author aims to do it using neuronal networks as schedul-
ing tool.

2.8 Project instances

When it comes to measuring the performance of a project scheduling policy,
a large number of activity sequences is required to consider a wide spectrum
of decision situations and, as a result, to obtain a representative performance
indicator. In the literature, a number of project libraries can be found and they
normally differ in three main characteristics, namely the number of activities
per project, the project generation tool used to create them and the parameters
used for the generation. In most of the contributions in the field of the RCPSP,
a preexisting project library is chosen and the new proposed scheduling policy
is tested on its projects. The advantage is that other state-of-the-art algorithms
have been likely tested on the same set of projects which makes the comparison
very straightforward.
The performance of a generic scheduling policy on a project library is sum-
marized by a single performance indicator PI which is normally the average
gap between the total project duration using the considered scheduling policy
and the one using the so-called lower bound critical path method (LB-CPM).
The latter refers to a scheduling policy which generates a fictitious (unfeasi-
ble) schedule without considering the resource constraints which is equivalent
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to assume an infinite number of available resources for each resource type. Al-
though the LB-CPM refers to an unreachable lower bound, it provides a fast
and easy way to compute a lower bound for the relative comparison among the
state-of-the-art algorithms.
Considering a project library with P projects, equation 2.5 is generally used to
compute the performance of a generic scheduling policy denoted as Π.

PIΠ =
∑

p∈P MSp,Π −MSp,LB−CP M

P
(2.5)

For what concerns the project libraries for the RCPSP, the first ones were pro-
posed in Sprecher and Kolisch (1996) and their family is called Project Schedul-
ing Problem Library (PSPLIB). The PSPLIB contains three separated project
libraries denoted as J30, J60 and J120. The number after the letter J denotes
the number of activities per project, while the number of resource types K is
always equal to four. The projects within the same library are organized in
groups of ten and for each group a different parameter combination has been
chosen for the generation. The parameters which influence the project gener-
ation are the network complexity coefficient (CNC), the resource factor (RF)
and an indicator on the so-called resource strength (RS). The CNC indicates the
average number non-redundant edges per activity, the RF the average amount
of resource types per activity and the RS provides information about the ac-
tivity resource consumption. The formulas to calculate the three factors can
be found in Kolisch (1996). For example, for the project sets J30 and J60 the
following values has been considered: CNC = 1.5, 1.8, 2.1, RF = 0.25, 0.5, 0.75,
1 and RS = 0.2, 0.5, 0.7, 1. All possible combinations have been considered,
i.e. 48 combinations, which results in 480 different projects. In the project
set J120, 60 parameter combinations have been considered instead, resulting
in 600 project instances.
The projects of the PSPLIB have been generated with a project generator called
ProGen which takes the three mentioned parameters as an input and returns
any number of project instances which comply with those parameters. Although
the project libraries generated with the ProGen remain the most used ones in
the literature, further project generators have been proposed in the following
years, among which the RanGen (Demeulemeester, Vanhoucke, and Herroe-
len (2003)) and its extension RanGen2 (Vanhoucke, Coelho, Debels, Maenhout,
and Tavares (2008)) are the most popular ones. The latter allows to produce
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project instances by setting six different parameters and it has been used to cre-
ate a project library with 1800 instances each with 30 activities known as RG30,
which is often used in the literature (Artigues, Leus, and Nobibon (2013), Van-
houcke, Coelho, Debels, Maenhout, and Tavares (2008)).

2.9 Literature analysis and research gaps

The amount of literature contributions on the RCPSP is huge. Considering
the basic RCPSP alone, i.e. the (single-mode) resource-constrained project
scheduling problem with deterministic activity durations, renewable resources
with known total availability, without preemption and with the total project du-
ration minimization as goal, it is possible to find dozens of contributions. Nev-
ertheless, some research gaps could be found. The following sections present
a brief summary of the literature on the RCPSP and the research gaps that
this thesis aims to fill.

2.9.1Literature summary

The RCPSP problem has been presented in the 70s and the exact and heuristic
methods were the first ones to be tested on it. While the exact methods provide
optimal solutions only for small and easy projects since the computing time
rapidly increases with the project complexity (activity number, resource type
number and topology), the heuristic ones have been proven to achieve good
results in a reasonable amount of time (Abdolshah (2014)).
Starting from approximately the beginning of 21st century, meta-heuristic al-
gorithms have been applied more and more on this problem with outstanding
results. Figure 2.6 represents the performances in terms of computing time to
schedule the activities and the gap from the lower-bound critical path method
(LB-CPM) in terms of time units for different state-of-the-art algorithms on the
so-called J120 project set (see Section 2.8), which is composed by 600 randomly
generated projects with exponentially distributed activity durations. The real
lower bound cannot be computed and, as a result, the lower bound critical path
method (LB-CPM), which is the exactly computed unreachable lower bound
that can be achieved if the resource constraints would be neglected, must be
used for benchmark purposes.
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In Figure 2.6 the following algorithms have been tested:

• Random. The priority values are assigned randomly.
• Shortest Imminent Operation (Heuristics).
• Greatest Total Resource Demand (Heuristics).
• Shortest Imminent Operation (Heuristics).
• Greatest resource utilization 1 (Heuristics). The combination of

starting activities are chosen in a way that the resource utilization in a
time horizon of 1 time unit is maximized.

• Greatest resource utilization 5 (Heuristics). The combination of
starting activities are chosen in a way that the resource utilization in a
time horizon of 5 time unit is maximized.

• Greatest resource utilization 10 (Heuristics). The combination of
starting activities are chosen in a way that the resource utilization in a
time horizon of 10 time unit is maximized.

• Ballestin 2007 (Meta-heuristics). Both with 5.000 and 25.000 gener-
ated schedules (Ballestín (2007)).

• Ballestin and Leus 2009 (Meta-heuristics).Both with 5.000 and
25.000 generated schedules (Ballestín and Leus (2009)).

• Ashtiani 2011 (Meta-heuristics). Both with 5.000 and 25.000 gener-
ated schedules (Ashtiani, Leus, and Aryanezhad (2011)).

• Fang 2015 (Meta-heuristics). Both with 5.000 and 25.000 generated
schedules (Fang, Kolisch, L. Wang, and Mu (2015)).

• Li 2015 (Meta-heuristics). (Li and Womer (2015))
• Rostami 2018 (Meta-heuristics). Both with 5.000 and 25.000 gener-

ated schedules (Rostami, Creemers, and Leus (2018)).

The heuristic methods were presented in Section 2.6.2 and their performances,
along with the ones for the random method, have been computed in this thesis,
as no reference on this project dataset could be found in the literature.
Taking a look at figure 2.6, it is possible to make two considerations:

• There is a general trend, namely the higher the computing time, the
smaller the makespan and, consequently, the gap from the lower bound
LB-CPM.
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Figure 2.6: Performance and computing time of different scheduling algorithms.

• Although the meta-heuristic methods outperform the heuristic ones, they
are always associated with a much higher computing time (approximately
between a half and 8 orders of magnitude higher) than traditional heuristic
methods.

2.9.2Research gaps

As mentioned in Section 2.6.2, machine learning approaches have almost never
been used in the literature to solve the RCPSP. This class of algorithm offers
the possibility to design decision tools (e.g. a deep neural network model) which
can learn to schedule the activities. If properly trained, they can learn to imi-
tate the scheduling rules of the best state-of-the-art algorithms. Although they
normally involve very high training times, they are able to process the input
information and take decisions very fast (Walsh, O’ Mahony, Campbell, Car-
valho, Krpalkova, Velasco-Hernandez, Harapanahalli, and Riordan (2019)). As
a result, they can potentially create scheduling tools which have better perfor-
mances than the heuristic methods and much smaller decision times than the
meta-heuristic ones.
The second research gap is related to the sensitivity analysis. Although the ma-
jority of the studies in the field of project scheduling rely on deterministic ap-
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proaches, in real-world applications it may involve various sources of uncertainty
such as deviations from the expected activity duration, resource consumption
or resource total availability. As a result, it is important to investigate the ro-
bustness of the computed schedule or of the designed scheduling tool if the real
unknown problem parameters deviate from the assumed ones. The majority
of available studies on sensitivity analysis for scheduling problems have been
conducted on machinery and workshop scheduling, while very few contributions
on the RCPSP could be found.

2.10Projects in real-world applications

In the literature there is no systematic classification of real-world applications of
what could be modeled as a Resource-Constrained Project Scheduling Problem.
In fact the problem is most of the times studied as a pure optimization problem
on randomly generated projects without providing a real use case. However,
one could say that most of the real-world applications with the following char-
acteristics are very suitable for such a modeling:

• A set of tasks must be performed.
• Some start-to-finish precedence constraints must be taken into account,

namely that some tasks cannot start before others have been completed.
• The tasks use renewable resources which are available in a limited quantity

and shared.
• The goal is to complete all tasks in the fastest way possible.

In real-world applications, the renewable resources can be many different things.
Again there is no systematic classification of what can be modeled as a renewable
resource but it is basically everything that can be used to perform a task with
and it becomes again available once the task is finished. The following list
provides some reasonable examples according to the author:

• Manpower, workers, operators. People are for sure one of the most
commonly used resources to perform tasks that are manual or require
manual intervention or supervision.

• Tools. Tool is a generic term to indicate an object used to extend the
ability of an individual or a machine to modify features of the surrounding
environment. More concrete examples could be tools used by operators in
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a workshop (screwdrivers, welding machines and so on) but also specific
machine tooling for milling, boring or turning.

• Transporters. In a production environment, the material flows from one
working station to the other. Transporters like Automated Guide Vehi-
cles (AGV), forklifts or cranes can be, for instance, modeled as resources
(Pagani, Fischer, Farquhar, Skilton, and Mittwollen (2019)).

• Locations and paths. Transporters navigate in the production system
and bring the material where it is required. As their number increases, it
is possible that some traffic situations occur. To model this phenomenon,
it is possible to consider different locations and paths as resources. By
doing that, every time a task requires a transportation from one location
to another, a route is chosen and the end location along with the required
intermediate paths are reserved.

• Computer resources. In the era of digitization computers have assumed
a crucial role in our world and they are more and more often involved in
performing some tasks. As a result, computational resources such as CPU
cores and GPU and memory resources such as RAM and data storage
devices can be modeled as resources as well Mao, Alizadeh, Menache, and
Kandula (2016).

Considering the two previous lists, it is now possible to better identify possible
real use cases for the RCPSP. Some of them are taken from the literature, while
others are just possible examples suggested by the author of this thesis:

• Construction project management. Bruni, Beraldi, and Guer-
riero (2015) is one of the few contributions that apply the RCPSP for
the management of a real project. In this case, a construction project for
university apartments was chosen and a schedule was suggested.

• Product development management. Product development requires
a product to undergo different phases, namely the requirements specifica-
tion, the product planning, development, process planning and production
(Eigner and Stelzer (2009)). These phases can be divided in many sub-
tasks which may run in parallel and may concur for the same resources.

• Production and assembly scheduling. Production systems are quite
complex environments. Considering, for instance, matrix production,
which is a concept of a flexible, flow-oriented, independent production
system based on production cells (Hofmann, Brakemeier, Krahe, Stricker,
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and Lanza (2018)), there are different products being produced in par-
allel and visiting the different working stations in different orders. The
manufacturing operations could be modeled as project activities and the
required resources could be the stations and the workers.

• Management of maintenance activities. Maintenance sequences for
large assets normally require a large number of activities to be performed
in a predefined sequence and with a limited number of resources. For
example, Pagani, Fischer, Farquhar, Skilton, and Mittwollen (2019) pre-
sented an example of maintenance processes modeled with a framework
which is an extended version of the RCPSP.

• Job allocation for computer clusters. Computer clusters are pow-
erful computing devices which receive tasks to run from different users.
Those tasks may have precedence relations among them and among their
sub-tasks. In this case, the constraining resources are the computational
resources, e.g. the CPU cores, and the storage memory (Mao, Alizadeh,
Menache, and Kandula (2016)).
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The only limit to AI is human
imagination.
-C. Duffey

This chapter is dedicated to basic machine learning fundamentals that are nec-
essary to comprehend the artificial neural network-based decision tools designed
in this thesis and applied to the RCPSP. First of all, the idea behind machine
learning is introduced along with the concept of deep neural networks. In the
second part of the chapter, it is explained how their training and hyperparameter
tuning work. Finally, some practical applications in decision-making processes
from the literature are presented.

3.1 Introduction to machine learning

Machine learning as a domain of artificial intelligence denotes the ability to ac-
quire knowledge by extracting patterns from raw data (Goodfellow, Bengio, and
Courville (2016)). Therefore, machine learning involves the creation of learn-
ing algorithms that are able to learn from data while no explicit rules or logic
are defined by a human (Khan, Rahmani, Shah, and Bennamoun (2018)). The
dataset that is employed to make the algorithm learn is referred to as training
set. According to Mitchell (1997), learning in the field of machine learning can
generally be defined as follows: a computer program is said to learn from ex-
perience E with respect to some class of tasks T and performance measure P ,
if its performance at tasks in T , as measured by P , improves with experience
E. In the following paragraphs, more information on task T , performance P
and experience E is provided.
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3.1.1Definition of task T

Machine learning is mainly applied when a task is too difficult to be solved
with a predefined algorithm created by humans (Goodfellow, Bengio, and
Courville (2016)). The description of a machine learning task T is mostly guided
by how the machine learning model is meant to process some input data which
comprises a collection of features consisting in quantitative values processed by
the machine learning model. Usually, the input data is represented as a vector
x ∈ Rn where each element xi of the vector represents a feature. Taking image
data as an exemplary illustration, the values of the pixels represent its features.
A collection of input data is called dataset and, in this case, it is represented
by the set of available images.
One of the most common machine learning tasks which is at the same time
relevant for this thesis is classification. In this type of task, the machine learning
algorithm is configured to specify to which of k categories some input belongs to.
This is employed by producing a function f :Rn → 1,...,k (Goodfellow, Bengio,
and Courville (2016)). In the special case of a binary classification task k=2
and the labels of the output y can for example be yes or no, while for a multi-
class classification problem y entails k different labels (Khan, Rahmani, Shah,
and Bennamoun (2018)).

3.1.2Definition of performance measure P

In order to evaluate the capabilities of a machine learning algorithm, one has
to determine one or several quantitative measures to assess the algorithm’s per-
formance. In most cases, the performance measure P is specific to the task
T executed by the system. Regarding the performance of a machine learning
algorithm, it is crucial to evaluate how the algorithm will perform on previously
unseen data, since this determines how well it will perform when deployed in the
real world on new situations. Unseen data is generated by creating a test set that
is strictly separated from the training set and, thus, is never used to train the
machine learning algorithm (Goodfellow, Bengio, and Courville (2016)). After
the machine learning algorithm is trained on the training dataset, its perfor-
mance is evaluated on the test dataset by computing performance measures P .
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3.1.3Definition of experience E

Machine learning algorithms can be categorized into supervised, unsupervised or
reinforcement learning depending on what kind of experience they are provided
with during the learning process (Goodfellow, Bengio, and Courville (2016)).

Supervised learning

Supervised learning algorithms use a training dataset that contains data points
including a so-called label or target value. The training data have the form of
a collection of pairs (data:x,label:y) where x represents the input of the ma-
chine learning model, i.e. the example or the vector of features, and y repre-
sents the target output in form of a label (Khan, Rahmani, Shah, and Ben-
namoun (2018)). The goal of supervised learning is then to create a trained
model able to produce a prediction ŷ for a previously unseen real world data
point x. The parameters of the model allow to control the behavior of the learn-
ing algorithm and thus its prediction performance, which is generally measured
by calculating the proportion of examples for which it produced the expected
output. Providing training data to a machine learning algorithm so that it
learns the mapping from input data to corresponding output labels is known as
supervised training of a machine learning model (Bishop (2006)).

Unsupervised learning

Unsupervised learning algorithms use a training dataset containing many data
points and learn useful properties from the structure of this dataset. In con-
trast to supervised learning, the outputs have no label or target values and,
therefore, there is also no output prediction (Khan, Rahmani, Shah, and Ben-
namoun (2018)). The objective is usually to learn the structure of the dataset
by learning the entire probability distribution that underlies the dataset. Typ-
ical unsupervised learning algorithms are used to perform tasks like cluster-
ing, where the goal is to separate the dataset into clusters of similar examples
(Goodfellow, Bengio, and Courville (2016)).
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Reinforcement learning

Apart from supervised and unsupervised learning there is a third category of
machine learning which is reinforcement learning. In contrast to supervised
and unsupervised learning algorithms, reinforcement learning algorithms do not
experience a fixed training dataset but rather interact with an environment so
that there is a feedback loop between the learning system and its experiences
(Goodfellow, Bengio, and Courville (2016)). As a consequence, the system
learns what to do by mapping situations to actions so that a numerical reward
signal is maximized (Sutton and Barto (2018)).
In recent years, different classes of machine learning algorithms have been ap-
plied to scheduling problems similar to the RCPSP (e.g. Mirzaei and Ak-
barzadeh (2012) and Mao, Alizadeh, Menache, and Kandula (2016)). In this
thesis, a supervised learning approach have been chosen.

3.2 Model training

This section focuses on presenting how to train a machine learning model so
that the training process of the deep learning model applied in this thesis can
be understood. Hence, in the following subsections, the important concepts
of generalization, under- and overfitting, model capacity and hyperparameter
tuning are outlined.

3.2.1Generalization

As described in Section 3.1, the central objective of a machine learning model
is to perform well with new and unseen inputs. This is known as generaliza-
tion. How to estimate the generalization skills of a machine learning model
is described below.
The training process consists in learning from training data while the error is
monitored. One could think that the final goal is to achieve a model that has a
low training error on training data so that it obtains good a performance. How-
ever, having a model trained sufficiently on the training set so that its training
error is low does not guarantee that the model will provide good performance
on previously unseen data, since the model has so far only experienced the
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training data examples (Aggarwal (2018). Due to the fact that its true capabil-
ities are determined on how well it performs on unseen data, an error measured
on previously unseen data points is needed. This error is called test error or
generalization error (Goodfellow, Bengio, and Courville (2016).
The expected test error is always greater than or equal to the expected training
error value. How well a machine learning model is able to generalize and hence
perform on unseen data is therefore determined by two abilities:

• making the training error small
• minimizing the gap between the training and test error

These two factors are related to two main challenges in machine learning which
are underfitting and overfitting (Goodfellow, Bengio, and Courville (2016)).

3.2.2Underfitting and overfitting

Underfitting occurs when a machine learning model is not able to achieve a
sufficiently small training error, while overfitting occurs when there is a too
large gap between training and test error. Figure 3.1, taken from Ketkar and
S. (2017), schematically compares the training and generalization errors of a
model with the minimum achievable error on the present task for an underfit-
ting, ideal and overfitting scenario. In an ideal situation, training and gener-
alization error are equal to the minimum achievable error. In the underfitting
scenario, training and generalization error are greater than the minimum er-
ror, whereas in the overfitting scenario the training error is small, however, the
generalization error is big.

Figure 3.1: Comparison of training, generalization and minimum achievable error.

For what concerns the performance, a model that overfits obtains a good per-
formance on the training data but fails to generalize well to unseen data (Khan,
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Rahmani, Shah, and Bennamoun (2018)). On the other hand, an underfitted
model achieves poor performance on both training and test data.
There are several reasons why a model can underfit or overfit and perform
badly. Some of them are, for instance, too few training data, too few training
epochs, low model capacity and so on. Additional information on the latter are
provided in the following section.

3.2.3Model capacity

Informally, the capacity of a model is determined by its ability to model com-
plex relations between inputs and outputs. Models with a low capacity are not
expressive enough to fit to the training set and thus underfit. On the other
hand, a model with a too high capacity is more prone to overfit, which means
poor performance on unseen data, although the performance on the training
data are good. In order to avoid over- or underfitting, the capacity of a machine
learning model needs to be adapted appropriately to the true complexity of the
machine learning task and the amount of training data provided (Goodfellow,
Bengio, and Courville (2016)). A model with an insufficient capacity is unable
to solve complex tasks. On the contrary, a model with a high capacity can
solve complex tasks but tends to overfit if the capacity is higher than needed
to solve the present task. Since models with a higher capacity usually have
more parameters, those models require also more training data to obtain a good
generalization power on unseen data (Aggarwal (2018). The typical relation be-
tween capacity and error is that, with an increasing model capacity, the training
error decreases until it reaches an asymptote corresponding to the minimal pos-
sible training error. The generalization error usually follows a U-shaped curve
as a function of the underlying model capacity. This typical relation between
capacity and error is illustrated in Figure 3.2 according to Goodfellow, Bengio,
and Courville (2016):
At the left end of the graph where a model’s capacity is very low, training
and generalization error are both high. This corresponds to an underfitting
scenario. With an increasing model capacity, the training error decreases but
the gap between training and generalization error increases. In any case, the
gap can be always reduced by using more training data for the training process
(Goodfellow, Bengio, and Courville (2016)).
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Figure 3.2: Relation between model capacity and error.

The next section covers details on how the so-called hyperparameters of a model,
i.e. the model parameters that cannot be learned during the training, can be
used to influence the capacity of the model and how they can be tuned to
achieve a better model performance after the training.

3.2.4Hyperparameters

Machine learning models are defined by a set of hyperparameters that control
the algorithm’s behavior (Claesen and De Moor (2015)). The hyperparameters
have a direct influence on the capacity of the underlying machine learning model
and, as a result, they are employed to adjust a model’s capacity to the com-
plexity of the present task. In contrast to the parameters that are considered
in the mapping function of the machine learning algorithm, hyperparameters
are not learned during the training process but must be set by the user before
it (Goodfellow, Bengio, and Courville (2016)). If they are set properly, the
risk of under- and overfitting of a model can be drastically reduced (Claesen
and De Moor (2015)).
In order to visualize the effect of varying the capacity of a model by modify-
ing its hyperparameters, Figure 3.3 shows three different polynomial regression
machine learning models that were created by fitting different functions to an
exemplary training dataset. The dataset exhibits a natural quadratic course in
a two-dimensional space. A polynomial regression exhibits a single hyperpa-
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rameter which is the degree of the polynomial, while the coefficients are learned
during the training. The example in Figure 3.3 is taken from Goodfellow, Ben-
gio, and Courville (2016).

Figure 3.3: Polynomial regression with fitting machine learning models of different capacity.

In the first graph, the value of the polynomial degree is 1 and a linear function
models the relation between the inputs x and the outputs y of the dataset. The
linear function suffers from underfitting since it cannot capture the curvature
that is present in the data. In the second graph, a second degree polynomial
is used and it shows a quadratic function that fits well the data and is able to
generalize appropriately. It does neither suffer from overfitting nor underfitting.
In the last graph a polynomial of degree 9 is used to fit the data and thus over-
fitting occurs. Only when the capacity of a model is set appropriately, it is able
to correctly generalize and thus provides a good performance. Consequently, in
order to maximize the performance of a machine learning model, it is crucial to
choose the right capacity and consider that hyperparameters have an effect on
the model’s performance on the present task.
The process of finding appropriate hyperparameters for a machine learning
model in order to maximize its performance is often called hyperparameter
tuning or hyperparameter selection and is explained in the next section.
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3.2.5Hyperparameter tuning

So far, the training process of a machine learning model has been characterized
by training a machine learning algorithm on a training set, followed by the
evaluation of its generalization power by calculating the model’s generalization
error as well as observing the performance on the unseen test dataset. Splitting
a dataset into a training and test set ensures that the data objects of the test
set are never used to make any choices about the model, since it would lead
to overfitting and a poor performance on new unseen data (Aggarwal (2018)).
Similarly, any decision making about the hyperparameters of the model must
never be done based on the test set, otherwise the model becomes influenced
by the knowledge from the test set (Goodfellow, Bengio, and Courville (2016)).
Hence, additionally to the training and test dataset, a third dataset for making
choices about the hyperparameters is necessary, which is called validation set.
The hyperparameter tuning is performed in such a way that the same machine
learning model is trained using the same training data and, afterwards, tested
on the validation set several times with different hyperparameter configurations.
The same training dataset can be used multiple times for different hyperparam-
eter configurations or even completely different machine learning algorithms.
This allows to compare the relative performance of different model configura-
tions or algorithms. The objective of this process is to find the best performing
model configuration, which is why this is also referred to as model selection.
However, it is crucial, that the actual performance evaluation of the different
model configurations is never conducted on the test set but only on the separate
validation set. Otherwise, the hyperparameters and the model choice could lead
to overfitting. The test set is only used once at the end of the tuning process to
test the performance of the model with the chosen hyperparameter configura-
tions to decide whether the model is good enough for a real world deployment.
The insights from the results of this final evaluation on the test data must not
be used for further adjustment of the model, otherwise the further results would
be contaminated with the knowledge from the test set.
Different ratios for the division of the available training data in the three sets
can be found in literature. As shown in Figure 3.4, Aggarwal (2018) propose
a 50:25:25 split as a conventional rule, however, this should not be viewed as
a strict rule and also other proportions exist in literature. Goodfellow, Bengio,
and Courville (2016) assign 80 percent of the data to the training set and 20
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percent to the validation and test set together. Ketkar and S. (2017) suggests
devoting 60 percent of the data examples for the training set and keeping 40
percent for both the validation and test set equally split. Eventually, the split
ratio can also be influenced by the size of the available dataset. Usually, the
greater the size of the dataset, the higher the percentage of the data examples
that can be assigned to the training set (Aggarwal (2018)). As a result, since a
data generator tool is used in this thesis and any number of training data can
be generated, a 80:10:10 split was used in this thesis.

Figure 3.4: Training, validation and test data split.

3.2.6Bayesian optimization to support the hyperparameter
tuning

There are two general approaches to perform the hyperparameter tuning, namely
the manual and automatic hyperparameter tuning. Usually, manual hyperpa-
rameter tuning requires a rough understanding of how the different hyperpa-
rameters of a model influence its capacity and thus its performance on the
present task. In contrast, automatic hyperparameter tuning methods require
less knowledge, since they automatically define which hyperparameter con-
figuration should be tested in the next iteration (Goodfellow, Bengio, and
Courville (2016)) which also increases the number of tested configurations in
the same amount of time, since no manual intervention is required between the
test of two consecutive configurations. Nevertheless, the user still has to define
the boundaries of the search space.
Since no neural network applications on the RCPSP could be found in the
literature, there are no existing guidelines on the hyperparameter choice. As a
consequence, an automatic hyperparameter tuning has been implemented.
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Figure 3.5: Grid and random search with nine trials.

As stated in Snoek, Larochelle, and Adams (2012), three possible optimization
algorithms can be chosen to search for the best hyperparameter configuration,
i.e. the one maximizing the model performance on the test set after the training:

• Grid search. This method divides the predefined interval of each param-
eter in equally spaced sub-intervals and only their middle points are con-
sidered as possible values in the evaluation. Considering the optimization
of a problem with two parameters both with three sub-intervals, a total
number of 3 ·3 = 9 parameter combinations are considered (see Figure 3.5
from Bergstra and Bengio (2012)). However, in a machine-learning model
the number of hyperparameters and the number of considered values for
each of them can be much bigger and, as a result, a lot of configurations
must be tested. On the other hand, it can be easily parallelized.

• Random search. This method takes random values for the predefined
interval of each parameter and tries out a bunch of randomly generated pa-
rameter configurations. As for the grid search, it can be easily parallelized
and the maximum number of samples can be defined as a stop criterion. It
generally gives a better performance than grid search (Snoek, Larochelle,
and Adams (2012)) but there is the risk that some good regions of the
search space are not considered.

• Bayesian optimization. In contrast to the two previous search algo-
rithms, which use brute-force to test different parameter configurations,
Bayesian optimization uses knowledge of previous iterations of the algo-
rithm to select the parameters to test in the next iteration. Bayesian
methods attempt to build a function that estimates how good the objec-
tive function might be for each set of parameters. By using this approx-
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imate function, also called surrogate function, it is no more necessary to
test many parameter configurations, since one can just optimize the hy-
perparameters with the surrogate function. The latter is estimated and
updated at each iteration based on the results of all evaluations and, as a
result, the more evaluations have been performed, the more accurate this
function gets. Figure 3.6, taken from Brochu, Cora, and De Freitas (2010),
represents an example of a Bayesian optimization with one parameter x.
The dashed function is the unknown objective function. The goal of the
bayesian optimization is to find the maximum value over x. The con-
tinuous black line represents the mean value of the surrogate function
µ (estimation of the real objective function), while the dispersion region
around it represents the uncertainty σ. The first picture represents the
initial situation where two values for the parameter have been sampled.
The next point to sample is chosen using the acquisition function which
weights the expected advantage of sampling in an unexplored region and
the one of sampling in a region where good results have been found in
previous iterations.
The only drawback of this method is that it cannot be parallelized since
the tested parameter configuration of one iteration depends on values of
the objective function of the previous ones. However, many contributions
in the literature agree that Bayesian optimization should be preferred
to the other methods due to its searching efficiency (Snoek, Larochelle,
and Adams (2012)). For what concerns machine learning algorithms, the
generalization performance, i.e. the objective function to maximize, is
modeled as a sample from a Gaussian process. The tractable posterior
distribution induced by the Gaussian process leads to an efficient use of the
information gathered by previous experiments, enabling optimal choices
about what parameters to try in the next iteration (Pelikan, Goldberg,
and Cantu-Paz (1999), Snoek, Larochelle, and Adams (2012)).

3.3 Introduction to deep neural networks

In this section, the fundamentals of deep neural networks and deep learning
are covered. First of all, the concept of deep learning along with deep neural
networks (DNN) are introduced. Afterwards, their learning mechanism is ex-
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Figure 3.6: Example of Bayesian optimization with one parameter.

plained. Finally, the three different classes of neural networks that are used in
this thesis are introduced, namely fully connected, 1-dimensional convolutional
and 2-dimensional convolutional neural networks.

3.3.1From machine learning to deep learning

Since traditional machine learning algorithms fail to generalize well on impor-
tant and challenging artificial intelligence tasks like object recognition or speech
recognition, the development of new concepts that are able to cope with these
tasks has been driven forward in the past years. At the same time, the recent
progress in developing more powerful computing devices and a greater avail-
ability of data has further accelerated the progress in the domain of artificial
intelligence (Aggarwal (2018)). As a result, the development of deep learning
concepts has been driven forward tremendously in the last few years. These deep
learning concepts are artificial neural networks. The term deep comes from their
depth through the stacking of computational layers (Goodfellow, Bengio, and
Courville (2016)). The previously specified concepts of machine learning are
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general concepts and thus also maintain their relevance for any kind of deep
learning approach. Artificial neural networks as an essential concept of deep
learning are outlined in the following section.

3.3.2Artificial neural networks

Artificial neural networks originate from the work of McCulloch and Pitts (1943)
who laid down the foundation for further research in the field of neural net-
works. Artificial neural networks mimic human biological neural networks by
having many small interconnected computational units called neurons. In the
following, the term neural network is always referring to an artificial neural net-
work. There exist many different variations of neural networks that have their
own peculiarities and domains of application (Aggarwal (2018)). However, to
keep this thesis within its scope, only the fully connected and the convolutional
network types are presented. Moreover, for both neural network types only
feed-forward network configurations are used, namely neural networks with an
acyclic structure and where the information moves in only one direction (Da
Silva, Spatti, Flauzino, Liboni, and Reis Alves (2017)). Before outlining the
fully connected neural networks in this section, the basic structure with a single
neuron is described.

3.3.3Perceptron

A single neuron has one output node and a single input layer and is also referred
to as perceptron (Da Silva, Spatti, Flauzino, Liboni, and Reis Alves (2017)). An
illustration of a neuron is depicted in Figure 3.7 which is taken from MacKay
and Mac Kay (2003)).
A neuron has a number I of inputs xi and one output y. Each input to the
neuron is associated with a weight wi with i = 1, ..., I. There is also an addi-
tional parameter w0 called bias, which is associated with a certain input value
ΘP (MacKay and Mac Kay (2003)). The inputs are contained in input nodes
of the input layer while no calculations are performed in this layer. The input
values are processed in the neuron itself with a two-step procedure. Firstly, in
response to the inputs xi the activation value a of the neuron is calculated
as in equation 3.1.
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Figure 3.7: Representation of a single neuron.

a =
∑

i=0,...,I

wixi (3.1)

Secondly, the actual output y of the neuron is given by the function f(a) of the
activation value a. This function is referred to as activation function and there
are several possible activation functions that can be deployed in a neuron. The
most common activation functions are:

• The rectified linear unit function (ReLU) y(a) = max(0, a) (Nair2010)
• The sigmoid curved logistic function y(a) = 1

(1+e−a)

• The sigmoid curved tanh function y(a) = tanh(a).

The three different activation functions are illustrated in Figure 3.8.

3.4 Fully connected neural network

A multilayer perceptron is a neural network that contains multiple computa-
tional layers between an input layer and an output layer. The intermediate
computational layers contain neurons and are referred to as hidden layers, since
the computations performed in these layers are generally not visible to the user
(Da Silva, Spatti, Flauzino, Liboni, and Reis Alves (2017)). The default ar-
chitecture of a multilayer perceptron assumes that all units of one layer are
connected to each unit of the successive layer which is why those layers are also
referred to as fully connected (Aggarwal (2018)). An exemplary illustration
of a feed forward network is depicted in Figure 3.9 taken from MacKay and
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Figure 3.8: Different activation functions: ReLU, sigmoid logistic and tanh.

Mac Kay (2003). The depicted neural network consists of an input layer on the
left and an output layer on the right. In between there are two hidden layers
that consist of three neurons each. The neurons that contain the bias values
for each layer are depicted separately.

3.4.1Computational layers of fully connected neural networks

The main objective of an artificial neural network is to approximate a function
f ∗ that maps all possible input values x to some expected output y (MacKay
and Mac Kay (2003)), i.e. y = f ∗(x). A neural network defines the mapping y =
f(x,w) by learning the values of the weights w that result in the best function
approximation (Goodfellow, Bengio, and Courville (2016)). The weights are
also referred to as the parameters of the neural network.
In a feedforward configuration, the fully connected neural network is character-
ized by a chain structure where the neuron inputs of every layer are a function
of the neuron outputs of the previous layer. The output of an intermediate
layer l is given, for instance, by equation 3.2, while h(l−1) is replaced by x

for the first layer.

h(l) = y(l)(W (l)T · h(l−1) + b(1)) (3.2)
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Figure 3.9: Multilayer perceptron.

In these formulas, y represents the activation function, b the bias values and W
the weights of each layer. The h stands for the output that the layer produces.
The number of layers gives the depth of the network while the number of units
in a layer determines its width (Goodfellow, Bengio, and Courville (2016)).

3.4.2Hyperparameters of fully connected neural networks

As mentioned in the previous paragraph, the hyperparameters that primarily
control the capacity of a fully connected network are the number of hidden
layers and the number of units or neurons per layer. A network with more
hidden layers and more units per layer has a higher capacity. However, if the
number of hidden layers or units is too large for the underlying machine learning
task, the neural network model may overfit and thus perform poorly. Hence,
the hyperparameters of the neural network need to be selected according to the
underlying task so that it generalizes well and achieves a good performance, as
it is also described in Section 3.2.4.
Neural networks usually perform well when their capacity is high while at the
same time the tendency of overfitting is avoided by employing so-called regular-
ization techniques (Goodfellow, Bengio, and Courville (2016)). Regularization
can be regarded as any modification to the model or its training process with the
objective of reducing the error on unseen data (Ketkar and S. (2017)). There
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are plenty of regularization techniques available but only dropout and early
stopping are introduced, since they are applied in the later part of the thesis.
A compact overview over other regularization methods can be found in Khan,
Rahmani, Shah, and Bennamoun (2018).
One of the most popular regularization strategies is the so-called "dropout"
which has been introducted by Hinton, Srivastava, Krizhevsky, Sutskever, and
Salakhutdinov (2012). During the training process of a neural network, each
hidden unit is randomly omitted from the network with a certain probability,
while the complete model is still used during the validation and testing phase.
This has the effect of making the layer be treated like a layer with a different
number of nodes and connectivity at different training steps. As a consequence,
each update to a layer during training is performed with a different view of
it. Dropout makes the training process noisy, forcing nodes within a layer to
probabilistically take on more or less responsibility for the inputs. The dropout
probability is usually set to 50% (Hinton, Srivastava, Krizhevsky, Sutskever,
and Salakhutdinov (2012)).
Early stopping is another regularization method that is able to avoid overfitting.
During the training phase of the neural network model, the model’s performance
on the validation set can be periodically monitored every fixed number of epochs.
Once the performance of the model on the training set does not improve any
more or even drops, the training process is stopped (Khan, Rahmani, Shah,
and Bennamoun (2018)).

3.5 Convolutional neural networks

This section provides the fundamentals to understand how convolutional neu-
ral networks work in contrast to the fully connected ones. The biologically
inspired convolutional neural network architecture was originally developed for
computer vision and image classification tasks by Hubel and Wiesel (1959).
Regarding these tasks, convolutional neural networks are the most successful
neural networks and regularly prove their outstanding capabilities in various
image recognition challenges like the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (Krizhevsky, Sutskever, and Hinton (2012)). Even though
convolutional neural networks are mainly applied to image data related tasks,
they generally work quite well with any grid-structured input data, like sequen-
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tial, temporal and spatial data (Aggarwal (2018)). The grid-structured inputs
can be 1-dimensional (e.g. time-series) or 2-dimensional (e.g. images).
In contrast to the fully connected neural networks that exclusively consist of
fully connected layers, convolutional neural networks have at least one layer that
applies a mathematical operation called convolution. The convolution operation
in convolutional layers is a dot-product operation between a grid-structured
input x and a grid-structured set of weights w on different spatial positions
of the input grid: s = x · w (Aggarwal (2018)). The weights w are referred
to as filters or kernels and the output s of the convolution operation is called
feature map. The weights w of the kernels are the learnable parameters in
the convolutional layer. Within each convolutional layer, the processed grid
structure is of a 3-dimensional nature since it has a height width and depth.
It is important not to confuse the depth of the grid in a convolutional layer
with the depth of the overall neural network. The depth of a convolutional
layer represents the number of channels in the layer, such as, for example, the
number of primary color channels (e.g., red, green, blue) of an input image or
the number of feature maps that represent the output of the convolutional layer
(Aggarwal (2018)). Based on the width and height dimensions of the input grid,
it can be differentiated between 1-dimensional and 2-dimensional convolution
operations. Figure 3.10 provides an example of how the convolution operation
is performed with 1-dimensional and 2-dimensional filters and grids. The depth
of both grids is 1. For the 1-dimensional convolution operation, it is explicitly
illustrated how the convolutional kernel slides stepwise over the width of the
input grid. For the 2-dimensional grid the filter slides both along the width and
height of the grid. This figure has been taken from Ketkar and S. (2017)).
Similar to a fully connected layer, in a convolutional layer the output s is used
by an activation function f . Thus, the overall output y of a convolutional
layer can be expressed as y = f(s(x · w)) with f representing the activation
function. Equivalent to fully connected layers, the same variety of activation
functions can be applied in convolutional layers (Khan, Rahmani, Shah, and
Bennamoun (2018)). However, due to its computational effectiveness, the ReLU
function is currently the most widely used activation function in convolutional
layers (Krizhevsky, Sutskever, and Hinton (2012)). Just like for the feedforward
neural network, the weights are initialized with values of a certain distribution
prior to the training process and the backpropagation algorithm for the training
is applied (Aggarwal (2018)).
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Figure 3.10: Convolution operation for 1-dimensional and 2-dimensional grids.

Convolutional layers have sparse interactions since the convolutional kernel is
significantly smaller than the input information. This implies a reduction of the
parameters to be stored and of the number of operations required to compute
the output values. However, they are still capable of extracting useful features
from their inputs. Since a convolutional neural network that has a comparable
size to a fully connected network has fewer connections and parameters, it can
be easier trained but the theoretically-best performance is usually only slightly
worse (Krizhevsky, Sutskever, and Hinton (2012)).

3.5.1Computational layers of convolutional neural networks

This section introduces neural networks with convolutional layers. A typical
convolutional layer in a convolutional network consists of three stages: The first
stage involves several parallel convolution operations performed on the input in
order to produce a set of linear activation values. These convolution operations
are usually performed with several different filters so that different features in
the input grid can be detected (Aggarwal (2018)). The number of filters that
are applied on the input grid defines the number of feature maps and hence,
also the width of the layer. In the second stage, called detector stage, all gen-
erated activation values are run through the nonlinear activation function like,
for example, the ReLU function (see Section 3.3.3). The final stage of a con-
volutional layer comprises a pooling function that further modifies the output
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of the detector stage by grid-wise summarizing the output using some sum-
mary operation. In the context of convolutional layers, the most widely used
max pooling operation returns the maximum output of a grid-shaped neighbor-
hood. Similar to the kernels of the convolution operation, the rectangular grid
of the pooling function is slidden across the grid of the output of the detector
stage. In general, the pooling is employed to make the representation of the
layer approximately invariant to small translations of the input. The different
stages of a convolutional layer are displayed in Figure 3.11, which is taken from
(Goodfellow, Bengio, and Courville (2016)).

Figure 3.11: Stages of convolutional layer.

3.5.2Hyperparameters of convolutional neural networks

Convolutional layers also have hyperparameters that influence the model’s ca-
pacity and need to be set by the user prior to the training so that the model
ideally fits the underlying task. In this section, the most relevant hyperparam-
eters of convolutional neural networks are presented.

Convolutional filters

Some of the hyperparameters are related to the convolutional filters because
their shape as well as their number can be varied. Increasing the width of
the convolutional filters leads to an increase of the number of parameters
and therefore also a gain in the model capacity (Goodfellow, Bengio, and
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Courville (2016)). However, the spatial extents of the filters are usually oddly
sized and in most cases do not exceed the dimensions of 3x3, 5x5 or 7x7-sized
filters (Aghdam and Heravi (2017)). This is also demonstrated by the fact that
the great majority of the state-of-the-art convolutional neural network architec-
tures stick to these filter dimensions. There are two reasons for relatively small
sized kernels. Small filters ensure that the number of learnable parameters re-
mains manageable and facilitate the learning of distinctive patterns from many
local regions in the input grid (Khan, Rahmani, Shah, and Bennamoun (2018)).
Increasing the number of filters in a convolutional network is another alterna-
tive for varying a convolutional neural network’s capacity. The more filters are
used, the more parameters are incorporated in that layer and thus the capacity
is increased. Moreover, increasing the number of filters in one layer also in-
creases the number of feature maps in the following layer as Figure 3.12 shows
(Aggarwal (2018)). Using many different filters in a convolutional layer is mo-
tivated by the fact that each filter tries to identify particular types of spatial
patterns in small rectangular regions of the input. Hence, the more the filters,
the more different spatial patterns can be extracted from the input. In prac-
tice, later convolutional layers typically tend to have smaller kernel sizes, but
greater depth in terms of feature maps. Additionally, the number of filters in
each layer is mostly a power of 2, because this usually results in a more efficient
processing (Aggarwal (2018)).

Strides

In Figure 3.10, the convolutional kernels were slidden horizontally and vertically
by a step size of 1 at a time across the input grid. The step size, in this example
equal to 1, is referred to as the stride of the kernel and can be set to any value.
The higher the stride is set, the smaller the feature map of the output of the
convolution operation gets. Hence, it reduces the dimensions which provides
a moderate invariance to scale and pose of features in the input grid (Khan,
Rahmani, Shah, and Bennamoun (2018)). For a given convolutional kernel with
size k × k, an input grid with size h× w and a stride length s, the dimensions
of the output feature map is given by:

h′ = [h− k + s

s
] (3.3)
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Figure 3.12: Effect of the number of convolutional filters on the layer’s output.

w′ = [w − k + s

s
] (3.4)

Padding

Since every convolution operation leads to a shrinkage of the output feature
map, the number of sequentially arranged convolutional layers in a neural net-
work architecture is limited to a point where the output map becomes too small
(Goodfellow, Bengio, and Courville (2016)). The rate of shrinkage is especially
dramatic when the kernel and stride sizes are large or the input grid is small.
However, in order to be able to design deep neural networks with many con-
volutional layers, a quick collapse of the feature dimensions has to be avoided.
A solution to this is the application of zero-padding around the input feature
map, which essentially increases the horizontal and vertical input dimensions
by adding a certain number of zeros to all edges of the input grid. If p denotes
the number of zeros by which the input map is increased along each dimension,
the dimensions of the output feature maps can be described as follows (Khan,
Rahmani, Shah, and Bennamoun (2018)):

h′ = [h− k + s+ p

s
] (3.5)
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w′ = [w − k + s+ p

s
] (3.6)

Max-Pooling

Lastly, the pooling stage of convolutional layers also has some hyperparameters
that influence the model and need to be set by the user. The max-pooling
operation is similar to the convolution one in having a rectangular grid sliding
over its corresponding input grid. Therefore, the size of the pooling grid and
the stride of the slides are hyperparameters that need to be specified by the
user (Khan, Rahmani, Shah, and Bennamoun (2018)). Typically, the size of
the region on which pooling is performed is 2 × 2 while the stride mostly has
values of s = 1 or s = 2 (Aggarwal (2018)).

3.5.3Typical design principles for convolutional neural
networks

Due to the big number of hyperparameters, the design of a powerful neural net-
work architecture that achieves a good performance on the underlying task can
be challenging. However, ongoing research in the field of convolutional neural
networks and the different successful convolutional neural networks applied in
the ImageNet Challenge (Krizhevsky, Sutskever, and Hinton (2012)) have coined
a few design principles for convolutional neural networks that could be extended
to other applications. Therefore, these design principles have been also tested
for the neural networks of the RCPSP solution approach proposed in this thesis.
First of all, a convolutional neural network typically consists of several convolu-
tional layers followed by a few fully connected layers and an output layer (Agh-
dam and Heravi (2017)). Secondly, the number of convolutional filters usually
increases with the depth of the convolutional neural network, hence, early convo-
lutional layers have fewer kernels than later layers (Aghdam and Heravi (2017)).
As observed by Goodfellow, Bulatov, Ibarz, Arnoud, and Shet (2013), increas-
ing the number of parameters in the convolutional layers without increasing the
depth of the network is not as effective as having many parameters in the layers
of a deep network. Thus, convolutional layers with many parameters should
always be embedded in a deep network to exploit their potential. This has also
been confirmed by the recent winning convolutional neural networks of the Ima-
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geNet Challenge. Since Krizhevsky, Sutskever, and Hinton (2012) has used the
ReLU function as an activation function in their ImageNet convolutional neural
network, it has almost exclusively become the standard activation function for
convolutional neural networks (Aggarwal (2018)). Therefore, the ReLU function
should always be the first choice for the activation function.
Furthermore, a review of some of the most successful neural network architec-
tures applied in ImageNet challenge, namely AlexNet (Krizhevsky, Sutskever,
and Hinton (2012)), VGG (Simonyan and Zisserman (2014)) and ResNet (He,
X. Zhang, Ren, and Sun (2016)), shows that the kernel size dimensions in the
convolutional layers decrease from earlier to later layers in the network. Fi-
nally, the recommended values for the hyperparameters outlined in the previous
Section 3.5.2 should also be considered for the design choices of convolutional
neural networks.
To illustrate the exemplary architecture of a convolutional neural network, Fig-
ure 3.13 depicts LeNet, which has been one of the first successfully implemented
convolutional neural networks. LeNet has been designed by LeCun, Bottou,
Bengio, and Haffner (1998) and was applied for handwriting recognition. In-
stead of max-pooling, they have deployed average-pooling as the subsampling
operation after the convolution operation.

Figure 3.13: LeNet architecture.

3.6 Learning in neural networks

The supervised learning process, i.e. the class of machine learning algorithms
used in this thesis, is briefly described in this section on the basis of a classifi-
cation task. As described in Section 3.1.3, the dataset of a classification task
consists of data points in the form (data:x,label:y), where each example or data
point xi has a target value yi. Then, during the training phase of the neural
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network, the prediction ŷi for a data point xi is compared to its true label yi.
Based on this, a so-called loss function J(w) computes the error between the
true labels y and the predicted values ŷ as a function of the parameters of the
neural network which are the values of its weights w. A very common loss func-
tion is the mean squared error defined in Equation 3.7 with n being the number
of data points in the training dataset.

J(w) = 1
n

n∑
i=0

(ŷi − yi)2 (3.7)

The training process of a neural network is then a function minimization that
adjusts the weights set w (including the biases) in such a way that the loss
function is minimized (MacKay and Mac Kay (2003)). The learning of the
correct weights starts from an initialization of the neuron weights at the begin-
ning of the training process (Khan, Rahmani, Shah, and Bennamoun (2018)).
Usually, the weights are initialized with values based on a certain distribu-
tion, like, for example, a Gaussian random initialization, while the biases are
typically set to zero at the start of the training (Khan, Rahmani, Shah, and
Bennamoun (2018)). When it comes to minimizing the loss function, every
weight or bias represents an input parameter to the loss function and, hence,
the minimization problem requires to calculate the gradient of the loss function
with respect to its parameters w (MacKay and Mac Kay (2003)). Thus, neural
networks are usually trained by using iterative gradient descent-based methods
that drive the loss function to a low value by repeatedly adjusting the weights
w. However, the calculation of the gradient of the loss function is non-trivial for
feedforward networks because their loss is calculated from a complicated com-
position function over all weights of every neuron in ever neural network layer
(Aggarwal (2018)). Thus, the backpropagation algorithm developed by Rumel-
hart, Hinton, and Williams (1986) has become a widely used algorithm that
facilitates the calculation of the gradients. In the following sections, the basic
procedure of the backpropagation algorithm and gradient descent methods for
neural networks are briefly described.

3.6.1Backpropagation

Explaining the details of the backpropagation algorithm would exceed the scope
of this thesis, hence, only the basic concepts are introduced here according to
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Aggarwal (2018). Further information can be found in Rumelhart, Hinton,
and Williams (1986).
The backpropagation algorithm comprises two main phases which are referred
to as the forward and backward phases, respectively. In the forward phase, the
inputs of the data points from the training data are fed into the neural network.
The inputs are then forward cascaded by executing the computations across the
layers, using the current set of weights. The final predicted outputs which result
from these computations are then compared to true labels y of the training data.
Finally, the derivative of the loss function with respect to the predicted output
is calculated. The main goal of the backward phase is then to learn the gradient
of the loss function with respect to the different weights in the network. These
gradients are then used to update the weights of the neural network. Since these
gradients are learned in backward direction starting from the output node, this
gradient learning process is called backward phase.

3.6.2Gradient descent variants for neural networks

The backpropagation algorithm is often misunderstood as the whole learn-
ing algorithm for neural networks, even though it indeed only refers to the
method of computing the gradient of the loss function (Goodfellow, Bengio, and
Courville (2016)). The actual learning is performed by gradient descent while
employing the gradient calculated by the backpropagation algorithm. Gradi-
ent descent belongs to the most popular algorithms for any kind of optimiza-
tion task and is also the most common method to optimize neural networks
(Ruder (2016)).
Gradient descent is a way to minimize the loss function J(w) parametrized by
the model’s parameters w ∈ Rn by updating the parameters in the opposite
direction of the gradient of the loss function ∇wJ(w) with respect to the pa-
rameters w. Thereby, the learning rate α determines the size of the steps that
are taken to reach a (local) minimum (Ruder (2016)). The iterative character
of gradient descent origins from adjusting the weights of the neural network by
passing every single data point of the training dataset several times through
the neural network. The cycle of passing through an entire dataset is referred
to as epoch (Aggarwal (2018)). After a number of iterations when the pa-
rameters of the network do not change any longer as a result of the updates,
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the network training process is said to converge (Khan, Rahmani, Shah, and
Bennamoun (2018)).
Three different variants of gradient descent can be distinguished, namely batch
gradient descent, stochastic gradient descent and mini-batch gradient descent.
Each differs in how many of the data points of the training set are used to
compute the gradient of the loss function. The mini-batch gradient descent
tries to combine the advantages of the other two approaches by considering
mini-batches of training data at each step of the weight updating process. As
a result, it is generally the most common algorithm when it comes to neural
network training, because its convergence behavior is stable and computing the
gradient is quite efficient.
Further details about the three gradient descending methods can found in
Ruder (2016).

3.7 Deep neural network-based decision tools

The idea of this thesis, i.e. the application of neural network-based reactive
policies to the RCPSP, has been inspired by the recent success of deep learning
in many challenging decision-making problems.
In robotics, deep neural networks have been widely used. One of the most
common task in this field tackled with convolutional neural networks is object
detection (Krizhevsky, Sutskever, and Hinton (2012)). This problem can also
be seen as a decision-making task since the neural network must decide which
object is in an image among a set of predefined objects, which the neural net-
work have been trained to recognize. Another common robotic task which have
been recently tackled with artificial neural networks applied to computer vision
is the grasping of objects (Colling, Dziedzitz, Furmans, Hopfgarten, and Mark-
ert (2018)). Although the input information is still an image, the output of the
neural network identifies how the gripper should grasp the object.
Kober, Bagnell, and Peters (2013) provides other examples for the field of
robotics, which are not directly related the image processing such as, for
instance, Hafner and Riedmiller (2003) and Riedmiller, Gabel, Hafner, and
Lange (2009). In these works fully connected neural networks were used to
let robots learn to play soccer and, precisely, to learn various sub-tasks such as
defense, interception, position control, kicking, motor speed control, dribbling,
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and penalty shots. Moreover, in Duan, Cui, and Yang (2008) and Thrun (1995)
fuzzy and explanation-based neural networks have allowed robots to learn basic
navigation, while CMAC (cerebellar model articulation controller) neural net-
works have been used for biped locomotion in Benbrahim and Franklin (1997).
Deep neural networks have been successfully applied to master different types
of games as well. In this case, the decision-making process takes the current
state of the game, i.e. the image displayed by the monitor at the decision point,
as input of the neural network and decides what should be the next move. For
example, Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, and Ried-
miller (2013), Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves,
Riedmiller, Fidjeland, and Ostrovski (2015) and Hosu and Rebedea (2016)
have applied this concept to the Atari games. Figure 3.14 taken from Mnih,
Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland,
and Ostrovski (2015) provides an example with the game Breakout, one of the
Atari games, and its learning behavior. It is possible to see that in the earliest
steps decision tool just try to hit the lowest levels of the bricks with a low re-
warding, while later on it manages to break through the top level and a higher
reward is given. With this reward mechanism, the neural network will learn
after many runs that trying to break through the wall is the best strategy.

Figure 3.14: Visualization of learned value function on Breakout Mnih, Kavukcuoglu, Silver,
Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, and Ostrovski (2015).
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A couple of years later, a much more difficult game called Go has been mas-
tered Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser,
Antonoglou, Panneershelvam, and Lanctot (2016) achieving a new important
milestone in the world of artificial intelligence thanks to the complexity of the
game and of the applied algorithm. The algorithm’s creators proposed to com-
bine a tree-search algorithm with two neural networks helping to both reduce
the width and the depth of the search.
One of the first ideas for applying neural networks in the field of the production
and logistics came from Leung (1995). However, in this thesis their potential
of this field is only described from the theoretical point of view. Later on,
Efendigil, Önüt, and Kahraman (2009) and Kochak and Sharma (2015) success-
fully applied neural networks for demand forecasting to support the supply chain
management, while N. Silva, Ferreira, C. Silva, Magalhães, and Neto (2017) have
investigated the problem of supply chain vulnerability and visibility with a sim-
ilar approach by predicting the supply chain capacity to fulfill incoming orders
and to anticipate which will be the next node receiving an order.

3.7.1Application of DNN to resource-constrained problems

Resource management problems often require reactive decision making tools to
take appropriate decisions based on the current state of the system. In this field
of research, the contribution presented in Mao, Alizadeh, Menache, and Kan-
dula (2016) is particularly relevant for this thesis, since it suggests the use of
neural networks in a problem, which is quite similar to the resource-constrained
project scheduling problem considered in this thesis. In both problems, a set ac-
tivities requiring a certain amount of time and resources must be completed un-
der the constraint of limited and renewable available resources. However, there
are some major differences. In Mao, Alizadeh, Menache, and Kandula (2016),
there is no known activity sequence with precedence constraints, instead new
tasks randomly arrive at a waiting queue and the scheduler must decide which
of them should be scheduled next. Moreover, the objective function (average
job slowdown) is different and a reinforcement learning was used instead of
supervised learning.
Although no contributions in the research field of the Resource-Constrained
Project Scheduling Problem that tackled this problem with neural networks
could be found, other machine-learning approaches have been already applied
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to this problem. For what concerns the basic RCPSP (see Section 2.5.5), Ję-
drzejowicz and Ratajczak-Ropel (2014) and Adamu and Aromolaran (2018) have
both applied reinforcement learning on the RCPSP but with different focuses.
The first one used a multiagent system to improve the scheduling solutions,
while the second one used machine learning to learn which algorithm should
be dynamically chosen at each decision point among a set of heuristics. In
both works, the trained machine learning model had no generalization purpose,
i.e. the model was trained to solve only the activity sequence of the given
dataset and it probably gives bad results on new unseen activity sequences.
Moreover, both Jędrzejowicz and Ratajczak-Ropel (2014) and Adamu and Aro-
molaran (2018) assumed purely deterministic activity durations which is not
very realistic as stated in 2.6.2.
To sum up, deep neural networks have been widely used for decision-making
problems especially in the last decade. Thanks to the recent developments of
convolutional neural networks, image processing is for sure one of their most
important field of application, where they have achieved outstanding results.
Moreover, they have been also tested in the other research fields, like, for ex-
ample, the design of control policies and demand forecasting with good results.
The RCPSP problem, however, is still new ground for deep neural networks,
even if they have already been applied to similar problems like, for example,
the job scheduling for computer clusters.
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4 Applying deep neural networks
to the RCPSP

Man’s relation with technology is
complex. We always invent

technology, but then technology
comes back and reinvents us.

-A. Jalan

This chapter introduces the author’s idea of using deep neural networks to re-
actively schedule the activities of a project under precedence and resource con-
straints. The proposed approach has been tested and validated with a simulation
tool which has been created in this thesis as well. Therefore, first of all, the
simulation tool is presented. Then, the different decision-making policies are
introduced by means of examples, including the six new neural network-based
approaches. Finally, the entire training process used in this thesis is explained
from the data generation with a so-called project generator, to the hyperparam-
eter tuning and to the final test on the unseen test sequences.
The author’s idea is based on a preliminary investigation and results presented
in his previous publication on this topic (Pagani and Pfann (2020)).

4.1 Simulation tool

In order to evaluate one or more decision policies for an RCPSP problem, an
evaluation tool is required, which is in the almost all related literature contri-
butions a simulation tool (Vanhoucke (2016)). The simulation tool is used to
build environments where an event-driven simulation can be run (Evans and Ol-
son (2001)). If some characteristics of the simulation environment are stochastic
(e.g. activity duration or resource consumption), the results are stochastic as
well and, as a result, a statistical analysis (e.g. ANOVA ANalysis Of VAriance)
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are required to draw solid conclusions. Few literature contributions have pro-
posed exact evaluations. For example, in Rostami, Creemers, and Leus (2018)
an evaluation based on Markov chains is used for small activity sequences with
only 30 tasks, which is close the maximum number of activities exact evalua-
tions can be applied for. Exact evaluations have another limit, namely that they
are only available for a small set of probability distributions used for activity
durations (e.g. deterministic, exponential or phase-type).
In this thesis, the simulation approach has been chosen due to its scalability
when more than 30 activities are considered and in order to be able to model
different distributions for the activity durations during the sensitivity analysis.

4.1.1Simulation logics

Although the simulation logics refers to the formal definition of the basic
resource-constrained project scheduling problem (see Section 2.6.1), a small ex-
ample of simulation run is provided for a better understanding. The activity
sequence of the example is depicted in Figure 4.1.

Figure 4.1: Considered example of activity sequence.

In particular, four activities are considered and each of them is depicted as
a block with a number in the middle identifying the activity number. After
the start dummy activity, activity 1 can be started. Once activity 1 has been
completed, activity 2 and 3 could potentially start in parallel if enough resources
were available. Once activity 3 has been completed, activity 4 can be started.
Once all four activities are completed, the entire activity sequence declared
as completed and the time span between its beginning and its completion is
measured. According to Section 2.2.3, the duration of each activity is shown
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directly over the block (e.g. activity 1 has a duration of 1 time unit), while the
list of required resources below the block (e.g. activity 3 requires one piece of
resource A and one of resource B). The resource pools are represented in the
upper-left corner of Figure 4.1 as dashed circles where one piece of resource A
and one of resource B are available and shared among all activities. In order to
help the visualization, a waiting queue is added in front of each block.
The progress of the activity sequence during the simulation is shown by the
so-called tokens. During the initialization of the simulation (see Figure 4.2),
they are placed in all the blocks after the start dummy activity.

Figure 4.2: Initialization phase in the considered activity sequence.

Whenever an activity is completed, the token is duplicated (if there is more
than one following activity), placed in the waiting queues of all following blocks
and, if another one is already in one of those queues, they are merged into one
token. Whenever an activity is started, the token is moved from the waiting
queue to the middle of the block. As a result, the tokens show which activities
are currently "in progress", "ready to start", "idle" or "not active". An activity
is said to be "in progress" if it has been started and, as a result, a token is
in the middle of the correspondent block. If a token is in the waiting queue,
the activity is "idle" and that means that at least one predecessor has been
completed but the activity itself has not been started yet. If the activity is
"idle" and all previous activities have been completed the activity is also "ready
to start". In all other cases, the activity is "not active" and there is no token
in the block or in its waiting queue. That happens when no previous activities
have been completed yet ("future" activity) or if the activity itself has already
been completed ("past" activity).
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The simulation is built with a 3-step logic and the three steps are iteratively
executed until all activities have been completed. The three steps are the fol-
lowing ones:

• Step 1 (decision step). In the decision step, it is decided which activities
can immediately start.

• Step 2 (progress step). The next finishing activity (or activities) in the
event list is identified and the simulation jumps forward in time to that
event.

• Step 3 (event step). The consequences of that event (e.g. the update
of the token position and the correspondent splits and merges explained
in the previous paragraph) are evaluated and the system state is updated
accordingly.

The following figures show the system representation after each step in a step-by-
step execution for the considered small example throughout an entire simulation
run. After the initialization phase (Figure 4.2), the first iteration begins. At
step 1 of iteration 1 (see Figure 4.3), the first decision takes place. Since only
activity 1 can be started and there are enough resources available, the decision
is trivial. Activity 1 is started and the resource A is allocated to it.

Figure 4.3: Step 1 of iteration 1 in the considered activity sequence.

The step 2 of iteration 1 (Figure 4.4) is the progress step. The next finishing
activity is identified, the simulation jumps forward in time to the completion
event and the virtual time is updated. In this case, activity 1 completes and,
since its execution time is one time unit, the virtual time is increased by one.
Afterwards, there is step 3 (see Figure 4.5) where the completion event is eval-
uated. In this case, the token is split in two and a token is placed in each
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Figure 4.4: Step 2 of iteration 1 in the considered activity sequence.

waiting queue of both activity 2 and 3. The resources allocated to activity 1
are given back into the pool.

Figure 4.5: Step 3 of iteration 1 in the considered activity sequence.

Immediately after step 3 of iteration 1, the step 1 of the next iteration the
next iteration takes place. In this decision step, both activity 2 and 3 could be
potentially started, if enough resources would be available for both. However,
since both needs a resource A and there is only one piece of it available, a non-
trivial decision must be taken. Let us assume that it is decided to start activity
2 and the correspondent resource is allocated as depicted in Figure 4.6.
After step 1 of iteration 2, there are no more non-trivial decisions and the
activities are executed one after each other in this sequence 1, 2, 3 and 4 without
parallelizations (see Figures from 4.7 to 4.14). A total project duration of 8
time units is obtained in this case.
If a different decision was taken at step 1 of iteration 2, the following steps would
have gone differently as shown in Figures from 4.15 to 4.20 and a total duration
of the activity sequence of 6 time units instead of 8 would have been achieved.
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Figure 4.6: Step 1 of iteration 2 in the considered activity sequence.

This example shows that a good decision policy can be important even for
small activity sequences since a reduction of 25% on the total duration has been
achieved in this case.

4.2 Decision-making process with a reactive policy

As mentioned in Section 2.4, the scheduling of a project consists in determining
when the activities should be started. In contrast to a proactive scheduling
policy where the starting time of activities is decided prior to the beginning
of the project, a reactive scheduling policy only defines which "ready to start"
activities are actually started at each decision point. The decision points are in
this case the beginning of the project (step 1 of the first iteration) and when-
ever an activity completes and, as a result, new resources are released. In the
following sections, it is described which pieces of information can be used to
generate the priority values for the "ready to start" activities and how the pri-
ority values are used to take the decisions. Finally, the considered policies for
the benchmark in chapter 5 are outlined.
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Figure 4.7: Step 2 of iteration 2 Figure 4.8: Step 3 of iteration 2

Figure 4.9: Step 1 of iteration 3 Figure 4.10: Step 2 of iteration 3

Figure 4.11: Step 3 of iteration 3 Figure 4.12: Step 1 of iteration 4

Figure 4.13: Step 2 of iteration 4 Figure 4.14: Step 3 of iteration 4

4.2.1Available information

The first step of designing decision policies is to identify which pieces of in-
formation could be considered in the decision-making process at each decision
point td. In this thesis, seven categories of information have been considered:

• The "idle" activities (set I), i.e. the activities with a token in the waiting
queue, which means that at least one previous activity has been completed
but they have not been started yet.
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Figure 4.15: Step 1 of iteration 2 Figure 4.16: Step 2 of iteration 2

Figure 4.17: Step 3 of iteration 2 Figure 4.18: Step 1 of iteration 3

Figure 4.19: Step 2 of iteration 3 Figure 4.20: Step 3 of iteration 3

• The "ready to start" activities (set R), i.e. the activities that could be
scheduled standalone at the decision point td and, as a result, are con-
sidered in the decision. They correspond to all "idle" activities where all
precedence and resource constraints are satisfied at t = td.

• The "in progress" activities (set P), i.e. the activities that have been
started at t < td but they are still using resources at t = td.

• The "future" activities (set F), i.e. the activities that have not been started
yet and cannot be scheduled at td due to precedence or resource con-
straints. They correspond to all "idle" activities, which are not "ready to
start" at t = td.

• The precedence constraints among these four types of activities.
• Currently available resources.
• Total number of resources.
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For each of the considered activities, it is possible to use different pieces of in-
formation, namely the duration and the resource consumption for each type
of resource.
It is important to notice that the already completed activities are not considered
anymore. In this thesis, it is assumed that those activities have no influence on
the current decision.

4.2.2From the priority values to decision

The goal of a reactive scheduling policy is to convert the available information
into priority values for the "ready to start" activities and, then, to convert the
priority values in a list of "ready to start" activities that are actually started.
In order to do that, the "ready to start" activities are considered one after each
other starting with the activities with the highest priority value. If there are
enough resources to schedule the currently considered activity, it is scheduled at
td and the correspondent resources are allocated. After that, the same procedure
is applied to the next activities one after each other considering the order given
by the priority values. The algorithm should not stop as soon as a "ready to
start" activity cannot be scheduled, since it may happens that the next one has
a lower resource consumption and therefore can be scheduled. This algorithm
is greedy, namely that the possibility not to schedule a "ready to start" activity
although there are enough resources is not considered.

4.2.3Considered policies

In order to evaluate the performance of the neural network-based scheduling
policies proposed in this paper, a set of other policies has been considered for
the performance comparison. Those policies are the random policy, the lower
bound policy and the heuristics presented in Section 2.9.1. The following list
provides all the scheduling policies along with the description of their scheduling
algorithm that have been tested in this thesis:

• Random (RAN). The priority values are assigned randomly. Due to
the random nature of this policy, the variance of a project makespan may
be significantly larger than for other scheduling algorithms. In order to
significantly reduce variance, 10.000 simulation runs are considered and
the average makespan is used for benchmarking purposes (see section 4.4).
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• Lower bound with parameter N (LB-N). The policy performs N
simulations with a random policy from the considered decision point till
the project completion and, considering the run with the lowest total du-
ration, the activities scheduled to start at the decision point are started.
In this thesis, the default value of N has been set to 10.000.

• Shortest Imminent Operation (SIO). The lower the duration of a
"ready to start" activity, the higher its priority.

• Greatest Total Resource Demand (GTRD). It schedules the activi-
ties on the basis of the total resource demand, namely that the higher the
resource demand, the higher its priority value. Critical resources are given
a greater importance which means that an activity with a high resource
demand of a critical resource is given a bigger priority than one with a
high resource demand of another resource. For more details, see Section
4.2.3.

• Greatest resource utilization with parameters S and T (GRU-S-
T). The combination of the starting activities are chosen in a way that
the resource utilization in a time horizon of T time units is maximized.
In particular, S schedules complying with the resource and precedence
constraints and considering a time horizon of T time units are generated,
the correspondent resource utilizations are computed and the activities
scheduled at the current decision point td in the schedule with the highest
resource utilization are given the highest priority values. For more details,
see Section 4.2.3.

• Fully connected neural network without future resource utiliza-
tion (NN-FC). Explained in Section 4.3.3.

• Fully connected neural network with future resource utilization
(NN-FC-FRU). Explained in Section 4.3.4.

• Convolutional 1-dimensional neural network without future re-
source utilization (NN-CONV1D). Explained in Section 4.3.5.

• Convolutional 1-dimensional neural network with future re-
source utilization (NN-CONV1D-FRU). Explained in Section 4.3.6.

• Convolutional 2-dimensional neural network without future re-
source utilization (NN-CONV2D). Explained in Section 4.3.7.

• Convolutional 2-dimensional neural network with future re-
source utilization (NN-CONV2D-FRU). Explained in Section 4.3.8.
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The assumption of this thesis is that, although the activity durations are mod-
eled as known and deterministic, some deviations from the assumed values can
occur. As a result, it is expected that the further in the future an activity
is scheduled, the more likely is that its starting time becomes unfeasible. For
this reason, a limited time horizon is considered in all scheduling policies that
consider also the future activities, i.e. the GRU-S-T and the neural network
approaches.

Greatest Total Resource Demand Policy

This section provides a formal description of how the greatest total resource
demand policy (GTRD), has been implemented in the simulation tool used for
the benchmark. The algorithm uses in the following steps:

• Step 1: compute the resource criticality values. The criticality of a
resource type indicates how limiting a certain resource type is among the
"ready to start" activities. If few pieces of that resource type are available
and many "ready to start" activities require many units of it, the resource
is very limiting. The formula for the resource criticality value for the
resource type k, denoted as RCVk, is presented in equation 4.1.

• Step 2: compute the activity criticality values. For each activity,
a criticality value, which is proportional to the consumption of the most
critical resource type, can be computed. If two or more activities get the
same priority value, the second most critical resource type is considered
to define the relative position among them and so on.

• Step 3: assign priority values. A priority value PVj which is propor-
tional to the activity criticality value is assigned to each activity.

RCVk = (∑
i∈Rd

rj,k)− Ak

Rk

(4.1)

Considering the second decision point of the considered example of Section 4.1.1
(Figure 4.21), the following computations have to be done:

RCVA = (1+1)−1
1 = 1

RCVB = (0+1)−1
1 = 0

(4.2)
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Figure 4.21: Second decision point for the considered example.

The resource type A results to be the most critical resource and the following
priority values can be computed:

PV2 = 1 · r2,A = 1
PV3 = 1 · r3,A = 0

(4.3)

In this case, the two "ready to start" activities have different priority values. If
that was not be the case, the same computation should be repeated with the
second most critical resource type, i.e. with B.

Greatest Resource Utilization Policy

This section aims to provide a rigorous description of how the greatest resource
utilization policy (GRU), has been implemented in the simulation tool used
for the benchmark. This policy relies on two parameters, namely the number
of generated schedules S and the length of the time horizon T in which the
schedules are generated. Consequently, many different sub-classes of this policy
denoted as GRU-S-T can be considered. The schedules must also comply with
the resource and precedence constraints and are created with the following steps:

• Step 1: initialize the schedule. An empty schedule for the time horizon
T , which is a resource allocation diagram with information about the
start and end time of the scheduled activities along with their resource
consumption, is created (Figure 4.22) and the "in progress" activities are
added from td until the planned end time.

• Step 2: add next activities. For each schedule created up to now, it is
evaluated if further activities can be placed in the schedule with td ≤ sj ≤
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td + T − 1 and considering the precedence and resource constraints. sj is
the activity’s start time. If different combinations of further activities can
be placed, child schedules are generated and the parent schedule is deleted
since its resource utilization will be always lower than the one of a child
schedule according to equation 4.4. In the considered example, 2 child
schedules are generate at the first iteration, namely the ones depicted in
Figures 4.23 and 4.25.

• Step 3: check stop criteria. A full schedule is a schedule where no
more activities can be placed within the time horizon T . If the desired
number of full schedules S is reached or no more new child schedules can
be generated, the schedule generation algorithm stops, otherwise, step 2
is repeated.

For each obtained full schedule, the resource utilization is computed according to
equation 4.4 and the "ready to start" activities scheduled at the current decision
point td in the schedule with the highest resource utilization get a priority value
of one, while the others get a priority value of zero.
Equation 4.4 shows how to compute the resource utilization RUs of a schedule
s in the time horizon T . Ak,t is the current available quantity of units for the
kth resource type at time t.

RUs =
∑K

k=1
∑td+T−1

t=td

Rk−Ak,t

Rk

K · T
(4.4)

Figure 4.22: Empty schedule

In order to better understand the policy, the generated schedules for the sec-
ond decision point of the considered example of Section 4.1.1 (Figure 4.21) are
presented. The example is valid for T = 4 and S ≥ 2 since no more than two
schedules can be generated for this small example. Figures 4.24 and 4.26 show
the final full schedules. Schedule 1 has a resource utilization of 75%, schedule
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Figure 4.23: Schedule 1 at the first iteration

Figure 4.24: Schedule 1 at the second and last iteration (full schedule)

Figure 4.25: Schedule 2 at the first iteration

Figure 4.26: Schedule 2 at the second and last iteration (full schedule)

2 uses 100% of both resources for the entire time horizon. As a result, the
GRU scheduling policy with S ≥ 2 and T=4 suggests to start activity 3 at
the considered decision point.
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4.3 Deep neural network structure

As mentioned in Section 3.7, a neural network can be use as a decision tool in
many different problems. The idea of this thesis is that such powerful computing
systems can be applied to the resource-constrained project scheduling problem
as well. This section presents the methodology that makes it possible both
with a formal explanation and with the simple but representative example of
the decision point in Figure 4.27.

Figure 4.27: Second decision point for the considered example.

Six different neural network structures are tested in this thesis. Three of them
consider only the information about the "ready to start" activities and the cur-
rently available resources. Their architecture can be represented by Figure 4.28.
The block "Input 1", also denoted as VReadyT oStartActivities, is the considered input
information and it is processed by the first neural network, denoted as NN1,
which can be a fully connected, a convolutional 1-dimensional or a convolu-
tional 2-dimensional one. After this neural network, the processed information
is flattened and given as an input to the so-called NNfinal. The latter is a fully
connected neural network which trasforms this intermediate processed informa-
tion into the output values of the entire network, i.e. the priority values.
The other three neural network structures consider also the information about
the future resource utilization and their architecture can be represented by
Figure 4.29. The additional piece of information is denoted as "Input 2"
or MF utureResourceUtilization and is initially processed by a convolutional 2-
dimensional neural network, denoted as NN2. After that, the information is
flattened and merged with the information coming out from NN1. The merged
information is than processed by the NNfinal to obtain the output values of the
entire network, i.e. the priority values.
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Figure 4.28: Neural network structure without considering the future resource utilization.

Figure 4.29: Neural network structure considering the future resource utilization.

4.3.1Input structure

The two pieces of input information, i.e. the ready to start activity state
vector VReadyT oStartActivities (input 1) and the future resource utilization matrix
MF utureResourceUtilization (input 2), are created according to the rules explained
in this section. One of the biggest challenges in using a deep neural network
to process this information is that the number of "ready to start" activities and
the number of following activities generally vary at each decision point, while
the number of inputs of a neural network remains fixed. A similar problem
was faced also by Mao, Alizadeh, Menache, and Kandula (2016), where neu-
ral networks are used for the allocation of computational resources of a CPU
cluster to a number of pending jobs. Since the jobs arrive with a random inter-
arrival time, the waiting queue can grow and no maximum queue size can be
defined. The author proposed to consider the full information only about a lim-
ited and predefined amount of waiting jobs, while, for what concerns the other
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pending jobs, their number is the only information being given as an input and
considered in the decision process.

Ready to state activity vector

In order to solve the problem of the variable number of "ready to start" activities,
a maximum number of considered ones, denoted as Rmax, is considered. If more
activities are ready to start, the information of the activities in excess is not
processed and random low priority values are assigned in such a way that they
are considered at last in the decision process (see Section 4.2). If less activities
are ready to start, the correspondent positions of the state vector are set to zero.
Mao, Alizadeh, Menache, and Kandula (2016) also considered limited number
of activities in state vector
Assuming that Rmax=3 "ready to start" activities (1, 2 and 3) are considered
at maximum and K=2 resource types (A and B), the ready to start activity
state vector Vreadytostartactivities becomes an vector with (1+K) ·R+K positions
with the following structure:

VReadyT oStartActivities =



d1 ·RF
r1,A

RA
r1,B

RB

d2 ·RF
r2,A

RA
r2,B

RB

d3 ·RF
r3,A

RA
r3,B

RB
AA

RA
AB

RB



(4.5)

Excluding the last K values, the vector can be divided in groups of 1 + K

values and each group refers one of the "ready to start" activities. The first
value of each group represents the duration, while the following ones represent
the normalized resource utilization NRUj,k, i.e. the resource consumption in
percentage with respect to the total available quantity (see Equation 4.6). RF is
a rescale factor for the activity duration that normalizes the correspondent input
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values in such a way that they are between zero and one, which is a common best
practice in neural network models called feature scaling. According to Ketkar
and S. (2017), this practice improves the convergence of the gradient descent
and therefore leverages the learning process of the neural network. The last K
values represent the currently available quantity of units for each resource type.

NRUj,k = rj,k

Rk

(4.6)

Considering Rmax=3, K=2 and RF=0.1, the VReadyT oStartActivities for the second
decision point of the considered example depicted in Figure 4.27 is as follows:

VReadyT oStartActivities =



0.2
1
0

0.3
1
1
0
0
0
1
1



(4.7)

It is important to notice that activity 2 is the first "ready to start" activity
according to the activity numbering and, as a consequence, it gets the index 1.
Furthermore, activity 3 gets the index 2 and since there are only two "ready to
start" activities, the vector positions for the third activity index are set to zero.

Future resource utilization matrix

The second piece of information received by the neural network as an input is
the future resource utilization in form of a [KxT ] matrix, whereK is the number
of resource types and T is the considered time horizon. A generic element Mk,t

of this matrix represents a rough forecast about how much the resource type k
is required t time units after the decision point td. In order to fill this matrix,
a fictitious schedule without considering the resource constraints is created,
which is equivalent to a schedule made using the LB-CPM scheduling policy (see
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Section 2.8). The fact that the resource constraints are not considered makes
this schedule unique, i.e. there is no other alternative schedule, if all activities
are placed in the schedule as soon as all previous activities are completed. Such
a fictitious schedule is created with the following steps:

• Step 1: initialize the schedule. An empty schedule for the time horizon
T is created and the "in progress" activities are added from td till the end
of the considered time horizon. Figure 4.22 provides an example for T =
4 and K = 2.

• Step 2: add the next activities to the schedule. It is evaluated if
further activities can be placed in the schedule with td ≤ sj ≤ td + T ,
with sj being the activity’s start time. The resource constraints are not
considered.

• Step 3: check stop criteria. If no more activities can be placed within
the time horizon T , the schedule generation algorithm stops, otherwise, it
goes back to step 2.

Once the fictitious schedule has been obtained, an empty resource utilization
matrix withK rows and T columns is created and filled. The following algorithm
is used for each scheduled activity j and for each resource type k.

• Step 1: compute the normalized resource utilization. The normal-
ized resource utilization Mj,k of the considered scheduled activity j and
for the resource type k is calculated according to equation 4.6.

• Step 2: add the normalized resource utilization in the resource
utilization matrix. The values of the future resource utilization matrix
of the row k and of the columns between max(0, sj − td) and min(T −
1, sj − td + dj), i.e. in the time slots of the considered time horizon where
the activity has been scheduled, are incremented by Mj,k.

In order to better understand how the future resource utilization matrix is cre-
ated, the algorithm is applied to the second decision point of the considered
example depicted in Figure 4.27.
In the first part of the algorithm the fictitious schedule is created. At the
decision point td = 1, activities 2 and 3 could be scheduled immediately (s2

= 1 and s3 = 1) if the resource constraints were not considered, while activity
4 must wait (only) for the completion of activity 3 (s4 = s3 + d3 = 4). The
resulting schedule is depicted in Figure 4.30.
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Figure 4.30: Fictitious schedule.

In the second part of the algorithm, the future resource utilization matrix is cre-
ated starting from an empty one shown in Equation 4.8. Three activities have
been scheduled within the time horizon T from the decision point td, namely ac-
tivity 2, 3 and 4. Considering the first row dedicated to the resource type A and
the second one to the resource type B, the Equations 4.9, 4.10 and 4.11 represent
the future resource utilization matrices for the activity 2, 3 and 4 respectively.
If these three matrices are added element by element, the matrix in equation
4.12 is obtained, which represents the input for the neural network NN2.

MF utureResourceUtilization,empty =
0 0 0 0

0 0 0 0

 (4.8)

MF utureResourceUtilization,Activity2 =
1 1 0 0

0 0 0 0

 (4.9)

MF utureResourceUtilization,Activity3 =
1 1 1 0

1 1 1 0

 (4.10)

MF utureResourceUtilization,Activity4 =
0 0 0 0

0 0 0 1

 (4.11)

MF utureResourceUtilization =
2 2 1 0

1 1 1 1

 (4.12)

By creating the future resource utilization matrix, the information outlined in
Section 4.2.1 about what comes after the "ready to start" activities is compressed
into a matrix of a predefined shape. As a result, part of the information can
go lost, which can be easily proved with the help of Figure 4.31. The first
situation is the one presented in Figure 4.27. The second situation includes the
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same activities as in the first one but the topology is slightly different. With
the second topology the possibility to parallelize some activities at some point
disappears and, as a result, a total duration of 8 time units is always obtained
no matter if activity 3 is done before activity 2 or viceversa. That means that
the assigned priority values have no effect on the total project duration.

Figure 4.31: Comparison between two different situations that have the same future resource
utilization matrix.

Although an activity scheduler should recognize this difference, it can be easily
computed that both situations have the same input information, i.e. both the
same vector VReadyT oStartActivities (Input 1) and matrix MF utureResourceUtilization

(Input 2), with the proposed approach. This problem leads of course to a
certain degradation of the performance of the proposed neural-network-based
scheduling policy. However, this degradation is accepted as a compromise to
have an input information of a predefined and fixed shape which is suitable for
the processing with a neural network.

Resource conversion

In order to improve the performance of a trained neural network as a decision
tool, one should make sure that similar situations requiring the same decision
are expressed with similar input information. In Figure 4.32 two situations are
presented which only differ from each other in the resource consumption. In
the second situation, the resource consumptions for the resource A and B have
been switched but the decision-making process does not change and activity
3 should still get a higher priority value than activity 2 to achieve a lower
total project duration.
As a result, a resource conversion has been proposed in this thesis and it consists
in changing the considered order of the resource types according to the current
resource criticality RCVk defined in 4.1. In particular, the resource types with
a higher criticality are considered first and that has an effect on the order of
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Figure 4.32: Comparison between two similar situations where the resource consumption of
resource A and B are inverted.

the elements of the input information, i.e. both the vector VReadyT oStartActivities

and the matrix MF utureResourceUtilization.

Figure 4.33: Modification of the input information in both situations after the resource con-
version.

Figure 4.33 shows how the input information changes in both considered situa-
tions. Since they are different, the initial input vector and matrix are different.
However, after the resource conversion the same input is achieved and, as a re-
sult, also the same priority values, which is the goal of the resource conversion.
The usefulness of the resource conversion in the considered class of problems is
tested and confirmed later with post-validation experiments in Section 5.5.5.

Activity conversion

As mentioned in the previous sections, the neural network can consider a maxi-
mum number of Rmax "ready to start" activities in the vector VReadyT oStartActivities

which according to the input notation are numbered from 1 to Rmax. This
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is called local numbering since it considers only the activities which could be
started at the decision point td. However, the "ready to start" activities have in
general a different numbering in the activity sequence, denoted as global num-
bering. As a result, an activity conversion rule must be defined to relate the
global to the local numbering and to define which information goes in which
position of the input vector and matrix.
The solution to this problem proposed in this thesis is very similar to the com-
putation of the activity priority values in the GTRD scheduling policy. The
only different is that the obtained activity criticality values ACVj (see Section
4.2.3), which are proportional to the consumption of the most critical resource
type, are used to order the activities in ascending order. As for the GTRD
scheduling policy, if two activities get the same value because they have the
same consumption of the most critical resource type, the second most critical
resource type is considered for their relative position and so on.
This methodology helps to solve problems like the one presented in Figure 4.34
where two situations are presented which only differ from each other in the
activity numbering. In the second situation, activity 2 has become activity 3 and
vice versa. The two situations represent basically the same one except for the
different activity numbering. As a result of the different relation between local
and global numbering, different input information are obtained and probably
a different output of neural network which may lead to a different decision.
Considering a sorting rule which is independent from the global numbering is
an effective way to tackle this problem as proven in Section 5.5.5.

Figure 4.34: Comparison between two different situations where activity 2 has become activity
3 and vice versa.

The first step to order the "ready to start" activities is to define which resource
is the most critical. Equation 4.1 can be applied and the following results
are obtained:
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RCVA = (1+1)−1
1 = 1

RCVB = (0+1)−1
1 = 0

(4.13)

The resource type A is the most critical. However, since all "ready to start"
activities have the same resource consumption for A, the second most critical
resource type, i.e. B, is considered. In both cases and independently from the
global numbering, the "ready to start" activity of the upper block gets the local
index 1, while the one of the lower block gets the local index 2 and this leads
to the same input information as shown in Figures 4.35, which is the goal of
the activity conversion.

Figure 4.35: Modification of the input information in both situations after the activity con-
version.

The usefulness of the activity conversion is tested and confirmed in Section 5.5.5.

4.3.2Output structure and decision process

Once the input information has been processed through the neural network,
an output vector with a number of values equal to the maximum number of
considered "ready to start" activities Rmax is obtained. This vector contains
the priority values that will be assigned to the "ready to start" activities. The
correspondence between these activities and the values of the vector is given by
their order after the activity conversion (see Section 4.3.1).
For the considered example introduced in Figure 4.27 and after the resource and
activity conversion, the input and output structure is depicted in Figure 4.36.
As the reader may notice, the output values, which are just by an example,
refers to the set of "ready to start" activities with the same order as for the
input vector VReadyT oStartActivities.
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Figure 4.36: Representation of the input and output information for the considered example.

The decision process takes place just after the creation of the priority output
vector and consists in trying to start the considered "ready to start" activities
one after each other starting with the activities with the highest priority value.
In the example depicted in Figure 4.36, activity 2 and 3 are given the priority
values of 0.1 and 0.6 respectively. As a result, the algorithm tries to start
activity 3 at first. Since enough resources are available, it is successfully started.
Afterwards, the possibility to start of activity 2 is evaluated without success
since all resources have been allocated to activity 3. At this point, the step 1 of
iteration 2 is completed and the simulation can proceed with step 2.

4.3.3Fully connected neural network without future resource
utilization

As already mentioned in Section 4.2.3, different neural networks are proposed
as decision tools in this thesis. The first one is called fully connected neural
network without future resource utilization, also denoted as NN-FC, and its
structure along with the considered hyperparameters are shown in Figure 4.37.
The first part of the name, in this case "fully connected" always refers to the
neural network type of NN1. In the NN-FC neural network both NN1 and
NNfinal are fully connected and there is no information flattening or merging
between them. As a result, it is possible to consider them as a unique fully
connected neural network.
The considered hyperparameters for this neural network structure are:

• The maximum number of considered "ready to start" activities Rmax.
• The total number of fully connected layers in NN1 and NNfinal together,

denoted as NoLNN1+NNfinal
.
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Figure 4.37: Representation of the fully connected neural network without future resource
utilization along with its hyperparameters.

• The total number of neurons per layer of NN1 and NNfinal together,
denoted as NoNNN1+NNfinal

.
• The number of epochs Nepochs.
• The learning rate α.
• The dropout rate σ

The last three hyperparameters are not characteristics of the neural network
but are parameters that must be set for the training and have an influence on
the final performance on unseen data.

4.3.4Fully connected neural network with future resource
utilization

The second proposed neural network structure is called fully connected neural
network with future resource utilization, also denoted as NN-FC-FRU. In con-
trast to the previous structure, the future resource utilization is also included
in the input information and processed by the NN2 (see Figure 4.38). Since
the future resource utilization matrix exhibits a 2-dimensional grid structure of
[KxT ], it is predestinated to be processed by a two-dimensional convolutional
neural network. After this piece of information has been processed, the out-
put of NN2 is flattened into a vector and merged with the output of NN1.
NNfinal takes the merged information as an input and creates the output of
the entire neural network.
For what concerns the processing of the future resource utilization matrix, the
concepts proposed by Pons, Lidy, and Serra (2016) were considered. In this
article, the authors investigated how different dimensions of convolutional filters
are able to extract different features from an audio recording matrix. This
matrix shows similar characteristics as the future resource utilization matrix.
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Figure 4.38: Representation of the fully connected neural network with future resource uti-
lization along with its hyperparameters.

While this matrix maps music characteristics defined by the frequency of sounds
over a timeline, the future resource utilization matrix maps resource utilizations
also on temporal base. Consequently, the concepts developed in this article
appear to be transferable for the processing of the information contained in the
resource utilization matrix.
Pons, Lidy, and Serra (2016) provides some guidelines for the choice of the
filter size and shape to extract the features from a matrix containing temporal
information. The idea is to use filters with a width suitable to learn temporal
dependencies and with a height suitable to capture the dependencies among
the different channels of the temporal information, which in the case of the
MF utureResourceUtilization are theK rows representing theK resource types. In this
thesis, the convolutional filter shapes to process this matrix were designed based
on a combination of the concepts presented in Pons, Lidy, and Serra (2016)
and the typical hyperparameter settings for convolutional networks described in
Section 3.5.3. Hence, the filter shape in NN2 has been set to [Kx3].
In Pons, Lidy, and Serra (2016) it is also suggested to additionally use a max-
pooling layer with dimension [4x1] after each convolutional layer. However, it
has been decided not to follow this suggestion due to the limited length of the
input matrix MF utureResourceUtilization.
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For what concerns the information processing in NN2, the parameter configu-
ration can be summarized in this list:

• Filter size of [Kx3]. The filter height is set equal to the number of different
resource types. As a result, some filters are able to consider all the rows
of the matrix at once.

• Strides s=1.
• A zero-padding is used and the padding p is set in such a way that the

shrinkage of the processed information throughout the layers is prevented,
which is essential to be able to create a deep network.

This parameter configuration for the NN2 is extended also to the others pro-
posed neural network structures that use theMF utureResourceUtilization in the input
information (see Section 4.3.6 and 4.3.8).
The hyperparameters of this neural network structure are shown in Figure 4.38
and are the following ones:

• The maximum number of considered "ready to start" activities Rmax.
• The time horizon T .
• The number of fully connected layers in NN1, denoted as NoLNN1 .
• The number of neurons per layer of NN1, denoted as NoNNN1 .
• The number of convolutional 2-dimensional layers in NN2, denoted as
NoLNN2 .

• The number of filters per layer of NN2, denoted as NoFNN2 .
• The number of fully connected layers in NNfinal, denoted as NoLNNfinal

.
• The number of neurons per layer of NNfinal, denoted as NoNNNfinal

.
• The number of epochs Nepochs.
• The learning rate α.
• The dropout rate σ.

4.3.5Convolutional 1-dimensional neural network without
future resource utilization

The convolutional 1-dimensional neural network without future resource uti-
lization, also denoted as NN-CONV1D, is a neural network structure which
considers only VReadyT oStartActivities as input information. This structure is quite
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similar to the one introduced in Section 4.3.3 but, in this case, NN1 is a convo-
lutional 1-dimensional neural network. As a result, a flatten layer is additionally
required after it to transform its output into a vector.

Figure 4.39: Representation of the convolutional 1-dimensional neural network without future
resource utilization along with its hyperparameter.

Since NN1 is not a matrix containing temporal information, different concepts
for the choice of the filters are used compared to the ones applied for NN2.
In fact, typical hyperparameter design principles for convolutional networks
described in Section 3.5.3 are used. According to those principles, the number
of filters should increase and the kernel size should decrease as the information
proceeds towards the last layers. For the first layer of NN1, the author uses
a filter size of [(1+K)x1], which is exactly the size of the information about
a single "ready to start" activity. For each following layer the filter size is
decreased by 1, until a minimum of 3 is reached, and the number of filters is
doubled, until the number of filters is equal to four times the initial number.
The strides s is set equal to 1, while the padding p is set equal to 0, i.e. no
zero are added and the information shrinks layer after layer. However, in NN1

the information shrinkage is accepted due to the larger input vector size equal
to (1 + K) · Rmax + K.
The hyperparameters of this neural network structure are shown in Figure 4.39
and are the following ones:

• The maximum number of considered "ready to start" activities Rmax.
• The number of fully connected layers in NN1, denoted as NoLNN1 .
• The number of filters per layer of NN1, denoted as NoFNN1 .
• The number of fully connected layers in NNfinal, denoted as NoLNNfinal

.
• The number of neurons per layer of NNfinal, denoted as NoNNNfinal

.
• The number of epochs Nepochs.
• The learning rate α.
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• The dropout rate σ.

4.3.6Convolutional 1-dimensional neural network with future
resource utilization

The convolutional 1-dimensional neural network with future resource utilization,
also denoted as NN-CONV1D-FRU, is a neural network structure which consid-
ers both VReadyT oStartActivities and MF utureResourceUtilization as input information.
This structure is quite similar to the one introduced in Section 4.3.4 but the
NN1 is a convolutional 1-dimensional neural network as for the NN-CONV1D-
FRU. A flatten layer is required after both NN1 and NN2 to transform the
output into a vector.

Figure 4.40: Representation of the convolutional 1-dimensional neural network with future
resource utilization along with its hyperparameter.

The same considerations done in Section 4.3.5 about the used filters in the NN1

can be extended also to the NN-CONV1D-FRU neural network.
The hyperparameters of this neural network structure are shown in Figure 4.40
and are listed here:

• The maximum number of considered "ready to start" activities Rmax.
• The time horizon T .
• The number of fully connected layers in NN1, denoted as NoLNN1 .
• The number of filters per layer of NN1, denoted as NoFNN1 .
• The number of convolutional 2-dimensional layers in NN2, denoted as
NoLNN2 .
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• The number of filters per layer of NN2, denoted as NoFNN2 .
• The number of fully connected layers in NNfinal, denoted as NoLNNfinal

.
• The number of neurons per layer of NNfinal, denoted as NoNNNfinal

.
• The number of epochs Nepochs.
• The learning rate α.
• The dropout rate σ.

4.3.7Convolutional 2-dimensional neural network without
future resource utilization

The convolutional 2-dimensional neural network without future resource utiliza-
tion, also denoted as NN-CONV2D, is a neural network structure that considers
only VReadyT oStartActivities as input information. This structure is quite similar
to the one introduced in Section 4.3.5 but, in this case, NN1 is a convolutional
2-dimensional neural network and it expects to receive a matrix as an input
instead of a vector.

Figure 4.41: Representation of the convolutional 2-dimensional neural network without future
resource utilization along with its hyperparameter.

The idea of transforming the input information vector into a matrix and to
process it with a 2-dimensional convolutional neural network comes from two
major literature contributions, namely Almeida, Lopes, M. A. B. Silva, and
Amaral (2018) and Ta and Wei (2018).
In Almeida, Lopes, M. A. B. Silva, and Amaral (2018) a convolutional neural
network was utilized for the detection of potential damages in metallic parts.
For this purpose, a measurement device produced metrics that were available
as a vector which itself served as an input to a convolutional neural network.
Almeida, Lopes, M. A. B. Silva, and Amaral (2018) compared two different
concepts of processing the data vector with a convolutional neural network. For
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their first concept, they kept the vector as it is and fed it into a 1-dimensional
convolutional neural network, while in their second concept it is transformed
into a squared matrix by dividing the vector into equally sized segments and
stacking the segments to a matrix as it is illustrated in Figure 4.42. To over-
come the fact that no exact square matrix dimension could be achieved with
their vector length, the authors applied zero padding at the end of the vector
so that the square root of the vector length L is an integer number. Once the
matrix was created, they processed the matrix with a 2-dimensional convolu-
tional neural network.

Figure 4.42: Conversion of a vector into a matrix though segmentation and stacking (Almeida,
Lopes, M. A. B. Silva, and Amaral (2018)).

On the other hand, Ta and Wei (2018) predicted oxygen levels in the water
of aquaculture systems by feeding aqua metrics into their convolutional neural
model. Since the measured metrics were originally available as a vector, they
converted it into a matrix so that a two-dimensional convolution operation could
be employed. The input matrix was generated by multiplying the input vector
with its transposed. This input matrix then served as the input to their model.
The generation of the input matrix is formally generated with equation 4.14.

MInput = VInput · V T
Input (4.14)

Inspired by the ideas of the two articles, the two additional neural network
structures, one in this section and one in Section 4.3.8, are proposed in this thesis
where the input vector VReadyT oStartActivities is converted into an input matrix.
Since the dimension of the current state vector is variable and depends on Rmax,
zero-padding would have been necessary in most of the times to transform the
vector into a matrix when using the approach of Almeida, Lopes, M. A. B. Silva,
and Amaral (2018). Thus, it was regarded as more adequate to use the method
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presented in Ta and Wei (2018) where the input vector is multiplied by its
transpose. This second approach prevent a potential dilution of the information
caused by zero-padding.
Hence, the MReadyT oStartActivities is generated by multiplying the input vector
VReadyT oStartActivities by its transposed as shown in equation 4.15.

MReadyT oStartActivities = VReadyT oStartActivities · V T
ReadyT oStartActivities (4.15)

For what concerns the choice of the filter size the same considerations done
in Section 4.3.5, can be extended to a 2-dimensional input and convolutional
neural network. Also in this case, the number of filters is increased and the
kernel size is decreased as the information proceeds towards the last layers of
NN1. For the first layer, a square filter size of [(1+K)x(1+K)], which is exactly
the size of the information about a single "ready to start" activity. For each
following layer the filter size is decreased by 1 in both height and width, until a
minimum of 3 is reached, and the number of filters is doubled, until the number
of filters is equal to four times the initial number. The strides s is set equal
to 1, while the padding p is set equal to 0, i.e. no zero are added and the
information shrinks layer after layer.
The hyperparameters of this neural network structure are shown in Figure 4.41
and are the listed here:

• The maximum number of considered "ready to start" activities Rmax.
• The number of fully connected layers in NN1, denoted as NoLNN1 .
• The number of filters per layer of NN1, denoted as NoFNN1 .
• The number of fully connected layers in NNfinal, denoted as NoLNNfinal

.
• The number of neurons per layer of NNfinal, denoted as NoNNNfinal

.
• The number of epochs Nepochs.
• The learning rate α.
• The dropout rate σ.
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4.3.8Convolutional 2-dimensional neural network with future
resource utilization

The convolutional 2-dimensional neural network with future resource utiliza-
tion, also denoted as NN-CONV2D-FRU is a neural network structure which
considers both VReadyT oStartActivities and MF utureResourceUtilization as input infor-
mation. This structure is quite similar to the one introduced in Section 4.3.6
but, in this case, NN1 is a convolutional 2-dimensional neural network which
requires a matrix as an input. Consequently, the input vector conversion into
a matrix introduced in Section 4.3.7 is required.

Figure 4.43: Representation of the convolutional 2-dimensional neural network with future
resource utilization along with its hyperparameter.

The hyperparameters of this neural network structure are shown in Figure 4.40
and are listed here:

• The maximum number of considered "ready to start" activities Rmax.
• The time horizon T .
• The number of fully connected layers in NN1, denoted as NoLNN1 .
• The number of filters per layer of NN1, denoted as NoFNN1 .
• The number of convolutional 2-dimensional layers in NN2, denoted as
NoLNN2 .

• The number of filters per layer of NN2, denoted as NoFNN2 .
• The number of fully connected layers in NNfinal, denoted as NoLNNfinal

.
• The number of neurons per layer of NNfinal, denoted as NoNNNfinal

.
• The number of epochs Nepochs.
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• The learning rate α.
• The dropout rate σ.

4.4 Performance measurement

The goal of this thesis is not only to propose neural network-based scheduling
policies but also to quantitative evaluate their performances for a large set of
projects and compare them to the ones of other scheduling algorithms. In order
to do it, a performance indicator PIΠ is required. In Section 2.8, it has been
mentioned that the most common PIΠ is the one based on the unreachable
lower bound for the project’s duration (or makespan), which is computed with
the lower bound critical path method (LB-CPM) (see Equation 2.5). Its main
advantage is that it can be quickly and exactly computed. However, it also has
some drawbacks. Since the lower bound is unreachable, it gives a wrong feeling
about how far away the proposed scheduling policy is from the unknown optimal
solution. Secondly, it does not provide a direct information about how much the
neural network has learned so far which is an important indicator in machine
learning. Thirdly, the sum of the absolute gaps penalizes the improvements on
inherently faster projects although, according to the author, a 10% reduction
of the project’s duration should be equally rewarded regardless of the expected
duration with a RAN policy.
Consequently, the author of this thesis has decided to use a different performance
indicator, namely the one presented in equation 4.16. Instead of tracking the
distance from an unreachable lower bound, the distance from an upper bound
is measured. The upper bound is computed using the random policy RAN and
by using 10.000 runs to decrease the confidence interval. The adequacy of this
number of runs is tested in section 5.5.2. Moreover, the gaps from the upper
bound are computed in percentage which solves the third problem introduced
in the previous paragraph.

AIPΠ = PIΠ =
∑

p∈P
MSp,RAN−MSp,Π

MSp,RAN

P
(4.16)

The new performance indicator is also denoted as the average improvement
percentage compared to the random policy and it called AIP in this thesis. By
using this indicator, the learning progress of a neural network can be visualized
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very well. If the training process is performed correctly and the performance
are measured on unseen projects, it is expected that the AIPΠ on these projects
starts in a random point of an interval centered in zero immediately after the
random weight initialization, progressively increases, reaches the highest point
after some epochs and decreases afterwards when overfitting occurs.

4.5 Neural network design methodology

As mentioned in section 2.7, the scope of this thesis is to design a set of deep
neural networks able to schedule the activities in an RCPSP problem. The
chosen machine learning approach is supervised learning but, since there is no
preexisting labeled dataset defining which set of activities should be started at
different decision points, it must be created. The second major problem is that
the performance of the decision policy on unseen projects cannot be measured as
the percentage of decision situations in which the neural network produces the
optimal output since the optimal output is unknown for projects with more than
30-50 activities (Abdolshah (2014)) and more than one optimal output could
exist. Thirdly, a lot of hyperparameters are involved in the neural network
design and a rigorous procedure is required to choose them. The following
sections present the methodology used to tackle all those problems and to design
a neural network-based decision tool.

4.5.1Training data generation

In Section 3.7 the problem of object grasping has been shortly mentioned. In
this kind of problem, for instance, the input information is an image, while the
output of the decision model is a vector whose elements define how the object
should be grasped. In order to train a neural network model which is able
to autonomously grasp objects, each available image must be labeled with the
correspondent target values for the grasping parameters. In case of a reactive
policy able to autonomously identify the starting activities at each decision
point, the input information is given by the current state of the activity sequence
at the beginning of each step 1 (see Section 4.1.1). This can be described by the
vector VReadyT oStartActivities and by the matrixMF utureResourceUtilization. Assuming
that the optimal set of "ready to start" activities to begin with is known, each
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decision state can be labeled with a vector of zeros and ones as explained in
Section 4.3.2 creating the so-called state-action pairs.
Figure 4.44 shows how the state-action pair for the decision situation introduced
in Figure 4.27 looks like, if the neural network should learn to start activity 3.

Figure 4.44: State actions pairs for an example of decision point considering a neural network
structure with and without future resource utilization.

The problem of not having training data implies that there are neither preex-
isting decision state matrices nor the correspondent target action vectors. Both
must be generated, for instance, by means of simulation, which is the chosen
method in this thesis. In order to generate the training data considering a wide
spectrum of decision situations and, consequently, to train a neural network able
to generalize well, a large set of randomly generated activity sequence instances
are required. Those sequences are called training projects. For each of them,
N independent simulation runs with the random policy RAN are performed
and the run with the lowest makespan is considered (N=10.000 is the default
value for the results of this thesis). This simulation run is characterized by a
series of decisions taken in different intermediate states. Those states along with
the correspondent decisions are identified, converted in state-action pairs and
added to the training dataset (see Section 4.5.2).
During the simulation run, it is possible that some trivial decision situations
are encountered. Considering a greedy reactive scheduling policy (see Section
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4.2.2), a trivial decision situation is defined as a situation where one of the
following conditions is true:

• There are no "ready to start" activities, i.e. the current resource availabil-
ity and/or the precedence constraints do not allow any "idle" activity to
start.

• There are enough resources to start all "ready to start" activities.

In both situation, the assigned priority values are irrelevant. In the first case,
the priority values are assigned to dummy placeholders in neural network output
but no real activities are eligible to start, while, in the second case, the activity
order is irrelevant since all of them will be started at the end of the decision
process. As a result, the state-action pairs of trivial decision situations are not
added to the training data.
Instead of following a traditional supervised learning approach where the state-
action pairs dataset would be split into training, validation and test set and the
performance would be measured as the percentage of unseen decision situations
where the neural network produces the optimal output, the entire database is
used for the training. The reasons why a traditional approach is not suitable are,
firstly, that one cannot be sure that all labels are correct and, secondly, that the
average improvement percentage AIP (see Section 4.4) expresses much better
the goodness of the decision tool in minimizing the makespan of unseen projects
which is the ultimate goal. Consequently, the validation and test phases are not
done on state-action pairs but on new randomly generated activity sequences,
called respectively validation and test projects.

4.5.2Tuning of the hyperparameter

Once the training dataset has been created, it is possible to move on to the
second step, namely the hyperparameter tuning. This step is not compulsory
since it is also possible to guess reasonable hyperparameters considering the task
complexity and to move on to the final step, i.e. the performance measurement
of the chosen neural network on the test projects after training. However, the
first guess on the hyperparameters may be quite different from the optimal one.
The hyperparameter tuning let the user test different combinations and choose
the best one according to an objective function (see Section 3.2.5) which is the
average improvement percentage AIP on the validation projects in the case.
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For this thesis, the hyperparameter tuning is automatic (no manual choice of
the parameter combinations to sample) and based on a Bayesian optimization.
The latter enables to choose the next combinations to sample without a hu-
man intervention.
This kind of hyperparameter tuning can be schematized as shown in 4.45. Two
different groups of hyperparameters can be distinguished, namely the ones to
be tuned, denoted as the set H, and the fixed ones, denoted as the set H̄.

Figure 4.45: Scheme of the hyperparameter tuning.

Depending on how many possible hyperparameters the neural network could
have and how time-consuming an evaluation can be, the user can choose to
include a different number of hyperparameters in the set H̄. In this thesis, the
ones to be tuned have been introduced in the Sections from 4.3.3 to 4.3.8, while
the following ones are kept fixed:

• Optimizer. As mentioned in 3.6, the neural network is trained by using
iterative gradient descent-based optimization algorithms that drive the
loss function to a low value by repeatedly adjusting the weights w. The
Adam optimization algorithm has been chosen in this thesis since it is
extremely popular, it incorporates most of the advantages of other gra-
dient descending-based optimization algorithms and often performs very
competitively Aggarwal (2018).

• Weights initialization. Before the training process is started, some
random initialization values must be assigned to the weights of the neural
network. In this thesis, it has been assumed that the probability distribu-
tion from which the values are randomly generated does not play a major
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role on the performance after the training if the Adam optimization works
properly. As a result, a truncated normal distribution has been chosen for
all training.

• Activation function. As mentioned in Section 3.3.3, different activation
functions can be used in the neurons and/or in the filters of the neural
network. The ReLU has been chosen since it is currently the most widely
used activation function in convolutional layers (Krizhevsky, Sutskever,
and Hinton (2012)).

• Max pooling for convolutional layers. As mentioned in Section 3.5.1,
a typical convolutional layer includes three stages. The last one is called
pooling stage and it is where the pooling function modifies the output of
the previous stage by grid-wise summarizing it. This stage is not used
for the neural networks proposed in this thesis due to the small size of
the input matrices and due to the information loss which is generally
associated to this operation.

Actually many hyperparameters could be defined, like for example a parameter
defining how the number of neurons of filters changes layer by layer within the
same neural network. However, they are not mentioned in this thesis since their
enumeration is beyond the scope of this thesis.
As shown in Figure 4.45, the testing of different hyperparameter combination
is done in series, which means that, as soon as an evaluation is completed,
the surrogate function is updated and the next combination is chosen for the
next evaluation. The used stopping criteria of the hyperparameter tuning is the
number of evaluated combinations which has been set to 50.
The trained neural network with the best performance indicator AIP on the
evaluation projects is saved and used for the final evaluation of the correspondent
neural network structure on the test projects in the next step.

4.5.3Evaluation on the test projects

Once the best hyperparameter configuration among the 50 evaluated ones has
been identified, the correspondent trained neural network model is deployed
for the scheduling of the test projects. The validation projects cannot be used
for the final evaluation since the chosen hyperparameters generally overfit their
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decision situations. As a result, a lower value for the performance indicator is
expected when the trained neural network is tested on test projects.
This last statement along with all considerations of Section 4.5 are valid under
the two following conditions:

• The projects of the three sets (training, validation and test set) have been
randomly generated with the same rules, i.e. they belong to the same
project class.

• The number of projects in each set is large enough.

For what concerns the first condition, it is important to underline that the
neural network can learn to properly schedule activities only by situations that
occur in the class of RCPSP problem defined by the training projects. If the
validation and test projects or all future projects that the neural network will
be asked to schedule belong to another class, poor results may be achieved.
Assuming that the projects of the three sets belong to the same class, there is
still the risk that too few training, validation and test projects are considered.
In all three cases, the project set must be representative of the entire spectrum
of possible decision situations related to this project class.

4.6 Considered class of projects and project
generator

At this point, it is clear that the proposed methodology requires a large number
of activity sequences. Most of the literature contributions use predefined project
sets that have been generated with the two most popular random project gen-
erators, i.e. the ProGen and the RanGen2 (see Section 2.8). The first main
limitation of these project sets, i.e. J30, J60, J120 and RG30, is a limited num-
ber of instances, which is between 480 and 1800. As shown in Section 5.5.4,
a much bigger number of project instances is required to train a neural net-
work that generalizes well and achieve a good performance on unseen projects.
Moreover, the number of activities per sequence is not varied within the same
set and it may be possible that the neural network only learns to schedule well
with projects of a particular class.
The second possible approach is to use the ProGen or the RanGen2 generation
tool to create any number of projects according to user-defined rules. One of
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the major differences between the two project generation tools is that, while the
RanGen2 can be considered as strongly random generator since each project
topology is the result of a random selection from the space of all possible net-
works which satisfy the user-defined input parameters (Demeulemeester, Van-
houcke, and Herroelen (2003)), the ProGen considers some following additional
constraints, which are not user-defined:

• Each project starts with exactly three activities (after the dummy start
activity).

• Each project ends with exactly three activities (before the dummy end
activity).

• Each activity is followed by a number of activities between one and three.
The last three activities in the sequence are excluded from this constraint.

• Each activity is preceded by a number of activities between one and three.
The first three activities in the sequence are excluded from this constraint.

Without these additional constraints, the user must pay more attention during
the setting of the parameters. For example, it may happen that the RanGen2
generates sequences with more than half of the activities placed just after the
start dummy activity which is quite unrealistic. As a result, the format of the
ProGen seems preferable to the author of this thesis.
While RanGen2 is available on the Random Network Generation Website (2020)
in an up-to-date version for Windows, only an old version of the ProGen in Turbo
Pascal is available by request. This version was used in the late 90’s (Kolisch
and Hartmann (1999)) to generate the J30, J60 and J120 project sets.
Therefore, the author of this thesis has decided to develop his own project
generator (available at Repository of the P-30-120-10 project generator and test
projects (2021)) with generation rules that resembles the ones of the ProGen.
One of the major advantages of developing his own project generator is the
possibility to integrate also new customizable features. For example, in most
of the literature contributions on the RCPSP, the performance of a scheduling
policy is evaluated on groups of projects with the same number of activities and
the available project generators were not designed to randomize also number
of activities in the project. However, this feature is quite useful for the scope
of this thesis since the goal of this thesis is to design a neural network able to
schedule the activities in projects of different sizes.
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In this thesis, 50.000 project instances of a new project class with the following
characteristics have been created:

• The number of activities J is sampled from a discrete uniform distribution
with parameters Jmin=30 and Jmax=120.

• Each project starts with exactly three activities (as for the ProGen).
• Each project ends with exactly three activities (as for the ProGen).
• Each activity is followed by a number of activities between one and three.

The last three activities in the sequence are excluded from this rule (as
for the ProGen).

• Each activity is preceded by a number of activities between one and three.
The first three activities in the sequence are excluded from this rule (as
for the ProGen).

• The duration of each activity dj is sampled from a discrete uniform dis-
tribution with parameters dmin=1 and dmax=10 (as for the ProGen).

• K=4 types of resources are considered (as for the ProGen).
• The total number of resource units Rk for each resource type is set to
Rall=10 for each k (as for the ProGen).

• The maximal number of required resource types Kmax per activity is sam-
pled from a discrete uniform distribution with parametersKmax,min=1 and
Kmax,max=K. This parameter determines how many different resource
types the project activities can require at maximum by each activity and
it is a property of the project.

• Each activity only requires Kj different resource types. The value of Kj

is sampled from a discrete uniform distribution with parameters 1 and
Kmax. If Kj=1, each activity requires only one resource type. If Kj=2,
each activity requires two resource types and so on. The Kj required
resource types are randomly chosen among the K resource types for each
activity.

• The resource consumption rj,k of activity j and required resource type k
is sampled from a discrete uniform distribution with parameters rmin=1
and rmax=Rall.

Due to its characteristics the project class has been denoted as P-30-120-10
according to the following notation: P − Jmin − Jmax − Rall.
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After the project generation, the projects have been randomly divided with a
80:10:10 split, namely 40.000 training projects, 5.000 validation projects and
5.000 test projects. The test projects used in this thesis are available at Repos-
itory of the P-30-120-10 project generator and test projects (2021) as well.
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Leaving society to algorithms will
be like leaving healthcare to

stethoscopes.
-A. Naskar

In this chapter, the numerical results are presented. First of all, the results of the
hyperparameter tuning for all six neural network structures are analyzed and,
secondly, the performance comparison with other reactive policies is presented.
In the final part of the chapter, the neural network with the best performance
after the hyperparameter tuning and the training is compared more in detail
with the best considered reactive policy and the trade-off between the perfor-
mance indicator AIP, which is related to the scheduling performance, and the
decision time is analyzed.
In the performance comparisons of this chapter, the confidence intervals for the
AIP values are intentionally omitted. However, due to the deterministic nature
of the considered problem, the only source of variability is the computation of
the project’s total durations with the baseline scheduling policy RAN (random
priority values for the "ready to start" activities) based on which the AIP values
for the other scheduling policies are computed. Thanks to the large number of
project instances and the large number of simulation runs used to estimate the
performance of the RAN policy (see section 4.2.3), the variance is very small
compared to the scale of the diagrams and the confidence intervals would be
hardly visible. As a result, they have been omitted. However, considering 95%
confidence intervals created 5 samples, it is possible to state that all confidence
intervals for the AIP indicator of the scheduling policies in this chapter are less
or equal than 0.0129%.
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5.1 Used hardware and software

As some of the results of this chapter, especially the ones regarding the com-
puting times, are influenced by the used hardware, software and libraries, they
are explicitly listed in the following paragraphs.

5.1.1Hardware

Starting from the hardware, a desktop computer with the following character-
istics has been used:

• CPU: AMD Ryzen 7 2700X, 8 cores (16 threads), 3.70GHz (max.
4.30GHz).

• RAM: 4x16GB G.Skill Aegis DDR4-3000 DIMM CL16.
• GPU: MSI Nvidia GeForce RTX 2080, 3072 CUDA cores, 1845 MHz mem-

ory speed, 8 GB of RAM.

5.1.2Programming language

The simulation environment is programmed in the programming language
Python (version 3.6.8). Python is widely used both in business as well as in
research fields (Lutz (2013)). The syntax of Python is pseudocode-like which
makes it easy to read and reduces the extent of the code by one third compared
to other programming languages like C, C++ or Java (Lutz (2013)). While low
level programming languages like C or C++ obtain better performance out of
the hardware they are running on, Python usually has the more flexible and ex-
tensible code (Johansson (2019)). Python is especially widely used in the field
of machine learning because of the availability of many free and open-source
machine learning libraries like, for example, TensorFlow.

5.1.3Used libraries

Released by Google in 2015, TensorFlow is an open-source machine learning
software library for defining, training and deploying machine learning models.
In TensorFlow, machine learning algorithms are expressed as computational
graphs where vertices describe operations and edges represent data flowing be-
tween these operations. The name TensorFlow is derived from the tensor-shaped
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data flowing over the edges from one operation to another operation (Goldsbor-
ough (2016)). Although many other alternatives are also freely available, like
for example Theano, Torch and Caffe, Tensorflow (GPU version) have been cho-
sen to generate the results of this thesis. Its ability to perform fast automatic
gradient computation, its inherent support for distributed computation and its
powerful visualization tools make it a very suitable to the field of machine learn-
ing. On one hand, it provides low-level programming interfaces which imply a
very good control on the neural network construction, while abstraction libraries
built on top of it (e.g. TFlearn) allow the user to quickly build and modify
models in few lines of code. The highly modular interface facilitates the rapid
chaining of neural network layers and the changing of the model’s hyperparam-
eters without losing most of functionalities provided by Tensorflow. The neural
networks that have been constructed in the course of this thesis have all been
designed with TFLearn v0.5.0 (based on tensorflow v1.12). Compared to other
machine learning frameworks, it is a good trade-off between user-friendliness
and computing speed (Goldsborough (2016)).
Further used libraries which are noteworthy are:

• Numpy v1.16.4 (Library numpy (2020)). It supports the operations with
multi-dimensional matrices and is mandatory for the use of Tensorflow.

• Multiprocessing v2.6.2 (Library multiprocessing (2020)). It enables the
possibility to run the same function in parallel on more than one core with
different input arguments. This library is particularly useful during the
training data generation since the simulations can be run in parallel.

• Hyperopt (Library hyperopt (2020)). It is a package for the implemen-
tation of Bayesian optimization algorithms based on Gaussian processes
and regression trees for Python (Bergstra, Yamins, and Cox (2013)).

All pieces of software and libraries have been installed on a machine running
an Ubuntu 18.04.5 LTS operating system

5.2 Default settings for the evaluations

This section presents the default settings for all experiments and evaluations
of the chapter. In fact, this default configuration is used most of the times
and only few parameters are varied. In order not to repeat the value of each
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parameter used in each experiment or evaluation, the following default values
for the parameters are outlined in the following paragraphs.
For what concerns the project database, 50.000 projects of the class P-30-120-10
are considered, i.e. with a number of activities between 30 and 120 and a total
resource availability of 10 for each resource type. They have been generated
with the generator presented in Section 2.8. The projects are divided in the
training, validation and test set with an 80:10:10 split.
For each considered reactive scheduling policy, a greedy decision process as
explained in Section 4.2.2 is considered. That implies that if an activity is
considered in the decision process, all previous activities have been completed
and there are enough resources to start it, it is always decided to start it.
The parameter N of the lower bound scheduling policy LB-N is set to 10.000,
which means that 10.000 simulation runs with a random policy are performed,
the best one is considered and the activities scheduled at the decision time
td are started.
For what concerns the neural network-based decision policies, the training data
are also created with 10.000 simulation runs with a random policy as for LB-N.
The training data and the input information of the neural network are always
normalized and both the resource and activity conversion is always used. Lastly,
no max-pooling is used within the layers.

5.3 Hyperparameter tuning for the chosen neural
network configurations

During the generation of the training data with the methodology described in
Section 4.5.1, 1.077.246 state-action pairs are obtained. With these training data
it is possible to move on to the second (optional) step which is the hyperparam-
eter tuning (see Section 4.5.2) for all six considered neural network structures.

5.3.1Hyperparameter tuning for the fully connected neural
network without FRU

The first neural network structure to tune is the fully connected neural network
without future resource utilization, also denoted as NN-FC. The considered
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hyperparameters in the tuning process have been already introduced in Section
4.3.3 and they are depicted in Figure 5.1.

Figure 5.1: Representation of the fully connected neural network without future resource uti-
lization along with its hyperparameters.

In order to run a hyperparameter tuning, the minimum and maximum value
for each parameter along with the possible intermediate ones must be defined.
By doing this, the search space is defined and delimited. Table 5.1 shows which
parameter values belong to the search space and the best combination that the
Bayesian optimization has found with 50 iterations. In particular, for what
concerns the maximum number of considered "ready to start" activities Rmax,
the number of layers NoLNN1+NNfinal

, the number of epochs Nepochs and the
dropout value σ, equally spaced values have been considered, while powers of
2 and powers of ten have been considered for the number of neurons per layer
NoNNN1+NNfinal

and for the learning rate α respectively.

Table 5.1: Hyperparameter ranges for the tuning of a fully connected neural network without
future resource utilization

Hyperparameter Min
value

Value of the
best configuration

Max
value

Considered
values

Rmax 6 7 9 [6,7,8,9]
NoLNN1+NNfinal

8 9 12 [8,9,...,11,12]
NoNNN1+NNfinal

256 512 1024 [256,512,1024]
Nepochs 10 14 25 [10,11,...,24,25]
α 10−5 10−4.5 10−3 [10−5,10−4.9,...,10−3.1,10−3]
σ 0.5 0.71 0.9 [0.5,0.51,...,0.89,0.9]

Considering the best combination, it can be noticed that some of its values
coincide with one of the extreme values of the intervals. In this case, it could
be advisable to change the interval, center it on the chosen value and rerun
the tuning to understand if even better values lay outside the initially chosen
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interval. However, in order to maintain comparable parameter ranges among
all neural network types, it has been decided not to adjust them.
Figure 5.2 represents the learning curve, i.e. the performance in terms of AIP
indicator on the validation projects after each epoch of training, for the best con-
sidered hyperparameter configuration. It is important to notice that the perfor-
mance never systematically decreases which means that no overfitting occurred.

Figure 5.2: Learning curve of the fully connected neural network without FRU.

The hyperparameter tuning with 50 sampled combinations for this neural net-
work structure took 11.46 days.

5.3.2Hyperparameter tuning for the fully connected neural
network with FRU

The second neural network structure to tune is the fully connected neural net-
work with future resource utilization, also denoted as NN-FC-FRU. The con-
sidered hyperparameters in the tuning process have been already introduced in
Section 4.3.4 and they are depicted in Figure 5.3.
As for the previous neural network structure, the search space must be defined
and delimited before starting with the hyperparameter tuning. Table 5.2 shows
which parameter values belong to the search space and the best hyperparameter
combination that the Bayesian optimization has found. In comparison to the
previous neural network structure, there are a couple of additional hyperparam-
eters, namely the time horizon T and the number of layers and filters in the
neural network processing the future resource utilization matrix NoLNN2 and
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Figure 5.3: Representation of the fully connected neural network with future resource utiliza-
tion along with its hyperparameters.

NoFNN2 . For the first two parameters, equally spaced values have been chosen,
while powers of 2 have been chosen for the number of filter. For what concerns
the other parameters, the same considerations done in Section 5.3.1 still hold.

Table 5.2: Hyperparameter ranges for the tuning of a fully connected neural network with
future resource utilization

Hyperparameter Min
value

Value of the
best configuration

Max
value

Considered
values

Rmax 6 6 9 [6,7,8,9]
T 5 12 15 [5,6,...,14,15]
NoLNN1 4 4 6 [4,5,6]
NoNNN1 256 1024 1024 [256,512,1024]
NoLNN2 4 6 6 [4,5,6]
NoFNN2 32 64 128 [32,64,128]
NoLNNfinal

4 6 6 [4,5,6]
NoNNNfinal

256 256 1024 [256,512,1024]
Nepochs 10 15 25 [10,11,...,24,25]
α 10−5 10−4 10−3 [10−5,10−4.9,...,10−3.1,10−3]
σ 0.5 0.7 0.9 [0.5,0.51,...,0.89,0.9]

Figure 5.4 represents the correspondent learning curve, i.e. the performance in
terms of AIP indicator on the validation projects after each epoch of training, for
the best considered hyperparameter configuration. Also for this neural network
structure, the performance never decreases systematically, which means that
probably no overfitting occurred. The performance seems to keep increasing at
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the moment when the number of epochs of this evaluation has been reached
and, therefore, the training has been stopped. Although better results could be
probably achieved with additional epochs, the number of epochs is defined by the
hyperparameter optimization at each of the 50 iterations and cannot be changed.

Figure 5.4: Learning curve of the fully connected neural network with FRU.

The hyperparameter tuning with 50 sampled combinations for this neural net-
work structure took 13.67 days.

5.3.3Hyperparameter tuning for the convolutional
1-dimensional neural network without FRU

The third neural network structure to tune is the convolutional 1-dimensional
neural network without future resource utilization, also denoted as NN-
CONV1D. The considered hyperparameters in the tuning process have been
already introduced in Section 4.3.5 and they are depicted in Figure 5.5.

Figure 5.5: Representation of the convolutional 1-dimensional neural network without future
resource utilization along with its hyperparameter.
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Table 5.3 shows which parameter values belong to the search space and the
best combination found by the Bayesian optimization. In comparison to the
previous neural network structures, the neural network NN1 is processed by
convolutional layers instead of fully connected ones and the hyperparameter
NoFNN1 is used instead of NoNNN1 . The values for NoFNN1 in the search
space have been set to powers of 2 as well.

Table 5.3: Hyperparameter ranges for the tuning of a convolutional 1-dimensional neural net-
work without future resource utilization

Hyperparameter Min
value

Value of the
best configuration

Max
value

Considered
values

Rmax 6 7 9 [6,7,8,9]
NoLNN1 4 6 6 [4,5,6]
NoFNN1 32 128 128 [32,64,128]
NoLNNfinal

4 4 6 [4,5,6]
NoNNNfinal

256 512 1024 [256,512,1024]
Nepochs 10 11 25 [10,11,...,24,25]
α 10−5 10−3.9 10−3 [10−5,10−4.9,...,10−3.1,10−3]
σ 0.5 0.67 0.9 [0.5,0.51,...,0.89,0.9]

Figure 5.6 represents the correspondent learning curve, i.e. the performance in
terms of AIP indicator on the validation projects after each epoch of training,
for the best considered hyperparameter configuration. For this neural network
structure, the performance seems to reach a plateau and does not decrease after
it. As a result, it seems that no overfitting occurred.
The hyperparameter tuning with 50 sampled combinations for this neural net-
work structure took 5.19 days.

5.3.4Hyperparameter tuning for the convolutional
1-dimensional neural network with FRU

The fourth neural network structure to tune is the convolutional 1-dimensional
neural network with future resource utilization, also denoted as NN-CONV1D-
FRU. The considered hyperparameters in the tuning process have been already
introduced in Section 4.3.6 and they are depicted in Figure 5.7.
Table 5.4 shows which parameter values define the search space and the best
hyperparameter combination that the Bayesian optimization has found.
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Figure 5.6: Learning curve of the convolutional 1-dimensional neural network without FRU.

Figure 5.7: Representation of the convolutional 1-dimensional neural network with future re-
source utilization along with its hyperparameter.

Figure 5.8 represents the correspondent learning curve, i.e. the performance in
terms of AIP indicator on the validation projects after each epoch of training,
for the best considered hyperparameter configuration. The performance seems
to have reached a plateau and does not decrease after it.
The hyperparameter tuning with 50 sampled combinations for this neural net-
work structure took 8.74 days.
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Table 5.4: Hyperparameter ranges for the tuning of a convolutional 1-dimensional neural net-
work with future resource utilization

Hyperparameter Min
value

Value of the
best configuration

Max
value

Considered
values

Rmax 6 6 9 [6,7,8,9]
T 5 14 15 [5,6,...,14,15]
NoLNN1 4 5 6 [4,5,6]
NoFNN1 32 128 128 [32,64,128]
NoLNN2 4 6 6 [4,5,6]
NoFNN2 32 128 128 [32,64,128]
NoLNNfinal

4 4 6 [4,5,6]
NoNNNfinal

256 512 1024 [256,512,1024]
Nepochs 10 11 25 [10,11,...,24,25]
α 10−5 10−4.1 10−3 [10−5,10−4.9,...,10−3.1,10−3]
σ 0.5 0.69 0.9 [0.5,0.51,...,0.89,0.9]

Figure 5.8: Performance of the convolutional 1-dimensional neural network with FRU.

5.3.5Hyperparameter tuning for the convolutional
2-dimensional neural network without FRU

The fifth neural network structure to tune is the convolutional 2-dimensional
neural network without future resource utilization, also denoted as NN-
CONV2D. The considered hyperparameters in the tuning process have been
already introduced in Section 4.3.7 and they are depicted in Figure 5.9.
Table 5.5 shows which parameter values belong to the search space and the best
hyperparameter combination that the Bayesian optimization has found.
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Figure 5.9: Representation of the convolutional 2-dimensional neural network without future
resource utilization along with its hyperparameter.

Table 5.5: Hyperparameter ranges for the tuning of a convolutional 2-dimensional neural net-
work without future resource utilization

Hyperparameter Min
value

Value of the
best configuration

Max
value

Considered
values

Rmax 6 6 9 [6,7,8,9]
NoLNN1 4 4 6 [4,5,6]
NoFNN1 32 128 128 [32,64,128]
NoLNNfinal

4 5 6 [4,5,6]
NoNNNfinal

256 512 1024 [256,512,1024]
Nepochs 10 10 25 [10,11,...,24,25]
α 10−5 10−3.8 10−3 [10−5,10−4.9,...,10−3.1,10−3]
σ 0.5 0.74 0.9 [0.5,0.51,...,0.89,0.9]

Figure 5.10 represents the correspondent learning curve, i.e. the performance in
terms of AIP indicator on the validation projects after each epoch of training,
for the best considered hyperparameter configuration. Also in this case, the
performance seems to have reached a plateau and does not decrease after it,
which means that probably no overfitting occurred.
The hyperparameter tuning with 50 sampled combinations for this neural net-
work structure took 12.22 days.

5.3.6Hyperparameter tuning for the convolutional
2-dimensional neural network with FRU

The fourth neural network structure to tune is the convolutional 2-dimensional
neural network with future resource utilization, also denoted as NN-CONV2D-
FRU. The considered hyperparameters in the tuning process have been already
introduced in Section 4.3.8 and they are depicted in Figure 5.11.
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Figure 5.10: Learning curve of the convolutional 2-dimensional neural network without FRU.

Figure 5.11: Representation of the convolutional 2-dimensional neural network with future
resource utilization along with its hyperparameter.

Table 5.6 shows which parameter values define the search space and the best
hyperparameter combination found by the Bayesian optimization.
Figure 5.12 represents the correspondent learning curve, i.e. the performance in
terms of AIP indicator on the validation projects after each epoch of training,
for the best considered hyperparameter configuration. The performance seems
to keep increasing at the moment when the number of epochs of this evaluation
has been reached and, therefore, the training has been stopped. Although better
results could be probably achieved with additional epochs, the number of epochs
is defined by the hyperparameter optimization at each of the 50 iterations and
cannot be changed.
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Table 5.6: Hyperparameter ranges for the tuning of a convolutional 2-dimensional neural net-
work with future resource utilization

Hyperparameter Min
value

Value of the
best configuration

Max
value

Considered
values

Rmax 6 7 9 [6,7,8,9]
T 5 12 15 [5,6,...,14,15]
NoLNN1 4 5 6 [4,5,6]
NoFNN1 32 64 128 [32,64,128]
NoLNN2 4 5 6 [4,5,6]
NoFNN2 32 128 128 [32,64,128]
NoLNNfinal

4 5 6 [4,5,6]
NoNNNfinal

256 512 1024 [256,512,1024]
Nepochs 10 12 25 [10,11,...,24,25]
α 10−5 10−4.2 10−3 [10−5,10−4.9,...,10−3.1,10−3]
σ 0.5 0.67 0.9 [0.5,0.51,...,0.89,0.9]

Figure 5.12: Performance of the convolutional 2-dimensional neural network with FRU.

The hyperparameter tuning with 50 sampled combinations for this neural net-
work structure took 15.17 days.

5.3.7Considerations on the results of the hyperparameter
tuning

By analyzing results of the hyperparameter tuning for the six neural network
structures (also available in full in Appendix A), it is possible to make many
interesting observations.
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First of all, the NN-CONV1D-FRU, followed by the NN-CONV2D-FRU, is the
neural network structure that performed best after the tuning on validation
projects (and after the training) as shown in Figure 5.13. Moreover, it seems
that including the information about the future resource utilization improves
the quality of the scheduling. These statements will be checked again on the
test projects in the next sections.

Figure 5.13: Performance comparison of neural network-based scheduling policies applied on
the validation projects.

The Bayesian optimization seems to be effective since the best solution is found
in the second half of the experiments in 5 out of 6 hyperparameter tunings
(see bolded rows in the Tables of Appendix A). That means that, as more
and more parameter configurations are explored, the algorithm identifies which
regions of the solution space are the most promising ones and evaluate if it is
worthy to exploit them.
The benefit of the hyperparameter tuning can be roughly estimated by consider-
ing also the average performance on the 50 tested hyperparameter combinations.
Figure 5.14 and Table 5.7 shows that by using the hyperparameter tuning signif-
icantly higher performance can be achieved for all six neural network structures.
The average increase of the AIP on the validation projects is +0.971% for the
best neural network structure, i.e. the NN-CONV1D-FRU, and in general be-
tween +0.610% and +1.191% considering all six structures.
If the learning curve of some neural network structures with the best tested
hyperparameter configuration is considered (e.g. Figure 5.12 and 5.4), the per-
formance seems to keep increasing at the moment when the number of epochs of
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Figure 5.14: Performance comparison of tuned scheduling policies on the validation projects
with average performance during the hyperparameter tuning.

Table 5.7: Numerical performance comparison of the tuned scheduling policies on the valida-
tion projects with average performance during the hyperparameter tuning

Scheduling policy
AIP with
tuned

hyperparameters [%]

AIP with
centered

hyperparameters [%]

AIP
difference [%]

NN-FC 1.551 0.941 0.610
NN-FC-FRU 2.478 1.287 1.191
NN-CONV1D 2.697 1.731 0.966
NN-CONV1D-FRU 4.049 3.078 0.971
NN-CONV2D 2.450 1.509 0.941
NN-CONV2D-FRU 3.871 2.931 0.940

this evaluation has been reached and, therefore, the training has been stopped.
Since the goal of this chapter is to find a good hyperparameter combination for
each of the six neural network types, the number of epochs is defined prior to
the beginning of the training and cannot be changed later, even though better
results might be achieved with few additional epochs.
If one takes a look at the best hyperparameter combination in each of the six
considered neural network structures, it is possible to observe the similarities
explained in the following paragraphs. The following considerations are just
qualitative, since the data does not come from a structured design of experiment
but they are the result of a Bayesian optimization.
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The chosen values for Rmax are always either 6 or 7, while the predefined range
is between 6 and 9. The Bayesian optimization is, then, suggesting that consid-
ering more "ready to start" activities in the start vector seems not to improve
the scheduling policy after training. However, preliminary simulations have
shown that, considering all the 50.000 generated projects, some situations may
occur where up to 9 "ready to start" activities can be considered in the same
decision point. One reason for that may be that these situations are so sel-
dom that the increased model complexity is not justified. Figure 5.15 shows
the sampled parameter combinations in a diagram with the AIP on the vali-
dation projects and the correspondent Rmax value for the NN-CONV1D-FRU
neural network structure.

Figure 5.15: Sampled hyperparameter combinations in a Rmax - AIP diagram for the valida-
tion projects and the NN-CONV1D-FRU.

The chosen values for the time horizon T are always between 11 and 14, while
the predefined range is between 5 and 15. It seems not suitable to use lower
values as less information would be considered as an input. Figure 5.16 shows
the sampled parameter combinations in a diagram with the AIP on the valida-
tion projects and the correspondent T value for a NN-CONV1D-FRU neural
network structure.
Different values have been considered for the number of layers NoL, the num-
ber of neurons per layer NoN and the number of filters per layer NoF too. For
these hyperparameters, it is more difficult to make some qualitative considera-
tions since no trend can be recognized in the graphs and different values of the
same parameter are chosen for different neural network structures. The reason
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Figure 5.16: Sampled hyperparameter combinations in a T - AIP diagram for the validation
projects and the NN-CONV1D-FRU.

could be that the values of the chosen ranges are all quite suitable to achieve a
proper model capacity. Figure 5.17 shows the sampled parameter combinations
in a diagram with the AIP on the validation projects and the correspondent
NoLNNfinal

value for a NN-CONV1D-FRU neural network structure. In this
case, it is possible to state that some values of NoLNNfinal

have been sampled
more and, as a result, it is more likely that both very good and very bad values
have been found for it. One possible suggestion for future investigation is to
widen the parameter range to better identify possible trends.

Figure 5.17: Sampled hyperparameter combinations in a NoLNNfinal
- AIP diagram for the

validation projects and the NN-CONV1D-FRU.
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The chosen values for the number of epochs Nepochs are always between 10 and
15, while the predefined range is between 10 and 25. Figure 5.18 shows, for
example, the sampled parameter combinations in a diagram with the AIP on
the validation projects and the correspondent T value for the NN-CONV1D-
FRU neural network structure. In this diagram, it is possible to observe that all
the best parameter configurations are concentrated on the left side of the graph.
A similar trend can be also identified for the other neural network structures and
that leads to the conclusion that for Nepochs > 15 the phenomenon of overfitting
may become visible.

Figure 5.18: Sampled hyperparameter combinations in a Nepochs - AIP diagram for the vali-
dation projects and the NN-CONV1D-FRU.

The chosen values for the learning rate α are always between 10−3.8 and 10−4.5,
while the predefined range is between 10−3 and 10−5. Figure 5.19 shows the
sampled parameter combinations in a diagram with the AIP on the validation
projects and the correspondent α value for a NN-CONV1D-FRU neural network
structure. In this diagram, it is clearly visible that the best performance can be
achieved with a learning rate α in the middle of the considered range. It seems
that, on one hand, a too small α let the neural network learn too slowly and, on
the other hand, a too big α makes the gradient descent algorithm update the
weight too reactively which leads to a worse training process. Similar diagrams
and considerations on α can be done for the other neural network structures.
The chosen values for the dropout σ are always between 0.67 and 0.74, while the
predefined range is between 0.5 and 0.9. Figure 5.20 shows the sampled param-
eter combinations in a diagram with the AIP on the validation projects and the

131



5 Evaluation

Figure 5.19: Sampled hyperparameter combinations in a α - AIP diagram for the validation
projects and the NN-CONV1D-FRU.

correspondent σ value for a NN-CONV1D-FRU neural network structure. In
this diagram, it is clearly visible that the best performance can be achieved with
dropout value σ in the middle of the considered range. Values around 70% are
quite different than the ones suggested by some literature contributions like, for
example, Hinton, Srivastava, Krizhevsky, Sutskever, and Salakhutdinov (2012)
where values of 50% are used. Similar diagrams and considerations on σ can
be done for the other neural network structures.

Figure 5.20: Sampled hyperparameter combinations in a σ - AIP diagram for the validation
projects and the NN-CONV1D-FRU.
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5.4 Benchmark on the test projects

The goal of the previous step, i.e. the hyperparameter tuning, was to find
good hyperparameters for the six considered neural network types in order not
to compromise their performances. Once good values for the hyperparameters
have been found, it is possible to move on to the next step and test the six
tuned neural networks against each other and against other considered reactive
scheduling policies on the unseen test projects.
Figure 5.21 and Table 5.8 show the performances of all considered policies in
term of AIP on the test projects. The random policy RAN always has an AIP
of zero, since the AIP is defined as a performance gap from the RAN policy
itself. Assuming that no policy worse than random is considered, the AIPRAN

represents the lower-bound for the AIP indicator. On the other hand, the LB-
10000 policy represents its upper-bound. The name LB, i.e. lower-bound, comes
from the convention in the literature where the better the scheduling algorithm
the lower the performance indicator linked to the project makespan and not
vice versa as for the AIP. As long as all activity durations are deterministic and
known, the upper-bound is reachable and the LB-10000 performs best. However,
the assumption of this thesis is that, even though the problem is modeled with
deterministic times, a certain level of uncertainty is expected for the activity
durations and, as a result, this upper-bound is considered as unreachable.

Figure 5.21: Performance comparison among the considered scheduling policies applied on the
test projects.
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Table 5.8: AIP performance indicators of the considered scheduling policies on the training,
validation and test policies

Scheduling
policy

AIP
training
projects

[%]

AIP
validation
projects

[%]

AIP
test

projects
[%]

Average
decision
time

[seconds]
LB-10000 6.543 6.507 6.567 1.7
RAN 0.000 0.000 0.000 2.5 · 10−6

SIO 0.855 0.895 0.863 3.5 · 10−6

GTRD 1.386 1.397 1.362 2.3 · 10−5

GRU-100-1 2.640 2.675 2.636 1.2 · 10−3

GRU-100-5 3.234 3.245 3.212 1.9 · 10−2

GRU-100-10 3.621 3.617 3.637 5.6 · 10−2

NN-FC 1.640 1.551 1.510 3.8 · 10−4

NN-FC-FRU 2.650 2.478 2.370 6.6 · 10−4

NN-CONV1D 2.828 2.697 2.587 4.7 · 10−4

NN-CONV1D-FRU 4.177 4.049 3.964 4.6 · 10−4

NN-CONV2D 2.558 2.450 2.398 9.4 · 10−4

NN-CONV2D-FRU 3.983 3.871 3.767 1.1 · 10−3

Among the considered heuristics, the ones based on the GRU-S-T algorithm
have achieved the best results and the larger the parameter T , the higher the
performance. As this class of heuristics results the best one, it is further eval-
uated in Section 5.5.1 with more value combinations for S and T against the
best policy based on neural networks.
Considering the neural network-based policies, it is possible to see that the
ones including the future resource utilization in the input information achieved
an AIP which is between 0.86% and 1.376% higher than the correspondent
policies without this information. The NN-CONV1D policy achieved the best
performance among all the considered ones also on the test projects confirming
the results on the validation projects.
If one compares the results of the neural network-based policies also on the
training and validation projects, it is possible to notice a systematic gap between
the performance on the training set and the validation set as shown in Figure
5.22. This gap is expected to tend to zero as the number of projects goes to
infinite. In this thesis, it has an average value of 0.123%. Even smaller is
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the gap between the performance on the validation projects and on the test
projects which is 0.083% on average.

Figure 5.22: Performance comparison of neural network-based scheduling policies applied on
the training, validation and test projects.

Figure 5.23 and Table 5.8 shows the decision times for each scheduling policy,
i.e. the time that the decision algorithm needs to compute the priority values
for the "ready to start" activities. It is important to notice that the decision is
represented on a logarithmic scale and is strongly related to the hardware and
software that was introduced in Section 5.1.

Figure 5.23: Average decision times of considered scheduling policies.
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The slowest algorithm is the LB-10000 since it is based on a brute-force Monte
Carlo simulation with 10.000 runs and random decisions. However, as mentioned
in the previous paragraphs, this policy is not considered since it is strongly based
on certain information about the activity durations. Considering the remaining
heuristics, it is possible to notice that the fastest ones are the ones associated
with the worst AIP performance. In fact, the GRU-100-10 scheduling policy,
which is the most competitive one against the neural network-based policies,
has an average decision time of 5.6 · 10−2 seconds which is approximately 122
times higher than the one of the NN-CONV1D-FRU policy.

5.5 Further considerations

For the sake of simplification, the default values of a big number of parameters
have been defined à priori by the author. The following subsections aim to
assess if these predefined values have been correctly chosen.
The previous step, i.e. the hyperparameter tuning, is not only used to de-
termine the best values for the hyperparameters but also to determine which
neural network structure seems to perform at best. In fact, if the goal is to de-
sign a neural network that can effectively schedule the activities in the resource
constrained project scheduling problem, the neural network type could also be
considered as a hyperparameter. In the last step of the proposed methodology,
i.e. the benchmark on the test projects, the neural network that obtained the
best performance in terms of AIP on the validation projects during the hyper-
parameter tuning among all six considered neural network types is deployed for
final evaluation on the test projects.
Among the 300 evaluations of different neural network types with different hy-
perparameters, the NN-CONV1D-FRU structure with the best hyperparameter
configuration introduced in Table 5.4 obtained the best performance in term
of AIP. Only this neural network will be used for the further considerations
of the following sections.

5.5.1Parameters of the GRU heuristics

Up to now, only three scheduling policies of the class GRU-S-T have been con-
sidered, i.e. the GRU-100-1, the GRU-100-5 and the GRU-100-10. However,
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much more parameter combinations could be considered and it is possible to
evaluate whether and for which combination of S and T this policy class out-
performs the NN-CONV1D-FRU scheduling policy along with the corresponding
decision time.
Figure 5.24 shows how the performance indicator AIP on the test projects
changes for different combinations of S and T . The best performance can be
achieved with the highest considered value for both S and T . This parame-
ter combination even outperforms the performance of the NN-CONV1D-FRU
scheduling strategy by 0.101% but it relies on a longer time horizon, which may
be associated with more uncertainty and implies a decision time 3370 times
bigger (see Figure 5.25).
If only one of the two parameter is too low, the entire AIP indicator gets compro-
mised. As a result, one could state that, in order to increase the AIP indicator,
both the number of schedules S and the time horizon T should be increased
simultaneously.

Figure 5.24: AIP performance indicator for the GRU scheduling policy on the test projects as
a function of parameter S and T.

Figure 5.25 shows how the average decision time on test projects changes for
different combinations of S and T . The considerations that can be done on this
diagram are similar to the ones for Figure 5.24. In general, it is possible to
state that the more schedules are evaluated and the longer the schedule horizon
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of a GRU-S-T scheduling policy, the higher the correspondent performance but
also the decision time.

Figure 5.25: Average decision times for the GRU scheduling policy on the test projects as a
function of parameter S and T.

The assumed value of 100 for S and 10 for T seems to be a reasonable com-
promise between performance and decision time which is only 120 times higher
than the one for the NN-CONV1D-FRU scheduling policy. The two parameter
combinations which perform better than the tuned NN-CONV1D-FRU policy,
are associated with decision times of 7.93 and 15.4 seconds which may be ac-
ceptable for same application but unacceptable for others, like, for example,
the use in a simulation environment where it may be necessary to take many
decisions per second or if the hardware is less performing than the one used to
generate the presented results (see section 5.1).

5.5.2Number of runs to compute the AIP upper bound

The LB-N scheduling policy has been used through this thesis to estimate an
upper bound for the AIP indicator. A value of 10.000 for the parameter N has
been assumed from the beginning and this section aims to justify this choice.
Figure 5.26 shows how the AIP indicator on the test projects changes for dif-
ferent values of N . In particular, the value of AIP increases together with the
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value of N and reaches its highest value with N equal to 100.000. However,
the performance increment decreases rapidly and it seems to reach a saturation
point at N equal to 10.000.

Figure 5.26: AIP performance indicator for the LB-N scheduling policy on the test projects
as a function of parameter N.

On the other hand, as Figure 5.27 shows, the average computing time per project
increases quite linearly with the parameter N . As a result, it is reasonable to
choose a value of 10.000 for N since it is still feasible from the computational
point of view and seems to approximate well the upper bound for the AIP.

Figure 5.27: Average computing time per project to find the lower bound with the LB-N
scheduling policy on the test projects as a function of parameter N.
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5.5.3Number of runs to create training data

As mentioned in Section 4.5.1, the training data are generated by performing
10.000 runs with a RAN scheduling policy and by selecting the state-action
pairs of the best run. Of course, the more random simulation runs are done,
the more likely is to find a run with the lowest possible makespan or at least
with a very low one, which is associated with very good state-action pairs.
The better the state-action pairs, the better the performance of the neural
network after the training.

Figure 5.28: AIP performance indicator for the tuned NN-CONV1D-FRU scheduling policy
on the test projects as a function of number of runs to create the training data.

Figure 5.28 shows the AIP performance indicator for the tuned NN-CONV1D-
FRU scheduling policy on the test projects for different numbers of runs used
to create the training data. It is possible to observe that the AIP increases
together with the number of runs but it reaches a saturation point when 10.000
runs are used. As a result, it is correct to use this value.
This value is also feasible from the computational point of view as shown in
Figure 5.29.

5.5.4Number of training projects to create training data

The training data for the previous results have been generated using an à pri-
ori defined number of training projects equal to 40.000. In general, the more
training projects are used, the more different state-action pairs are generated,
the spectrum of considered decisions gets wider and, as a result, the risk of
overfitting decreases.
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Figure 5.29: Average computing time per project to create the training data as a function of
number of runs.

Figure 5.30: AIP performance indicator for the tuned NN-CONV1D-FRU scheduling policy
on the test projects as a function of number of training projects.

Figure 5.30 shows how the AIP performance indicator changes if the number
of training projects varies. It seems that the AIP on the test projects reaches
a saturation point for a number of training projects bigger than 30.000. As a
result, 40.000 seems a reasonable value also considering the computing time as
shown in Figure 5.31. It is important to notice that, as the number of training
projects increases, new projects are added in the evaluation. These new projects
may be easier or harder to schedule and some small deviations may become
visible even if the saturation point is reached.
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Figure 5.31: Average computing time per project to create the training data as a function of
number of training projects.

5.5.5Use of the resource and activity conversion vector

As mentioned in Section 4.3.1, both a resource and an activity conversion is used
to represent similar situations with a similar input vector and matrix. This à
priori decision is justified in the following paragraph.
Figure 5.32 shows how the AIP of the tuned NN-CONV1D-FRU on the test
projects would decrease if these two conversions were not used.

Figure 5.32: AIP performance indicator for the tuned NN-CONV1D-FRU scheduling policy
on the test projects with and without resource and activity conversion.

In particular, the worst performance is obtained when both conversions are
not used, while the use of only one of the two conversions leads to a lower
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performance degradation. Lastly, the resource conversion seems to be more
important than the activity conversion since a lower performance is obtained
when only the first one is left out.

5.5.6Use of the input normalization

Ketkar and S. (2017) suggests to normalize the input values in such a way
that their absolute value is between 0 and 1. Similarly, also in this thesis,
the values of the input vector VReadyT oStartActivities and of the input matrix
MF utureResourceUtilization have been normalized using either the duration rescale
factor RF or the total available resource quantity Rk. This assures that most
of the absolute values are included between 0 and 1 and drastically reduces
the others.
Figure 5.33 shows how the AIP of the tuned NN-CONV1D-FRU on the test
projects would decrease if the normalization of the input vector and matrix was
not used. In particular, it can be noticed that the worst performance is obtained
when both normalizations are not used, while the normalization of only one of
the two pieces of input information leads to a lower performance degradation.
The normalization of the input vector seems to be more important than the
normalization of the input matrix since a lower performance is obtained when
only the first one is not used.

Figure 5.33: AIP performance indicator for the tuned NN-CONV1D-FRU scheduling policy
on the test projects with and without the normalization of the input vector and
matrix.
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The impact of the input normalization (0.285% performance degradation) is,
however, much less than the impact of the resource and activity conversion
(1.681% performance degradation).
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The potential benefits of artificial
intelligence are huge, so are the

dangers.
-D. Waters

So far, no uncertainty in the characteristics of the activity sequence and in the
resource availability has been considered. In reality, the à priori defined features
of the problem may be just estimated by a group of experts or with preexist-
ing historical data and they may not consider some unexpected events that
can change them. As a consequence, they may deviate from the real project
characteristics that become known only after the project execution. For exam-
ple, some resources may become temporally unavailable, some activities may
require more or less resources or time and so on.
This chapter presents a sensitivity analysis done considering random deviations
of the activity durations. First of all, the scope and the characteristics of the
experiments are described and, then, the results are presented.

6.1 Scope of the sensitivity analysis

The considered scheduling policies take decisions by considering the assumed
activity durations. In reality, the activities may take more or less time than
expected and that may lead to a decrease of the AIP performances. The scope
of this chapter is to determine whether and how much the performance of the
different scheduling policies decreases if this kind of deviations occurs.
In particular, 11 different levels of uncertainties for the activity durations are
considered. The real activity duration of a generic activity j is no more consid-
ered as a deterministic value, but it is characterized by a uniformly distributed
random variable denoted as d̂j and centered in the assumed value dj. Each
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uncertainty level is characterized by the extreme values of the uniform distri-
bution as shown in Table 6.1.

Table 6.1: Uncertainty levels of the sensitivity analysis
Uncertainty

level Min. E[d̂j ] Max

±0% dj dj dj

±10% 0.9 · dj dj 1.1 · dj

±20% 0.8 · dj dj 1.2 · dj

±30% 0.7 · dj dj 1.3 · dj

±40% 0.6 · dj dj 1.4 · dj

±50% 0.5 · dj dj 1.5 · dj

±60% 0.4 · dj dj 1.6 · dj

±70% 0.3 · dj dj 1.7 · dj

±80% 0.2 · dj dj 1.8 · dj

±90% 0.1 · dj dj 1.9 · dj

±100% 0 dj 2 · dj

For what concerns the neural network-based scheduling policies, only the one
based on the best neural network structure is considered for the results in the
following section, i.e. the NN-CONV1D-FRU, while all heuristic scheduling
algorithms used in Section 5.4 are considered for the sensitivity analysis.

6.2 Results of the sensitivity analysis

Considering the uncertainty levels defined in the previous section, it is now pos-
sible to compute the correspondent AIP performances for all the considered
scheduling policies.
As for chapter 5, the confidence intervals for the AIP values are intentionally
omitted in Figure 6.1. In this case the activity durations are affected by ran-
dom deviations which add an additional source of variability. Despite of this,
thanks to the large number of project instances and the large number of sim-
ulation runs (10.000 for RAN and 100 for the other scheduling policies) used
to estimate the AIP indicators on each project instance, the variance is very
small compared to the scale of the diagrams also in this case. As a result,
the confidence intervals would be hardly visible and they have been omitted
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for clarity purposes. Considering 95% confidence intervals created with 5 sam-
ples, it is possible to state that all confidence intervals for the AIP indicator
of the scheduling policies are less or equal than 0.0528% and increase as the
uncertainty on the activity duration increases.

Figure 6.1: AIP performance indicator on the test projects for different scheduling policies
and different levels of uncertainties.

Figure 6.1 shows how the AIP indicator on the test projects varies as a function
of the uncertainty level for all considered scheduling policies. In general, it is
possible to say that, for most of the scheduling policies, the performance slowly
decreases as the level of uncertainty increases.
For what concerns the policies SIO and GTRD, no visible ascending or descend-
ing trend can be identified. Instead, it seems that there is a random fluctuation.
The reason could be that, since their algorithms are not based on creating
schedules in a predefined time horizon, they are not sensible to variations of
the activity durations.
The LB-10000 policy is the one that faces the strongest performance degradation
as the uncertainty level increases. One possible reason is that its algorithm is
based on the generation of 10.000 schedules considering all activities that have
not been completed yet, i.e. generally with a very long time horizon. As the
uncertainty level increases, the planned starting times sj of the best schedule,
may become unfeasible. The AIP performance indicator of the LB-10000 policy
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gets even worse than the one of NN-CONV1D-FRU for high level of uncertainties
and that seems to suggest that considering long time horizons with high levels
of uncertainty may even compromise the performances of a scheduling policy as
the decision is based on unreliable information.
For what concerns the NN-CONV1D-FRU scheduling policy, it is possible to
observe a similar performance degradation as for the policies of the GRU-S-T
class. As expected, the highest value for AIP is obtained for an uncertainty
level of ±0% and is equal to 3.964 %, while the lowest, which is obtained for
an uncertainty level of ±80%, is 3.623 %. The performance degradation can be
than quantified by computing the difference between these two values which is
0.341 %. Compared to the initial AIP value of 3.964 % and considering the high
uncertainty level, a performance degradation of 0.341 %, which is approximately
8.6 % of the initial value, is quite a good value and it is possible to conclude
that the NN-CONV1D-FRU scheduling policy has good perfomances even if
the activity durations have high uncertainty levels.

148



7 Conclusions

The great paradox of automation
is that the desire to eliminate
human labor always generates

new tasks for humans.
-M. L. Gray

The aim of this final chapter is to summarize the results and findings of the
thesis in Section 7.1 and to give an outlook on possible future research areas
related to the presented topic in Section 7.2.

7.1 Summary

In this thesis, a new approach for the Resource-Constrained Project Scheduling
Problem (RCPSP) has been proposed. In contrast to most of the literature
contributions, where exact, heuristic and meta-heuristic methods are used, the
author introduced a methodology based on artificial neural networks trained
with supervised learning.
The proposed scheduling policy is reactive. In fact, it does not determine the
starting time for each activity at the beginning of the project but it only defines
which activities should be immediately started at each decision point, i.e. at
the project’s beginning and every time one or more activities are finished and
new resources are released. The decision-making process uses artificial neural
networks to process the numerical input information, which describes the current
state of the activity sequence by means of a "ready to start" activity vector and
a future resource utilization matrix, and to compute the priority values for the
"ready to start" activities. After that, the possibility to start the "ready to start"
activities is evaluated starting from the ones with the highest priority values.
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Six neural network structures have been proposed and compared. Some of them
use both the "ready to start" activities vector and the future resource utilization
matrix, while others use only the first one. The results have shown that the first
group of neural networks performs much better than the second one and that a
1-dimensional convolutional neural network is the most suitable neural network
type to process the "ready to start" activities vector. As for image recognition,
fully connected neural networks seem to be not very suitable for this task.
The hyperparameters of the neural network structures have been tuned with a
Bayesian optimization whose goal was to maximize a performance indicator on
the validation projects after the training. The hyperparemeter tuning helped
to significantly improve the performances and to identify the most promising
combinations. The most important hyperparameters seem to be the learning
rate and the number of epochs. However, a too low time horizon may lead to
poor performances as well. Within the considered ranges for the number of layers
and the number neurons or filters per layer, it was difficult to recognize a clear
trend and different values have been used for the six neural network structures.
For what concerns the convolutional neural networks, many concepts and guide-
lines from the field of object recognition have been used to roughly define their
structures and hyperparameter ranges. The results of the hyperparameter tun-
ing showed that some common practices coming from this field of research are
not applicable in the RCPSP problem. For instance, the hyperparameter tun-
ing always suggested to use a dropout value between 67 % and 74 %, while
values below 50 % are generally suggested in the field of object recognition.
Moreover, no max pooling could be used in the convolutional layers due to the
small input vector and matrix.
The best neural network-based reactive scheduling policy, denoted as NN-
CONV1D-FRU, has been tested against other reactive heuristic algorithms and
a benchmark has been created. The results have been shown that this schedul-
ing policy outperforms most of the heuristics. Only three heuristics achieved
better performances. The first one is the so-called LB-10000 which, however,
strongly relies on the estimation of the activity durations and implies deci-
sion times approximately 3.700 times bigger. The second and the third one
are the GRU-200-20 and GRU-500-20 which are slightly better than the NN-
CONV1D-FRU policy but they imply decision times, respectively, 17.390 and
33.771 times higher.
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Due to the large number of parameters influencing the results, only some of
them have been included in the hyperparameter tuning. For what concerns the
remaining ones, some reasonable default values have been defined after some
preliminary tests. After the training of the neural networks and after the hy-
perparameter tuning, the quality of these default parameter values have been
checked again considering the NN-CONV1D-FRU scheduling policy with tuned
hyperparameters as a baseline. This validation has shown some interesting re-
sults. For example, that 40.000 training projects and 10.000 random simulation
runs for each one are enough to create good training data or that the prepro-
cessing of the input data for the neural networks with the resource and activity
conversion and the input normalization provide significant benefits.
One of the biggest challenges in scheduling activities with a neural network was
to cope with a variable number of "ready to start" activities. That would have
implied a variable size of the input and output vector which is not possible to
handle with a neural network. The choice of defining a maximum number of
considered "ready to start" activities and setting to zero the positions of the
input vector that are not used solved this problem effectively.

7.2 Outlook

Although many aspects of the proposed methodology have been considered,
there are still many research areas related to this topic that could be further
investigated.
In this thesis, the activity durations have been considered as known and deter-
ministic and the training has been done using training data based on this as-
sumption. After that, a sensitivity analysis has been carried out to assess what
happen if the activity duration are different in reality. Under certain circum-
stances, the activity durations may be stochastic and with a known probability
distribution, for example, if a large amount of historical data is available. In this
case, no sensitivity analysis is required and the training data can be generated
considering the so-called Stochastic-RCPSP.
Another interesting research field for future work is how to define a state ma-
trix that does not imply information loss about the topology of the activity
sequence. In the proposed approach, this information is merged into a future
resource utilization matrix of a predefined shape which is built without consid-
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ering the resource constraints. That implies an information loss and, probably,
a consequent performance loss. A recently proposed neural network type called
graph convolutional neural network is able to directly extract features and hence
information from graph structured data. A variant of this network has already
been successfully applied on the Traveling Salesman Problem Kool, Van Hoof,
and Welling (2018). Since every RCPSP instance represents an acyclic graph,
this approach could also be beneficiary for this kind of problem as well.
The proposed methodology is based on machine learning and, in particular, on
supervised learning. The supervised learning approach has been chosen over
reinforcement learning by author due to the fact that in the latter the neu-
ral network is supposed to learn not only from exemplary state-action pairs but
basically from the experience at every decision point with both positive and neg-
ative rewards. After some preliminary tests, the supervised learning approach
seemed to be much faster and efficient and it has been chosen for this reason.
However, it is not possible to exclude that a reinforcement learning approach
can achieve better results even if the training process seems to be much more
time consuming. The two approaches could be even combined as it has been
done in Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser,
Antonoglou, Panneershelvam, and Lanctot (2016) where supervised learning has
been used to achieve a human level of playing skills, while reinforcement learn-
ing has been used further improve the algorithm and to make it able to beat
the former world champion.
The generality is a key characteristic of a machine learning approach since it
makes the same trained model able to solve many different situations. The neu-
ral networks presented in this thesis have been trained to solve a large variety of
RCPSP problems, where the duration, the resource consumption, the number
of activities and the sequence topology can vary under certain rules character-
izing the chosen project class. However, other characteristics, for example the
total number of available units for each resource type, were kept fixed. As a
result, if these characteristics change, the performance of the neural networks
is expected to decrease since they have been trained to solve a different class
of problems and a new training with new training data is required. As an ex-
tension of the methodology presented in this thesis, a neural network able to
solve RCPSP problems with a variable number of available resources could be
developed in the future. However, the enhanced generality results in a more
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complex task, which may require deeper and more complex neural networks to
obtain comparable performances.
Despite the great potential of the application of neural networks in planning
and scheduling problems, few contributions could be found in the literature.
Due to the recent progresses in machine-learning, it is expected that similar
methodologies can provide good results in this kind of problems and, hope-
fully, many findings and results of this thesis can be used as a start for these
new research areas.
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Nomenclature

H̄ Set of fixed hyperparameters
F Set of the "future" activities at the decision point td
I Set of the "idle" activities at the decision point td
J Set of the project’s activities
K Set of renewable resource types
P Set of the "in progress" activities at the decision point td
R Set of the "ready to start" activities at the decision point

td

H Set of hyperparameters to tune
Π Scheduling policy
Ak Current available quantity of resource units for the kth

resource type
Ak,t Current available quantity of units for the kth resource

type at time t
ACVj Activity criticality value of activity j
AIPΠ Average improvement percentage from the random policy

RAN for the scheduling policy Π
dj Time required to complete the jthactivity

Mk,t Element of the future resource utilization matrix
MF utureResourceUtilization

MSp Makespan of the project p
NN1 First neural network to process the information about the

"ready to start" activities and the currently available
resources in the six considered neural network structures
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NN2 First neural network to process the information about the
future resource utilization in the six considered neural
network structures

NNfinal Last neural network to process the input information in
the six considered neural network structures. Its output is
also the output of the entire neural network model

NRUj,k Normalized resource utilization for activity j and resource
type k

P Number of projects in a project library
PVj Priority value for a "ready to start" activity
Rk Total quantity of resource units for the kth resource type
rj,k Number of required resource units of type k for the jth

activity
Rmax Maximum number of "ready to start" activities considered

in the ready to start activity state vector
RCVk Resource criticality value of resource type k
RUs Resource utilization of a schedule s
sj Starting time in the considered schedule for the jth

activity
ACO Ant-colony optimization
AoA activity-on-the-arc
AoN activity-on-the-node
GA Genetic algorithm
GRU Greatest resource utilization (scheduling policy)
GRU-S-T Greatest resource utilization considering S schedules in

the time horizon T (scheduling policy)
GTRD Greatest total resource demand (scheduling policy)
J120 Project library with 120 activities per project generated

with the ProGen project generator tool
J30 Project library with 30 activities per project generated

with the ProGen project generator tool
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J60 Project library with 60 activities per project generated
with the ProGen project generator tool

LB Lower bound scheduling policy
LB-CPM Lower bound critical path method
LB-N Lower bound scheduling policy considering N random

simulation runs
NN-CONV1D Convolutional 1-dimensional neural network without

considering the future resource utilization (scheduling
policy)

NN-CONV1D-FRU Convolutional 1-dimensional neural network considering
the future resource utilization (scheduling policy)

NN-CONV2D Convolutional 2-dimensional neural network without
considering the future resource utilization (scheduling
policy)

NN-CONV2D-FRU Convolutional 2-dimensional neural network considering
the future resource utilization (scheduling policy)

NN-FC Fully connected neural network without considering the
future resource utilization (scheduling policy)

NN-FC-FRU Fully connected neural network considering the future
resource utilization (scheduling policy)

PI Performance indicator for a scheduling policy in a project
library

ProGen Project generation tool used to create the PSPLIB
project libraries

RAN Random scheduling policy
RanGen First version of the random project generation tool used

to create the RG30 library
RanGen2 Project generation tool derived from its previous version

RanGen and used to create the RG30 library
RCPSP Resource constrained project scheduling problem
RF Rescale factor for the activity durations
RG30 Project library with 30 activities per project generated

with the RanGen project generator tool
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Nomenclature

SGS Schedule generation scheme
SIO Shortest imminent operation (scheduling policy)
TS Tabu search
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A Intermediate numerical results
of the hyperparameter tuning

This appendix presents for each of the six neural network structures all the
50 tested hyperparameter combinations chosen by the Bayesian optimization
algorithm along with the correspondent AIP . In the Tables from A.1 to A.6,
each row represents a tested hyperparameter combination and the row order
corresponds to the one followed during the Bayesian optimization. The bolded
row highlights the best combination during each hyperparameter tuning.
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