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A B S T R A C T   

Latin America is one of the regions most vulnerable to the effects of climate variability on hydropower gener-
ation. Hydropower is the backbone of the Latin-American power system and a key technology for ensuring low- 
carbon power generation in the region. Despite its importance, our understanding of the impact and likelihood of 
seasonal variability and of long-term phenomena such as the El Niño Southern Oscillation (ENSO) on hydro-
power is limited. There is an essential need to understand how likely these effects are and to identify measures to 
counterbalance them. A combination of wind, solar, and hydropower offers the potential to mitigate the impact 
of climate variability on renewable power generation and thus improve its reliability. Here we present a 
modeling framework to quantify the potential benefits of such combination. The modeling framework relies on a 
meteorological reanalysis dataset, large-scale renewable power generation models, and statistic models. We 
consider the countries with the largest hydropower capacity in the region, namely Argentina, Brazil, Colombia, 
Mexico, and Venezuela. We examine whether the probability of a production deficit is reduced when all 
renewable resources are combined compared to a scenario based solely on hydropower, especially during 
droughts. The approach presented allows for the first time an in-depth analysis of the benefits of a combined 
wind, solar, and hydropower-based power generation under different geographical conditions in altered ENSO 
phases. 

Our results suggest that—depending on the country and the percentile—the hydropower generated during 
drought ENSO phases could be up to 50% lower than that during neutral phases. The countries most affected are 
Colombia and Venezuela, while the reduction is somewhat less severe in Argentina, Brazil, and Mexico. 
Combining hydropower with variable renewable energy (VRE) offers the potential to reduce the risk of a power 
deficit during the 10th percentile of the driest months of the year, both in drought and neutral phases. Argentina 
is the country with the most effective combination of resources to mitigate a power deficit, as each MW of 
installed VRE generates 0.218 GWh of additional power. It is followed by Brazil and Mexico with 0.185 GWh per 
MW of VRE and by Venezuela and Colombia with 0.128–0.098 GWh/MW of VRE, respectively. These results can 
contribute to informing future decisions on capacity planning and regional transmission grids.   

1. Introduction 

The backbone of the renewable electricity system in Latin America is 
hydropower, which is vulnerable to seasonal variability and to the long- 
term phenomenon El Niño Southern Oscillation (ENSO). ENSO is a large- 
scale ocean-atmosphere climate interaction that manifests as a fluctua-
tion in sea-surface temperature (El Niño) and in the air pressure of the 
overlying atmosphere (Southern Oscillation) across the Pacific Ocean 
[1]. ENSO is characterized by two active alternating and irregular 
phases and an inactive or neutral one. Each of the active phases, which 

are distinguished in a warming (El Niño) and a cooling (La Niña) phase, 
lasts several months, influencing adversely rainfall patterns, droughts, 
floods [1], hydropower generation [2], and consequently commodity 
prices [3]. ENSO has been found to strongly affect renewable power 
generation in nearly all the states bordering the Pacific Ocean [4–7]. 

To reduce the vulnerability to seasonal variability and ENSO and 
improve the reliability of electricity provision, Latin America is 
currently experiencing a steady increase in gas-based electricity gener-
ation along with rapid growth in variable renewable energy (VRE), i.e., 
solar and wind power [8–11]. The increase in gas power plants 

* Corresponding author. 
E-mail addresses: gnzmln@unife.it (M. Gonzalez-Salazar), witold-roger.poganietz@kit.edu (W. Roger Poganietz).  

Contents lists available at ScienceDirect 

Energy Strategy Reviews 

journal homepage: www.elsevier.com/locate/esr 

https://doi.org/10.1016/j.esr.2022.100972 
Received 25 January 2022; Received in revised form 8 September 2022; Accepted 2 October 2022   

mailto:gnzmln@unife.it
mailto:witold-roger.poganietz@kit.edu
www.sciencedirect.com/science/journal/2211467X
https://www.elsevier.com/locate/esr
https://doi.org/10.1016/j.esr.2022.100972
https://doi.org/10.1016/j.esr.2022.100972
https://doi.org/10.1016/j.esr.2022.100972
http://creativecommons.org/licenses/by-nc-nd/4.0/


Energy Strategy Reviews 44 (2022) 100972

2

counteracts the global and regional aims of decreasing the carbon 
footprint of the energy system [8,12]. Renewable energy is today one of 
the most effective measures to mitigate climate change [13–16]. 
Exploiting complementarities between hydropower and other renew-
ables could be seen as an alternative for enhancing the reliability of 
electricity generation while mitigating the impact of seasonal variability 
and ENSO on hydropower. In this study, complementarity refers to the 
extent to which production shortfalls of one energy technology, i.e., 
hydropower, can be compensated by other energy technologies, i.e., 
wind and solar photovoltaic (PV) power [17]. 

A dedicated literature review is performed and details are shown in 
Appendix A. Prior art has investigated the complementarity between 
hydropower and other renewable energy sources, concentrating mostly 
on wind and PV power [17]. From the point of view of the geographic 
scale, the majority of the studies focus on sub-national or national scales, 
while a few studies have addressed complementarity at a multi-national 
or continental scale. The majority of studies focus on finding the best 
design of the power system and its operation schedule on short temporal 
scales, ranging from minutes to days. However, little research (e.g. Refs. 
[5,18]) has been devoted to exploit complementarity between renew-
ables to mitigate long-term (interannual, multiannual scales) phenom-
ena like ENSO. Regarding the method, prior studies have used 
deterministic approaches more often than probabilistic (stochastic) ap-
proaches. Whereas the former approaches are based on a rigid set of 
assumptions regarding the objective function and underlying market 
conditions, the latter allow for different operational objectives and 
market conditions. Although these studies consider the risk profile of 
renewable energy sources, they seldom calculate explicitly the impact of 
the complementarities on the risk profile of hydropower. 

Various studies have used a deterministic approach and focused on 
Latin America. They have explored the complementarity between two or 
three pairs of renewable resources at country [19–28] and regional 
levels [8,16,29], as well as the influence of climate change on it [16]. 
These studies analyzed spatio/temporal complementarity with data 
obtained either from measured data in existing units or by simulating 
the performance of potential units using meteorological data dating 
back to 1975 at most. In a recent investigation, the authors of this study 
show that exploiting the complementarity between different renewable 
energy resources has the potential to cost-effectively compensate for the 
fluctuations in hydropower and reduce the variability of power gener-
ation caused by ENSO in various countries in Latin America [30]. 

Studies focusing on probabilistic approaches for evaluating the 
complementarity between resources are scarcer. Li et al. [31] have used 
stochastic dynamic programming to show that the large-scale hydro-PV 
hybrid power plant Longyangxia in Qinghai province, China, could in-
crease the total generation and total guaranteed rate by up to 6.7% and 
22.9%, respectively, compared to a conventional hydropower plant. A 
hybrid power plant could also help to shave short-term demand peaks 
[32]. Huang et al. [33] have performed a probabilistic optimization to 
reduce the output shortage when combining hydro, wind and PV in the 
Guandi power plant on China’s Yalong River. Similarly, Zhang et al. [34] 
have performed a multistage stochastic optimization to improve the 
dispatch of a hydro-wind system in southwest China. Schmidt et al. [35] 
assessed for the Brazilian electricity system how high the long-term 
shares of renewable electricity production can be maintained, while 
reducing hydrological risks in case of an increasing demand for elec-
tricity. Using an optimization model, their findings indicate that adding 
solar PV and wind to the current energy system would diminish the 
necessity to run thermal power as a backup and the risk of loss of load. 
The total variability of renewable supply decreases significantly in 
comparison to a scenario that adds only hydropower to the system. This 
finding has been confirmed by Luz and Moura [36]. As a consequence, 
the planning of future power systems should recognize these comple-
mentarities at an early stage, avoiding nonideal investments and 
intending to increase the reliability of the grid [26]. It should be noted 
that adverse effects on the long-term availability of hydropower could 

happen if the flexibility of hydropower is overstretched [37]. Denault 
et al. [38] use as a measure of risk the probability of a production deficit, 
comparable to approaches used in financial risk management [38]. 
Taking the province of Quebec, Canada, as a reference their results 
indicate that any wind power share in the electricity mix below 30% 
reduces the risk of a production deficit compared to an all-hydropower 
system by lowering the dependence on water inflows and attenuating 
the impact of droughts. 

Summing up, there is a lack of studies evaluating from a probabilistic 
perspective the combination of hydropower with VRE to reduce the 
vulnerability of the power system with respect to droughts and ENSO in 
a multi-national context. This paper aims at filling this gap. The over-
arching aim of this paper is to analyze the impact that connecting 
existing hydropower with complementary VRE could have on the reli-
ability of the power generation in Latin America, particularly under the 
conditions of the long-term phenomena ENSO. In contrast to prior 
studies, we don’t analyze any kind of wind and solar resources to sup-
plement existing hydropower. Instead, we consider only VRE resources 
that offer at least a complementarity of − 50% with existing hydropower 
(i.e., a Spearman correlation coefficient of − 0.5). Connections with less 
complementarity are excluded in the study. To evaluate this comple-
mentarity, we simulate time series of solar, wind and hydropower for the 
entire twentieth century for the countries with the largest hydropower 
capacities in Latin America (i.e., Brazil, Venezuela, Argentina, Mexico, 
and Colombia). Then, we create multiple portfolios with varying degrees 
of penetration of VRE for each country. For each scenario, we build 
probability density functions, i.e., risk profiles for solar, wind and hy-
dropower. These risk profiles are significantly affected by seasonal 
variability and the long-term phenomena ENSO. We investigate the 
impact that the different portfolios could have on reducing the risk of a 
possible power deficit, which is defined here as the power shortage that 
occurs once every decade, i.e., the 10th percentile of the driest months of 
the year for each country. Finally, we identify strategies to mitigate a 
situation of a possible power deficit caused by seasonal variability or 
ENSO drought. 

The paper is structured as follows. Section 2 describes the method 
used in this investigation. Section 3 presents the process of identifying 
the appropriate combinations of wind, solar, and hydropower resources, 
including an analysis of their dependencies. Section 4 is devoted to the 
probabilistic analysis of the different energy resources, as well as the 
impact of combining hydropower and VRE to mitigate power deficits. 
Concluding remarks are shown in Section 5. 

2. Method 

The aim of this paper is to analyze the impact that combining existing 
hydropower with greenfield and complementary VRE could have on the 
reliability of the combined power generation in Latin America, partic-
ularly under the conditions of the long-term phenomena ENSO. Wind 
and solar are thus envisaged as diversification strategies to reduce the 
risk of a production deficit of the power generation system (hydropower 
+ VRE). Because the duration of a drought can range from months to 
years, we have focused our analysis on these temporal scales. Thus, we 
purposely exclude short-term operational constraints. While short-term 
effects typically cancel out in the long-run, as pointed out in previous 
studies [39,40], they exert a strong impact on the operability of wind, 
solar, and hydropower in day-ahead or intraday electricity markets, 
which are not analyzed here. This implies a limitation of the study, 
which does not affect the validity of the findings on a long-term tem-
poral scale. To estimate the uncertainty in power generation, we present 
an analysis framework that relies on a meteorological reanalysis dataset, 
three large-scale renewable power generation models, and statistical 
models. 
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2.1. Framework 

The proposed framework is explained in Fig. 1. In Step 1, we identify 
the relevant combination of hydropower with VRE. To achieve this, we 
have generated a time series of monthly power generation for the entire 
twentieth century, combining a high-fidelity hydropower dam model 
and two large-scale land-based wind and solar power generation models 
with a meteorological reanalysis dataset (the WATCH forcing data). 
These models are described in Section 2.2 and are also detailed in 
Ref. [30]. A deeper assessment, was conducted on the countries with the 
largest hydropower capacities in Latin America, i.e., Brazil, Venezuela, 
Argentina, Mexico, and Colombia. For hydropower, all the dams avail-
able in these countries were selected from a dataset created by Ng et al. 
in Ref. [2]. 

There are various measures to quantify the dependence between two 
variables. The most common measures for evaluating the complemen-
tarity between renewables include the Pearson correlation coefficient, 
the Kendall correlation coefficient, and the Spearman correlation coef-
ficient [17]. The most common method is the Pearson correlation co-
efficient, which evaluates the linear correlation between two sets of 
data. It is the ratio between the covariance of two variables and the 
product of their standard deviations. A key advantage of the Pearson 
correlation coefficient is its simplicity and intuitive interpretation. 
However, its main disadvantage is that it can only evaluate linear re-
lationships between two variables, i.e., it cannot effectively evaluate 
non-linear relationships [17]. Kendall and Spearman correlation co-
efficients aim at addressing this limitation. Rather than measuring the 
linear correlation between variables, these two coefficients evaluate the 
monotonic relationship, i.e., the degree that two variables move in the 
same direction, but not necessarily at a constant pace. While both co-
efficients have been used to a similar extent in previous studies of 
complementarity, neither is clearly superior to the other [17]. Hence, we 
have selected the Spearman coefficient. The Spearman correlation co-
efficient is a measure of the dependence between the rankings of two 
variables (x, y): 

Sx ↔ y =
cov(r.x, r.y)

σr.x • σr.y
(1)  

where Sx ↔ y is the Spearman correlation coefficient between x and y, r. x 
and r. y are the rankings of variables x and y, σr.x and σr.y are the standard 
deviations of the rank variables, and cov(r.x, r.y) is the covariance of the 
rank variables. The lower the Spearman correlation coefficient, the 
better the complementarity between two resources, with − 1 indicating 
optimal complementarity. We selected wind and solar resources offering 

at least a Spearman correlation coefficient of − 0.5 with hydropower at a 
country level [30]. 

For wind and solar power, only those resources with a high level of 
complementarity with hydropower at a country level were taken into 
account. For each of these resources, the average power generation 
throughout the entire twentieth century is estimated, and then aggre-
gated countrywise on a monthly and annual basis. To analyze the data, 
the monthly power generation is categorized countrywise according to 
the ENSO intensity and to the ENSO phase that most strongly affect 
hydropower. To classify the data according to the ENSO intensity, the 
Multivariate ENSO Index (MEI) is employed. MEI characterizes the in-
tensity of ENSO events by combining six meteorological and oceano-
graphic parameters [41]. Months throughout the twentieth century are 
grouped into three categories: (i) months within the 10th percentile of 
MEI, describing La Niña events, (ii) months between the 10th-90th 
percentiles, describing neutral phases, and (iii) months above the 90th 
percentile, describing El Niño events. 

In Step 2, we analyze the impact of complementarity on power 
generation, focusing on seasonal and ENSO droughts. To accomplish 
this, we simulated different portfolios of aggregated wind, solar, and 
hydropower capacity in a process consisting of three sub steps. First, we 
created portfolios with different combinations of hydropower and VRE 
(i.e., wind and solar PV). Next, statistical models were created and 
calibrated with the time series for wind, solar, and hydropower gener-
ated in step 1. Since we are concerned with power deficits caused by 
droughts, we selected the month of the year with the lowest hydropower 
generation for each country. Based on this selection, we estimated the 
probability of generating power for these months across the different 
scenarios. For accomplishing this, we use probability density functions 
(PDFs) and cumulative distribution functions (CDFs) for the observed 
time series. We focused on the power deficit that occurs once every 
decade, i.e., the 10th percentile of the probability functions of the driest 
month of the year. This approach follows the procedure described in 
Ref. [38]. Finally, we compare the risk measures across portfolios for all 
the countries. 

Finally, in step 3, we identify strategies to mitigate a situation of a 
possible power deficit caused by seasonal variability or ENSO drought. 
In particular, we evaluate how much wind and solar power are needed to 
counteract the power deficit that occurs once every decade, especially 
during ENSO drought phases. 

2.2. Modeling wind, solar and hydropower 

The modeling approach used for evaluating the power generation 

Fig. 1. Proposed framework.  
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from hydro-, solar- and wind-power throughout the 20th century is 
described in the following sections and illustrated in Fig. 2. We primarily 
use the meteorological reanalysis dataset WATCH forcing data (WFD) to 
extract key variables such as wind speed, air temperatures, and down-
ward shortwave radiation flux with a 0.5 x 0.5 geographical resolution 
and 3- or 6-hourly time resolution throughout the 20th century. We then 
evaluate the area suitable for installing wind and solar plants. We use the 
Terra and Aqua combined Moderate Resolution Imaging Spectroradi-
ometer (MODIS) Land Cover Climate Modeling Grid (CMG) (MCD12C1) 
and availability factors found in literature. The core of the modeling 
approach is the combination of a high-fidelity hydropower dam model 
(for evaluating existing hydropower plants) and two large-scale land- 
based wind- and solar-power generation models (for evaluating green-
field VRE plants). Subsequently, we employ a statistical algorithm to 
find the complementarity between pairs of hydro-solar, hydro-wind and 
wind-solar sites based on their power generation throughout the entire 
20th century. We down select sites that offer a minimum of − 50% 
complementarity (using the Spearman correlation coefficient) for 
further analysis. Finally, for the selected sites, we perform the risk 
evaluation described above. 

2.2.1. Estimation of available land for deploying wind and solar 
We assessed the area available for installing wind turbines and solar 

PV at a country level after considering environmental conditions, 
availability, and economic constraints. We use the Terra and Aqua 
combined Moderate Resolution Imaging Spectroradiometer (MODIS) 
Land Cover Climate Modeling Grid (CMG) (MCD12C1) Version 6 [42] to 
extract the spatial distribution of the different types of land cover for the 
year 2018. This data product provides information at yearly intervals at 

0.05-degree spatial resolution for the entire globe from 2001 to 2018. 
Eq. (2) is used to estimate the area suitable for installing wind turbines 
and solar PV (AS): 

AS = ALC − AUL − APL (2)  

where from the total land cover (ALC) we exclude land unsuitable for 
installing renewable energy technologies (AUL) and protected land 
(APL). Unsuitable land includes areas classified as forest, closed and 
open shrubland, wetland, areas with permanent snow or ice, areas 
covered by water and urban areas. Then, we exclude protected areas 
using the protected area coverage data available at the Digital Obser-
vatory for Protected Areas [43,44], which has a resolution of approxi-
mately 10 km. We use netCDF4 and NumPy libraries in Python to parse 
the data and aggregate it at 0.5-degree spatial resolution for year 2018. 
The resulting area suitable to install wind turbines and solar PV is shown 
per cell of 0.5 × 0.5◦ in Fig. 11 (left) in Appendix B. 

While this is the area suitable for installing these technologies, not all 
of it is actually available as it might be allocated for other uses. To assess 
the area actually available for deploying wind and solar installations, we 
used availability factors that describe the share of land which can be 
used for installing RES technologies, due to land competition, following 
the approach used in prior research [45,46]. The idea behind this 
approach, is that only a small fraction of the suitable area in a given grid 
cell is likely to be available to deploy wind or solar. Eq. (3) estimates the 
area available for installing wind turbines and solar PV (AI): 

AI = ka • (AS − ATU − AAdd) (3)  

where ka is the availability factor for wind and solar disaggregated by 

Fig. 2. Modeling approach.  
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the type of land cover derived from the literature [46,47], see details in 
Ref. [30]; ATU is the area technically uneconomical due to a poor energy 
potential, more concretely we exclude areas with a capacity factor of 
wind-power below 20% [45] and with a solar irradiance below 950 
kWh/m2 [46]. Finally, we have an additional environmental restriction 
(AAdd), in which neither wind nor solar is likely to be deployed if the 
protected area coverage within the cell (0.5 × 0.5◦) is higher than 15%. 
The resulting areas available for installing solar PV and wind power per 
cell of 0.5◦ (not continuous variables) are shown in Fig. 11 (middle and 
right) in Appendix B. 

2.2.2. Hydropower model 
A high-fidelity global hydropower dam model developed by Ng et al. 

[2,48] is used, which helps to replicate about 65% of the existing 
installed capacity in the region, i.e., 150 existing hydropower dams 
across Latin America. This model compiles data on the design specifi-
cation of 1593 existing hydropower dams from the GRanD database 
[49], and on installed power capacities from the ICOLD [50] and Global 
Energy Observatory [51] databases. The model includes run-of-river 
dams, but excludes pump-storage reservoirs. For each dam a monthly 
time series throughout the entire twentieth century is developed using 
the WFD model output [52]. The runoff data are generated by forcing a 
global hydrological model (WaterGAP [53]) that computes accumulated 
runoff using the DDM30 river network [54]. The hydropower model 
simulates the decision making of the hydropower dam operators using a 
periodic Markov chain algorithm for each dam. The model is imple-
mented using the R package reservoir [55]. As historical data on actual 
operation of individual dams are unavailable, the model is validated 
against coarser data on a national basis and only for the years 
1980–2000. The validation resulted in strong fits for hydropower gen-
eration in most countries (Pearson coefficients between 70 and 95%) but 
had limited ability to predict capacity factors. 

2.2.3. Wind model 
Following a methodology proposed by Lu et al. [45], a land-based 

wind model is developed using Python (NumPy, netCDF4 and Shapely 
libraries). Wind offshore has been excluded, as its cost-effectiveness in 
the short to medium term in the region is uncertain and its deployment is 
expected to remain marginal [56]. 

The wind power output is calculated based on wind conditions for 
each grid cell (0.5 × 0.5◦) and a power curve of a real turbine. Suitability 
factors are applied for deploying wind turbines based on the land cover, 
and excluded forests, environmentally sensitive areas, and water bodies. 
For assessing the wind conditions at each grid cell (6500 in total), three 
variables with 6-hourly time steps are extracted from the WFD dataset 
[52,57], namely the surface pressure (PSurf), the air temperature at 2 m 
(Tair), and the wind speed at 10 m (WS10). Then, the power curve is 
employed to quantify the electrical power output as a function of wind 
speed and air density. Hereby, the Vestas V90-3.0-MW is selected, a 
pitch regulated upwind wind turbine with three-blade rotor and a rotor 
height of 90 m [58]. Since the wind speed from WFD is available at 10 m, 
it is estimated at 90 m (WS90) using a power law relationship that is 
independent of roughness lengths [59]: 

WS90 =WS10 • (90/10)0.143 (4) 

Then, the air density (ρ) at the rotor height is estimated as: 

ρ=PSurf
/
(R • Tair) (5)  

where R is the gas constant (287.04 J/kg-K). With the wind speed and 
the air density it is possible to calculate the power generation at 6-hourly 
time steps (PGW,y), using the power curve in Fig. 12 in Appendix B. Then, 
for each grid cell the power generated is aggregated to monthly and 
annual bases and the corresponding capacity factor is calculated. 
Finally, the technical annual wind potential (GW,y) and power capacity 
(PW) for each grid cell are calculated as: 

GW,y =AI− W • PGW,y
/

NW (6)  

PW = AI− W • PW− UNIT/ NW (7)  

where AW is the area available for installing wind turbines in each grid 
cell (km2), PGW,y is the annual power generated by an individual wind 
turbine (GWh/year), PW− UNIT is the power capacity for a single wind 
turbine (3 MW), NW is the occupation area per turbine (km2/unit) and 
subscript y means annual. The monthly wind-power generation is 
calculated in the same manner. The area available for installing wind 
turbines (AI-W) is assessed after considering various constraints, as 
explained above. Firstly, forests, environmentally sensitive areas, and 
water bodies are excluded. Secondly, availability factors are applied 
based on the land cover. Thirdly, areas with a wind capacity factor 
below 20% are excluded as they appear uneconomical. The occupation 
area per turbine is 0.28 km2/unit, following Lu et al. [45]. 

2.2.4. Solar model 
A land-based solar PV model is created following a methodology 

proposed by Jerez et al. [14]. The power generation from PV utility-scale 
centralized systems (i.e., PV systems mounted on land and not on 
building roofs) is estimated as a function of two factors: the performance 
factor (FPV) and the power capacity (PPV). The performance factor is a 
dimensionless variable quantifying the deviation of the performance of 
PV at actual ambient conditions with respect to their nominal power 
capacity. The power generation results from multiplying FPV and PPV. 
The performance factor can be described as: 

FPV =

(
SWD

SWDTC

)

• [1+ γ(Tcell − TTC)] (8)  

where SWD is the downward shortwave radiation flux (wavelength in-
terval 0.2–4 μm), SWDTC refers to the radiation flux standard test con-
ditions (1000 W m− 2), Tcell is the PV cell temperature, TTC is the 
temperature at standard conditions and equal to 25 ◦C and γ is 
− 0.005◦C− 1. Tcell is estimated as: 

Tcell = k1 + k2•Tair + k3 • SWD + k4 • WS10 (9)  

where k1 = 4.3 ◦C, k2 = 0.943, k3 = 0.028 ◦C m2 W-1 and k4 = − 1.528 ◦C 
sm− 1 [14]. Tair, WS10 and SWD are extracted from the WFD Dataset. If 
ambient conditions correspond to the standard test conditions, then FPV 
is equal to 1. 

To calculate the power capacity (PPV), we first extract from the NASA 
Prediction of Worldwide Energy Resources [60] the daily average 
amount of the total solar radiation incident on a horizontal surface (Rd, 

m) (kWh m− 2 day− 1) for the period 1983–2018. As the data is available 
for each month, it is aggregated on an annual basis: 

PPV =

(

ηPV • AI− PV •
∑

d,m
Rd,m

)/

(8760 h / year) (10) 

The technical annual PV potential (GPV,y) for each grid cell is 
calculated as: 

GPV,y = ηPV • AI− PV •
∑

d,m
Rd,m (11)  

where ηPV is the conversion efficiency, AI-PV is the area available for 
installing PV solar in each grid cell and the subscripts d, m, and y mean 
month, day and year, respectively. The area available for installing PV 
solar in each grid is calculated in the same manner as that for wind- 
power. In addition to the excluded areas described above, sites with 
an annual solar irradiance below 950 kWh/m2 are excluded, as they 
appear uneconomical [46]. A conversion efficiency for PV utility-scale 
systems is assumed, as suggested in Ref. [47]: 

ηPV = ηM • ηPR • ηGC (12) 
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where ηM is the module efficiency (20%), ηPR is the performance ratio 
(75%), and ηGC is the share of land capturing energy (20%). Finally, for 
estimating the power capacity PPV for each grid cell, the technical 
annual PV potential (GWh/year) is divided by 8760 h. The monthly PV 
power generation is calculated in the same manner. 

2.3. Complementarity of wind, solar, and hydropower resources 

As described above, we selected pairs of resources (hydro-solar, 
hydro-wind, solar-wind) at a country level with a Spearman correlation 
coefficient of at least − 0.5 in monthly power generation. While there are 
numerous sites with significant wind- and solar-energy potential in the 
selected countries, not all of them offer a high complementarity with 
existing hydropower, and therefore are excluded from the analysis. The 
operation of hydropower aims at maximizing power generation over the 
long-term and is not intended to maximize complementarity to VRE 
resources. This certainly offers a further room for improvement. The 
capacity of wind, solar, and hydropower for these countries totals 24 
GW, 102 GW, and 107 GW, respectively (see Fig. 3). The solar capacity is 
substantial, equaling about 95.3% of the existing hydropower capacity. 

It is important to highlight that while this is a promising potential, it 
could be significantly limited by two factors. Firstly, some of these VRE 
resources are spatially heterogeneous, which might pose challenges for 
connection not only to the transmission and distribution networks but 
also to load centers. Secondly, even if the VRE are integrated into the 
system, the transmission system could offer only a limited capacity to 
incorporate these resources to balance the load in real time. Thus, a 
dedicated analysis is the transmission line is essential for performing 
definitive risk assessments. 

For each of these resources, the average power generation 
throughout the entire twentieth century is estimated and then aggre-
gated on a monthly basis at a country level. The average monthly power 
generation with a confidence level of 95% and broken down by ENSO 
phase, country, and resource is shown in Fig. 4. The figure shows that 
the uncertainty associated with regard to wind and solar power is 
significantly lower than that for hydropower. On the other hand, in all 
the selected countries the margin of error in neutral phases is 

significantly lower than that in nonneutral phases. This is caused not 
only by a larger spread in data for nonneutral ENSO phases, but also by 
the fact that there are fewer observations in 10th or 90th percentiles 
than between them. 

To analyze the dependence between wind, solar, and hydropower, 
we performed a bivariate analysis, which is shown in Fig. 5. This graph 
shows the distributions of hydropower, wind and solar by country, 
highlighting the months of the year. In all countries, hydropower is 
negatively correlated to solar-power. Hydropower is also negatively 
correlated to wind power in Brazil and Mexico, but not in Argentina, 
where wind power is negatively correlated to solar but not simulta-
neously to hydropower. This topic requires further investigation. The 
influence of seasonal variability depends on the resource and the 
country. In Argentina, solar power generation is very clustered, and the 
distribution shows multiple peaks corresponding to the different months 
of the year. Solar resources in Argentina are located far away from the 
equator, where the solar radiation and day length strongly depend on 
the month of the year. A similar clustering is found in Brazil and Mexico, 
although less pronouncedly than in Argentina. In contrast, in countries 
near the equator (e.g., Colombia and Venezuela), solar-power is wide-
spread and practically clustered in two groups, namely in dry and wet 
months. On the other hand, the influence of the month of the year on 
wind power is less evident than solar power in all countries. 

2.4. Evaluation of different levels of penetration of VRE 

2.4.1. Definition of portfolios – level of VRE penetration 
In order to analyze the influence of different levels of penetration of 

VRE on the uncertainty in power generation, we created a set of port-
folios. In these portfolios, the VRE capacity ranges between 0 and 100% 
of the maximal combined capacity of wind and solar power. Capacities 
for the different levels of penetration and their ratio relative to the hy-
dropower capacities by country are shown in Fig. 6 and Table 1, 
respectively. Our measure for evaluating the risk of a power deficit is the 
10th percentile of the driest months of the year for each country. The 
month with the lowest hydropower generation in the year is December 
in Argentina, September in Brazil, February in Colombia, April in 

Fig. 3. Power capacity by resource for the selected sites (values in MW).  
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Mexico and March in Venezuela (see Fig. 4). 

2.5. Probability density functions (PDFs) 

Next, we calculated the probability density functions (PDFs) for the 
observed time series of average monthly power generation of wind, 
solar, and hydropower for these months throughout the entire twentieth 
century. The PDFs calculated for the driest month of the year in each 
country at different levels of VRE penetration are shown in Fig. 7. 

By comparing the shape of the PDFs during the neutral ENSO phase 
in a hydro only system (i.e., 0% penetration by VRE), two groups can be 
identified. The PDFs for Venezuela and Colombia, i.e., the countries near 
the equator, show a large spread in values and multiple peaks with high 
rates of occurrence. In contrast, The PDFs for Argentina and Mexico 
present a somewhat smoother shape, with a quite pronounced peak, but 
with an occurrence rate of the peak comparable to that of Venezuela (in 
Argentina) and Colombia (in Mexico). Brazil’s PDF exhibits a specific 
pattern that is similar to that of Argentina, but with a less pronounced 

Fig. 4. Average monthly power generation in GWh broken down by ENSO phase, resource, and country. Color bars indicate a margin of error with a confidence level 
of 95%. Black lines represent the median of hydropower alone during neutral ENSO phases (10th-90th MEI percentile). 
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peak. 
For all countries, it is more likely that power generation during ENSO 

drought phases is—though with some exceptions—by far lower than 
during neutral phases, as can be expected. Results show that in all 
countries the monthly hydropower generation during ENSO drought 
phases could be between 5 and 50% lower than during neutral phases. 
The impact of ENSO droughts varies across countries. In Colombia and 
Argentina, for example, the reduction ranges between 25 and 50% 
depending on the percentile, while in Mexico, Brazil, and Venezuela it 

ranges between 5 and 30%. A higher penetration of VRE in the system 
increases the overall monthly power generation and affects the shape of 
the PDFs. However, the extent depends on the relevance of VRE in the 
national energy system. For example, the impact is quite low in 
Venezuela and Colombia, where the VRE capacity is rather small 
compared to their hydropower capacity (Fig. 6 and Table 1). Further 
general information on probability density functions and cumulative 
distribution functions is shown in Appendix C. 

Fig. 5. Solar and wind power generation vs. hydropower generation by country in GWh. The colors indicate the month of the year.  
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2.6. Cumulative distribution functions (CDFs) 

While these PDFs are the basis for a probabilistic assessment, it is 
difficult to observe differences and trends graphically. To improve the 

visualization of data, in addition to PDFs, we evaluated the associated 
cumulative distribution functions (CDFs) for the driest months by 
country. The CDFs calculated for the driest month of the year in each 
country at different levels of VRE penetration and ENSO phases are 
shown in Fig. 8. In addition, percentage differences between different 
levels of VRE penetration and hydropower alone are shown in Fig. 9 by 
ENSO phase and country. 

Combining hydropower with VRE effectively increases the monthly 
power generation in the driest month of the year, both in drought and in 
neutral ENSO phases compared to hydropower alone. The increase dif-
fers between the countries and depends crucially on the corresponding 
VRE-hydropower capacity ratio. In Argentina and Mexico, the two 
countries with the largest VRE to hydropower capacity ratios (223% and 
197%, respectively), combining hydropower with VRE could generate 
400–600% more monthly power generation than hydropower alone. In 
Brazil, where the VRE capacity is 1.2 times as large as the hydropower 
capacity, this increase could go up to 150%. In Venezuela and Colombia, 
where the VRE-hydropower capacity ratio is 31 and 44%, respectively, 
the increase could go up to 60–70%. 

For statistical reasons, the difference between a combined 
hydropower-VRE system and a hydropower alone system decreases with 
the percentile (i.e., cumulative probability). Thus, when hydropower is 

Fig. 6. VRE capacity (MW) vs. VRE to hydropower capacity, broken down 
by country. 

Table 1 
Aggregated VRE capacity (MW) and its relation to hydropower capacity.  

Penetration (%) VRE Capacity (MW) VRE capacity to hydropower capacity (%) 

Argentina Brazil Colombia Mexico Venezuela Argentina Brazil Colombia Mexico Venezuela 

12.5% 1923 10947 185 2208 583 28% 15% 5% 25% 4% 
25% 3846 21893 369 4416 1166 56% 30% 11% 49% 8% 
50% 7693 43787 739 8832 2333 111% 60% 22% 99% 15% 
75% 11539 65680 1108 13248 3499 167% 90% 33% 148% 23% 
100% 15385 87573 1477 17664 4665 223% 120% 44% 197% 31%  

Fig. 7. Probability density functions (PDFs) for the monthly power generation (GWh/month) for the driest month of the year in each country at different levels of 
VRE penetration. The y-axis indicates the number of occurrences. The colors indicate the ENSO phase. 
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Fig. 8. Cumulative distribution functions (CDFs) for monthly power generation (GWh/month) for the driest months of the year at different levels of VRE penetration 
and ENSO phases by country. The colors indicate the level of VRE penetration. The dashed line represents the risk measure, i.e., the 10th percentile. 

Fig. 9. Percentage difference in monthly power generation between the different levels of VRE penetration and hydropower alone for the driest month of the year. 
Data is disaggregated by ENSO phase and country. 
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combined with VRE, the increase in monthly power generation is more 
pronounced at low percentiles of cumulative probability. However, the 
pattern of the percentage difference differs between the countries and 
the ENSO phases. In Colombia and Venezuela, the two countries with the 
lowest VRE-hydropower capacity ratio, the impact of complementarity 
during neutral ENSO phases is highest at percentiles below 30%, inde-
pendent of the market penetration of VRE. While the difference between 
a combined power system and a hydropower system alone drops in 
Colombia quite continuously from percentile 0–5% to percentile 30%, in 
Venezuela the differences at the lower end of the CDF are rather equal, 
and a noteworthy drop occurs only near 30%. In Colombia, the differ-
ences between a combined system and a hydropower system alone 
lessen quite continuously for percentiles higher than 30%, whereas in 
the case of Venezuela two steps can be identified, i.e., percentiles 75% 
and 95%; between these steps the differences between both systems are 
quite constant, independent of the market penetration rate. 

The CDF profiles in the remaining countries exhibit similarities and 
differ from the profiles of Colombia and Venezuela. Common to the 
three remaining countries are the smoother differences between a 
combined system and hydropower alone compared to Colombia and 
Venezuela, especially during neutral ENSO phases. In the case of 
Argentina, differences between the systems drop continuously at higher 
percentiles, whereas in Mexico the differences between the systems 
decline rapidly at first (until percentile 10%) followed by a rather 
continuous drop. Brazil’s pattern shows a continuous decline until 
percentile 90%, followed by a noteworthy drop. In the ENSO drought 
phase, the CDF patterns of all the countries are different. Differences 
between the systems also decline at higher percentiles for all market 
penetration rates, even though the declines are less pronounced in the 
ENSO drought phase than during neutral phases. 

These patterns indicate that combining existing hydropower with 
complementary VRE effectively increase the probability of generating 
power, especially during droughts, either seasonal (i.e., lower percen-
tiles) or caused by ENSO. The size and the pattern of the impacts differ 
between countries, which is partly noteworthy and needs to be the 

object of additional research. 

2.7. Mitigation strategies 

The strong impact of combining existing hydropower with comple-
mentary VRE, particularly at lower percentiles, is certainly advanta-
geous as a strategy to mitigate a situation of a possible power deficit 
caused by seasonal variability or ENSO drought. Hence, we analyzed the 
10th percentile of the cumulative distribution functions (dashed line in 
Fig. 8), which is our risk measure and represents the power deficit that 
occurs once every decade. Our primary interest is to understand how 
much wind and solar power are needed to counteract this power deficit, 
especially during ENSO drought phases. Thus, we extracted the power 
generation for the 10th percentile of the driest month for the different 
levels of VRE penetration by country (see Fig. 10). We identified two 
potential strategies, which are represented by a gray zone and described 
as follows:  

• First strategy (bottom threshold): a very moderate one, is to reach 
the level of power generation by hydropower alone during the driest 
month of the year in a neutral ENSO phase. This strategy represents 
the amount of VRE required to overcome the effect of the ENSO 
drought on hydropower alone.  

• Second strategy (top threshold): an ambitious one, is to reach the 
median annual value of hydropower alone in the neutral ENSO 
phase, which is represented with a black line in Fig. 4. Note that the 
median annual value is a significantly higher value than that during 
the driest month of the year. This second strategy represents the 
amount of VRE required not only to overcome the effect of the ENSO 
drought on hydropower, but also the effect of the seasonal drought. 

The intersection between the orange line (representing the drought 
ENSO phases) and these two thresholds shows the VRE-hydropower 
capacity ratio required to overcome 1) the impact of drought ENSO 
phases and 2) seasonal droughts. 

Fig. 10. Monthly power generation as a function of the VRE-hydropower capacity ratio for the 10th percentile of the driest month of the year, disaggregated by 
country. The bottom threshold represents the power generation for hydropower alone during neutral ENSO phases. The top threshold represents the median power 
generation for hydropower alone during neutral ENSO phases. 
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Our results show that to achieve the first strategy (i.e., 10th 
percentile of hydropower generation during neutral ENSO phases), a 
VRE-hydropower ratio between 0.05 and 0.22 is required. The largest 
value is required in Colombia (740 MW), the lowest in Venezuela (580 
MW). To achieve the second strategy —i.e., reaching the median value 
for hydropower alone throughout the year in neutral ENSO phases—, it 
is necessary to maintain a significant VRE capacity. A VRE-hydropower 
capacity ratio of 0.8 would be required in Argentina (7 GW), while a 
ratio of 1 would be required in Mexico (8.8 GW) and 1.1 in Brazil (73 
GW). In Colombia and Venezuela, the VRE capacity is insufficient to 
achieve this second strategy. 

The slope of the line representing the 10th percentile of the driest 
month of the year during drought ENSO phases was also computed and 
is shown in Fig. 10. This slope embodies the effectiveness in the com-
bination of resources to mitigate a potential power deficit. Results show 
that Argentina is the country with the most effective combination of 
resources to mitigate a power deficit, as each MW of installed VRE 
generates 0.218 GWh of additional power. It is followed by Brazil and 
Mexico, where each MW of installed VRE generates 0.185 GWh of 
power. In Venezuela and Colombia, the effectiveness is lowest, with 
0.128 and 0.098 GWh/MW-VRE. A possible reason for this is that during 
the driest month of the year solar-power is less prevalent in countries 
located in the tropics of Cancer and Capricorn than in countries near the 
equator, which could result in a more effective combination of solar- and 
hydropower. 

3. Conclusions 

This paper quantifies the potential benefits of combining wind, solar, 
and hydropower to improve the reliability of renewable power genera-
tion from a probabilistic point of view. The analysis of the cumulative 
distribution functions (CDFs) of these resources for the entire twentieth 
century provides valuable insights. 

Firstly, it shows that—depending on the country and the percenti-
le—hydropower alone could be up to 50% lower during drought ENSO 
phases than during neutral phases. The countries most affected are 
Colombia and Venezuela, while the reduction is somewhat less severe in 
Argentina, Brazil, and Mexico. 

Secondly, it shows that combining existing hydropower with com-
plementary VRE offers the potential to reduce the risk of a power deficit 
during the 10th percentile of the driest months of the year, both in 
drought and neutral ENSO phases. Compared to hydropower alone, the 
combination of hydropower and VRE could increase the monthly power 
generation by 50–500%, depending on the country and level of VRE 
penetration. The potential increase is largest in Argentina and Mexico, 
where the maximal VRE-hydropower capacity ratio is highest (ranging 
between 2 and 2.2). 

To enhance the reliability of power generation while lowering the 

carbon footprint, a promising strategy for the countries investigated in 
this study could be to increase their VRE capacities. The impact is in 
particular noteworthy during the most precarious periods of drought 
and dry seasons. However, the positive effect of complementarity differs 
in size and shape between the investigated countries. Although the 
general strategy could be same for all countries, the details should differ 
depending on the country. The country-specific strategies should take 
into account the proximity to the equator, which influences not only the 
size of the impacts of ENSO drought phases on hydropower production, 
but also on the optimal energy technology mix. For example, our results 
show that Argentina is the country with the most effective combination 
of resources to mitigate the power deficit, as each MW of installed VRE 
generates 0.218 GWh of additional power. It is followed by Brazil and 
Mexico with 0.185 GWh per MW of VRE and by Venezuela and Colombia 
with 0.128–0.098 GWh/MW-VRE, respectively. A possible reason for 
this trend is that during the driest months of the year solar power is less 
widespread in countries located in the tropics of Cancer and Capricorn 
than in countries near the equator, which could lead to a more effective 
combination of solar and hydropower. 

While these results are promising, further research is required to 
validate them. For example, detailed techno-economic analyses of 
building complementary VRE power plants and expanding transmission 
lines is essential. Furthermore, an evaluation of socio-economic condi-
tions, e.g., availability of financial resources or regulations in respect to 
investments and operation of VRE power plants, is necessary. 
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Nomenclature 

AAdd Area with additional environmental restrictions 
AI Area available for installing renewables 
AI-PV Area available for installing solar PV 
AI-W Area available for installing wind turbines in each grid cell 
ALC Total land cover area 
APL Protected land 
AS Area suitable for installing renewables 
AUL Unsuitable land for installing renewables 
ATU Area technically uneconomical for installing renewables 
cov Covariance 
ENSO El Niño-Southern Oscillation 
FPV Performance factor for solar photovoltaic cells 
GPV Technical annual solar PV potential 
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GW Technical annual wind potential 
k Constant 
MEI Multivariate ENSO Index 
MODIS Moderate Resolution Imaging Spectroradiometer 
NW Occupation area per wind turbine 
P Power capacity 
PSurf Surface pressure 
PPV, W Power capacity of solar photovoltaic cells and wind turbines 
PG Annual power generation 
PGW Annual power generated by an individual wind turbine 
PV Solar photovoltaic cells 
r.x Ranking variable 
R Gas constant 
Rd Total solar radiation incident on a horizontal surface 
Sx ↔ y Spearman correlation coefficient 
SWD Downward shortwave radiation flux 
SWDTC SWD at test conditions 
Tair Air temperature 
Tcell PV cell temperature 
TTC PV cell temperature at standard conditions 
WFD WATCH forcing data 
WS Wind speed 
σ Standard deviation 
ρ Air density 
ηGC Share of land capturing energy 
ηGT Gas turbine efficiency 
ηM Module efficiency 
ηPV PV solar conversion efficiency 
ηPR Performance ratio 

Appendix A. Additional details on literature review  

Study Resources Geographic scale Analysis of ENSO Approach 

Gunturu & Hallgren [5] Hydro, wind National Yes Deterministic 
Viviescas et al. [16] Hydro, PV, wind Multi-national Yes Deterministic 
Henao et al. [18] Hydro, PV, wind National Yes Deterministic 
Vergara et al. [19] Hydro, wind National No Deterministic 
Paredes & Ramirez [20] Hydro, PV, wind National No Deterministic 
Rosa et al. [21] Hydro, PV, wind Sub-national No Deterministic 
Pianezzola et al. [22] Solar, wind National No Deterministic 
Chaer et al. [23] Hydro, PV, wind National No Deterministic 
Beluco et al. [24] Hydro, PV National No Deterministic 
Silva et al. [25] Hydro, wind (offshore) National No Deterministic 
Ávila et al. [26] Hydro, wind National No Stochastic 
Neto et al. [27] Solar, wind, tidal National No Deterministic 
Cantao et al. [28] Hydro, wind National No Deterministic 
BID [29] Hydro, PV, wind Multi-national Yes Deterministic 
Gonzalez-Salazar & Poganietz [30] Hydro, PV, wind Multi-national Yes Deterministic 
Li et al. [31] Hydro, PV National No Stochastic 
Ming et al. [32] Hydro, PV National No Stochastic 
Huang et al. [33] Hydro, PV, wind National No Stochastic 
Zhang et al. [34] Hydro, wind National No Stochastic 
Schmidt et al. [35] Hydro, PV, wind National No Stochastic 
Luz & Moura [36] Hydro, PV, wind National No Deterministic 
Xu et al. [37] Hydro, wind National No Stochastic 
Denault et al. [38] Hydro, wind National No Stochastic  
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Appendix B. Additional technical information

Fig. 11. (Left) Suitable areas for deploying solar PV and wind after excluding forests, environmentally sensitive areas, and water bodies. (Middle) Available areas for 
deploying solar PV after applying availability factors based on land cover. (Right) Available areas for deploying wind-power after applying availability factors based 
on land cover. Countries with no data available are shown in gray. Values are shown per cell of 0.5 x 0.5◦. 

Fig. 12. Power curve for the Vestas V90–3.0 MW.  

Appendix C. Probability density functions (PDFs) and cumulative density functions (CDFs) 

PDFs and CDFs provide critical information for a risk assessment. PDFs reveal the distribution of the probability of occurrence of production levels 
within a given range, in our case between zero and maximum generation of power (a function of the power capacity). CDFs represent the cumulative 
probability of a variable x, which is the probability that the variable x takes on a value less or equal to x. The concept is better explained through an 
example. Fig. 13 shows two exemplary cumulative distribution functions, namely y1 and y2, which are functions of a variable x. Assuming, for 
example, that x is equal to 2, there is a 90% probability that y2 is lower or equal than 2, while it is only 56% for y1. Conversely, it also means that for a 
given percentile, like 56% (i.e., 56% probability), y1 is likely to have a higher value (2) than y2 (1.2). The slope of the curves indicates how spread out 
the values are. A slope that is steep indicates that values are similar and not spread. On the contrary, a flattened slope indicates that data is spread [61]. 
In this example both curves flattened at the end; this indicates that these are possible outliers. Hence, observations on the upper bound of the variable x 
result in small increases in the cumulative probability. In our example, there is 95% probability that x is lower than 3.7 for y1 and lower than 2.5 for y2. 
In many applications CDFs are preferred over PDFs because their indication of the probability of a random variable is intuitive and can be seen 
graphically, while in PDFs they require the calculation of the area under the curve for a given interval [62]. 
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Fig. 13. Example of two cumulative distribution functions (CDFs).  
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[53] J. Alcamo, P. Döll, T. Henrichs, F. Kaspar, B. Lehner, T. Rösch, S. Siebert, 
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