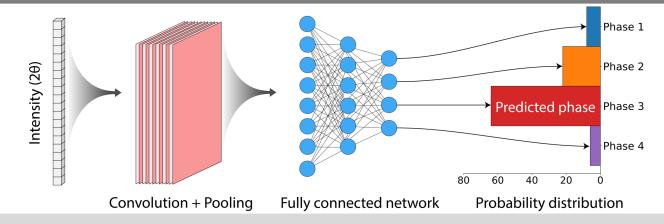


A Critical Review of Neural Networks for the Use with Spectroscopic Data

<u>J. Schuetzke</u>¹, N. J. Szymanski², G. Ceder², M. Reischl¹ ECM 2022, Versailles, France

¹Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ²Lawrence Berkeley National Laboratory | UC Berkeley, Berkeley, USA



www.kit.edu

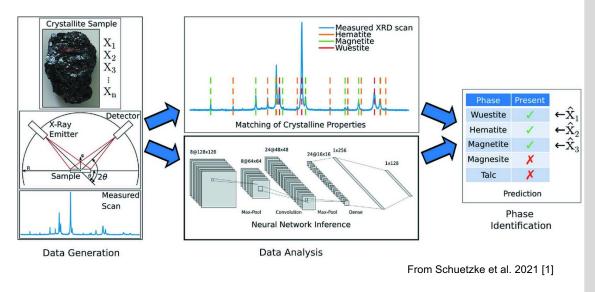
Karlsruhe Institute of Technology

Outline

- Introduction
- Related Work
- Evaluation Dataset
- Recent Developments
- Conclusion

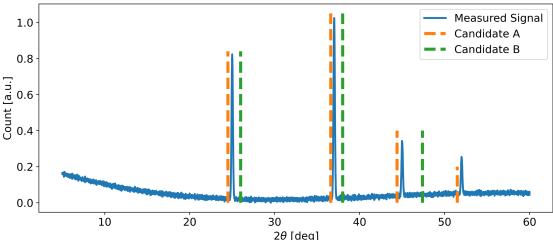
Introduction - Topic

- Machine learning (ML) methods popular for spectra analysis
- Neural networks used for X-ray diffraction (XRD), Raman spectroscopy, etc.
- E.g., XRD 1D powder spectra → typical task: <u>phase identification</u>



Introduction - Challenges

- Matching measured intensities with references "pattern matching"
 → classification task
- Picking candidates based on peak positions and intensities
- Variation of positions, intensities, shapes, background, etc.

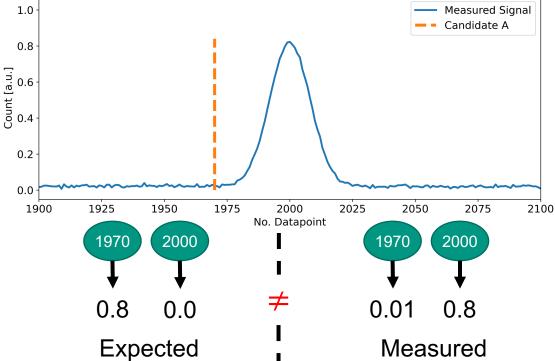


1970 \neq 0.8 0.0

Introduction – Machine Learning Models

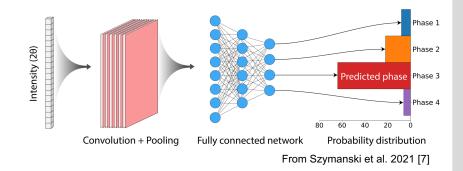
Machine Learning models learn thresholds per dimension

- For spectra: each datapoint a separate dimension
- Problem with shifts: various dissimilarity metrics to account for position variation [2]



Related Work – Neural Networks for Spectra

- Neural Network models applied to spectroscopic data of various domains; improvement over traditional ML models
- Models mostly use Convolutional Neural Network (CNN) structure
- <u>BUT</u> no network achieved perfect prediction accuracy in recent benchmark study [6]



Publication	Туре	Architecture
Liu et al., 2017 [3]	Raman	3 Convolutional Layers
Cui and Fearn 2018 [4]	Near-infrared	1 Convolutional Layer
Lee et al., 2020 [5]	XRD	3 Convolutional Layers

Related Work – Convolutional Layers + Pooling



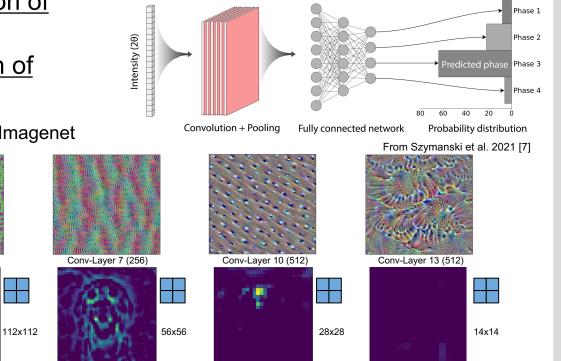
(Maximum) Pooling: <u>reduction of</u> <u>resolution</u>

Conv-Layer 2 (64)

VGG16 network, pretrained weights from Imagenet

Pooling

224x224

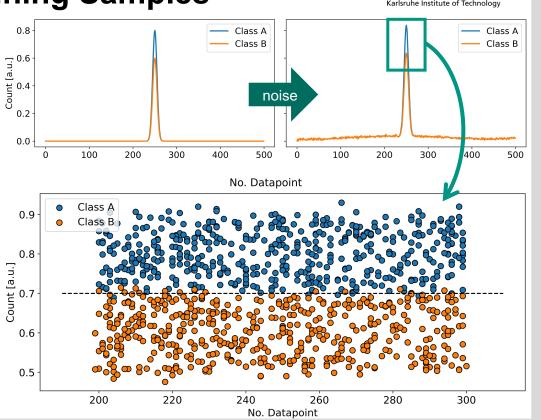


224x224

Conv-Layer 4 (128)

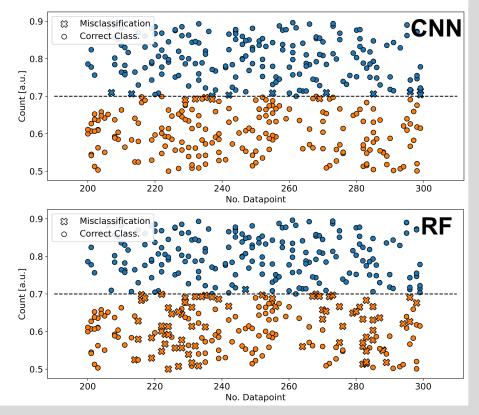
Evaluation Dataset – Training Samples

- Classification of single peak: max. intensity 0.8 or 0.6
- Variation of position (+/- 50), intensity (+/- 0.1) and shapes (Gaussians)
- Addition of background function and noise
- Result: minor overlap of max. intensities



Evaluation Dataset – Classification Results

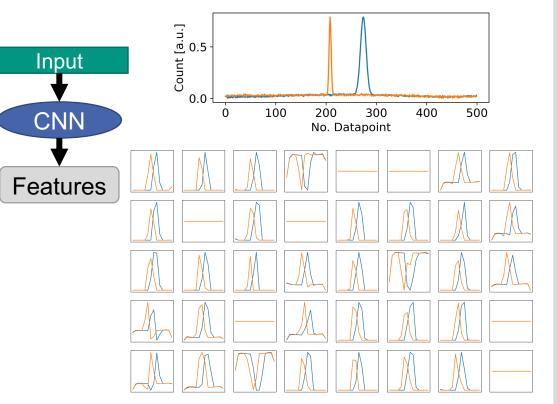
- Accuracy of CNN architecture [5]
 96%
- Performance of traditional ML: Random-Forest (RF) 80%
- CNN distinguishes between both classes, while RF performs worse



Karlsruhe Institute of Technology

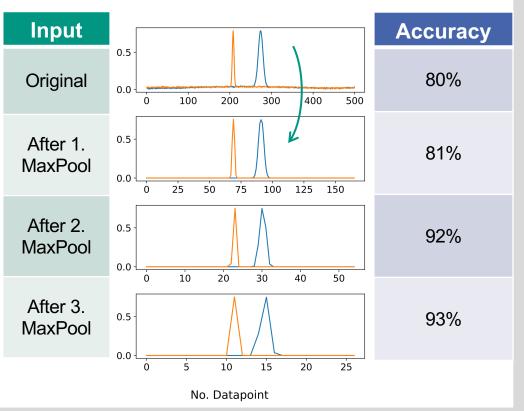
Evaluation Dataset – CNN Feature Maps

- What is the output of the convolutional layers?
- Reduction of
 - Noise
 - Background
 - Shape variation
 - Position variation



Evaluation Dataset – Benefits of MaxPooling

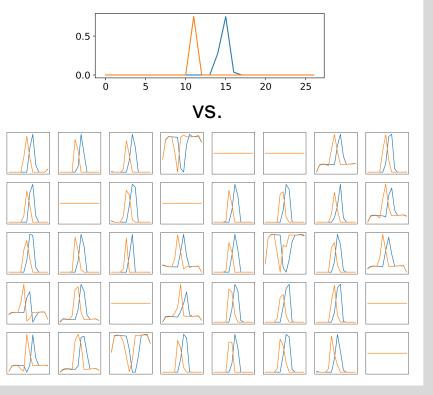
- Reduction of positional variation from MaxPooling
- How do traditional ML models benefit from reduced input?
- Second MaxPooling layer already improves performance from 92% to 94%
- Similar performance of Random Forest for reduced inputs



Evaluation Dataset – Contribution of Convolutions

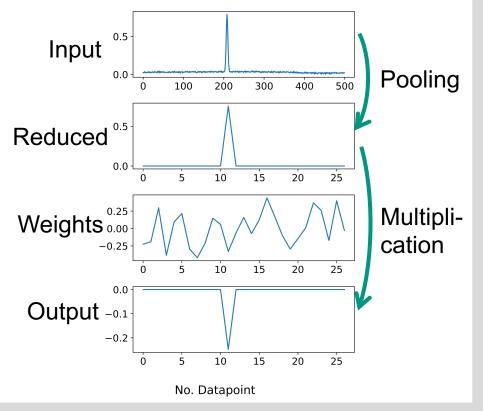
- MaxPooling reduces position and shape variations
- What is the benefit of using Convolutional layers then?

Conv-Layers eliminate background and match peak shapes to facilitate classification



Evaluation Dataset – Conv-Layer Configuration

- CNN with single filter per layer? (reducing computational effort)
- Randomly initialized weights possibly cause negative peaks
- ReLU activation sets negative values to zero
 output "empty"
- Different initialization methods or activation function required



Recent Developments – Overview

- For images: CNNs with few convolutional layers state-of-the-art in 2012, advancement through stacking more convolutional layers and more complex structures (Resnet, Inception, etc.)
- For spectra: CNNs with 1-3 convolutional layers in 2017-2020, recently stacking more layers [7] or copying complex structures (Resnet) [8].

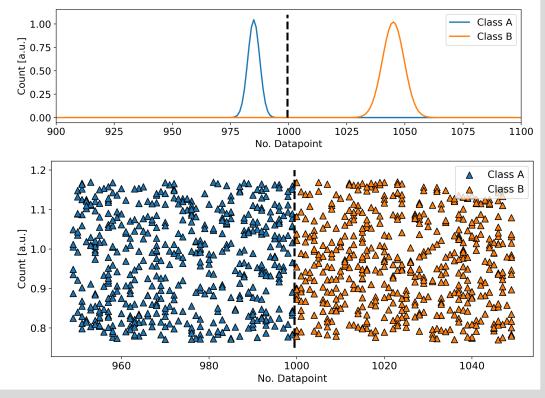
More layers → Resolution of spectra gets even more reduced
 <u>BUT</u>: What if position of peaks is important for classification?

Recent Developments – Dataset

Evaluating positional information with second dataset

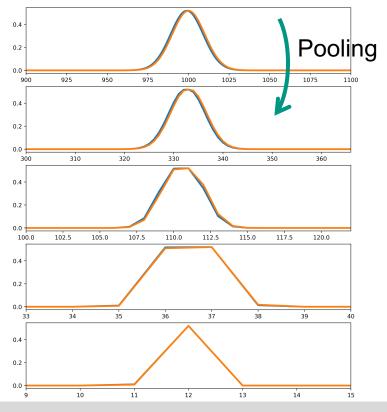
Class A: Max. at 950-999 Class B: Max. at 1000-1050 → No overlap

Model: Resnet [8]



Recent Developments – Resnet Performance

- Resnet fails to correctly classify spectra with peak maxima close to border
- Pooling reduces resolution → peaks align and become indistinguishable



scaled feature map Image: Conventioned Neural Networks for Spectroscopic Data normalized Image: Conventioned Neural Networks for Spectroscopic Data Image: Conventioned Neural Networks for Spectroscopic Data

Related Work – Batch Normalization

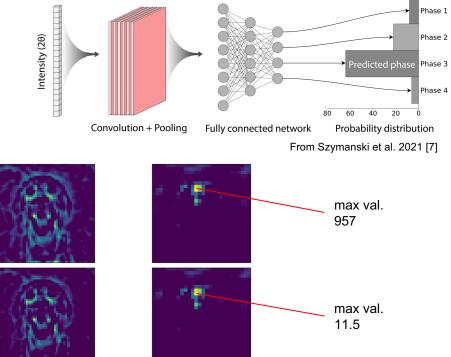
Batch Normalization as

Highlights "unique" features

Removing background + rescaling

regularization

features



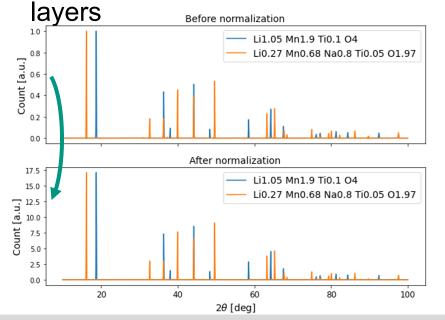
24 August 2022

17

J. Schuetzke - Review of Convolutional Neural Networks for Spectroscopic Data

Recent Developments- Batch Norm. for spectra

Recent networks like Resnet apply Batch-Norm. between convolutional



No "unique" features per class, nothing to *highlight*

Normalization <u>questionable for</u> <u>spectra</u>

Conclusion

- Convolutional layers work well on spectra because filters reduce peak shape variations + background and pooling reduces peak position shifts
- 2. Traditional ML algorithms struggle on peak shift variations but perform similarly as networks on lower resolution data
- 3. Spectra exhibit different "features" compared to image data: adaptation of initialization or activation functions necessary
- 4. More elaborate structures & techniques developed for image data not better for spectra; always evaluate usage

References

[1] Schuetzke et al. "Enhancing deep-learning training for phase identification in powder X-ray diffractograms." *IUCrJ* 8 (2021):408-420.

[2] Iwasaki et al. "Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries." *npj Comp. Materials (2017): 1-9.*

[3] Liu et al. "Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution." *The Analyst* 142 (2017): 4067-4074.

[4] Cui and Fearn. "Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration." *Chemometrics and Intelligent Laboratory Systems* (2018).

[5] Lee et al. "A deep.-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns." *Nature Communications* 11 (2020).

[6] Schuetzke et al. "A universal synthetic dataset for machine learning on spectroscopic data." *Preprint on arXiv* (2022).

[7] Szymanski et al. "Probabilistic deep learning approach to automate the interpretation of multiphase diffraction spectra." *Chemistry of Materials* 33 (2021):4204-4215.

[8] Ho et al. "Rapid identification of pathogenic bacteria using raman spectroscopy and deep learning." *Nature Communications* 10 (2019).