
JoCG 13(1), 327–376, 2022 327

Journal of Computational Geometry jocg.org

RECOGNIZING WEIGHTED AND SEEDED DISK GRAPHS∗

Boris Klemz,†Martin Nöllenburg,‡ and Roman Prutkin§

Abstract. Disk intersection representations realize graphs by mapping vertices bijectively
to disks in the plane such that two disks intersect each other if and only if the corresponding
vertices are adjacent in the graph. If intersections are restricted to touching points of the
boundaries, we call them disk contact representations. Deciding whether a vertex-weighted
planar graph can be realized such that the disks’ radii coincide with the vertex weights is
known to be NP-hard for both contact and intersection representations. In this work, we
reduce the gap between hardness and tractability by analyzing the problem for special graph
classes. We show that in the contact scenario it remains NP-hard for outerplanar graphs
with unit weights and for stars with arbitrary weights, strengthening the previous hardness
results. On the positive side, we present a constructive linear-time recognition algorithm for
embedded stars with arbitrary weights.

We also consider a version of the problem in which the disks of a representation
are supposed to cover preassigned points, called seeds. We show that both for contact and
intersection representations this problem is NP-hard for unit weights even if the given graph
is a path. If the disks’ radii are not prescribed, the problem remains NP-hard for trees in
the contact scenario.

1 Introduction

A set of disks in the plane is a disk intersection representation of a graph G = (V,E) if
there is a bijection between V and the set of disks such that two disks intersect if and only
if they are adjacent in G. Disk intersection graphs are graphs that have a disk intersection
representation; a subclass are disk contact graphs (also known as coin graphs), that is, graphs
that have a disk intersection representation with interior-disjoint disks. This is also called
a disk contact representation (DCR) or, if connected, a circle packing. It is easy to see that
every disk contact graph is planar and the famous Koebe-Andreev-Thurston circle packing
theorem [19] dating back to 1936 (see Stephenson [24] for its history) states that the converse
is also true, that is, every planar graph is a disk contact graph.

Application areas for disk intersection/contact graphs include modeling physical
problems like wireless communication networks [15], covering problems like geometric fa-
cility location [23, 25], visual representation problems like area cartograms [13] and many

∗A preliminary version of this paper appeared in the proceedings of Graph Drawing and Network Visu-
alization 2015 [17].

†Universität Würzburg, Germany, firstname[dot]lastname[at]uni[dash]wuerzburg[dot]de
‡TU Wien, Austria, noellenburg@ac.tuwien.ac.at
§Karlsruhe Institute of Technology, Germany, roman.pru@gmail.com

http://jocg.org/

JoCG 13(1), 327–376, 2022 328

Journal of Computational Geometry jocg.org

more (various examples are given by Clark et al. [9]). Efficient numerical construction of
DCRs has been studied in the past [11, 21]. Often, however, one is interested in recogniz-
ing disk graphs or generating representations that do not only realize the input graph, but
also satisfy additional requirements. For example, Alam et al. [1] obtained several positive
and negative results on the existence of balanced DCRs, in which the ratio of the largest
disk radius to the smallest is polynomial in the number of disks. Furthermore, it might be
desirable to generate a disk representation that realizes a vertex-weighted graph such that
the disks’ radii or areas are proportional to the corresponding vertex weights, for example,
for value-by-area circle cartograms [16]. Clearly, there exist vertex-weighted planar graphs
that cannot be realized as disk contact representations, and the corresponding recognition
problem for planar graphs is NP-hard, even if all vertices have the same weight [6]. However,
the complexity of recognizing weighted disk contact graphs for many interesting subclasses
of planar graphs remained open. Graphs realizable as DCRs with unit disks correspond
to so-called 1-ply graphs. This was stated by Di Giacomo et al. [12] who introduced and
studied the ply number concept for graphs. They showed that internally triangulated bi-
connected planar graphs admitting a DCR with unit disks can be recognized in O(n log n)
time. Bowen et al. [5] showed that when the combinatorial embedding is prescribed, the
problem is NP-hard even for trees. However, the recognition of trees with a unit disk contact
representation remains an interesting open problem if arbitrary embeddings are allowed.1

Another interesting problem is the generation of seeded disk graph representations
in which each disk is required to cover a point in the plane, called seed, that is preassigned
to its corresponding vertex. Atienza et al. [3] showed that this problem is NP-hard in the
contact scenario even if the input graph is outerplanar.

A further related concept are weak disk contact representations, where the disks of
every two adjacent vertices in G must touch, but two touching disks do not necessarily imply
that their vertices are adjacent in G. Chiu et al. [8] and Cleve [10] proved NP-hardness of
recognizing weak unit disk contact graphs for embedded caterpillars and for non-embedded
trees. This problem remains open in the non-weak setting.

Finally, for unit disk intersection graphs as a superclass of unit disk contact graphs,
Bhore et al. [4] recently showed several results, including the NP-hardness of recognizing
outerplanar graphs and embedded trees that admit a unit disk intersection representation.
For caterpillars, however, they showed that the recognition problem can be solved in linear
time, as well as for the related class of so-called lobster graphs in the weak contact model.

Results. In this paper, we examine the aforementioned scenarios more closely and explore
disk contact representations for special graph classes. We extend the results of Breu and
Kirkpatrick [6] and show that it remains NP-hard to decide whether a DCR with unit disks
exists even if the input graph is outerplanar (Section 3). For vertex weights that are not
necessarily uniform we show that the recognition problem is strongly NP-hard even for
stars (Section 4.1). In contrast, for embedded stars we solve the problem in linear time

1In a preliminary version of this article [17], we claimed this problem to be linear-time solvable for the
subclass of caterpillars (i.e., trees for which a path remains after removing all leaves). We still conjecture
that this is true, but our original proof was flawed and the required arguments appear to be more involved
than anticipated, see also Section 6.

http://jocg.org/

JoCG 13(1), 327–376, 2022 329

Journal of Computational Geometry jocg.org

non-embedded DCR embedded DCR
graph class unit disks weighted disks unit disks weighted disks

no
n-
se
ed
ed

planar NP-hard [6] −→ NP-hard NP-hard ↑ −→ NP-hard ↑
outerplanar NP-hard (Thm. 1) −→ NP-hard ↑ NP-hard ↑ −→ NP-hard ↑
trees open NP-hard ↑ NP-hard [5] −→ NP-hard
caterpillars open NP-hard ↑ open open
stars trivial NP-hard (Thm. 2) trivial O(n) (Thm. 3)
paths trivial trivial trivial trivial

contact representation intersection representation
graph class arbitrary disks unit disks unit disks

se
ed
ed

planar NP-hard ↑ NP-hard ↑ NP-hard ↑
outerplanar NP-hard [3] NP-hard ↑ NP-hard ↑
trees NP-hard (Thm. 4) NP-hard ↑ NP-hard ↑
paths open NP-hard (Thm. 5) NP-hard (Thm. 6)

Table 1: Overview of the state of the art, new results, and open problems on disk graph
recognition. A cell with an arrow indicates a result that is an immediate consequence from
the result in the cell at the arrow’s tail.

(Section 4.2). This algorithm assumes a Real RAM model of computation where a set
of basic arithmetic operations (including trigonometric functions and square roots) can be
performed in constant time [22]. We strengthen the result by Atienza et al. [3] and show
that the seeded version of the problem is NP-hard even for trees (Section 5.1). We also
consider a combination of the weighted and seeded problem and show NP-hardness for unit
weights even if the input graph is a path (Section 5.1). The result applies to contact, as
well as intersection representations. Table 1 summarizes our results, the state of the art,
and remaining open recognition problems.

2 Preliminaries

In this section we introduce the planar 3SAT problem and its variations, which will be used
for some of our hardness reductions in this paper. A planar 3SAT (P3SAT) formula ϕ is a
Boolean 3SAT formula with a set U of variables and a set C of clauses such that its variable-
clause-graph Gϕ = (U ∪ C, E) is planar. The set E contains for each clause c ∈ C the edge
(c, x) if a literal of variable x occurs in c. Deciding the satisfiability of a P3SAT formula
is NP-complete [20] and for every P3SAT formula ϕ there exists a planar drawing GRϕ of
Gϕ on a grid of polynomial size such that the variable vertices are placed on a horizontal
line ` and the clauses are connected in a comb-shaped rectangular fashion from above or
below that line [18]. For technical reasons, we additionally add an edge between each pair
of consecutive variables along `, Figure 1a illustrates the result. To distinguish between
the original edges and these additional edges, we refer to the former as literal edges. The
drawing can furthermore be slanted to obtain a drawing GSϕ in which all angles are multiples

http://jocg.org/

JoCG 13(1), 327–376, 2022 330

Journal of Computational Geometry jocg.org

of 60 degrees and vertices are placed on an isometric triangular grid [7]. A P3SAT formula
ϕ is monotone if each clause contains either only positive or only negative literals and if
Gϕ has a planar drawing as described above with all clauses of positive literals on one side
of the horizontal line with the variable vertices and all clauses of negative variables on the
other side, as in Figure 1a. The 3SAT problem remains NP-complete for planar monotone
formulae [20] and is called Planar Monotone 3-Satisfiability (PM3SAT).

3 Unit disk contact graphs

In this section we are concerned with the problem of deciding whether a given graph is
a unit disk contact graph (UDC graph), that is, whether it has a DCR with unit disks.
For a UDC graph we also say that it is UDC-realizable or simply realizable. It is known
since 1998 that recognizing UDC graphs is generally NP-hard for planar graphs [6], but it
remained open for which subclasses of planar graphs it can be solved in polynomial time
and for which subclasses NP-hardness still holds. Here we show that the problem remains
NP-hard for outerplanar graphs. For prominent graph classes below outerplanar graphs such
as (non-embedded) trees the complexity of the recognition problem remains open, while for
embedded trees it is known to be NP-hard [5].

A graph is outerplanar if it admits an outerplane drawing, that is, a planar drawing
in which all vertices lie on the unbounded outer face. As usual, our reduction makes use of
several types of gadgets. Arguing about these gadgets becomes a lot easier, if they admit
a single unique disk contact representation (up to rotation, translation and mirroring). We
call graphs with such a representation rigid. In the following lemma we state a sufficient
condition for rigid UDC structures.

Lemma 1. Let G = (V,E) be a biconnected graph realizable as a UDC representation that
induces an internally triangulated outerplane drawing of G. Then, G is rigid.

Proof. Let G be a UDC representation of G that induces an internally triangulated outer-
plane drawing Γ of G. We prove the statement by induction on the number n of vertices.
The smallest biconnected graph is a triangle which is obviously a rigid graph and, thus, the
statement is true for n = 3.

For the induction step, consider any n > 3 and assume that our hypothesis holds true
for all biconnected graphs with at most n−1 vertices. By assumption, G is outerplanar and
thus there exists a vertex vr ∈ V with deg(vr) ≤ 2. Since G is also biconnected it follows that
deg(vr) = 2. Let v1, v2 ∈ V be the neighbors of vr. Since G is biconnected, the outer face
of Γ is a simple cycle. Thus, since n > 3 and since the drawing is internally triangulated, v1
and v2 are adjacent, and the edge (v1, v2) is internal. Removing the disk corresponding to vr
from G yields a UDC representation G′ that realizes the subgraph G′ = (V ′, E′) of G that
is induced by the vertex set V ′ = V \ {vr}. The induced planar drawing of G′ is obviously
still outerplanar and internally triangulated. Moreover, since v1 and v2, the only neighbors
of vr, are adjacent, G′ is biconnected. Thus, by the induction hypothesis, it is rigid.

We now re-insert the vertex vr and edges (vr, v1), (vr, v2) to G′ (resulting in G) and
add a corresponding disk Dr to G′. Since v1 and v2 are adjacent, their disks touch and,

http://jocg.org/

JoCG 13(1), 327–376, 2022 331

Journal of Computational Geometry jocg.org

x1 x2 x3 x4 x5

x1 ∨ x4 ∨ x5

x1 ∨ x2 x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x3

¬x1 ∨ ¬x4 ∨ ¬x5

(a)

LL L L LD E E E E D

H H

H H H H H H H H H H H H H

H H

H H H H H H H H H H

E
E E

E E
E

E E

V

V

V

V

V

V

V

V

V

V

V

V

S S S S S S S S

S S S S S S

T

T

T

T

C

C C C C

C

C C

C C

X X
X X

X X
X

X X X
X

X
X

(b)

Figure 1: (a) Planar rectangular drawing GRϕ of a PM3SAT formula ϕ. (b) Layout of the
gadget tiles of our construction, which mimics GRϕ .

thus, there are exactly two possible locations pr and pl in the plane for a disk that touches
the disks of both v1 and v2. Without loss of generality we may assume that pr is the former
location of Dr. Since (v1, v2) is an internal edge of Γ and since Γ is internally triangulated,
there exists some vertex vl 6= vr adjacent to both v1 and v2. In both G and G′, the disk
of vl is placed at pl. Hence the only possible placement for Dr in G′ is pr and, thus, G is
rigid.

We note that for a graph G satisfying the conditions of Lemma 1, every internal
face is a triangle. The dual graph of the internal faces is a tree of maximum degree three,
similarly to the dual graph of a triangulation of a simple polygon. We are now prepared to
proceed with the proof of the main result of this section.

Theorem 1. For outerplanar graphs the UDC recognition problem is NP-hard if an arbitrary
embedding is allowed.

Proof. We perform a polynomial time reduction from PM3SAT (see Section 2) to show the
NP-hardness of recognizing outerplanar UDC graphs. For the reduction we create, based on
the planar rectangular drawing GRϕ of a PM3SAT formula ϕ (see Figure 1a) an outerplanar
graph that has a UDC representation if and only if the formula ϕ is satisfiable.

For ease of presentation, we start by describing a reduction from PM3SAT to a more
constrained variant of UDC recognition where the positions of a subset of the vertices may be

http://jocg.org/

JoCG 13(1), 327–376, 2022 332

Journal of Computational Geometry jocg.org

Figure 2: Two neighboring Type H wire gadgets, both of which are oriented to the right.
This illustration is not up to scale: the underlying constant sized hexagonal grid of each
tile actually needs to be larger to ensure that the other gadget types (in particular the
Type T and Type X wire) can be realized. When scaling the Type-H wire to the correct
grid size, the length of the vertical and horizontal “segment” of the T-shaped bar is increased
accordingly, but its width remains fixed (≈ 2 times the disk diameter). Similarly, the length
of the segments of the tunnel structure is increased, but the tunnels remain thin (≈ 4 times
the disk diameter), so that the bar has only little wiggle room.

prescribed as part of the input. We call this problem partial UDC recognition (PUDC). We
then modify the gadgets of our construction to extend our reduction to the standard version
of UDC recognition, where the coordinates of the disks are no longer fixed in advance. We
will use a packing argument to show that all the disks have to be placed near their intended
locations, so that the idea for the correctness of the reduction to PUDC carries over.

Wire gadgets. The main building blocks of the reduction are wire gadgets that
come in different variations. Each wire gadget occupies a rectangular tile designed on a
hexagonal grid of fixed size and orientation (see, e.g., Figure 2) so that different tiles can
be flexibly put together in a grid-like fashion (see Figure 1b) to mimic the layout of the
planar rectangular drawing GRϕ (see Figure 1a). Each of the wire gadgets consist of a rigid
tunnel-like structure. Most of these gadgets contain a rigid bar that can be flipped into
different tunnels around a centrally located disk. The bars stick out of the tiles in order to
transfer information to the neighboring tiles, and longer chains of wire gadgets will be used
to transport information between the other gadgets of our construction.

Figure 2 illustrates the UDC realization of two neighboring Type H (horizontal) wire
gadgets. The red and blue disks form the aforementioned thin tunnel and their positions are
considered to be fixed. By Lemma 1 the two underlying UDC graphs are rigid. The black
disks in each of the tiles constitute the T-shaped bar of the wire gadget, whose underlying
UDC graph is also rigid by Lemma 1. The positions of the disks of the bar are not fixed.
However, combinatorially speaking, there are only two possible ways to place the bar since
it is attached to a path consisting of two orange chain disks (whose positions are not fixed),

http://jocg.org/

JoCG 13(1), 327–376, 2022 333

Journal of Computational Geometry jocg.org

L

X S D

E

V

CTH

M

Figure 3: Overview of all wire types in our construction. Some of these tiles come in multiple
orientations, e.g., there are four orientations of the Type C wire (bottom-left, bottom-right,
top-left, and top-right).

that are attached to a red disk (whose position is fixed) near the center of the tunnel: the
bar can be placed such that it sticks out to the right (as in Figure 2) or to the left of the
gadget tile. We say that the wire is oriented to the left or right, respectively. If the left of
the two wires is oriented to the right, the right wire has to be oriented to the right as well;
otherwise, their bars would intersect. Conversely, if the right wire is oriented to the left, the
left wire has to be oriented to the left as well. Hence, longer chains of consecutive Type H
wire gadgets can be used to propagate information along a horizontal row of the grid.

To achieve more flexibility, we introduce further types of wire gadgets, all of which
are designed according to the same principals as the Type H wire; for a schematic overview
of all wire types see Figure 3. In particular, each tile contains tunnels formed by rigid
subgraphs and the positions of the vertices of these subgraphs are considered to be fixed.
The Type V (vertical) wire gadget works analogously to the Type H wire gadget, except that
it propagates information vertically rather than horizontally, see Figure 4. Conceptually, the
Type V wire gadget corresponds to a Type H wire rotated by 90◦. However, to ensure that
the orientation of the underlying hexagonal grid of all tiles is consistent (so that the tiles
can indeed be put together in a grid-like fashion), the disks are arranged slightly differently.
A vertical wire is a Type V wire or a Type S wire, which is a variant of a Type V wire
defined below. Similarly, a horizontal wire is a Type H wire or a Type M wire, which is a
variant of a Type H wire defined below. In a Type T wire gadget, the bar has to be placed
in one of two horizontal tunnels or in a vertical tunnel, see Figure 4. The Type C (corner)
wire gadget allows the transition from a horizontal to a vertical wire, see Figure 4.

http://jocg.org/

JoCG 13(1), 327–376, 2022 334

Journal of Computational Geometry jocg.org

VV

HHH H

V

C CT

Figure 4: Schematic of a clause gadget.

Literal gadgets. For each literal edge of the variable-clause-graph Gϕ of ϕ, we
create a literal gadget which consists of several consecutive vertical wires, see Figure 1b. If
the bottom-most (top-most) wire of the gadget is oriented towards the top (bottom), then
all of its wires are oriented to the top (bottom). This corresponds to the two truth states
of the literal.

Clause gadgets. We create a clause gadget for each clause c of ϕ. Each clause
gadget consists of multiple consecutive wire gadgets in a horizontal grid row, see Figure 4.
Specifically, the left-most and right-most wire is of Type C and attaches to a vertical wire
belonging to a literal gadget. One of the wire gadgets between the two Type C wires is of
Type T and the remaining wires are horizontal. The Type T wire also attaches to a vertical
wire that belongs to a third literal gadget. Hence, the clause gadget is connected to a total
of three distinct literal gadgets corresponding to the literal edges incident to c in Gϕ. The
Type T wire has to be oriented towards one of its neighboring tiles. Since this information
is propagated, at least one of the three attached literal gadgets has to be oriented away from
the clause gadget. This corresponds to the fact that at least one of the three literals of each
clause has to be satisfied, e.g., in Figure 4 the literal corresponding to the right-most literal
gadget attached to the clause has to be satisfied. (The above description assumes that the
clause has three literals. If the clause has only two literals, we omit the Type T wire. If
the clause has only one literal, its gadget consists of a modified vertical wire where one of
the two sides is blocked so that the orientation of the wire is fixed. Alternatively, we could
transform ϕ into an equivalent formula where every clause has exactly three literals.)

Variable gadgets. We create a variable gadget for each variable x of ϕ. Each
variable gadget consists of an odd number s of consecutive tiles in a horizontal row of the
tile grid. The central tile is a Type L (long) wire gadget, which is defined like a Type H
wire gadget, except that its long bar stretches over (s+ 1)/2 tiles, rather than just one (see
Figure 5). For each literal edge e incident to x in Gϕ, there is one Type X wire Xe in the
variable gadget; the remaining wires are of Type E. A Type E (empty) wire is defined as a
Type H wire, except that it has no rigid bar and no chain disks, so that the long bar of the
Type L wire can be embedded in its tunnel, see Figure 5. A Type X wire is similar to the

http://jocg.org/

JoCG 13(1), 327–376, 2022 335

Journal of Computational Geometry jocg.org

E

LXX

X X

S S

S S

V V

V V

D

E

E

Figure 5: Schematic of a variable gadget.

Type T wire, but it contains no bar and no chain disks: it consist of a horizontal tunnel
that allows the long bar of the Type L gadget to pass through the gadget tile and a vertical
tunnel that attaches to the horizontal tunnel from above (or below) and extends a bit below
(above) the horizontal tunnel, see Figure 5. The Type X wire Xe is located to the left of the
Type-L wire if and only if e corresponds to a positive literal, and its vertical tunnel attaches
to the literal gadget Le corresponding to e. The unique vertical wire of Le that attaches to
the vertical tunnel of Xe is of Type S; the remaining (vertical) wires of Le are of Type V.
A Type S wire is defined as a Type V wire, except that its bar is a bit longer and the disk
to which it is attached via the chain disks is shifted towards the attached variable gadget
such that if the literal gadget Le is oriented towards the variable gadget, the long bar of its
Type L wire cannot be embedded in the tunnel of Xe without crossing the bar of the Type S
wire, see Figure 5. Hence, if the bar of the Type L wire is oriented to the left (right), all
literal gadgets of positive (negative) literals of x have to be oriented away from the variable
gadget of x. This corresponds to the two truth states of x.

All variable gadgets are arranged on a common horizontal grid row. We fill the tiles
between each pair of consecutive variable gadgets with Type E wires. To the left (right)
of the left-most (right-most) variable gadget we place a Type-D (dead end) wire, which is
defined like the Type E wire, except that one of its sides is blocked (see Figure 5, left).

This concludes our construction. Let G1 denote the planar graph underlying our
construction (we remark that G1 not outerplanar; we fix this aspect below). Since each tile
contains a constant number of disks and the number of tiles is polynomial (actually, linear)
in the grid size of the planar rectangular drawing GRϕ , which is polynomial in the size of ϕ,

http://jocg.org/

JoCG 13(1), 327–376, 2022 336

Journal of Computational Geometry jocg.org

the size of G1 is polynomial in the size of ϕ. We remark that we do not need to worry about
encoding the prescribed disk coordinates since our ultimate goal is a reduction to UDC,
where the disk coordinates are no longer fixed.

Correctness. We now show that G1 has a PUDC realization if and only if the
PM3SAT formula ϕ = (U , C) is satisfiable. If the latter is the case, there exists a truth
assignment t for U that satisfies all clauses in C, i.e., one literal of each clause in C is
satisfied with respect to t. Each literal of a clause c ∈ C corresponds to one of the literal
gadgets attached to the clause gadget representing c. A truth assignment for U induces an
orientation for each of these gadgets: we orient the gadgets of satisfied literals towards their
respective variable gadget and the gadgets of unsatisfied literals towards the clause gadget.
Thus, t induces an orientation in which at least one of the literal gadgets attached to the
clause gadget of c is oriented towards a variable gadget, which is a necessary and sufficient
condition for the realizability of the clause gadget. Furthermore, a truth assignment induces
an orientation for the long bar of each variable gadget. We orient a long bar to the right
(left) if the corresponding variable is true (false). Recall that all clauses above (below)
the horizontal line of variables contain exclusively positive (negative) literals and that the
literal gadgets that represent these literals are attached to the left (right) side of each variable
gadget. Each satisfied literal gadget Le is oriented towards its respective variable gadget,
thus, the bar of its Type S wire sticks into the Type X wire Xe of the variable gadget. This
does not interfere with the realizability of the variable gadgets’ subgraphs due to the fact
that the orientation of long bars induced by t is chosen such that these bars only prevent
gadgets of unsatisfied literals to be oriented towards variable gadgets. The unsatisfied literal
wires have to be oriented towards their respective clause gadgets in accordance with the
orientation (induced by t) of the vertical wires incident to the clause gadgets. Thus, if ϕ is
satisfiable, G1 is realizable.

On the other hand, if G1 is realizable, the orientation of the long bars of the variable
gadget induces a satisfying truth assignment t: if such a bar is oriented to the right, we set
the variable to true; otherwise to false. Each positive (negative) clause gadget is attached
to at least one literal gadget that is oriented away from the clause gadget, which is only
possible only if the long bar of the variable gadget attached to the literal gadget is oriented
to the right (left), implying that according to t, the corresponding literal is true. Hence,
each clause is satisfied.

We proceed by modifying our construction to prepare for the transition to the UDC
problem.

Outerplanarity and connectivity. In this paragraph, we show that G1 is easily
turned into an equivalent PUDC instance that is outerplanar. Moreover, we do so while also
making the graph connected. The latter property is important to establish some control
over the placement of its maximal rigid subgraphs when going from PUDC to UDC.

We begin by studying the structure of G1. By construction, the subgraph of G1

induced by the vertices whose positions are fixed (i.e., the vertices that form the tunnel
structure) has a PUDC representation. Consider the (unique) plane subgraph Γ1 induced

http://jocg.org/

JoCG 13(1), 327–376, 2022 337

Journal of Computational Geometry jocg.org

x1 x2 x3 x4 x5

x1 ∨ x4 ∨ x5

x1 ∨ x2 x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x3

¬x1 ∨ ¬x4 ∨ ¬x5

fo
f9f8

f2

(a)

LL L L LD E E E E D

H H H H H H H H H H M H H H H H H H H H H H H M H H

H H M H H H H M H H H M H

H H H H H H H H M H H H H H H H H H H H H M H H

H H M H H H H M H H

E
E E

E E
E

E E

V

V

V

V

V

V

V

V

V

V

V

V

S S S S S S S S

S S S S S S

T

T

T

T

C

C C C C

C

C C

C C

X X
X X

X X
X

X X X
X

X
X

(b)

Fo

F1 F2

F3 F4 F5

F6 F7 F8 F9

T

KFo

KF1

KF3
KF4 KF5

KF2

KF8

KF6 KF7

KF9

(c)

(d) (e)

Figure 6: Example of our reduction on multiple levels of detail. (a) Planar rectangular
drawing GRϕ of a PM3SAT formula ϕ (with selected faces labeled to make the correspondence
to Subfigure (c) apparent). (b) Layout of the gadget tiles of our construction, which mimics
GRϕ . (c) Structure of the plane graphs Γ1 and Γ2. Each of the white faces corresponds to a
face in GRϕ . The blue face corresponds to the interior of the tunnels. The short orange lines
indicate the paths added by the Type M wires. (d) Structure of the plane graph Γ′2. (e)
The Type M wire is identical to the Type H wire, except that an additional chain disk is
added to establish a connection between the red and the blue tunnel boundary.

http://jocg.org/

JoCG 13(1), 327–376, 2022 338

Journal of Computational Geometry jocg.org

by this representation. Each face f of the planar rectangular drawing GRϕ (including the
outer face) corresponds to a face F in Γ1 whose boundary is described by a connected
component KF of Γ1, see Figures 6a and 6c (white). Let F denote the collection of these
faces F of Γ1. Moreover, Γ1 contains a face T that corresponds to the interior of the tunnels
(the region where the bars and chain disks are placed), see Figure 6c (blue). The remaining
faces of Γ1 are triangular. By construction, each of the vertices of such a triangular face is
also incident to T or some F ∈ F .

We now show how to make G1 connected. To this end, we introduce the Type M
(merging) wire, whose definition is analogous to that of the Type H wire, except that we add
another chain disk that, together with the other two chain disks, forms a path that connects
the two subgraphs forming the tunnel, see Figure 6e. The position of the new disks is not
considered to be fixed. Hence, the path of chain disks is a bit flexible and the bar of the
Type M wire can be embedded such that it sticks out either to the right or to the left of the
gadget tile, just like in a regular Type H wire. For each maximal sequence of consecutive
Type H wires (which only occur in the clause gadgets), we pick an arbitrary Type H wire
and replace it by a Type M wire, see Figure 6b. The resulting graph G2 is connected (see
Figure 6c) and PUDC realizable if and only if G1 is PUDC realizable.

Next, we show how to make our instances outerplanar. Let Γ2 denote the induced
plane graph of a PUDC representation of the subgraph of G2 induced by the union of the
vertices whose positions are fixed and the vertices that correspond to chain disks (i.e., we
consider all disks except for those of the bars). Note that when going from Γ1 to Γ2 (by
adding the paths formed by the chain disks) the set of faces does not change, that is, for
each path of chain disks, we have that both the face to its left and the face to its right is
the face T that corresponds to the interior of the tunnels, see Figure 6c. Let F ∈ F . Pick
a pair of adjacent vertices u, v in KF such that one of them is incident to F and one of
them is incident to T and such that none of them is adjacent to a vertex corresponding to a
chain disk. Removing u and v merges F and T . Moreover K ′F = KF \ {u, v} is still rigid by
Lemma 1. Hence, by repeating this step for each F ∈ F , we obtain a connected outerplane
graph Γ′2, see Figure 6d. By applying the corresponding modifications to G2, we obtain an
equivalent PUDC instance G′2 that is outerplanar and connected.

Locks and keys. Since the connections realized by means of the Type M wires are
(necessarily) nonrigid, there is still some wiggle room when relaxing the fixed disks of the
PUDC instance and interpreting G′2 as an instance of UDC. To establish more control over
the possible placement of the maximal rigid subgraphs, we continue to modify our graph.
The main idea is to twist and interlace the tunnels in specific patterns such that the two
sides of a tunnel are kept close together. More specifically, we assign a unique id to each
individual tile of our construction and then deform the tunnels of each tile depending on
the bit representation of its id. We refer to this as a lock-and-key mechanic. We start
by describing this mechanic in the PUDC setting for the graph G2 and then transition to
the UDC setting and the graph G′2.

Figures 7 and 8 illustrate the lock-and-key mechanic applied to a tile that contains a
horizontal wire. The left and right sides of the wire are deformed symmetrically. On the left

http://jocg.org/

JoCG 13(1), 327–376, 2022 339

Journal of Computational Geometry jocg.org

(a) (b) (c)

Figure 7: (a) Schematic of the lock-and-key mechanic applied to a horizontal wire. (b) Close-
up of the key and lock on the left side, which also contains the bar. The bit representation
of the encoded id is 110. A low-level representation with disks can be found in Figure 8. (c)
Close-up of the key and lock on the right side.

side, the red disks form a key and the blue disks its lock, and on the right side the blue disks
form a key (centrally symmetric to the red key) and the red disks form a lock (centrally
symmetric to the blue key). A key and its lock consist of two main parts. The part closer
to the original tunnel consist of a sequence of T-shaped tunnel segments, one for each bit
of the representation of the id of the tile (we assume that the bit representation of each key
has the same length, which is logarithmic in the number of tiles). There are two variations
of T-shaped tunnel segment, which differ in terms of their length. A long segment is used
to encode a 1 and a short segment is used to encode a 0. The other part of the key and
its lock is just a rectangle. We also deform the bar of the wire gadget such that it fits in
between the key and its lock, see Figures 7 and 8. Since the red and blue keys of the gadget
are centrally symmetric, the bar can be embedded such that it sticks out either to the left
side or to the right side of the gadget tile. Hence, the information propagation still works
just like in the original construction.

The lock-and-key mechanic can be applied analogously to tiles of vertical wires and
Type C wires. In tiles of Type T wires, we use three centrally symmetric key-and-lock
pairs to ensure that the gadget can be oriented towards either of the three directions as
desired, see Figure 9. In the variable gadgets, we have to alter our strategy for choosing
and placing the keys slightly since the long bar needs to be deformed to fit through every
lock-and-key mechanic on both sides of the variable gadgets. In each of the tiles of a variable

http://jocg.org/

JoCG 13(1), 327–376, 2022 340

Journal of Computational Geometry jocg.org

B C

A

Figure 8: Realization of the bottom part of the lock-and-key mechanic illustrated in Fig-
ure 7b.

gadget we introduce two lock and key pairs near the center of the tile, just like we did in
the tiles of horizontal wires. In the Type L tile, we choose two centrally symmetric lock
and key pairs that encode some bit vector a, as usual. For each of the remaining tiles,
we use nonsymmetric lock and key pairs such that the sequence of the bit vectors of keys
encountered when walking through the variable gadget from the Type L tile T0 to the right

http://jocg.org/

JoCG 13(1), 327–376, 2022 341

Journal of Computational Geometry jocg.org

Figure 9: Schematic of the lock-and-key mechanic applied to a Type T wire. The bars have
been omitted for the sake of visual clarity.

LXX

X X

E

E

D

E

a

a

bcdefg

b c d e f g

h

i

j

k

T0 T1 T2 T3T−1T−2T−3

Figure 10: Placement and choice of the keys in the variable gadgets.

is the same as the one encountered when walking from T0 to the left, for an illustration see
Figure 10. More specifically, in the tile T1 directly to the right of T0 the left key encodes
some bit vector b and the right key encodes some different bit vector c. Symmetrically, in
the tile T−1 directly to the left of T0 the right key encodes b and the left key encodes c.
More generally, the tile Ti that is located i tiles to the right of T0 uses two distinct lock and
key pairs, and the tile T−i located i tiles to the left of T0 uses the same pairs of locks and
keys but in reverse order. This choice of keys and locks ensures that the long bar can be
deformed such that it fits in the tunnels on either of the two sides. In each of the Type D
tiles and the Type E tiles that were placed between consecutive variable gadgets, we may
use two distinct unique key pairs since our construction does not require any of the bars to
traverse the center of these tiles, see Figure 10.

To ensure that there is enough space on the gadget tiles to accommodate the locks
and keys, we may need to scale the underlying hexagonal grid by a polynomial factor (ac-
tually, the factor is logarithmic in the number of tiles). As already discussed in the caption

http://jocg.org/

JoCG 13(1), 327–376, 2022 342

Journal of Computational Geometry jocg.org

of Figure 2, when scaling to the desired grid size, the length of the vertical and horizontal
“segment” of each T-shaped bar is increased accordingly, but its width remains fixed (at ≈ 2
times the disk diameter). Similarly, the length of the segments of the tunnel structure is
increased, but the tunnels remain thin (≈ 4 times the disk diameter), so that the bar has
very limited wiggle room.

Let G3 and G′′3 denote the connected planar graphs obtained by applying the lock
and key mechanic to G2 and G′2, respectively. The graph G′′3 is not outerplanar, but we
can turn it into an outerplanar graph G′3 by using the same trick that was applied when
going from G2 to G′2: for each key, we remove two adjacent disks in the part of the key that
encloses its rectangular region.

From PUDC to UDC. Clearly, if G′3 has a PUDC realization, then it also has
a UDC realization. For the other direction, consider a UDC realization ΛUDC

3 of G3 and
let ΓUDC

3 denote the restriction of ΛUDC
3 to the union of the vertices whose positions were

previously considered fixed and the vertices that correspond to the chain disks (i.e., we
consider all disks except for those of the bars). Let ΓPUDC

3 denote a PUDC realization of
the same set of vertices, which exists by construction.

Let Fo denote the face of ΓPUDC
3 that corresponds to the outer face of the planar

rectangular drawing GRϕ . Let KFo denote the maximal rigid subgraph that describes the
boundary of Fo. Without loss of generality, the coordinates of the disks of KFo in ΓUDC

3

and ΓPUDC
3 are identical. Due to the connections that were introduced by means of the

Type M wires, all disks of ΓUDC
3 are placed in the closed interior of KFo , as illustrated

in Figure 6c. Let TUDC and TPUDC denote the face corresponding to the interior of the
tunnels in ΓUDC

3 and ΓPUDC
3 , respectively, see Figure 6c (blue). It is a priori not clear that

the boundaries of TUDC and TPUDC are identical (i.e., the combinatorial embedding of the
plane graphs induced by ΓUDC

3 and ΓPUDC
3 could differ). However, by rigidity, the area AT

of TUDC and TPUDC is identical. Intuitively, this area corresponds to the wiggle room in
our construction.

Without loss of generality, we may assume that the rectangular part of each key has
an area larger than AT . Otherwise, we can scale the instance to achieve this property since
scaling increases the area of the rectangles quadratically, while the area of TUDC and TPUDC

increases only linearly (since the width of the tunnels remains unchanged). In particular, if
the area of the rectangular region R of a key is a·b, then scaling by a factor S ≥ AT increases
the area of R to ≈ a·b·S2 and the area of TUDC and TPUDC to ≈ S ·AT ≤ S2. It follows that
in ΓUDC

3 each key is placed in some lock since otherwise there is a lock whose rectangular
region is devoid of any disks by construction and, hence, the area of TUDC is larger than AT ,
which would contradict the definition of AT . Moreover, we will show that in ΓUDC

3 each key
is placed in its intended lock, that is, the same lock it is placed in in ΓPUDC

3 .

Each key (and lock) encodes a bit vector, and for each bit vector there are at most
three keys (and locks) encoding it. By construction, each key only fits in a lock encoding
the same bit vector. Therefore, each key fits in at most three locks. We need to show that
it is placed in the intended lock. For lock and key pairs introduced in the horizontal wires
this is easy to see since the red key of such a wire cannot possibly be placed in the red

http://jocg.org/

JoCG 13(1), 327–376, 2022 343

Journal of Computational Geometry jocg.org

lock, as they belong to the same maximal rigid subgraph. For the vertical wires and the
Type C wires we can argue analogously. The intended pairing of the three locks and the
three keys in each Type T wire follows from the fact that its adjacent horizontal and vertical
wires have the intended lock and key pairings and are rigidly connected to the T wire. For
the tiles involved in the variable gadgets, we can argue similarly: each variable gadget is
adjacent to a Type D or Type E wire on both its left and right side. The keys and locks
used in these wires encode unique bit vectors and, hence, must be paired up as intended. It
follows that the keys and locks of the leftmost and rightmost wire tile of the variable gadget
are paired up as intended. This correct pairing propagates inductively through the whole
variable gadget.

We have established that in ΛUDC
3 each key is placed in its intended lock. Consider

an arbitrary key placed in its intended lock, say the key is red and its lock is blue as in
Figure 8. Let A be a red disk where the key branches off of the main tunnel as marked in
Figure 8. Similarly, let B and C be two blue disks where the two sides of the lock branch off
of the main tunnel. Recall that we have scaled the instance by some factor S to achieve that
the rectangular part of each key has an area larger than AT . If S = 1 (i.e., the scaling was
unnecessary), then the distance between A and B, as well as the distance between A and C
are bounded by a constant. We may retain this property even for scaling factors S > 1. To
this end, we scale the instance as usual, except that we keep the sizes of the non-rectangular
parts of the keys (i.e., the parts that encode the id of the respective tile) fixed. Now consider
two adjacent gadget tiles T1 and T2 connected by a tunnel. By applying the above argument
to two consecutive key and lock pairs, one from each tile, and since the tunnel between these
pairs is rigid, we obtain that the width of the entire tunnel segment is constant. Hence, if T1
and T2 are wire gadgets and, say, T1 is oriented towards T2, then T2 cannot be oriented
towards T1. This is due to the fact that each bar ends with a (polynomially) long segment
perpendicular to the tunnel and therefore tolerates a constant displacement of the tunnels
it is placed in without losing its propagation property. To see that the propagation of truth
values at the Type X wires in the variable gadgets also works as intended, we can argue as
follows: consider two adjacent gadget tiles T1 and T2 where T1 is of Type X and T2 is of
Type S. By applying the above argument about the constant distances between the disks A,
B, and C of each lock and key pair to the two lock and key pairs in T1 and the lock and
key pair of T2 that is closer to T1, we obtain that the width of the entire tunnel segment
between T1 and T2 is again constant. As already shown, the width of the tunnel segment
leading to the two horizontal neighbors of T1 is also constant. With the same argument as
for the propagation between two wire tiles, we see that the propagation between the variable
gadget and its attached literal gadgets also works as intended. Hence, the graph G3 has a
PUDC realization, as desired.

So far, we have established that G3 has a UDC realization if and only if it has a
PUDC realization. The final step is to extend our argument to our outerplanar graph G′3.
In the above packing argument, we referred to the area AT of the tunnel face T of ΓUDC

3

and ΓPUDC
3 . In realizations of G′3, the face T was merged with other faces. However, the

gaps introduced to merge these faces have a width of one disk diameter. Hence, no disks
can pass through these gaps and it follows that G′3 is UDC realizable if and only if G3 is
UDC realizable.

http://jocg.org/

JoCG 13(1), 327–376, 2022 344

Journal of Computational Geometry jocg.org

Altogether, we have shown that the outerplanar graph G′3 is UDC realizable if and
only if ϕ is satisfiable. The number of disks in our construction is polynomial and, hence,
the underlying graph can be computed in polynomial time. This concludes the proof.

4 Weighted disk contact graphs

In this section, we assume that a positive weight w(v) is specified for each vertex v of the
graph G = (V,E) as part of the input. The task is to decide whether G has a DCR, in which
each disk Dv representing a vertex v ∈ V has radius proportional to w(v). A DCR with this
property is called a weighted disk contact representation (WDC representation) and a graph
that has a WDC representation is called a weighted disk contact graph (WDC graph). Ob-
viously, recognizing WDC graphs is at least as hard as the UDC graph recognition problem
from Section 3 by setting w(v) = 1 for every vertex v ∈ V . Accordingly, we first show that
recognizing WDC graphs is NP-hard even for stars (Section 4.1), however, embedded stars
with a WDC representation can still be recognized (and one can be constructed if it exists)
in linear time (Section 4.2).

4.1 Hardness for stars

We perform a polynomial reduction from the well-known 3-Partition problem. Given a
bound B ∈ N and a multiset of positive integers A = {a1, . . . , a3n} such that B

4 < ai <
B
2

for all i = 1, . . . , 3n, deciding whether A can be partitioned into n triples of sum B each is
known to be strongly NP-complete [14]. Let (A, B) be a 3-Partition instance. We construct
a star S = (V,E), i.e., a tree with a single internal vertex vc ∈ V and all leaves in V \ {vc}
adjacent to vc, and a radius assignment r : V → R+ such that S has a WDC representation
respecting r if and only if (A, B) is a yes-instance.

Recently, Alt et al. [2] considered the problem of packing disks on a horizontal line,
such that the distance between the leftmost point of any disk and rightmost point of any
disk is minimized. To show NP-hardness, the authors also used the reduction from the
3-Partition problem. We discussed with the authors whether our problem can be directly
transformed to theirs or vice versa, but it remains unclear whether this is possible. There are
two main differences to our setting: in the setting by Alt et al. (1) the disks are packed onto
a flat surface rather than a curved one (i.e. the disk corresponding to the star center vc); and
(2) the disks are allowed to touch while in our setting only adjacent disks may touch, i.e, the
disks corresponding to the leaves of the star must be pairwise disjoint. These differences
make the necessary computations in our scenario significantly more involved.

We create a central disk Dc of radius rc corresponding to the central vertex vc of S
as well as a fixed number of outer disks with identical radius ro chosen appropriately such
that these disks have to be placed closely together around Dc without touching, creating
funnel-shaped gaps of roughly equal size; see Figure 11. Then, a WDC representation of S
exists only if all remaining disks can be distributed among the gaps, and the choice of the
gap will induce a partition of the integers ai ∈ A. We shall represent each ai by a single
disk called an input disk and encode ai in its radius. Each of the gaps is supposed to be

http://jocg.org/

JoCG 13(1), 327–376, 2022 345

Journal of Computational Geometry jocg.org

r(ai)

ro

Dc

Figure 11: Reducing from 3-Partition to prove Theorem 2. Input disks (dark) are distributed
between gaps. Hatched disks are separators.

large enough for the input disks that represent a feasible triple, i.e., with sum B, to fit inside
it, however, the gaps must be too small to contain an infeasible triple’s disk representation,
i.e., a triple with sum > B.

While the principal idea of the reduction is simple, the main challenge is finding a
radius assignment satisfying the above property and taking into account numerous addi-
tional, nontrivial geometric considerations that are required to make the construction work.
For example, we require that the lower boundary of each gap is sufficiently flat. We achieve
this by creating additional dummy gaps and ensure that they can not be used to realize a
previously infeasible instance. Next, we make sure that additional separator disks must be
placed in each gap’s corners to prevent left and right gap boundaries from interfering with
the input disks. Finally, all our constructions are required to tolerate a certain amount of
“wiggle room”, since, firstly, the outer disks do not touch and, secondly, some radii cannot
be computed precisely in polynomial time and must be approximated.

Since S is supposed to be a star, the only adjacencies in our construction are the
ones with Dc. However, several of the disks adjacent to Dc are required to be placed very
close together without actually touching. We shall, whenever we need to calculate distances,
handle these barely not touching disks as if they were actually touching. We will describe
how to compute these distances approximately; see Lemma 7. During this step the radius of
the central disk increases by a suitably small amount such that no unanticipated embeddings
can be created.

Let B > 12 and n > 6, and let m ≥ n be the number of gaps in our construction. In
the original scenario described above, a gap’s boundary belonging to the central disk Dc,
which we call the gap’s bow, is curved as illustrated in Figure 12a. We will, however, first
consider a simplified scenario in which a gap is created by placing two disks of radius ro
right next to each other on a straight line as depicted in Figure 12b. We refer to this gap’s
straight boundary as the base of the gap. We call a point’s vertical distance from the base its
height. We also utilize the terms left and right in an obvious manner. Assume for now that
we can place two separator disks in the gap’s left and right corner, touching the base and
such that the distance between the rightmost point pl of the left separator and the leftmost
point pr of the right separator is exactly 12 units. These separator disks are small and have
the radius of the smallest possible input disk. We can assume B ≡ 0 mod 4; see Lemma 2.
Thus, we know that a ∈ {B/4 + 1, . . . , B/2− 1} for any a ∈ A.

Lemma 2. For each m ≥ n, there exists a 3-Partition instance (A′, B′) equivalent to the
3-Partition instance (A, B) described above with |A′| = 3m and B′ = 180B.

http://jocg.org/

JoCG 13(1), 327–376, 2022 346

Journal of Computational Geometry jocg.org

Dc d
chord

bow
separator

outer disk

ro

12

ro

ro ro

6 + rmin

(a) original scenario

ro ro

ro ro

base

separator
12

(b) simplified scenario

Figure 12: A gap, bounded in (a) by two outer disks and a bow; in (b) the gap’s base
replaces its bow. The distance between the separators is 12 in both scenarios.

Proof. Let n′ = m−n. For each ai ∈ A, we add 180ai toA′. Additionally, we add 2n′ integers
with value 60B− 5 and n′ integers with value 60B+ 10. The resulting instance (A′, B′) can
be realized if and only if the original 3-Partition instance (A, B) is a yes-instance. Clearly,
if (A, B) is a yes-instance, then (A′, B′) is a yes-instance. For the opposite direction, let S be
a solution for (A′, B′) and assume that (A, B) is a no-instance. Then, there exists a triple t
of integers in S that contains either one or two integers of A′ \ {a = 180ai | ai ∈ A}. The
sum of the integers in t is 5, 10, 20, 50 or 55 mod 60 contradicting to S being a solution
for (A′, B′) since B′ ≡ 0 mod 60.

Our first goal is to find a function r : {B/4, B/4 + 1, . . . , B/2} → R+ that assigns a
disk radius to each input integer as well as to the values B/4 and B/2 such that a disk triple t
together with two separator disks can be placed on the base of a gap without intersecting
each other or the outer disks if and only if t is feasible. In the following, we show that
r(x) = 2 − (4 − 12x/B)/B will satisfy our needs. We choose the radius of the separators
to be rmin = r(B/4 + 1) = 2− (1− 12/B)/B, the smallest possible input disk radius. The
largest possible input disk has radius rmax = r(B/2− 1) = 2 + (2− 12/B)/B. Note that r
is linear and increasing.

Next, we show for both scenarios that separators placed in each gap’s corners prevent
the left and right gap boundaries from interfering with the input disks.

Lemma 3. Let the radii rc of the central disk and ro of the outer disk vary arbitrarily, such
that the distance between two separator disks placed into the corners of a gap remains 12.
Then, for any a ∈ A it is not possible that a disk with radius r(a) intersects one of the outer
disks that bound the gap when placed between the two separators.

Proof. First, we utilize a geometric construction to show that ruo = 38 is an upper bound for
the outer disks’ radius ro and then use this result to prove that even disks with radius rmax
placed in a gap right next to a separator do not intersect an outer disk in the original
scenario, implying that the input disks can actually be placed inside the gaps.

Let the distance between the two separator disks always remain 12 as in Figure 12b.
For fixed rmin, if the number of gaps m decreases, then rc decreases and ro increases. For
fixed m, if rmin increases, so does ro. We designate a minimum value of mmin = 6 to m

http://jocg.org/

JoCG 13(1), 327–376, 2022 347

Journal of Computational Geometry jocg.org

π/3

π/3

d1

c1 c2

l1 l2

cc

π/3

π/3
d112 2

k k

k

k

k

k

d2

Figure 13: The geometric construction for the proof of Lemma 3.

and observe that rmin = r(B/4 + 1) = 2 − (1 − 12/B)/B < 2 for any B > 12. Consider
the extreme case m = 6 and rmin = 2 in Figure 13. The angle between the two line
segments l1, l2 bounded by the centers c1, c2 of two adjacent outer disks and the center cc
of the central disk Dc is 2π/mmin = π/3 and, therefore, l1 and l2 together with the line
segment c1c2 constitute an equilateral triangle. This implies that the outer disk radius
is equal to the radius of the central disk, we denote this radius with k. By using basic
trigonometry as well as the Pythagorean Theorem, we obtain that k has to satisfy the
equality k = d1 + 2 + 12 + 2 + d1 = 2d1 + 16, where d1 = cos(π/6) · d2 =

√
3 · d2/2

and d2 =
√

(k + 2)2 − k2 =
√

4k + 4 = 2
√
k + 1. This set of equalities solves for k =

22 + 4
√

5
√

3 = 37.4919... < 38 = ruo .

We now show that a disk with radius rmax placed in a gap right next to a separator
does not intersect an outer disk. Assume the separator always touches both the outer and
the central disk, and consider the angle α between the two tangents on the separator in
the two touching points. For fixed ro and rc, if rmin decreases, so does α. For fixed rmin
and ro, if rc increases, then α decreases. Similarly, for fixed rmin and rc, if ro increases,
then α decreases. Thus, to compute the lower bound for α, we use upper bounds ruc and ruo
for rc and ro respectively and a lower bound rlmin for rmin. We will show that a disk with
radius rmax always fits inside α right next to the separator. A suitable choice for these values
is ruc =∞, ruo = 38 and rlmin = 2− 1

12 .

To compute the value of α corresponding to these values, consider Figure 14. It
holds: β = arccos((ruo − rlmin)/(ruo + rlmin)), γ = π/2 − β and α = π/2 − γ ≈ 25.3◦. Recall

http://jocg.org/

JoCG 13(1), 327–376, 2022 348

Journal of Computational Geometry jocg.org

α

β

γ

α
δ

central disk

outer disk

Figure 14: A disk with radius rmax can always be placed right next to a separator in a corner
of a gap.

that rumax = 2 + 1/6 is an upper bound for rmax. Assume disks with radii rmin and rmax are
placed next to each other on a horizontal line. Then, for the angle δ in Figure 14 it holds:
δ = arcsin((rmax−rmin)/(rmax +rmin)) ≤ arcsin((rumax−rlmin)/(rumax +rlmin)) ≈ 3.51◦ < α/2.
It follows that the center of the bigger disk lies below the bisector of α. Therefore, the bigger
disk fits inside α.

For our further construction, we need to prove the following property.

Property 1. Each feasible triple fits inside a gap containing two separators and no infeasible
triple does.

We will show that Property 1 holds for both the simplified flat scenario and for
the original curved one. For the ease of presentation, we will first consider the simplified
scenario.

4.1.1 Simplified scenario

It can be easily verified that for x1,x2,x3,
∑3

i=1 xi ≤ B, it is 2
∑3

i=1 r(xi) ≤ 12, implying
the first part of Property 1. We define σ = 2rmin + 2

√
(rmax + rmin)2 − (rmax − rmin)2.

In the proof of Lemma 4, we will see that σ is the horizontal space required for the
triple (rmin, rmax, rmin), which is the narrowest infeasible triple. Next, let

d(ε, x) =
√

(r(x)− ε/2)2 + (r(x)− rmin)2

for ε > 0 and x ∈ {B/4+1, . . . , B/2−1}. We will see that d(ε, x) is an upper bound for the
distance between the center of a disk D(x) with radius r(x) and the rightmost (leftmost)
point of the left (right) separator disk, if the overlap of their horizontal projections is at
least ε/2.

Claim 1. For the simplified scenario, consider three disks with radii r1, r2, r3 with rmin ≤
ri ≤ rmax for i = 1, . . . , 3.

i) Let the three disks correspond to a feasible triple. Then, the required horizontal
space for the three disks is 12 if r1 = r2 = r3 = 2 and less than 12 otherwise.

ii) For r1 + r2 + r3 ≥ 2rmin + rmax, the required horizontal space for the three disks
is minimized for r2 = rmax and r1 = r3 = rmin and in this case it is σ.

http://jocg.org/

JoCG 13(1), 327–376, 2022 349

Journal of Computational Geometry jocg.org

12

rmin rminr(B/3) r(B/3) r(B/3)

base

separator

(a)

12

rmin
rmin + 12/B2

base

separator
24/B2

12− 24/B2

(b)

Figure 15: Two illustrations regarding the proof of Lemma 4. (a) Depiction of a feasible
input triple’s disk representation. This particular representation requires the largest possible
amount of horizontal space out of all representations for feasible input triples with sum B.
(b) An upper bound for the amount of horizontal space between the two disks placed in a
gap’s corner.

Proof. For i = 1, . . . , 3, let di denote the disk with radius ri, such that rmin ≤ ri ≤ rmax
for i = 1, . . . , 3. Consider a packing of the three disks on a horizontal line, such that d1
touches d2 and d2 touches d3. Using the Pythagorean Theorem, the horizontal space con-
sumption h(r1, r2, r3) is then

h(r1, r2, r3) = r1 +
√

(r1 + r2)2 − (r1 − r2)2 +
√

(r2 + r3)2 − (r2 − r3)2 + r3

= r1 + 2
√
r1r2 + 2

√
r2r3 + r3

= 2(r1 + r2 + r3)− (r1 + r2 − 2
√
r1r2)− (r2 + r3 − 2

√
r2r3)

= 2(r1 + r2 + r3)− (
√
r1 −

√
r2)

2 − (
√
r2 −

√
r3)

2.

i) By the definition of r, we have 2(r1 + r2 + r3) ≤ 12. Therefore, h(r1, r2, r3) = 12 only if
r1 = r2 = r3 = 2, and h(r1, r2, r3) < 12 otherwise. ii) For r1 + r2 + r3 ≥ 2rmin + rmax, we
have h(r1, r2, r3) ≥ 2(2rmin + rmax)− 2(

√
rmax −

√
rmin)2 = h(rmin, rmax, rmin).

Lemma 4. There exist ε, ε1, ε2, φ > 0 with ε = ε1 + ε2 that satisfy the two conditions:
(I) 12 + ε ≤ σ and (II) d(ε1, x) ≤ r(x)− φ ∀x ∈ {B/4 + 1, . . . , B/2− 1}.

Proof. Recall that the function r is linear. A triple of disks with uniform radius r(B/3) = 2
requires a total horizontal space of 2 · 2 · 3 = 12 if placed tightly next to each other on a

http://jocg.org/

JoCG 13(1), 327–376, 2022 350

Journal of Computational Geometry jocg.org

straight line. Therefore, since the radius rmin of the separators is less than 2, it follows that
every feasible disk triple fits in the gap since (1) by Claim 1, a triple of disks with uniform
radius r(B/3) yields an upper bound for the amount of horizontal space required by any
feasible disk triple and since (2) r(B/3) > rmin, which implies that if the three disks are
placed next to each other on the base, the height of the leftmost point of the disk triple is
greater than the height of the rightmost point pl of the left separator and, therefore, these
disks do not touch (and the same holds true for the right side respectively), see Figure 15a.

Next, consider the disk triple ti = (rmin, rmax, rmin); see Figure 16a. The sum of the
integers corresponding to the disks of ti is B/4 + 1 + B/2 − 1 + B/4 + 1 = B + 1 and,
therefore, ti is infeasible. Since r is linear and B + 1 is the smallest possible sum of any
infeasible integer triple, by Claim 1, σ = 2rmin + 2

√
(rmax + rmin)2 − (rmax − rmin)2 is the

least possible amount of horizontal space required by any infeasible disk triple.

In order to show that 0 < ε ≤ 17/B2 is a sufficient choice to satisfy Condition I, for
an arbitrary 0 < c ≤ 17 we assign ε = c/B2 and show that the condition holds and for any
B > 12.

12 + ε ≤ σ ⇔
12 + c/B2 ≤ 2rmin + 2

√
(rmax + rmin)2 − (rmax − rmin)2 ⇔

3 + (c/4)/B2 − (1/2)rmin ≤
√
rmaxrmin ⇐

(3 + (c/4)/B2 − (1/2)(2− 1/B + 12/B2))2 ≤
(2− 1/B + 12/B2)(2 + 2/B − 12/B2)⇔

9 + (c2/16)/B4 + 1 + 1/(4B2) + 36/B4 − 1/B + 12/B2 − 6/B3 +

3c/(2B2)− 6 + 3/B − 36/B2 − c/(2B2) + c/(4B3)− 3c/B4 ≤
4 + 2/B − 2/B2 + 36/B3 − 144/B4 ⇔

(c2/16− 3c+ 180)/B4 + (c/4− 42)/B3 + (c− 87/4)/B2 ≤ 0⇐
c2/16− 3c+ 180 + (c/4− 42)B + (c− 87/4)B2 ≤ 0⇐

17/16− 3 · 0 + 180 + (17/4− 42)B + (17− 87/4)B2 ≤ 0⇔
17/16 + 180− (151/4)B − (19/4)B2 ≤ 0

The last inequality clearly holds true for any B > 12, which concludes the proof of
this step.

We now show that Condition II holds for ε1 = 16/B2 and 0 ≤ φ ≤ 1/B2. To this
end, we substitute y = x · 12/B and show that d((16/B2), (y ·B/12)) ≤ r(y ·B/12)− c/B2

for any y ∈ {3 + 1 · 12/B, 3 + 2 · 12/B, . . . , 6− 12/B}, any 0 ≤ c ≤ 1 and any B > 12.

http://jocg.org/

JoCG 13(1), 327–376, 2022 351

Journal of Computational Geometry jocg.org

rmin

base

rmin

rmax rmax

(a)

rmin

base

r(x)

D(x)

≥ ε1/2

pl

(b)

Figure 16: By Lemma 4, it is not possible to place an infeasible disk triple inside a simplified
gap. (a) The smallest possible infeasible disk triple. (b) Disk D(x) is intersecting the
separator.

d((16/B2), (y ·B/12)) ≤ r(y ·B/12)− c/B2 ⇔
√

(r(y ·B/12)− 8/B2)2 + (r(y ·B/12)− rmin)2 ≤ r(y ·B/12)− c/B2 ⇐
2 · r(y ·B/12)2 − 16 · r(y ·B/12)/B2 + 64/B4 − 2r(y ·B/12)rmin + (rmin)2 ≤

r(y ·B/12)2 − 2c · r(y ·B/12)/B2 + c2/B4 ⇔
r(y ·B/12)2 − 16 · r(y ·B/12)/B2 + 64/B4 − 2r(y ·B/12)rmin + (rmin)2 ≤

−2c · r(y ·B/12)/B2 + c2/B4 ⇔
(4 + 16/B2 + y2/B2 − 16/B + 4y/B − 8y/B2) + (−32/B2 + 64/B3 − 16y/B3) +

64/B4 + (−8 + 16/B − 4y/B + 4/B − 8/B2 + 2y/B2 − 48/B2 +

96/B3 − 24y/B3) + (4 + 1/B2 + 144/B4 − 4/B + 48/B2 − 24/B3) +

(4c/B2 − 8c/B3 + 2cy/B3)− c2/B4 ≤ 0⇔
(208− c2)/B4 + (64− 16y + 96− 24y − 24− 8c+ 2cy)/B3 +

(16 + y2 − 8y − 32− 8 + 2y − 48 + 1 + 48 + 4c)/B2 ≤ 0⇔
(208− c2)/B4 + (136− 40y + 2cy − 8c)/B3 + (−23 + y2 − 6y + 4c)/B2 ≤ 0⇐

208− c2 + (136− 40y + 2cy − 8c)B + (−23 + y2 − 6y + 4c)B2 ≤ 0⇐
208− 02 + (136− 40 · 3 + 2 · 1 · 6− 8 · 0)B + (−23 + 0 + 4 · 1)B2 ≤ 0⇔

208 + 28B − 19B2 ≤ 0

The last inequality clearly holds true for any B > 12, which concludes this part of
the proof.

We now use Conditions I and II from Lemma 4 to prove the second part of Property 1
for the simplified scenario.

http://jocg.org/

JoCG 13(1), 327–376, 2022 352

Journal of Computational Geometry jocg.org

Corollary 1. No infeasible disk triple can be placed in the gap together with two separators.

Proof. Recall that the distance between the rightmost point pl of the left separator and the
leftmost point pr of the right separator, which are located at height rmin, is exactly 12 units.
Condition I from Lemma 4 ensures that all infeasible disk triples take up at least 12+ε units
of horizontal space, however, this condition is not sufficient to guarantee that infeasible disk
triples can not be placed between the separators since we do not know yet at what height
the leftmost and the rightmost point of the disk triple are located. However, it is guaranteed
that either the leftmost point of the disk triple is located at least ε1/2 units to the left of pl or
the rightmost point of the triple is located at least ε1/2 units to the right of pr. Let now x ∈
{B/4 + 1, . . . , B/2 − 1} be an input integer. The Pythagorean Theorem implies that the
distance between pl (pr) and the center of a diskD(x) with radius r(x) whose center is located
between the two separator disks and whose leftmost (rightmost) point is located at least ε1/2
units to the left (right) of pl (pr) is at most d(ε1, x) =

√
(r(x)− ε1/2)2 + (r(x)− rmin)2, as

illustrated in Figure 16b. Condition II ensures that this distance is at most r(x)−φ, implying
that D(x) intersects the left (right) separator. Therefore, Condition I and Condition II
together guarantee that infeasible disk triples together with two separators can not be placed
inside a gap in the simplified scenario. The significance of ε2 becomes clear in the proof of
Lemma 6, where we tailor our conditions to apply to the original scenario as well.

So far we assumed that the separators are always placed in the corners of the gap.
But in fact, separators could be placed in a different location, moreover, there could even be
gaps with multiple separators and gaps with zero or one separator. Since the radius of the
separators is rmin, which is the radius of the smallest possible input disk, it seems natural
to place them in the gaps’ corners to efficiently utilize the horizontal space. However, all
feasible disk triples (except (B/3, B/3, B/3)) require less than 12 units of horizontal space.
It might therefore be possible to place a feasible disk triple inside a gap together with two
disks that are not necessarily separators but input disks with a radius greater than rmin. To
account for this problem, we prove the following property.

Property 2. A feasible disk triple can be placed in the gap together with two other disks
only if those two disks have radius rmin.

In this section, we prove Property 2 for the simplified scenario. The proof for the
original scenario will be presented in Section 4.1.2. The following technical lemma is instru-
mental for the proof.

We define sf = 2r(B/4) + 2
√

(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2. In the
proof of Lemma 5, we will see that sf is a lower bound for the horizontal space consumption
of any feasible triple.

Lemma 5. There exist ξ, ξ1, ξ2, ψ > 0 with ξ = ξ1+ξ2 satisfying the following two conditions:
(III) 12− 24/B2 + ξ ≤ sf and (IV) d(ξ1, x) ≤ r(x)− ψ ∀x ∈ {B/4 + 1, . . . , B/2− 1}.

Proof. To show that 0 < ξ ≤ 17/B2 is a sufficient choice to satisfy Condition III, for an

http://jocg.org/

JoCG 13(1), 327–376, 2022 353

Journal of Computational Geometry jocg.org

arbitrary 0 < c ≤ 17 we assign ξ = c/B2 and show that the condition holds for any B > 12.

12− 24/B2 + ξ ≤ sf ⇔
12− 24/B2 + c/B2 ≤ 2r(B/4) + 2

√
(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2 ⇔

12 + (c− 24)/B2 − 2r(B/4) ≤ 4
√
r(B/2) · r(B/4)⇔

2 + (c/4− 6)/B2 + (1/2)/B ≤
√

(2 + 2/B) · (2− 1/B)⇐
4 + (c2/16− 3c+ 36)/B4 + (1/4)/B2 + (c− 24)/B2 + 2/B + (c/4− 6)/B3 ≤

4− 2/B + 4/B − 2/B2 ⇔
(c2/16− 3c+ 36)/B4 + (c/4− 6)/B3 + (c− 24 + 1/4 + 2)/B2 ≤ 0⇐

c2/16− 3c+ 36 + (c/4− 6)B + (c− 22 + 1/4)B2 ≤ 0⇐
172/16− 3 · 0 + 36 + (17/4− 6)B + (17− 22 + 1/4)B2 ⇔

289/16 + 36− (7/4)B − (19/4)B2 ≤ 0

The last inequality can easily be verified to be true for any B > 12.

The arguments for showing that Condition IV holds for ξ1 = 16/B2 and an arbi-
trary ψ with 0 ≤ ψ ≤ 1/B2 is identical to that of Condition II.

Corollary 2. Property 2 holds for the simplified scenario.

Proof. Recall that the second smallest possible input disk radius is r(B/4 + 2) = 2 −
(1 − 24/B)/B = 2 − (1 − 12/B)/B + 12/B2 = rmin + 12/B2 and, therefore, 12 − 2 ·
12/B2 = 12 − 24/B2 is an upper bound for the remaining horizontal space in a gap in
which two disks have been placed such that one of the disks has radius greater than rmin,
see Figure 15b. The input integers’ values are at least B/4 + 1 and at most B/2 − 1,
therefore, the horizontal space consumption of the disk triple tf = (r(B/4), r(B/2), r(B/4))
is a lower bound for the space consumption of any feasible disk triple since the total difference
between the radii of adjacent disks in tf is larger than that of any feasible disk triple.
Yet again we utilize the Pythagorean Theorem to describe tf ’s required horizontal space
as sf = 2r(B/4) + 2

√
(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2. Condition III therefore

ensures that any feasible disk triple consumes at least 12− 24/B2 + ξ horizontal space and,
analogously to Condition II, Condition IV together with

d(ξ1, x) =
√

(r(x)− ξ1/2)2 + (r(x)− rmin)2

ensures that one of the disks of tf intersects a separator or one of the replacing disks,
implying Property 2. Like with ε2 the significance of ξ2 will become apparent in the proof
of Lemma 6 when we describe how to apply our conditions to the original scenario.

We verify in the proofs of Lemmas 4 and 5 that choosing ε1, ξ1 = 16/B2 and
ε2, φ, ξ2, ψ = 1/B2 satisfies our four conditions.

Intuitively, Conditions (I)–(IV) have the following meaning. By (I), the horizontal
space consumption of any infeasible triple is greater than 12 by some fixed buffer. By (III),

http://jocg.org/

JoCG 13(1), 327–376, 2022 354

Journal of Computational Geometry jocg.org

the horizontal space consumption of any feasible triple is very close to 12. Conditions (II)
and (IV) imply that if the overlap of the horizontal projections of a separator and an input
disk is large enough, the two disks intersect, implying that triples with sufficiently large
space consumption can indeed not be placed between two separators.

4.1.2 Original scenario

We now return to the original scenario. From now on, whenever we consider a fixed pair of
separator disks touching the central disk Dc, we assume that their centers lie on a horizontal
line and that the center of Dc lies below that line. When we talk about the horizontal
space consumption of disks touching Dc between the two separators, we mean the distance
between the leftmost and rightmost points of their horizontal projection. The amount of
free horizontal space is the maximum possible horizontal space consumption of disks lying
on the boundary of Dc between the two separators. In the following, we will show that the
horizontal space consumption of input disk triples changes only insignificantly between the
simplified and the original scenario if the gap’s bow is flat enough; see Lemma 6. Proving
this will let us use Lemmas 4 and 5 and allow us to prove Properties 1 and 2 for the original
scenario.

In the original scenario, consider a straight line directly below the two separators.
We call this straight line the gap’s chord, see Figure 12a. The gap’s chord has a function
similar to the base in the simplified scenario. We still want separators to be placed in the
gap’s corners. The distance between the rightmost point pl of the left separator and the
leftmost point pr of the right separator is now allowed to be slightly more than 12. The
horizontal space consumption of a disk triple placed on the bow is lower compared to the
disk triple being placed on the chord. Moreover, the overlap of the horizontal projections of
a separator and an input disk can now be bigger without causing an intersection. However,
we show that if the maximum distance d between a gap’s bow and its chord is small enough,
the original scenario is sufficiently close to the simplified one, and the four conditions still
hold, implying the desired properties.

Lemma 6. In the original scenario, let d ≤ 1/4B2, and let the amount of free horizontal
space in each gap after inserting the two separators in each corner be between 12 and 12 +
1/4B2. Then, Properties 1 and 2 still hold.

Proof. Obviously, each feasible triple can still fit in the gap together with two separators.
We now compute the amount of horizontal space that can be saved in the original scenario
compared to the simplified scenario when placing any infeasible or feasible disk triple on the
bow instead of on the chord.

Consider the disk triple t = (r(B/4), r(B/2), r(B/4)). Yet again utilizing the
Pythagorean Theorem, we calculate an upper bound for the amount of horizontal space
that can be saved to be

s = 2(
√

(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2

−
√

(r(B/2) + r(B/4))2 − (r(B/2) + d− r(B/4))2)

http://jocg.org/

JoCG 13(1), 327–376, 2022 355

Journal of Computational Geometry jocg.org

by simply moving the left and right disk down by d units and as far to the center disk as
possible, see Figure 17. Recall that B/4 is smaller and B/2 is greater than any input integer,
and the differences between the radii of adjacent disks in t are larger than in any actual
input disk triple. Therefore, the value s is also an upper bound for the amount of horizontal
space that can be saved in the original scenario compared to the simplified scenario when
placing any infeasible or feasible disk triple.

We now show that for d ≤ 1/4B2 an upper bound for s is 1/4B2.

s ≤ 1/4B2 ⇔
2(
√

(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2

−
√

(r(B/2) + r(B/4))2 − (r(B/2) + d− r(B/4))2) ≤ 1/4B2 ⇔
2(
√

4 · r(B/2) · r(B/4)

−
√

4 · r(B/2) · r(B/4)− 2d · r(B/2) + 2d · r(B/4)− d2) ≤ 1/4B2 ⇔
√

4 · r(B/2) · r(B/4)− 1/8B2

≤
√

4 · r(B/2) · r(B/4)− 2d · r(B/2) + 2d · r(B/4)− d2 ⇐
1/64B4 −

√
4 · r(B/2) · r(B/4)/4B2 ≤ 2d · r(B/4)− 2d · r(B/2)− d2 ⇔
1/16B2 + 8dB2 · (2 + 2/B)− 8dB2 · (2− 1/B) + 4d2B2

≤
√

4 · (2 + 2/B) · (2− 1/B)⇐
(1/32B2 + 4dB2 · (2 + 2/B − 2 + 1/B) + 2d2B2)2 ≤ (2 + 2/B) · (2− 1/B)⇐

(5/32B2 + 1 · (3/B))2 ≤ 4− 2/B + 4/B − 2/B2 ⇔
25/1024B4 + 30/32B3 + 9/B2 ≤ 4− 2/B + 4/B − 2/B2 ⇔

25/1024B4 + 15/16B3 + 11/B2 − 2/B − 4 ≤ 0⇐
25/1024 + 15B/16 + 11B2 − 2B3 − 4B4 ≤ 0

The last inequality clearly holds true for any B > 12.

Consider an infeasible triple placed in a gap with two separators in the corners. The
triple requires horizontal space at least σ − s ≥ 12 + ε1 + ε2 − s ≥ 12 + (16 + 3

4)/B2,
and at most 12 + 1/4B2 is available. Thus, without loss of generality, the left separator
and the leftmost disk D(x) of the triple have overlap of horizontal projections of at least
(16 + 1/2B2)/2 = 8 + 1/4B2. If D(x) would be placed on the chord instead of the bow,
the distance between pl and the center of D(x) would be at most d(ε1, x) ≤ r(x) − φ =
r(x)− 1/B2. When D(x) is moved up and placed on the bow instead, this distance remains
at most r(x) − 1/B2 + d ≤ r(x) − 3/4B2. Thus, the infeasible triple doesn’t fit inside the
gap, and Property 1 holds.

Now consider a feasible triple and assume that a separator has been replaced by
a bigger disk in the gap’s corner. The triple requires horizontal space at least sf − s ≥
12 − 24/B2 + ξ1 + ξ2 − 1/4B2 = 12 − 7/B2 − 1/4B2. Replacing a separator by a bigger
disk in the gap’s corner consumes at least 24/B2 horizontal space in the simplified scenario

http://jocg.org/

JoCG 13(1), 327–376, 2022 356

Journal of Computational Geometry jocg.org

r(B/4)

r(B/2) r(B/2)

r(B/4)

(a)

d

r(B/2) r(B/2)

r(B/4) r(B/4)

(b)

Figure 17: An upper bound for the amount of horizontal space that can be saved by placing
a disk triple on the gap’s bow instead of its chord can be calculated by replacing the bow
by a straight line d units above the chord and comparing the required space to the space
required when placing the two outer disks directly on the chord.

(see Figure 15b) and even more in the original scenario. Then, without loss of generality,
the overlap of the horizontal projections of D(x) and the disk in the left gap corner is at
least ((12− 7/B2 − 1/4B2)− (12− 24/B2 + 1/4B2))/2 = 8/B2 + 1/4B2, and, analogously
to the above argument, the two disks intersect. Therefore, the triple can not fit in the gap,
and Property 2 follows.

In order to conclude the hardness proof, it therefore remains to describe how to choose
the radii for the central and outer disks and how to create the gaps such that d ≤ 1/4B2.
Recall that d is the distance between a gap’s bow and its chord; see Figure 12b.

Recall that we have a central disk Dc with radius rc and m outer disks with radius ro
which are tightly packed around Dc such that m equal-sized gaps are created. With basic
trigonometry we see that rc + ro = ro/ sin(π/m) and, therefore, rc = ro/ sin(π/m) − ro.
Clearly, there always exists a value ro such that the two separator disks can be placed in
each gap’s corners and such that the distance between each pair of separators is exactly 12
units. Let r̄o be this value. Moreover, the maximum distance d between a gap’s bow and its
chord is of particular importance, see Figure 12a. Using the Pythagorean Theorem, it can
be calculated to be d = rc − (

√
(rc + rmin)2 − (6 + rmin)2 − rmin). The crucial observation

is that we do not necessarily need to choose m = n. Instead we may choose any m ≥ n
and thereby decrease d, as long as we make sure that m is still a polynomial in the size of
the input or numeric values and that the m− n additional gaps cannot be used to solve an
instance which should be infeasible.

Lemma 7. There exist constants c1, c3, c4, such that for m = Bc1, ε3 = 1/Bc3 and ε4 =
1/Bc4, there exist values r̃o for ro and r̃c for rc, for which it holds r̄o < r̃o ≤ r̄o + ε3
and r̄c < r̃c ≤ r̄c + ε4 for r̄c = r̃o/ sin(π/m) − r̃o. Moreover, the constants can be chosen
such that d ≤ 1/4B2 and such that the amount of free horizontal space in each gap is
between 12 and 12 + 1/4B2. Finally, r̃o and r̃c can be computed in polynomial time.

Proof. Choosing m. In order to choose an m ≥ n such that d ≤ 1/4B2, we require some
information about the radius ro of the outer disks. A precise calculation of this value yields

http://jocg.org/

JoCG 13(1), 327–376, 2022 357

Journal of Computational Geometry jocg.org

a complicated formula, however, a lower as well as an upper bound for ro are sufficient to
conclude our argument. Clearly, rlo = 6 is a lower bound for ro. In the proof of Lemma 3, we
have shown that for m ≥ mmin = 6, ruo = 38 is an upper bound for ro. Recalling that rmin
is a polynomial in B, that m ≥ mmin = 6 and utilizing that sin(x) ≤ x, ∀x ≥ 0, we can now
prove that m can be chosen as a polynomial in B such that d ≤ 1/4B2:

d ≤ 1/4B2 ⇔
rc − (

√
(rc + rmin)2 − (6 + rmin)2 − rmin) ≤ 1/4B2 ⇔

(rc + rmin)− 1/4B2 ≤
√

(rc + rmin)2 − (6 + rmin)2 ⇔
1/16B4 − (rc + rmin)/2B2 ≤ −(6 + rmin)2 ⇔

1/8B2 + 2B2(6 + rmin)2 − rmin ≤ rc ⇔
1/8B2 + 2B2(6 + rmin)2 − rmin + ro ≤ ro/sin(π/m)⇔

sin(π/m) ≤ ro/(1/8B2 + 2B2(6 + rmin)2 − rmin + ro)⇐
π/m ≤ ro/(1/8B2 + 2B2(6 + rmin)2 − rmin + ro)⇔

m ≥ (π/ro) · (1/8B2 + 2B2(6 + rmin)2 − rmin + ro)⇐
m ≥ (π/rlo) · (1/8B2 + 2B2(6 + 1 + rmin)2 − rmin + ruo + 1)

≥ (π/rlo) · (1/8B2 + 2B2(6 + rmin)2 − rmin + ruo)

Therefore, we define m = Bc1 where c1 is a sufficiently large constant. Note that
we need to ensure that m ≥ n, which is however no problem since we can, without loss
of generality, assume that B is a multiple of n since we could simply multiply each input
integer as well as the bound by n to obtain a problem instance that is a yes-instance if and
only if the original instance was a yes instance and whose size is polynomial in the size of
the original input.

For the approximate radii, the upper and lower bounds still hold. Similar to the
proof of Lemma 3, the upper bound of 12 + 1/12 for the separator distance provides the
equation k = 2

√
3 ·
√
k + 1 + (16 + 1

12), which has a solution for k = 37.6 < 38 = ruo . Since
it is r̄o ≤ r̃o and r̄c ≤ r̃c, the lower bound rlo = 6 still holds.

Note that if the promised approximate values r̃o, r̃c for ro and rc are used and the
distance between the separators is between 12 and 12 + 1/4B2, the maximum distance
between the bow and the chord changes compared to the precise scenario. It holds now:
d ≤ r̃c− (

√
(r̃c + rmin)2 − (6 + 1/8B2 + rmin)2− rmin). However, the upper bound of 1/4B2

still holds true because of the following.

http://jocg.org/

JoCG 13(1), 327–376, 2022 358

Journal of Computational Geometry jocg.org

d1

d2 d3

6

rc

ro

ro

Figure 18: Determining the outer disk radius by utilizing the Pythagorean Theorem.

r̃c − (
√

(r̃c + rmin)2 − (6 + 1/8B2 + rmin)2 − rmin) ≤ 1/4B2 ⇔
(r̃c + rmin)− 1/4B2 ≤

√
(r̃c + rmin)2 − (6 + 1/8B2 + rmin)2 ⇔

1/16B4 − (r̃c + rmin)/2B2 ≤ −(6 + 1/8B2 + rmin)2 ⇔
1/8B2 + 2B2(6 + 1/8B2 + rmin)2 − rmin ≤ r̃c ⇐

1/8B2 + 2B2(6 + 1/8B2rmin)2 − rmin + r̃o ≤ r̃o/sin(π/m)⇔
sin(π/m) ≤ r̃o/(1/8B2 + 2B2(6 + 1/8B2 + rmin)2 − rmin + r̃o)⇐

π/m ≤ r̃o/(1/8B2 + 2B2(6 + 1/8B2 + rmin)2 − rmin + r̃o)⇔
m ≥ (π/r̃o) · (1/8B2 + 2B2(6 + 1/8B2 + rmin)2 − rmin + r̃o)⇐

m ≥ (π/rlo) · (1/8B2 + 2B2(6 + 1/8B2 + rmin)2 − rmin + ruo + 1/Bc3)⇐
m ≥ (π/rlo) · (1/8B2 + 2B2(6 + 1 + rmin)2 − rmin + ruo + 1)

Choosing the radii. For a tight packing of the outer disks around the central disk,
the radius of the central disk can be described as rc = ro/sin(π/m) − ro. By using the
Pythagorean Theorem, we obtain the following (see Figure 18).

√
(ro/ sin(π/m))2 − r2o = d3 = d1 + d2 =

√
(ro + rmin)2 − (ro − 6− rmin)2 +

√
(ro/ sin(π/m)− ro + rmin)2 − (6 + rmin)2

By keeping in mind that a lower bound for ro is rlo = 6 we can determine a unique solution:

ro =
rmin sin(π/m)− 3rmin − 6− 2

√
2r2min + 6rmin − 2r2min sin2(π/m)− 6rmin sin2(π/m)

sin(π/m)− 1

http://jocg.org/

JoCG 13(1), 327–376, 2022 359

Journal of Computational Geometry jocg.org

ro ro

12

ds

outer disk outer disk

outer disk outer disk

central disk

central disk

12

rcrc

ro ro

> ds

ε′

> rc > rc

> ε′ > ε′

2π/m

2π/m

dc

dt

< dc

dtp
pε

ε′

Figure 19: Increasing the separator distance by 2ε′ increases the outer disks’ radii by at
least ε′.

Precise computation of this formula can take a superpolynomial amount of time. We
will show later how to compute suitable approximations r̃o and r̃c, such that r̄o < r̃o ≤ r̄o+ε3
and r̃o/ sin(π/m)− r̃o < r̃c ≤ r̃o/ sin(π/m)− r̃o + ε4.

First, let us consider a tight packing of the outer disks with approximated outer disk
radius r̃o, r̄o < r̃o ≤ r̄o+ε3 and the corresponding precise central radius r̄c = r̃o/ sin(π/m)−
r̃o. Note, that for these radii the maximum possible distance between the separator disks in
a gap increases to 12 + εs for some εs > 0.

The left part of Figure 19 illustrates two outer disks bounding a gap with the original
radii and the original separator distance of 12. Changing this distance to 12+2ε′ (as depicted
in the right part of Figure 19) increases the required outer and central radii for a tight packing
since we do not change m and, therefore, maintain the angle between the two outer disks.
In both packings, consider the tangent line between the respective left outer disk and the
central disk. We travel a distance dt along these tangent lines and arrive at points p and pε

(see Figure 19). From these points we travel orthogonally (to the tangents) until we reach
the central disk. Let dc be the distance traveled in the original packing and observe that the
traveled distance in the modified packing is smaller than dc since the radius of the central
disk is larger. On an intuitive level, this means that the funnel-shaped regions next to the
tangent points become more narrow as the radii of the outer and central disks increase.
This phenomenon causes separator disks (which maintain their original size) in the modified
packing to be pushed farther away from the lines that connect the centers of the central
and outer disks than in the original packing (the distance ds in Figure 19 increases). For
this reason, increasing the separator distance from 12 to 12 + 2ε′ pushes the centers of the
outer disks at least distance ε′ to the sides since this is also the distance that the separators
move to the left or right respectively. We can conclude that increasing the separator distance
by 2ε′ increases the radius of the outer disks in a tight packing by at least ε′. The implication

http://jocg.org/

JoCG 13(1), 327–376, 2022 360

Journal of Computational Geometry jocg.org

rεo

ds

central disk

r′c2π/m

outer disk outer disk
rεo

ε4

> ds

ε5

Figure 20: Increasing the central radius by ε4 creates a distance of ε5 between the outer
disks. The distance between the separators increases by at most ε5.

is that in a tight packing with outer disk radius r̃o ≤ r̄o + ε3 and a corresponding (precise)
central radius r̄c = r̃o/ sin(π/m)− r̃o the distance between the separators is at most 12+2ε3.

Once again, we might be unable to compute the central radius r̄c precisely. Instead,
we approximate it as r̃c with r̄c < r̃c ≤ r̄c + ε4 = r̃o/ sin(π/m) − r̃o + ε4, which basically
pushes the outer disks to the outside as depicted in Figure 20. Assuming that the outer
disks can not deviate from these positions, this creates some distance ε5 between the outer
disks in each gap. The outer disk radius remains r̃o but the central disk radius is larger
than in a tight packing and has the value r̃c > r̄c. Like in the argument in the previous
paragraph, this causes the separator disks to be pushed away from the lines that connect
the outer and central disks’ centers. For this reason, the distance between the separators
increases by at most ε5 from at most 12 + 2ε3 to at most 12 + 2ε3 + ε5.

So far, we have assumed that the outer disks can not deviate from their positions
even though they are placed distance ε5 apart from each other. In reality, however, the outer
disks can rotate around the central disk and, therefore, the distance between two outer disks
can increase to some value ε6 > ε5.

Initially, let every consecutive pair of outer disks have distance ε5 > 0 to each other.
We prove that ε6 < 2mε5 by showing by induction that if we allow i of the outer disks
to move, the maximum distance xi between two outer disks is smaller than 2(i + 1)ε5 for
any 0 ≤ i ≤ m−1. Clearly this holds true for x0 = ε5 < 2ε5. Now assume that our hypothesis
is true for some fixed i ≤ m− 2. Clearly, the distance xi is maximized when we place all of
the i movable disks close together and thereby create one large gap. One of the neighboring
gaps is bounded by two non-movable (in step i) disks such that the distance between these
disks is ε5 as depicted in the left part of Figure 21. The distance xi+1 gets maximized by
now allowing the previously non-movable disk next to the xi gap to move such that the two
gaps merge as illustrated in the right part of Figure 21. Consider the triangles T1 (left)

http://jocg.org/

JoCG 13(1), 327–376, 2022 361

Journal of Computational Geometry jocg.org

central disk
r̄c ε4

ε5
xi

c1

c2

c3
r̃o

r̄c ε4

xi+1

c1

c2

T1 T2

r̃o r̃o
r̃o

r̃o central disk

r̃or̃o
c3

r̃o

r̃o

Figure 21: When allowing i + 1 instead of i outer disks to move (non-movable outer disks
in gray), the maximum distance increases at most linear in ε5.

central disk

r̄c ε4

ε5
r̃o

outer disk
ε6α

α

dh
dv

dh

dv

ds

r̃o

Figure 22: Increasing the distance between two outer disks from ε5 to ε6 increases the
distance between the separators by at most ε6 − ε5 since ds ≥ 0.

and T2 (right) formed by the centers c1, c2, c3 in Figure 21. The base side of these triangles
is identical, the height of T2 is smaller than the height of T1 and the circumcircle of both
triangles has radius r̄c+ε4+ r̃o. We can conclude that the area of T2 is smaller than the area
of T1. Recalling that the area of a triangle T with sides a, b, c can be described as abc/(4r)
where r is the radius of the circumcircle of T , we obtain 2r̃o(2r̃o+xi+1) < (2r̃o+ε5)(2r̃o+xi)
and, hence, xi+1 < xi + ε5 + ε5xi/(2r̃o) < 2(i + 1)ε5 + ε5 + ε5(2(i + 1)ε5)/(2r̃o) by our
induction hypothesis. By choosing ε4 and, therefore, ε5 such that 2mε5 < 1 we obtain
that xi+1 < 2(i+ 1)ε5 + ε5 + ε5/(2r̃o) < 2(i+ 1)ε5 + ε5 + ε5 = 2(i+ 2)ε5, which concludes
our induction proof. Thus, the maximum distance between two outer disks increases to
at most ε6 < 2mε5. This increases the maximum distance between the separators to at
most 12 + 2ε3 + 2mε5 as illustrated in Figure 22.

With basic trigonometry, we determine that 2r̃o + ε5 = 2(r̄c + ε4 + r̃o) sin(π/m)
and 2r̃o = 2(r̄c + r̃o) sin(π/m), see Figure 20. We combine these two equalities and ob-

http://jocg.org/

JoCG 13(1), 327–376, 2022 362

Journal of Computational Geometry jocg.org

tain ε5 = 2ε4 sin(π/m) < 2ε4π/m < 2ε4 · 4/m. The maximum distance between two
separators is, therefore, at most 12 + 2ε3 + 16ε4.

Recall that by Lemma 6, Properties 1 and 2 hold true for our radius function r as
long as the maximum distance between two separators is at most 12 + εs with εs = 1/4B2.
We can now simply choose ε3 = 1/Bc3 and ε4 = 1/Bc4 such that 2ε3+16ε4 ≤ εs. Therefore,
we can conclude that the approximate radii for the outer and central disks suffice.

Approximating radii in polynomial time. It remains to argue that we can
approximate our radii as required. The formulas for the exact radii r̄o and r̄o contain a
constant number of square root and sine operations. Recall that m = Bc1 . Redefining
and increasing m such that m = 2p with 2p−1 < Bcm ≤ 2p = m causes no issues for our
construction. Therefore, by using the half-angle formula

cos

(
1

2
x

)
=

√
1 + cosx

2
for 0 < x < π,

and using sinx =
√

1− cos2 x for 0 < x < π/2, we can replace each sine opera-
tion in our formulas by p = log2m nested square root operations. In total, we therefore
perform O(logm) = O(logBc1) square root operations. Individually, each square root ap-
proximation can be performed in polynomial time using Heron’s quadratically converging
method since we can easily determine constant upper and lower bounds for each square root
term and use these as the initiation values. In order to approximate the nested square roots,
we need to increase the approximation accuracy by an according polynomial amount.

Lemma 2 already showed how to construct an equivalent 3-Partition instance with
3m ≥ 3n input integers. We now have all the tools required to prove the main result of this
section. Lemmas 2 and 7 show that the construction can be performed in polynomial time.
Properties 1 and 2 let us show that a valid distribution of the input and separator disks
among the gaps induces a solution of the 3-Partition instance and vice versa.

Theorem 2. The WDC graph recognition problem is NP-hard even for stars if an arbitrary
embedding is allowed.

Proof. Given a 3-Partition instance (A, B), an equivalent instance (A′, B′) as in Lemma 2
and an equivalent WDC graph recognition instance can be constructed in polynomial time.
The number of disks is linear in m and, thus, polynomial in B. For the input and separator
disks the radius computation does not cause any complications since the output of our radius
function r is always a polynomially bounded rational number. For the inner and outer disks,
the radii can be approximated in polynomial time; see Lemma 7. Furthermore, the encoding
size of the WDC graph recognition instance is polynomial in the encoding size of (A, B). A
solution of (A′, B′) induces a valid distribution of disks among the m gaps by placing each
disk triple together with two separators in each gap. Conversely, a valid distribution of the
input and separator disks among them gaps induces a solution of (A′, B′), since Properties 1
and 2 ensure that each of the m gaps contains a feasible triple and two separators.

http://jocg.org/

JoCG 13(1), 327–376, 2022 363

Journal of Computational Geometry jocg.org

Dc

Di+1

Di

D1

Figure 23: Deciding existence for Theorem 3. Gray disks are in L before inserting Di+1.
After that, the two small gray disks will be removed from L.

4.2 Recognizing embedded stars with a weighted disk contact representation

If, however, the order of the leaves around the central vertex of the star is fixed, the existence
of a WDC representation can be easily decided by iteratively placing the outer disks D1,
. . . , Dn−1 tightly around the central disk Dc. A naive approach tests for collisions with
all previously added disks and yields a total runtime of O(n2). However, in the following
theorem we improve this to O(n) by maintaining a list containing only disks that might be
relevant in the future.

Theorem 3. On a Real RAM, for an embedded, vertex-weighted star S it can be decided in
linear time whether S is a WDC graph. A WDC representation respecting the embedding (if
one exists) can be constructed in linear time.

Proof. Let ri be the radius of Di, and assume that D1 is the largest outer disk. Then,
D2 can be placed next to D1 clockwise. Suppose we have already added D2, . . . , Di. As
depicted in Figure 23, tightly placing Di+1 next to Di might cause Di+1 to intersect with
a disk inserted earlier, even with D1. Testing for collisions with all previously added disks
yields a total runtime of O(n2); we improve this to O(n) by keeping a list L of all inserted
disks that might be relevant for future insertions. Initially, only D1 is in L. We shall see
that L remains sorted by non-increasing radius.

When inserting Di+1, we traverse L backwards and test for collisions with traversed
disks, until we find the largest index j < i such that rj ∈ L and ri+1 ≤ rj . Next, we
place Di+1 tightly next to all inserted disks, avoiding collisions with the traversed disks.

First, note that Di+1 cannot intersect disks preceding Dj in L (unless Di+1 and D1

would intersect clockwise, in which case we report non-existence). Next, disks that currently
succeed Dj in L will not be able to intersect Di+2, . . . , Dn−1 and are therefore removed
from L. Finally, we add Di+1 to the end of L. Since all but one traversed disks are
removed during each insertion, the total runtime is O(n). We return the constructed WDC
representation if we can insert all disks tightly and there is still space left; otherwise we
report non-existence.

http://jocg.org/

JoCG 13(1), 327–376, 2022 364

Journal of Computational Geometry jocg.org

5 Seeded (unit) disk graphs

Let G = (V,E) be a graph and s : V → R2 be an injective assignment of point seeds to the
vertices of G. We consider the task of deciding whether G has a disk representation in which
each disk Dv covers the seed s(v) of its respective vertex v ∈ V , i.e. s(v) ∈ Dv. We call such
a representation seeded disk contact/intersection representation and a graph that admits
such a representation a seeded disk contact/intersection graph (SDC/SDI graph). Atienza et
al. [3] showed that SDC recognition is NP-hard even for outerplanar graphs. In Section 5.1
we extend their construction and show NP-hardness for trees. In Section 5.2 we combine
the seeded and weighted version of the problem and show that recognizing seeded unit disk
graphs is NP-hard even for paths. This result applies to contact as well as to intersection
representations.

5.1 Seeded disk contact graphs

Atienza et al. [3, Theorem 2.3] showed that SDC graph recognition is NP-hard by creating a
graph G and a seed assignment s that is realizable if and only if a given P3SAT formula ϕ is
satisfiable. In this section we first summarize their approach and observe that the graph G is
outerplanar and non-connected. Then, we describe how to modify G and s to obtain a tree
G′ together with a seed assignment s′ which remain realizable if and only if ϕ is satisfiable.

Subgraphs called chains serve as a basic building block in the reduction by Atienza
et al. [3]. Each chain has one of exactly two possible states in any realization and they
are used to propagate truth states between gadgets created for the variables and clauses.
A small segment of a chain is depicted in Figure 24. The seeds s and s′ are the stopper
elements of the inner seed p. Note how the seeds s, t1, t2, r1, r2, q and s′, t′1, t′2, r′1, r′2, q′ are
chosen such that the center of the disk Dp that covers p has to be located either in the
region Itruep or in the region I falsep . Accordingly, Dp has to be located either to the left (the
black disk Dtrue

p) or to the right (the gray disk Dfalse
p). The chosen position is propagated to

the next segment of the chain with inner seed p̂, i.e. we can use either both black positions
or both gray positions.

p

I falsepq
r1

Itruep

s′

Dtrue
p Dfalse

p

p

q

q′

r1

r′1

s

s′

s

p̂

t1 r2
t2

r2

t1 t2

r′2

t′1 t′2

Figure 24: A small part of a chain in the construction by Atienza et al. [3]. Image used with
permission of the authors.

http://jocg.org/

JoCG 13(1), 327–376, 2022 365

Journal of Computational Geometry jocg.org

¬x

x

false

true

· · ·

..
.

variable
gadget
for x

(a) Variable gadget for x in true (false) state illustrated by the black (gray) disks.

¬x

x

false

true

· · ·

..
.

(b) Valid realization. (c) Invalid realization.

Figure 25: A variable gadget in the construction by Atienza et al. [3]. Images used with
permission of the authors.

Figure 25a depicts a longer chain that serves as a variable gadget with two states.
The black disk positions corresponds to the true state and the gray positions corresponds to
the false state. Additional chains connect the variable gadget for x ∈ U to all clause gadgets
whose corresponding clauses contain a literal of x. The end of such a chain is designed such
that the disks are pulled towards the variable gadget if the clause’s literal for x evaluates
to false for the respective state of the variable gadget. This is illustrated in Figure 25b
and Figure 25c. Note how in Figure 25b the two topmost disks of the bottom chain are
realizable since the disks of the chain are embedded towards the variable gadget. However,
in Figure 25c we see that if the disks are embedded towards the clause gadget, one of the
topmost disks intersects the variable gadget. If a chain’s literal evaluates to true, its disks
can be embedded in either direction, see the top chain in Figure 25a.

Figure 26a depicts the clause gadget. The last two disks of a chain oriented away
from the clause gadget are forced to have a large radius. In particular, if all three chains are
oriented away from the gadget, it is impossible to find a valid realization, see Figure 26b.

http://jocg.org/

JoCG 13(1), 327–376, 2022 366

Journal of Computational Geometry jocg.org

false

false

true

(a) Valid realization.

false

false

false

(b) Invalid realization.

Figure 26: A clause gadget in the construction by Atienza et al. [3]. Images used with
permission of the authors.

However, if at least one chain is oriented towards the clause gadget there is a valid realization
due to the fact the radii of the last two disks can now be chosen very small, see Figure 26a
right. This corresponds to the fact that at least one of the literals of each clause is supposed
to be be satisfied.

Clearly G is non-connected and outerplanar. By a few modifications we can turn G
into a tree G′ to show NP-hardness for trees.

Theorem 4. SDC graph recognition is NP-hard even for trees.

Proof. The different connected components of G can easily be connected. In each of the
chain segments we add two edges, marked blue in Figure 27a. We additionally shift the
seeds q (q′) slightly towards s (s′) such that the additional edges do not change the original
purpose of s, s′, q and q′. Modifications to the chains connecting variable and clause gadgets
are depicted in Figures 27b and 27c. We add the blue edges and vertices/disks to ensure
connectivity.

At both ends of each literal chain we find a cycle. Each of these cycles contains
exactly one edge connecting two degree-2 vertices. We remove these edges, marked red in
Figures 27b and 27c. The removed edges are not necessary to ensure that the disk of one
of its vertices intersects the variable gadget in the case that the chain is embedded away
from the variable gadget. Finally, we connect all variable gadgets by adding additional
simple paths of disks. After these modifications our graph has become a tree, which is still
realizable if and only if ϕ is satisfiable.

http://jocg.org/

JoCG 13(1), 327–376, 2022 367

Journal of Computational Geometry jocg.org

p

I falsepq
r1

Itruep

s′

Dtrue
p Dfalse

p

p

q

q′

r1

r′1

s

s′

s

p̂

t1 r2
t2

r2

t1 t2

r′2

t′1 t′2

add

add

(a) Modified chain.

remove

add

(b) Modified variable gad-
get.

false

false

true

remove

add

add

(c) Modified clause gadget.

Figure 27: The construction of Atienza et al. [3] can be modified such that the resulting
graph is a tree.

http://jocg.org/

JoCG 13(1), 327–376, 2022 368

Journal of Computational Geometry jocg.org

(a) A chain of flip disks and the corresponding
path. (b) A 60◦ turn.

s1 s2

(c) Rigidity.

(d) Adjusting length by
increasing overlap.

Figure 28: The elemental components for the reduction in Theorem 5.

5.2 Seeded unit disk graphs

In this section we add the requirement that all disks must be unit disks (of radius 1 and
diameter 2) and show that recognition of seeded unit disk contact (SUDC) graphs and seeded
unit disk intersection (SUDI) graphs is NP-hard already for paths. We first show hardness
for SUDC-graphs and then explain how to modify the proof for SUDI-graphs.

Theorem 5. Recognition of SUDC-graphs is NP-hard, even for paths.

Proof. We perform a reduction from P3SAT (see Section 2) to show that recognizing an
SUDC-graph is NP-hard. To this end, we create a graph G = (V,E), which is actually a
path, and a seed assignment s : V → R2 such that G can be realized as a seeded unit disk
contact representation (SUDCR) with respect to s if and only if the given P3SAT formula ϕ
is satisfiable. Due to our seed assignment, realizing representations will resemble the slanted
layout GSϕ on an isometric triangular grid as discussed in Section 2.

If a graph and a seed assignment have a unique SUDCR, we call this SUDCR and its
disks rigid. It is easy to construct graphs with rigid SUDCRs. Start by placing two touching
disks and assign their seeds s1, s2 to the extremal points two unit diameters apart from each
other. More disks can be rigidly attached to this construction using a similar approach,
where the next seed is placed at the diametral point of the intended touching point of the
two disks, see Figure 28c. In our figures we show rigid disks in dark gray. A key idea for our
reduction is to place two rigid disks D1, D2 less than one, but more than

√
3−1 ≈ 0.73 unit

diameters apart (say, 13/16 = 0.8125 unit diameters) such that the disk D adjacent to both
D1 and D2 in the path G can touch both disks D1 and D2 simultaneously in exactly two
positions and these two positions overlap in a lens, in the center of which we place the seed
p for D, see the close-up box in the top part of Figure 29. We say that such a disk D is a flip
disk. Flip disks are shown in white in our figures. Two flip disks placed sufficiently close to
each other (say, about

√
3 unit diameters between their seeds) such that their respective disk

positions facing each other overlap in a lens, allow for the following information transfer:
The lower flip disk in the box in Figure 29 has to be embedded in its bottom position if
the upper disk is embedded in its bottom position. On the other hand, if the lower disk is

http://jocg.org/

JoCG 13(1), 327–376, 2022 369

Journal of Computational Geometry jocg.org

middle section middle section

left section right section

u

¬u u

Figure 29: Variable gadget for variable u in state true. Gray disks are rigid. White disks
are flip disks.

embedded in its top position, the upper disk has to be embedded in its top position, too.
Otherwise they would overlap. This idea can be extended to create arbitrarily long chains
of flip disks that transfer state information, see Figure 28a. Chains are flexible structures:
we can implement turns (Figure 28b) and adjust the distance between two consecutive flip
disks if needed (Figure 28d).

If a chain is closed it has exactly two possible states, either all disks are embedded
clockwise or counter-clockwise; see the gray highlighted section of Figure 29. This figure
depicts a variable gadget, one of which is created for each variable vertex of GSϕ . The two
states of the closed chain emulate the truth states of the variable. The left/right sections are
designed such that adjacent variable gadgets can be attached to each other. The required
number of middle sections, which can easily be duplicated and concatenated, depends on
the number of incident literal edges. These edges are represented by literal chains attached
to the middle sections in one of two ways, see Figure 29, bottom left and bottom right for a
negative and a positive literal, respectively. Note how the flip disks of the variable gadgets
push the flip disks of the left literal chain away from the variable gadget. However, the flip
disks of the right literal chain can be embedded towards the variable gadget. Similarly, for
the other truth state of the variable gadget (flip disks embedded clockwise) the flip disks of
the right literal chain are pushed away while the flip disks of the left literal chain can be
embedded towards the gadget. We attach each literal chain such that its white flip disks are
pushed away from the gadget if the corresponding literal evaluates to false with respect to
the variable gadget state.

http://jocg.org/

JoCG 13(1), 327–376, 2022 370

Journal of Computational Geometry jocg.org

120◦120◦

120◦

no transfer
true

false

false

junction

transmission chain
literal chain

(a) A clause gadget. Two of its literal chains are embedded towards it.

W2

literal
chain

transm.
chain

transm.
chain

(b) A junction whose literal
chain is embedded away from
it. Both its transmission chains
can be embedded towards it.

W2

literal
chain

transm.
chain

transm.
chain

(c) A junction whose literal
chain is embedded towards it.
It is not possible to embed both
its transmission chains towards
it.

W2

literal
chain

transm.
chain

transm.
chain

(d) A junction whose literal
chain is embedded towards it.
One of its transmission chains
can be embedded towards it.

Figure 30: Clause gadgets and junctions.

http://jocg.org/

JoCG 13(1), 327–376, 2022 371

Journal of Computational Geometry jocg.org

At clause gadgets, three literal chains meet symmetrically at 120◦ angles, see Fig-
ure 30a. These gadgets are designed such that flip disks of at most two literal chains can
be embedded towards it, i.e., at most two literals can be false. This is achieved by three
junctions connected by transmission chains, see Figure 30. A junction pushes flip disks of
at least one of its two adjacent transmission chains away if the literal chain connected to the
junction is embedded towards it. The reason for this is a volume argument, see Figure 30c.
The light-grey disk is centered on the seed of W2 and has radius 2. Disk W2 has to be
placed inside this light-grey disk, however, if the literal chain and both the adjacent trans-
mission chains are embedded towards the junction there is not enough space to place W2

without a forbidden disk overlap. Thus, at least one of the two adjacent transmission chains
(Figure 30d) or the literal chain (Figure 30b) have to be embedded away from the junction.
The clause gadget is not entirely symmetric: The transmission chain connecting the bottom
junction and the left junction and the transmission chain connecting the bottom junction
and the right junction can be embedded in both directions. However, the transmission chain
connecting the left junction and the right junction is split in the middle such that its left
part is always embedded towards the left junction and the right part is always embedded
to the right junction. Thus, if a literal chain is pushed toward one of the top junctions its
corresponding transmission chain has to be embedded towards the bottom. Recalling that
literal chains are pushed towards clauses if they evaluate to false, we can conclude that G
can be realized with respect to s if and only if ϕ is satisfiable.

Finally, on the left side of the left-most variable gadget, we add two rigid disks
connecting the bottom and the top part so that the constructed graph indeed becomes
a single path. The size of G is polynomial. It remains to express the seed positions in
finite precision. We observe that our construction tolerates a little wiggle room in the exact
locations of the seeds of the flip disks and the rigid disks. For each flip disk, it is sufficient
to place its seed somewhere in the lens of its two intended disk position. Given that each
such lens has positive area, it is clear that there is a small positive δ ∈ Q and a Cartesian
grid C with cell size δ × δ such that each lens contains a lattice point of C, which can be
chosen as the seed. To generate the seeds of the rigid disks, we observe that it is actually
not necessary to ensure that their positions are unique: consider two consecutive flip disks
as in the box in Figure 29. The crucial property required to make the propagation work
is that their respective disk positions facing each other overlap in a lens. Given that this
lens has positive area, this property tolerates a small perturbation of the positions of the
rigid disks, see Figure 31. Consequently, instead of placing the seed of each rigid disk in its
ideal position on the boundary of the disk, we may move it slightly towards the interior of
the disk onto a lattice point of (a possibly refined version of) C without losing the desired
propagation properties. Finally, for the three nonrigid disks of each junction, a suitable seed
on a lattice point is easy to determine as their covering disks permit significant movement
by construction. Hence, there is a small positive δ′ ∈ Q with δ′ ≤ δ and a Cartesian grid
C′ with cell size δ′ × δ′ where each seed is placed on a lattice point of C′ such that G can
be realized with respect to new seed assignment on C′ if and only if ϕ is satisfiable. Our
construction is made up of multiple copies of a small number of constant sized building
blocks: the clause gadget, the left, middle and right sections of the variable gadgets, and
segments of chains in different orientations. The intended realizations of multiple copies of
a building block are just translates of each other. It follows that the value δ′ is actually

http://jocg.org/

JoCG 13(1), 327–376, 2022 372

Journal of Computational Geometry jocg.org

Figure 31: The propagation property of two consecutive flip disks is maintained even of
the seeds of their adjacent rigid disks are slightly perturbed, as long as every possible right
position of the left flip disk intersects every possible left position of the right flip disk.

independent of the input ϕ (i.e., δ′ is a constant) since it suffices to determine a value of δ′

that is suitable for each of the constantly many building blocks of constant size. In other
words, the computation of δ′ is not part of the reduction itself. Consequently, the size of
the grid C′ is polynomial (since the size of the original layout GSϕ is polynomial) and so is
the size of the coordinates encoding our seeds.

Next, we extend the above reduction for seeded unit disk contact graphs to the case
of seeded unit disk intersection graphs.

Theorem 6. Recognition of SUDI-graphs is NP-hard, even for paths.

Proof. The reduction for intersection graphs is very similar to the reduction of Theorem 5.
Therefore we first discuss in the following the similarities and then discuss in detail the few
differences. On a high level, we construct the same types of gadgets for variables, literals,
and clauses based on a path intersection graph G = (V,E) and a seed assignment s : V → R2

for a P3SAT formula ϕ. On a closer look, the gadgets consist again of some rigid disks and
some flip disks with two combinatorially different placement options. The flip disks encode
the truth values of variables and transfer this information into the clause gadgets. The rigid
disks can be represented in exactly the same way as in Theorem 5 (recall Figure 28c): If two
unit disks representing an edge (u, v) ∈ E must cover two seeds s1 and s2 with distance 2,
they must actually be centered on the line segment s1s2 and intersect in a single touching
point. So if we keep the same seed assignment for the rigid disks as in the proof of Theorem 5,
the fact that disks may now overlap has no effect since we force each rigid subpath to be
maximally stretched while all rigid disks cover their respective seeds.

It remains to adapt the representation of flip disks and junctions and we first consider
the flip disks. Let u be a vertex corresponding to a flip disk D in between of two rigid

http://jocg.org/

JoCG 13(1), 327–376, 2022 373

Journal of Computational Geometry jocg.org

D

A1 A2D1 D2

D

D1 D2

sua1 a2

(a)

R1 R2 R3 R4

W1

W2

W3

R′
2 R′

3 R4

W ′
1 W ′

3

(b)

Figure 32: Adaptation of the flip disks (a) and the junctions (b) for SUDI-graph recognition.

neighbors v1 and v2, i.e., the reduction in Theorem 5 had edges (v1, u) and (u, v2) ∈ E.
Here, we subdivide the edges incident to u and create two new vertices w1 and w2 acting
as articulation disks for the flip disk, which are now connected by edges (v1, w1), (w1, u),
(u,w2), and (w2, v2) (see Figure 32a). The seeds a1 and a2 for w1 and w2 are placed near the
diametral points of the rigid disks D1 and D2 for v1 and v2 such that the articulation disks
A1 and A2 can protrude into the space between D1 and D2 as two thin lunes. Now the flip
disk D for u must cover its seed su centered between D1 and D2, it may not intersect either
of D1 and D2, but it must intersect both A1 and A2. Hence this construction maintains the
property of the flip disk that it has exactly two combinatorially different extremal positions;
it is either flipped to the bottom (solid disk) or to the top (dotted disk), while the positions
in between the extremal configurations are excluded due to the disjointness with D1 and
D2. Finally, the new flip disk gadget uses exactly the same space as before and all chains
can remain in their exact same position.

The second change in the gadget construction involves the junctions of the clause gad-
get. Let P = (R1, R2,W1,W2,W3, R3, R4) be the subpath consisting of the three white disks
and the four adjacent rigid disks in a junction, see Figure 32b (left). We subdivide the four
central edges of P and obtain the path P ′ = (R1, R2, R

′
2,W1,W

′
1,W2,W

′
3,W3, R

′
3, R3, R4)

using four extra twin disks. The seed s′2 of R′2 is chosen in the interior of R2 very close to
the touching point x ∈ R1∩R2 so that the disk R′2 has to be placed almost congruent to R2

since R1 ∩ R′2 has to be empty. For very small distances ||s′2 − x|| the possible placements
for W1 almost match the possible placements in the original construction for contact disks,
i.e., W1 is forced to almost touch R2. Similarly, we can force W3 to almost touch R3 by
choosing the seed of R′3 appropriately. Finally the seeds for W ′1 and W ′3 are chosen to be
very close to the seeds of W1 and W3, respectively, such that the central disk W2 must be
disjoint from W1 and W3 but at the same time intersect their twin disks W ′1 and W ′3. Thus,
the same volume argument as in the contact representation scenario yields that at least
one of the two transmission chains or the literal chain have to be embedded away from the
junction (in Figure 32b the transmission chain on the top right).

Finally, the reduction remains of polynomial size and we can use the same grid
snapping of the seeds as in the proof of Theorem 5 to obtain a polynomial-size representation
of G and s.

http://jocg.org/

JoCG 13(1), 327–376, 2022 374

Journal of Computational Geometry jocg.org

6 Conclusion

In this paper we considered the problem of recognizing weighted and/or seeded disk contact
and disk intersection graphs. In particular, we considered these problems for several natural
graph classes nested between paths and general planar graphs in order to strengthen previ-
ous hardness results and achieve tight gaps between tractability and NP-hardness. In the
following we summarize our results and the remaining open problems, recall also Table 1.

• We showed that for non-embedded unit disk contact graphs the recognition problem
is NP-hard for the class of outerplanar graphs. For trees the problem remains open.
We conjecture that for the subclass of caterpillars it can be decided in linear time
whether they are UDC-realizable. More precisely, we conjecture that a caterpillar is
UDC-realizable if and only if its maximum vertex degree is 5 and between any two
subsequent degree-5 vertices on the caterpillar’s backbone path there is at least one
backbone vertex of degree at most 3.2

• For the case that the weights are not necessarily uniform we showed NP-hardness for
stars. This can be considered a tight border of tractability since the problem becomes
trivial for paths.

• We also achieved a small gap for the case of recognizing embedded weighted contact
graphs by providing a linear-time algorithm for stars. For trees the problem is NP-
hard [5]. It remains open whether recognizing weighted and unit disk contact graphs
is still NP-hard when restricted to embedded caterpillars.

• We settled the complexity question of recognizing seeded unit disk contact/intersection
graphs by showing NP-hardness for paths, one of the most basic graph classes.

• We showed that recognizing non-embedded seeded disk contact graphs (without any
assigned weights) is NP-hard for trees. The complexity of recognizing seeded disk
contact graphs for paths remains open.

References

[1] M. Alam, D. Eppstein, M. Goodrich, S. Kobourov, and S. Pupyrev. Balanced circle
packings for planar graphs. In C. Duncan and A. Symvonis, editors, Graph Drawing
(GD’14), volume 8871 of LNCS, pages 125–136. Springer Berlin, Heidelberg, 2014.

[2] H. Alt, K. Buchin, S. Chaplick, O. Cheong, P. Kindermann, C. Knauer, and F. Stehn.
Placing your coins on a shelf. Journal of Computational Geometry, 9(1):312–327, 2018.

2The sufficiency of this condition is quite obvious. In an earlier version of this article [17], we also claimed
its necessity, but the proof was flawed and the required arguments appear to be more involved than originally
anticipated.

http://jocg.org/

JoCG 13(1), 327–376, 2022 375

Journal of Computational Geometry jocg.org

[3] N. Atienza, N. de Castro, C. Cortés, M. Á. Garrido, C. I. Grima, G. Hernández,
A. Márquez, A. Moreno-González, M. Nöllenburg, J. R. Portillo, P. Reyes, J. Valen-
zuela, M. T. Villar, and A. Wolff. Cover contact graphs. Journal of Computational
Geometry, 3(1):102–131, 2012.

[4] S. Bhore, M. Löffler, S. Nickel, and M. Nöllenburg. Unit disk representations of em-
bedded trees, outerplanar and multi-legged graphs. In H. Purchase and I. Rutter,
editors, Graph Drawing and Network Visualization (GD’21), volume 12868 of LNCS,
pages 304–317. Springer Cham, 2021.

[5] C. Bowen, S. Durocher, M. Löffler, A. Rounds, A. Schulz, and C. D. Tóth. Realiza-
tion of simply connected polygonal linkages and recognition of unit disk contact trees.
In E. Di Giacomo and A. Lubiw, editors, Graph Drawing and Network Visualization
(GD’15), volume 9411 of LNCS, pages 447–459. Springer Cham, 2015.

[6] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Computational
Geometry, 9(1-2):3–24, 1998.

[7] S. Cabello, E. D. Demaine, and G. Rote. Planar embeddings of graphs with specified
edge lengths. Journal of Graph Algorithms and Applications, 11(1):259–276, 2007.

[8] M. Chiu, J. Cleve, and M. Nöllenburg. Recognizing embedded caterpillars with weak
unit disk contact representations is NP-hard. CoRR, abs/2010.01881, 2020.

[9] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86(1–3):165–177, 1990.

[10] J. Cleve. Weak unit disk contact representations for graphs without embedding. CoRR,
abs/2010.01886, 2020.

[11] C. R. Collins and K. Stephenson. A circle packing algorithm. Computational Geometry,
25(3):233 – 256, 2003.

[12] E. Di Giacomo, W. Didimo, S.-H. Hong, M. Kaufmann, S. G. Kobourov, G. Liotta,
K. Misue, A. Symvonis, and H.-C. Yen. Low ply graph drawing. In Information,
Intelligence, Systems and Applications (IISA’15), pages 1–6. IEEE, 2015.

[13] D. Dorling. Area Cartograms: Their Use and Creation. In Concepts and techniques in
modern geography. University of East Anglia: Environmental Publications, 1996.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1990.

[15] W. Hale. Frequency assignment: Theory and applications. Proc. IEEE, 68(12):1497–
1514, 1980.

[16] R. Inoue. A new construction method for circle cartograms. Cartography and Geographic
Information Science, 38(2):146–152, 2011.

http://jocg.org/

JoCG 13(1), 327–376, 2022 376

Journal of Computational Geometry jocg.org

[17] B. Klemz, M. Nöllenburg, and R. Prutkin. Recognizing weighted disk contact graphs.
In E. Di Giacomo and A. Lubiw, editors, Graph Drawing and Network Visualization
(GD’15), volume 9411 of LNCS, pages 433–446. Springer Cham, 2015.

[18] D. E. Knuth and A. Raghunathan. The problem of compatible representatives. SIAM
Journal on Discrete Mathematics, 5(3):422–427, 1992.

[19] P. Koebe. Kontaktprobleme der konformen Abbildung. In Ber. Sächs. Akad. Wiss.
Leipzig, Math.-Phys. Klasse, volume 88, pages 141–164, 1936.

[20] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1982.

[21] B. Mohar. A polynomial time circle packing algorithm. Discrete Mathematics,
117(1):257 – 263, 1993.

[22] F. P. Preparata and M. I. Shamos. Computational Geometry, An Introduction. Springer,
Heidelberg, 1985.

[23] J.-M. Robert and G. Toussaint. Computational geometry and facility location. In
International Conference on Operations Research and Management Science, pages 11–
15, 1990.

[24] K. Stephenson. Circle packing: A mathematical tale. Notices of the AMS, 50(11):1376–
1388, 2003.

[25] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New
Results and New Trends in Computer Science, volume 555 of LNCS, pages 359–370.
Springer Berlin, Heidelberg, 1991.

http://jocg.org/

	Introduction
	Preliminaries
	Unit disk contact graphs
	Weighted disk contact graphs
	Hardness for stars
	Simplified scenario
	Original scenario

	Recognizing embedded stars with a weighted disk contact representation

	Seeded (unit) disk graphs
	Seeded disk contact graphs
	Seeded unit disk graphs

	Conclusion

