

Radiological Consequences of severe accident scenarios in a generic KONVOI NPP

F. Gabrielli, V.H. Sanchez-Espinoza, E.-M. Pauli (Framatome Erlangen GmbH), A. Hoefer (Framatome Erlangen GmbH)

Institute for Neutron Physics and Reactor Technology

www.kit.edu

Motivation

- Evaluation of source term (ST) and fission product (FP) dispersion during a severe accident (SA) in current and innovative NPPs is one of the major objectives of the nuclear reactor safety research program at KIT.
- > Main goal \rightarrow supporting the emergency and management teams during such abnormal events \rightarrow a reliable evaluation of the source term is mandatory.
- > ASTEC plays a central role in the KIT strategy for SA analyses.
- > **ASCOM Project** \rightarrow WP4-RUNPLANT (see ppt from A. K. Mercan), WP5-EXTEND (see ppt from O. Murat)
- EU Management and Uncertainties of Severe Accidents (MUSA, CIEMAT) and German WAME projects (KIT/Framatome collaboration) (see ppt from A. Stakhanova)
- IAEA CRP 'Advancing the State-of-Practice in Uncertainty and Sensitivity Methodologies for Severe Accident Analysis in Water-Cooled Reactors'
- > Accident Tolerant Fuels: IAEA CRP ATF-TS and OECD-NEA QUENCH-ATF
- > Coming EU SASPAM-SA (ENEA) and EU ASSAS (IRSN) projects

KIT Strategy for Source Term Analyses (1/2)

➢ Reference codes to be employed for assessing a database of STs during SA scenarios for different NPPs → Realistic fuel inventories, ST evaluation (ASTEC), U&S and ST prediction (KATUSA, FSTC), FP dispersion (JRODOS).

ASTEC results employed to analyze the FP dispersion in the environment by means of the Java based Real-Time On-Line Decision Support system (JRODOS, KIT).

A. K. Mercan, et al., 2022, Source term estimation and dispersion analysis of VVER-1000 reactor in case of LBLOCA along with SBO, ERMSAR2022, May 19-22, Karlsruhe. O. Murat, et al., 2022, Extending Capabilities of the ASTEC Severe Accident Code to Simulate Accident Sequences of Generic BWR4 Mark I, ERMSAR2022, May 19-22, Karlsruhe.

KIT Strategy for Source Term Analyses (2/2)

- Source Term prediction → Monte Carlo-based Bayesian inference model (MOCABA algorithm from Framatome GmbH embedded)

A. Stakhanova, et al., 2022, Uncertainty and Sensitivity Analysis of the ASTEC Simulation Results of a MBLOCA Scenario in a Generic KONVOI Plant Using the FSTC Tool, ERMSAR2022, May 19-22, Karlsruhe.

E.-M. Pauli, et al, 2022, Prediction of the Radiological Consequences of a Severe Accident Scenario in a Generic KONVOI Nuclear Power Plant, ERMSAR2022, May 19-22, Karlsruhe.

ASTEC (v2.2.0.1) Model of a Generic KONVOI NPP

- All the calculation modules activated.
- SOPHAEROS: Optimization of the RCSMESH nodalization based on parametric analyses for the STRU LOOP.
- Auxiliary building model assessed (not shown here).
- Containment Leakage from design.
- Heat exchange (convection, conduction, and radiation) and oxidation models.
- Main models governing the in-vessel and ex-vessel (relocation to the cavity after the lower head vessel rupture+MCCI) behaviour of the molten material.

Plant rooms (11 volumes) Operating rooms (9 volumes, white) Annulus (3 volumes, light yellow)

→ Fan
→ Drain
→ Rupture
→ Atm. Junction

ASTEC (v2.2.0.1) Model of a Generic KONVOI NPP

- FPEVOL (of course) and SMEVOL
- Heat Exchange: Radiation (RADR, RADCAV), Fluids/LP (CONVLOW), Corium layers/vessel (EXCHLOWE)
- Chemical Interactions: Oxidation (Zr, SS, magma), Fuel/Zr dissolution by molten Zr, Zr liquefaction by liquid Ag-In-Cd, SS, and grid materials
- Magma movement: 2D-relocation, Corium slump in the LP and Jet fragmentation, Decanting, Separation and mixing in the LP (default model employed)
- Cavity
 - The original wall thickness (EWALL=2.35 m) has been increased to 4.0 m base on PWR 900 case*
 - MODE OPENCAVI employed
- PWR 900 input deck employed for the calculation parameters for the RUPUICUV, MEDICIS, COVI, and CORIUM calculation modules.
- > DCH connections Vessel \rightarrow Cavity \rightarrow Containment
- > FPs transport activated in each connection

*K. Chevalier-Jabet, et al., 2015. Iodine source term computations with ASTEC, link with PSA2-tools and fast running source term tools for emergency organization, OECD-NEA/NUGENIA-SARNET Workshop, March 30, April 1, Marseille, France.

ASTEC (v2.2.0.1) Model of a Generic KONVOI NPP

- Library of fuel inventories for an equilibrium cycle with 328 effective full power days computed (30 days time step).
- Core is loaded with 193 Fuel Assemblies (48 U FAs, 6 batches; 81 U-Gd FAs, 6 batches; 64 MOX FAs, 4 batches).
- Depletion calculations, the ORIGEN-ARP tool has been used, employing the ORIGEN reactor libraries for an 18x18 FA design embedded in SCALE 6.2.3.

Element	Volatility	Activity @BOC (Bq)	Activity @EOC (Bq)	
Xe	Noble Cae	1.502E+19	1.678E+19	
Kr	NUDIE Gas	4.323E+18	4.576E+18	
I	Vory Volatila	4.311E+19	4.726E+19	
Cs	very volatile	3.718E+19	7.702E+20	
Те		2.258E+19	2.547E+19	
Sr	Moderately Volatile	1.104E+19	1.393E+19	
Ва		5.492E+20	6.913E+20	
Ru		1.298E+19	1.541E+19	
La	Less Volatile	2.236E+19	2.465E+19	
Се		1.662E+19	1.895E+19	

Scenarios

- MBLOCA (12") and SBLOCA (2")
 - Medium (12") and small (2") break of the cold leg at t=0 s
 - Reactor scram, if the primary pressure < 132 bar or containment overpressure > 30 mbar
 - > Admission to turbine and closure of the main feed water pumps into the steam generator;
 - Emergency Core Cooling System (ECCS) activated if two of the following three conditions are fulfilled containment overpressure >30 mbar, RCS pressure <110 bar or pressurizer liquid level< 2.30 m</p>
 - > Main Coolant Pumps are coasted down and the pressure regulation in the pressurizer is switched off
 - > Activation of the Emergency Feed Water System (EFWS) when the liquid level of one SG falls <4.50 m
 - ➢ HPIS (SBLOCA) and LPIS (MBLOCA) activated (T_gas in the primary > 650 °C) up to the tanks are empty → severe accident
 - Activation of the Extra Borating System when the pressurizer water level <2.30 m</p>
 - > When the horizontal erosion reaches 4.4 m radius, water from SUMPF flows into the cavity and the spalt
- **MBLOCA (12") and SBLOCA (2") + Station Black Out (SBO)**
 - AC loss @t=0 s
- 8 > As above but no 4 8 actions (namely only accumulator discharge available)

MBLOCA Scenarios: Quicklook

	BOC		EOC	
Phenomenon	MBLOCA	MBLOCA+SBO	MBLOCA	MBLOCA+SBO
FPs Release (s)	644	644	434	444
20/50 tons relocated to the LP (h)	4.6	0.5	-/-	0.2/0.4
70/90 tons relocated to the LP (h)	4.6	0.8/0.9	-/-	0.5/0.6
LPV Failure (h)	5.7	1.6	1.5	0.8
Basemate Rupt. (h)	93.2	7.8	4.3	5.0
Total H2 In-vessel/Containm. (kg)	938/1820	731/2124	638/1987	825/2270
Final Aerosols in Cont. (kg)	184	135	100	145

Significant effect of the composition of the fuel inventory on the accident progression.

Significant effect of scenarios on the mass of aerosols in the containment.

SBLOCA Scenarios: Quicklook

	BOC		EOC	
Phenomenon	SBLOCA	SBLOCA+SBO	SBLOCA	SBLOCA+SBO
FPs Release (s)	11056	1133	10619	1426
20/50 tons relocated to the LP (h)	6.6	0.5/0.7	6.0	0.5
70/90 tons relocated to the LP (h)	6.6	-/-	6.0	-/-
LPV Failure (h)	8.5	1.3	6.8	1.0
Basemate Rupt. (h)	102.2	48.5	77.8	6.0
Total H2 In-vessel/Containm. (kg)	865/2241	741/2790	862/2095	546/1652
Final Aerosols in Cont. (kg)	1159	144	1032	544

- > Significant effect of the composition of the fuel inventory on the accident progression.
- By comparison with MBLOCA results, huge effect of scenarios on the mass of aerosols in the containment.

Containment and Annulus Pressure

- Higher pressures in EOC conditions.
- Long term higher pressures w/o SBO.
- In SBLOCA (EOC), pressure containment up to about 9 bar
 - No containment rupture modeled (WAME project).

Pressure in the annulus decreases due to the release to the environment

12

➤ MBLOCA scenarios → about 1% of the initial activity of the fuel inventory transported to the containment.

SBLOCA scenarios more severe

- SBLOCA+SBO (@EOC) → about 3% of the initial activity in the vessel transported to the containment in the long term.
- SBLOCA @EOC → max. activity release to the containment about 15-20% (no SBO) and 70% (+SBO) of the initial activity.
- The release to the containment is almost twice as high for a fuel inventory at EOC as for a fuel inventory at BOC.

[·]Roses, September 28-30, 2022

Xe Mass in Containment and Environment

Noble almost \succ gases completely transported to the containment.

Release to the Env.

 \geq Larger release:

13

- at higher fuel burn-up \geq
- in SBLOCA scenarios

150000

Time(s)

200000

@BOC

@EOC

+SBO,@BOC

SBO,@EOC

250000

@BOC +SBO,@BOC

@EOC

SBO,@EOC

300000

I Mass in the containment: Total and Aerosols

- Release strongly dependent on:
 - Scenario
 - Initial core inventory
- ➢ SBLOCA+SBO (@EOC)
- Total: Up to 75% of the initial inventory
- Aerosols: up to 60% of the initial inventory

Accident Progression and FP release/transport

- > Primary Pressure and gas temperature at the core outlet in focus.
- SBLOCA vs. MBLOCA
- Larger pressure in the primary for longer time
- > Higher temperature escalation in SBLOCA+SBO (@EOC) \rightarrow Lower retention in the circuit

15

Cs Mass in the containment: Total and Aerosols

- Release strongly dependent \geq on:
 - Scenario \geq

16

- Initial core inventory \succ
- SBLOCA+SBO (@EOC) \succ
- Total: Up to 55% of the initial inventory
- ➤ Aerosols: up to 20% of the initial inventory

Xe-wise isotopes in the Containment and Environment

- SBLOCA results shown
- Element- and isotope wise results stored in the database:
 - Dose rates in Containment and Annulus
 - Activity in the containment, annulus, and environment

A.K. Mercan, et al., 2022. Source term estimation and dispersion analysis of VVER-1000 reactor in case of LBLOCA along with SBO, ERMSAR, Karlsruhe, May 16-19.

W. Raskob, 2012. Radiological consequences to the environment resulting from Severe Accidents, Course on Severe Accident Phenomenology and Management, KIT, July 10th -11th.

Example of Calculation

- The consequences of a MBLOCA severe accident in a generic KONVOI-1300 have been evaluated.
- The plant has been located in JRODOS in Catternom (France).
- In Cattenom, 4 PWR-1300 Units (built between 1979 and 1991) are in operation.
- The effect on the environment in winter and summer time have been evaluated.

Winter and Summer results: Cs¹³⁴ contamination

- Larger area involved during the Winter time.
- Maximum value larger during the summer time (6.32.10⁴ Bq/m2) than in the wintertime (1.57.10⁴ Bq/m2).

Courtesy from A. K. Mercan

Winter and Summer results: Thyroid dose lifetime adult

- Maximum values 15.2 mSv (Summer) and 4.38 mSv (Winter).
- Larger I¹³¹ wet and dry ground contamination during the summer time (7.96.10⁴ Bq/m²) than in the wintertime (2.55.10⁴ Bq/m²).

Conclusion

- The generic input deck (v2.2.0.1) of the PWR KONVOI 1300 has been further extended to evaluate the ST for different SA scenarios.
- Platform of reference codes (ASTEC, KATUSA, JRODOS) for the analysis of the radiological impact of severe accidents assessed at KIT.
- Source term database from ASTEC results + UQ currently under assessment for generic KONVOI NPP.
- > The code show a rather high stability (i.e. no hot restarts).
- ➤ ASTEC-JRODOS analyses show that the codes are able to estimate the contamination and the short- and long-term exposure to the radiological sources → multi-interactive code calculation could help decision makers, regulators, and TSO.
- > Outlook:
 - Evaluating the uncertainty band for the JRODOS results by providing the results of the ASTEC source term UQ from the database.