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Abstract: Anomaly detection is becoming increasingly significant in industrial
cyber security, and different machine-learning algorithms have been generally
acknowledged as various effective intrusion detection engines to successfully
identify cyber attacks. However, different machine-learning algorithms may
exhibit their own detection effects even if they analyze the same feature
samples. As a sequence, after developing one feature generation approach, the
most effective and applicable detection engines should be desperately selected
by comparing distinct properties of each machine-learning algorithm. Based
on process control features generated by directed function transition diagrams,
this paper introduces five different machine-learning algorithms as alternative
detection engines to discuss their matching abilities. Furthermore, this paper
not only describes some qualitative properties to compare their advantages
and disadvantages, but also gives an in-depth and meticulous research on
their detection accuracies and consuming time. In the verified experiments,
two attack models and four different attack intensities are defined to facilitate
all quantitative comparisons, and the impacts of detection accuracy caused
by the feature parameter are also comparatively analyzed. All experimental
results can clearly explain that SVM (Support Vector Machine) and WNN
(Wavelet Neural Network) are suggested as two applicable detection engines
under differing cases.

Keywords: Anomaly detection; machine-learning algorithm; process control
feature; qualitative and quantitative comparisons

1 Introduction

Machine-learning algorithms, which have been considered as one applied cross-subjects research
field, are currently attracting more and more attentions in both ICTs (Information Communication
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Technologies) and ACTs (Automatic Control Technologies) [1,2]. On the one hand, machine-learning
algorithms can acquire some new and inscrutable knowledge by using computers to simulate and
perform the learning actions of real humans; on the other hand, they can also improve their own
performance to acquire more detailed and precise results by analyzing the existing knowledge and
experiences. Benefiting from the rapid development of computing technologies, machine-learning
algorithms have greatly influenced on many emerging research fields, typically including: Big Data [3],
Edge Computing [4,5], Automatic Control [6], Intelligent Optimization [7,8], etc. Especially, machine-
learning algorithms play an increasingly important role in today’s cyber security technologies to resolve
various issues caused by malicious attacks or intrusions [9,10].

In general, anomaly detection, aiming to carry out accurate detections and real-time responses,
belongs to one of the most popular applications of machine-learning algorithms. Essentially, various
machine-learning algorithms are always designed and recognized as critical intrusion detection engines
to identify anomalous system actions [11]. More precisely, by using some basic or training data
to construct a normal mathematical model which can practically describe some behavior-specific
system characteristics, machine-learning algorithms can skillfully analyze new real-time data to realize
scientific predictions or judgments. In regular IT (Information Technology) systems, machine-learning
anomaly detections have been extensively recognized and applied by both academia and industry.
From traditional machine-learning algorithms to deep learning algorithms, the researchers have
produced many ground-breaking achievements in anomaly detection researches [9,12]. In recent years,
following with the networked development of ICSs (Industrial Control Systems), security incidents in
various industrial environments have frequently occurred [13,14]. Different from the ones in regular IT
systems [15,16], these incidents always cause immense losses of human lives and properties. Therefore,
as one important branch of intrusion detection, machine-learning anomaly detections in ICSs have
been developed to explore the possibility and feasibility by both academia and industry. To sum up, the
main reasons include two aspects: firstly, the periodicity and finiteness of industrial actions can benefit
the application of machine-learning algorithms [17]; secondly, machine-learning anomaly detections
can identify some unknown attack behaviors without compromising the availability of industrial
control systems [18]. In terms of different analysis methods, the existing industrial anomaly detections
have employed multiple machine-learning algorithms, typically including: Support Vector Machine
[19], Neural Network [20], Clustering Algorithm [21], Decision Tree [22], Hidden Markov Model
[23], etc. Furthermore, all of these anomaly detections have one thing in common: by using machine-
learning algorithms, they intelligently recognize the characteristic model and interaction regularity of
industrial production activities, and provide the technical support for the design of powerful detection
engines.

In practice, machine-learning anomaly detections in ICSs consist of two major components:
feature generation approach and machine-learning detection engine. Furthermore, one fine feature
generation approach can extract usable features which can maximize the characteristics of industrial
original data, and one effective machine-learning detection engine can successfully identify various
abnormal behaviors by analyzing the generated features. In other words, the optimal matching
between feature generation approach and machine-learning detection engine should be implemented
to strengthen its detection performance as much as possible [24]. However, various machine-learning
algorithms may exhibit different detection effects even if they match with the same feature generation
approach [25], and the main causes include the following two aspects: from the perspective of algorithm
design, each machine-learning algorithm has its own complexity and uniqueness, which may directly
affect the detection efficiency; from the perspective of data characteristics, each machine-learning
algorithm is highly sensitive to different feature distributions and statistic characteristics, which not
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only have a powerful influence on the training process of detection engine, but also determine its
final detection ability. Therefore, after developing one feature generation approach, some effective
and applicable detection engines should be desperately selected by comparing distinct properties of
each machine-learning algorithm.

In modern industry, the process control plays a critical role in realizing the automatic control for
the whole production activities by designing some continuous or periodic control functions, which
are always triggered by sending the corresponding control commands to key field devices [17,26].
Moreover, each control function can determine one operational action of field devices, and the whole
technological process to produce certain product can cover the periodic alteration of operational
actions. From another point of view, all sequential control commands extracted from industrial
communication data can also has regular and periodic trends. When one sophisticated adversary
launches one devastating attack whose main goal is to destroy the process control, these trends appear
to be broken due to some redundant or irregular control commands [27,28]. Correspondingly, the
change in these trends can offer a breakthrough to design and implement anomaly detection. On
this view, this paper proposes one feature generation approach based on directed function transition
diagrams, and the generated process control features can adequately describe the dynamic law and
changing trend of operational actions. Moreover, this approach defines function patterns of different
lengths to reflect varying degrees of operational continuity, and uses each directed function transition
diagram to depict all directed transition paths of operational actions over a period of time. In order
to further analyze the generated process control features, this paper introduces five different machine-
learning algorithms (Support Vector Machine [19], BP Neural Network [29], Decision Tree [22], Naïve
Bayes [30] and Wavelet Neural Network [31]) as alternative detection engines, and discusses their
matching abilities with the proposed feature generation approach. More narrowly, this paper gives
a brief description on the qualitative properties of each machine-learning algorithm, and compares
their advantages and disadvantages point by point. Additionally, this paper considers the detection
accuracy and consuming time as two quantifiable indicators, and uses the captured communication
data from a simulated Modbus/TCP control system to evaluate different performances of five detection
engines. In order to facilitate all quantitative comparisons, this paper also defines two attack models
and four different attack intensities in the verified experiments, and our final purpose is to select some
appropriate machine-learning algorithms as the most effective and applicable detection engines under
differing cases.

The major contributions and innovations are listed as follows:

1) by analyzing the main characteristics of operational actions, this paper first presents the feature
generation approach based on directed function transition diagrams, and designs the function
pattern of different lengths to enhance the correlation and continuity of sequential operational
actions.

2) in order to locate the optimal detection engines under differing cases, this paper introduces five
different machine-learning algorithms to discuss their matching abilities, and the qualitative
and quantitative comparisons are respectively performed for their superiority analysis.

3) so as to enrich the diversity of experiments, this paper not only defines two practical attack
models (Targeted Continuing Attack and Blind Haphazard Attack), but also supposes four
different attack intensities to evaluate the detection accuracy and consuming time of each
detection engine.
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2 Process Control Feature Generation Based on Directed Function Transition Diagram

In this feature generation approach, all control commands are extracted to consist of multiple
function queues in chronological order. According to the basic idea of state transition diagram [32],
each function queue is further used to construct one directed function transition diagram, whose states
are set as different functions. Additionally, the directed transition path from one function to another
can be described by the function pattern, whose length can be explicitly specified to reflect the degree
of correlation and continuity between different functions. Based on the main idea of feature calculation
in [33], all feature values in each function queue can be finally obtained by introducing the conditional
probability to calculate the transition possibility of function pattern.

2.1 Directed Function Transition Diagram Construction

From industrial communication data over a long period of time, all control commands are
successively extracted to form one whole control command sequence, which may cover many periodic
processes of operational actions. Furthermore, this sequence is divided to multiple function queues
Qi = d1

i d2
i d3

i · · · dn
i (i ∈ [1, m]), and each function queue is composed of n sequential control

commands. Here, dj
i represents the jth (j ≤ n) control command in the function queue Qi, and m

is the number of function queues. Additionally, all m function queues form the function queue set
Q = {Q1, Q2, Q3, · · · , Qm}, which also represents the initial data sample space.

For each function queue, one directed function transition diagram is constructed, and the main
construction steps can be described as follows: firstly, the first control command d1

i in the function
queue Qi is selected as the source function state, which is also regarded as the initial state in the state
transition diagram; secondly, if the next control command d2

i in the function queue Qi is different from
the last one d1

i , one new function state needs to be created, and one directed transition path ph1→2 from
the last function state to this one is set up; thirdly, if the next control command d2

i in the function
queue Qi is the same with the last one d1

i , no new function state needs to be created, and one directed
transition path ph1→1 in the current function state is set up; finally, for the following control command
dj

i (j ∈ [3, n]), the previous two steps are repeatedly executed until traversing all control commands in
the function queue Qi.

Based on the directed function transition diagram constructed by Qi, the function pattern FL
i =

(d1
i , d2

i , d3
i , · · · , dL

i ) can be further defined, and it is composed of L control commands. Moreover, each
function pattern corresponds to one arbitrary combination of L control commands, and the larger
pattern length L can reflect the stronger correlation and continuity of operational actions. Through
this definition, each function queue Qi can be indicated by a limited number of function patterns. In
theory, when the number of different control command species is k, the number of function patterns
is FL

i , which may be a large value due to the fast exponential growth. However, the actual number of
function patterns is far less than the theoretical one, and the causes mainly include two aspects: on the
one hand, the limited behaviors and states in process control determine a relatively narrow range of
operational actions, which also reduce the number of control command species; on the other hand, the
periodic execution of the same control commands can also restrict the number of function patterns.
Fig. 1 gives an example of directed function transition diagram and its function patterns.
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Figure 1: Example of directed function transition diagram and function patterns when L = 2 and L = 3

2.2 Process Control Feature Calculation

In practice, all function patterns can be easily obtained by preprocessing the whole control
command sequence, and each function queue can be indicated by this group of function patterns.
Therefore, the obtained function patterns are designed as a class of important feature factors to
calculate process control feature values. Furthermore, the function pattern FL

i can be further divided
into L sub-patterns F {L,r}

i = (d1
i , d2

i , d3
i , · · · , dr

i ) (r ∈ [1, L]), each of which consists of the first r control
commands in the function pattern. For each function queue, the probability of sub-pattern F {L,r}

i is
defined as p(F {L,r}

i ), and the transition probability from one sub-pattern F {L,r−1}
i to another sub-pattern

F {L,r}
i is calculated by the conditional probability p(F {L,r}

i |F {L,r−1}
i ) (r ∈ [1, L]). As a result, the probability

of each sub-pattern can be obtained by

p(F {L,r}
i ) =

r∏

l=1

p(F {L,l}
i |F {L,l−1}

i ) (1)

For each function pattern FL
i , the probabilities of all sub-patterns can form a new probability

vector
−→
P = (p(F {L,1}

i ), p(F {L,2}
i ), p(F {L,3}

i ), · · · , p(F {L,L}
i )), which includes L values. Additionally, the time

intervals to implement any two adjacent control commands are not identical, and each sub-pattern
requires different time intervals to execute its control commands. Therefore, the time interval can be
regarded as another important feature factor, which may play a key role in calculating process control
feature values. Similarly, one time interval vector −→τ = (τ1, τ2, . . . , τL) is constructed, and each time
interval τr (r ∈ [1, L]) corresponds to the consuming time to implement all control commands of the
sub-pattern F {L,r}

i . According to the above two vectors, the final process control feature value x for each
function pattern FL

i can be calculated by

x = −→
P · −→τ (2)

Here, (·) represents the dot product operation.
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To generate the real-time feature samples, each function queue Qi is constructed by sequentially
extracting all control commands from online communication traffics, and the time intervals to
implement every two adjacent control commands are recorded. For each function pattern, two vectors
are further constructed by analyzing the function queue Qi: one is the probability vector calculated
by Eq. (1) and the other is the time interval vector whose elements are the execution time of all
sub-patterns in order. Furthermore, the feature value corresponding to each function pattern can
be obtained by Eq. (2), and each function queue Qi be successfully mapped to the process control
feature sample Xi = (x1

i , x2
i , . . . , xs

i). Here, s is the actual number of function patterns. Fig. 2 depicts the
main workflow of process control feature generation algorithm based on directed function transition
diagram.
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Figure 2: Process control feature generation workflow based on directed function transition diagram

3 Machine-learning Detection Engines and Qualitative Comparison
3.1 Detection Processes of Five Machine-Learning Detection Engines

In the design of detection engines, five different machine-learning algorithms are introduced to
cooperate with the above feature generation approach, and these machine-learning algorithms are
SVM (Support Vector Machine), BPNN (BP Neural Network), DT (Decision Tree), NB (Naïve Bayes)
and WNN (Wavelet Neural Network), respectively. Furthermore, by using the calculated feature
samples, each anomaly detection engine can train a mathematical model or profile to learn the specific
characteristics of operational actions, and recognize the statistical deviation for the observed data to
identify intrusion activities.
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3.1.1 SVM Detection Process

SVM belongs to one generalized linear classifier to realize the binary classification of data samples,
and its decision boundary is one solved maximum-margin hyperplane by learning the training samples.
The main steps of SVM detection process are outlined below:

Step 1: the observed feature samples are input to the trained SVM classifier, which accepted the
penalty factor and the kernel parameter optimized by PSO (Particle Swarm Optimization) [33,34];

Step 2: the optimized SVM classifier introduces the Lagrange function to resolve the convex
quadratic programming problem, and uses Gaussian kernel function to simplify the calculation
complexity in the high-dimensional feature space.

Step 3: the SVM’s decision result can be used to realize the anomaly classification. If the decision
result is 1, then the observed data should belong to the normal classification. Differently, if the decision
result is-1, then the observed data can be counted among the abnormal classification.

3.1.2 BPNN Detection Process

BPNN is a popular multi-layer feedforward neural network, whose essential characteristics cover
two aspects: forward propagation of signals and back propagation of errors. The main steps of BPNN
detection process are outlined below:

Step 1: the observed feature samples considered as the input signals in the constructed BPNN
network, whose main parameters (including the connection weights, the hidden threshold and the
output threshold) have been dynamically improved by the error feedback;

Step 2: according to the connection weights and the hidden threshold, the output results of hidden
layer are calculated. Additionally, according to the connection weights and the output threshold, the
prediction results of output layer are calculated;

Step 3: the final prediction errors can contribute to identify the outliers. If one prediction error
exceeds the basic default threshold, then the observed feature may be normal; conversely, the observed
feature should be abnormal.

3.1.3 DT Detection Process

DT is one of the most common algorithms to establish a classification model, which is formed by
a hierarchy of branches from the root node to all leaf nodes. In essence, DT anomaly detection can
classify different characteristics of feature samples by using a series of rules, and the main steps of DT
detection process are outlined below:

Step 1: decision tree growing. Generate an original tree and classification rules based on the trained
feature samples;

Step 2: decision tree pruning. Check the original tree, and cut off the redundant branches
according the learning mechanisms;

Step 3: real-time anomaly detection. Distinguish abnormal test data through the rule matching.
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3.1.4 NB Detection Process

NB generates a particular model, which uses the probability statistics to perform the sample
classification. The main steps of NB detection process are outlined below:

Step 1: the observed feature samples are input to the optimal NB model, whose main parameters
are first calculated by using the training feature samples;

Step 2: based on Bayes principle, the priori probabilities and posteriori probabilities of all observed
feature samples are calculated, respectively;

Step 3: by combining he priori probability and posteriori probability of each observed feature
sample, the corresponding normal and abnormal probabilities can be obtained to estimate the risk of
abnormalities. If the normal probability of one observed feature sample is larger than its abnormal
one, then the observed feature may be normal, and vice versa.

3.1.5 WNN Detection Process

WNN is a layered multi-resolution artificial neural network, which is based on wavelet theory
and wavelet transform. Different from BPNN, the wavelet basis function is introduced to activate the
hidden units, and the hidden layer wavelons are used to estimate the approximate values of the targets.
The main steps of WNN detection process are outlined below:

Step 1: according to the trained feature samples, WNN’s network parameters (including the
dilation parameter, the translation parameter and the connection weights) should be improved by
calculating the predicted errors between the predicted results and the expected outputs;

Step 2: as the input variables, the observed feature samples are analyzed by the optimal WNN
network to estimate their predicted results;

Step 3: by comparing with the measured detection threshold, the predicted results are further used
to identify intrusion activities. If the predicted result of one observed feature sample complies with the
detection threshold, then the observed feature may be normal, and vice versa.

3.2 Differences of Qualitative Properties

Under different circumstances, various machine-learning algorithms present differential detection
performances, that is, each machine-learning algorithm can develop its own properties. On the one
hand, each machine-learning algorithm has its own distinct solution for the traditional classification
problem, whose computational complexity can be reduced in diverse degrees by separately handling
several sub-problems; on the other hand, the detection application of machine-learning algorithm
is based on the feature engineering, and disparate feature characteristics can have an unequal effect
on the detection performance of each machine-learning algorithm. Tab. 1 shows some qualitative
properties of 5 machine-learning algorithms, and the advantages and disadvantages can be further
compared from this table.
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Table 1: Qualitative properties of five machine-learning algorithms

Advantages Disadvantages

SVM • It belongs to one small-sample
statistical learning method.

• The kernel function (dot product)
which realizes the nonlinear mapping
in high dimensional feature spaces can
reduce the computational complexity.

• Support vectors are the trained results,
which can help avoid the dimension
disaster to some extent.

• Its simple algorithm has strengthened
abilities of robustness and
generalization.

• Its excellent learning ability can avoid
the overfitting problem.

• For large training samples, it is too
difficult to resolve the quadratic
programming problem.

• It is not applicable to solve the
multi-classification problem.

• It is very sensitive to the parameter
and kernel function selection.

BPNN • It can realize any complex nonlinear
mapping, and fit for the problems
whose internal mechanism is complex.

• It has some practical abilities of
self-adaption and generation.

• It can support to solve the
multi-classification problem.

• Its fault-tolerant ability can guarantee
the perfect system operations when the
partial damage happens.

• It belongs to one gradient descent
method, and the learning speed (or
convergence speed) is rather low.

• It often gets trapped in the local
optimum, and causes the training
failure.

• The network’s approximation and
generalization are directly related to
the typicality of samples, and the
overfitting phenomenon can be easily
caused.

DT • It can be theoretically understood and
computationally realized, and possess
relatively low computation complexity.

• It can deal with the data with many
irrelevant features, and is insensitive to
the missing median.

• It can support to solve the
multi-classification problem.

• It requires no prior domain knowledge
and initial parameter.

• It may cause the overfitting problem.
• It ignores the relationships between

different attributes.
• It is difficult to handle large data sets

due to the tree searching
characteristics.

• It is inappropriate for the
high-dimensional data, especially the
data containing too many attributes.

• Its generalization ability is poor.

(Continued)
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Table 1: Continued
Advantages Disadvantages

NB • It has the solid mathematical
foundation and stable classification
efficiency.

• It can reflect good performance on the
small-scale data, and handle the
multi-classification task.

• Its simple algorithm can work great for
the incremental learning, and is
insensitive to the data missing.

• Its default assumption cannot stand in
many practical applications.

• Many cases can affect the classification
efficiency, such as numerous attributes
and strong correlation between
attributes.

• It is sensitive to the expression forms
of input data.

WNN • The wavelet theory can avoid the
blindness of network structure.

• It is practical with good learning
ability and self-adaption.

• Compared with BPNN, it has simpler
network structure, faster convergence
speed and higher classification
accuracy.

• High-dimensional data may lead to
huge network structures, and the
corresponding convergence speed
decreases greatly.

• The number of hidden layer nodes is
difficult to determine.

• The inappropriate parameters may
result in the non-convergence of
learning process.

4 Experimental Comparison and Quantitative Analysis

In the experimental analysis, the detection accuracy and consuming time are introduced as two
significant aspects to evaluate different performances of five machine-learning detection engines. By
performing quantitative comparisons, our final purpose is to locate the optimal detection engines
under differing cases. For this purpose, we evaluate all proposed designs by using the simulated
Modbus/TCP control system, whose detailed statement can be presented in [18].

Special emphasis is given on the cycle of one complete technological process, which is programmed
to 1 min. That is to say, we proportionally balance the operation cycle to achieve considerable Mod-
bus/TCP communication data, which can serve to facilitate all analysis and comparisons. Furthermore,
we run this system for about 4 h 46 min, and win a total of 44485 sequential control commands and
the corresponding time intervals after the in-depth parsing of Modbus/TCP communication data.
Through the preliminary analysis of original data, we plot the changing characteristics of different
control commands with the technological process in Fig. 3. From Fig. 3a we can see that we design 4
different control commands in one technological process, which respectively correspond to function
codes 1, 3, 5 and 6 in Modbus/TCP protocol, and the average number of each control command
per 1 min is not identical. More specifically, the number of control command 1 is considerably
larger than the number of control command 5, and it is chiefly because the system need frequently read
the states of all valves to monitor the performance of technological process. Moreover, Fig. 3b shows
the accumulated percentage variation for all different control commands, and each curve expresses the
accumulated percentage of one control command per 1 min. Overall, all curves appear a smooth
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and upward-sloping trend, and this phenomenon can provide some indirect evidences for the periodic
operational actions and relatively changeless running state.
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Figure 3: Changing characteristics of different control commands with the technological process

4.1 Definition and Assumption

In order to evaluate different detection performances of 5 machine-learning algorithms, we define
two practical attack models which can destroy the above technological process by disturbing normal
process control. Apart from 4 kinds of control commands in the simulated control system, we do not
introduce any additional control command in these attacks. The main reason for this definition is that
any additional control command can be easily filtered by industrial firewalls based on defense-in-depth
strategies [14,35]. In particular, the definitions of two attack models can be described in Tab. 2.

Based on the above attack models, we further generate 600 test feature samples in every exper-
iment, mainly including 200 normal feature samples and 400 malicious feature samples. In practice,
the detection performance may change with different attack intensities, and the aggressor may launch
an attack with a higher success probability by increasing the attack intensity. Obviously, the number
of abnormal control commands in each function queue can indirectly reflect the attack intensity. So,
we define 4 distinguishing levels to depict different attack intensities: micro-intensity level (L1), low-
intensity level (L2), medium-intensity level (L3) and high-intensity level (L4). More specifically, we
suppose that these 4 levels correspond to 4, 6, 8 and 10 abnormal control commands in each function
queue, respectively. Additionally, we set the length of function pattern is 3, namely the pattern length
L = 3, and the corresponding dimension of feature sample is 60.
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Table 2: Definitions of two attack models

Attack
definition

Description

Targeted
Continuing
Attack (TCA)

The baleful aggressors can continuously launch a whole string of malicious
operational actions, and each attack may start at different target locations in one
technological process. In other words, this attack type can cause an unbroken series
of abnormal control commands to appear in one function queue.

Blind
Haphazard
Attack (BHA)

The baleful aggressors can randomly launch each malicious operational action, and
the attack target has certain blindness in one technological process. In other words,
this attack type can cause all abnormal control commands to randomly spread in
one function queue.

4.2 Detection Performance Comparison and Analysis for TCA

As previously described, we choose the detection accuracy and consuming time as two important
aspects to compare the differences among 5 machine-learning detection engines. For each level of
attack intensity, we conduct 12 different experiments whose malicious samples are generated by
forging and inserting abnormal control commands, and calculate the average detection accuracy and
consuming time. Tab. 3 shows the experimental results of 5 machine-learning detection engines for
TCA. Seen from the high-intensity of view, the average detection accuracy of DT is lowest, and the
corresponding average consuming time is longest. There follow two key reasons causing the above
results: for one thing, DT ignores the relationships between different attributes; for another, the tree
searching characteristics may waste too much time. Comparatively speaking, the average detection
accuracy of WNN becomes a relatively ideal value which has exceeded 93% for each level of attack
intensity, and it average consuming time is moderate, for example, the maximum consuming time is
only 78.32 ms, which is less than the one of the least effective NB. Additionally, it is intuitively plausible
that the average detection accuracy of BP can reach 95.72% for the high-intensity level, but its average
detection accuracy for micro-intensity level is in an undesirable situation. Differently, SVM yields
the best detection performance in all experiments, and obtains the highest detection accuracy and
the least consuming time. Because the detection accuracies of SVM precede the ones of BP for all
attack intensities, we suggest SVM and WNN as two applicable detection engines to match with the
proposed feature generation approach. To be more specific, SVM has better detection performance
whose highest detection accuracy can reach 97.51%, and it seems more appropriate for the attacks
with medium-intensity and high-intensity levels. Differently, although WNN can give an impression
of relatively smooth detection accuracies for all attack intensities and have powerful effect to identify
the attacks with the micro-intensity level, its consuming time is not necessarily ideal.
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Table 3: Detection performances of 5 machine-learning detection engines for TCA

Attack
intensity

Average detection accuracy (%) Average consuming time (ms)

SVM BP DT NB WNN SVM BP DT NB WNN

L1 88.00 86.43 77.47 68.61 93.83 19.91 19.82 510.25 80.09 77.48
L2 93.03 91.25 82.67 77.58 93.92 19.57 19.45 502.83 86.03 75.51
L3 96.44 94.49 85.39 84.99 93.50 19.74 19.32 499.40 86.17 76.62
L4 97.51 95.72 87.04 89.05 93.55 19.49 20.12 553.49 90.26 78.31

4.3 Detection Performance Comparison and Analysis for BHA

Similarly, we take the same way to evaluate the detection performance for blind haphazard
attack, and 12 different experiments are also performed for each level of attack intensity. Tab. 4
shows the experimental results of 5 machine-learning detection engines for BHA, and the basic
detection performance of each machine-learning detection engine changes like the one for TCA.
Differently, the whole average detection accuracies are significantly higher than the ones for TCA,
because the probability of each function pattern seems more sensitive to the random distribution of
abnormal control commands in each function queue. Obviously, SVM still gives a fantastic detection
performance, and its lowest detection accuracy for the micro-intensity level is well above 93%.
Compared with other detection engines, SVM possesses the highest detection accuracy and requires a
minimum of consuming time to identify the blind haphazard attacks with all attack intensities.

Table 4: Detection performances of 5 machine-learning detection engines for BHA

Attack
intensity

Average detection accuracy (%) Average consuming time (ms)

SVM BP DT NB WNN SVM BP DT NB WNN

L1 93.22 90.99 88.72 80.50 94.10 15.80 19.21 417.06 84.38 75.57
L2 98.21 96.46 94.83 90.30 93.60 16.51 19.49 416.96 83.78 75.40
L3 99.54 97.96 97.32 94.53 93.89 16.23 20.15 446.99 92.65 79.05
L4 99.87 98.44 97.73 95.85 93.76 16.02 19.41 433.00 84.43 75.79

Above all, no matter targeted continuing attacks or blind haphazard attacks, both SVM and WNN
exhibit their own unique advantages: for WNN, its detection accuracy is stable at a moderate level, but
its real-time ability appears insufficient; for SVM, although it has the characteristic of strong real-time
ability, its detection accuracy is not perfect for all attack intensities, especially for the micro-intensity
level. In practical applications, if industrial production activities demand for the time sensitivity, SVM
is more applicable to the proposed feature generation approach. If we want to improve the capability
of detecting the attacks of micro-intensity level, WNN is suggested to match with the proposed feature
generation approach. For taking advantages of both SVM and WNN, the combined use of these two
detection engines is better than either of the two in effect.
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4.4 Discussion on Detection Effects of Different Pattern Lengths

The function pattern plays a significant role in the proposed feature generation approach, and
its pattern length L is directly related to the calculation of feature values. In practice, the fine feature
values not only reflect the inherent characteristics of original data, but also contribute positively to
the effective anomaly detection. In other words, although the pattern length L is a pre-set parameter,
different pattern lengths may make a big difference to the detection performance of each machine-
learning detection engine. Obviously, due to the higher feature dimension caused by the increasing
of pattern length, the corresponding consuming time may become longer. Additionally, when the
pattern length changes, the detection accuracies of 5 machine-learning detection engines may have their
distinctive changing characteristics. To give a more explicit description, we choose two pattern lengths
to compare different detection accuracies of 5 machine-learning detection engines, and these pattern
lengths are L = 2 and L = 3, respectively. Fig. 4 compares different detection accuracies of each
machine-learning detection engine for TCA under two pattern lengths, and every detection accuracy
is also the average value calculated by 12 experiments. From Sub-figures (a), (d) and (e) we can see
that, the average detection accuracies of BP, WNN and SVM are improved to the higher level, when
the pattern length increases. Differently, it turns out to be just the opposite in Sub-figures (b) and (c),
that is, the average detection accuracies of DT and NB cause a slight decrease. The main reason of this
result is that the machine-learning algorithms DT and NB ignore the relationships between different
attributes, and the directed function transition diagram can strengthen the correlations with the growth
of pattern length. To sum up, if we regard SVM and WNN as the applicable detection engines,
one appropriate pattern length should be designed to balance detection efficiency and computation
consumption based on the needs of practical application.
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Figure 4: (Continued)
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Figure 4: Detection accuracy comparisons for TCA under different pattern lengths

5 Conclusion

Based on the process control features generated by directed function transition diagrams, this
paper introduces 5 different machine-learning algorithms as alternative detection engines to compare
their distinctive detection performances. On the one hand, this paper gives a brief description on
the qualitative properties of each machine-learning algorithm, and compares their advantages and
disadvantages point by point. On the other hand, this paper compares the detection performances
of 5 different machine-learning algorithms by analyzing all experimental results, and picks out SVM
and WNN as two relatively appropriate detection engines. Additionally, two attack models and four
different attack intensities, which may reasonably occur in current industrial control networks, are
defined to present an in-depth and meticulous analysis on the important properties: detection accuracy
and consuming time. Also, this paper gives the quantitative discussion on the impacts of detection
accuracy caused by different pattern lengths. Based on the above quantitative and qualitative analysis,
we believe that the proposed contents in this paper are fascinating and promising, and can make
academic contributions to the related research work.
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