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1 Introduction

Jet production observables at hadron colliders are among the most fundamental probes of
quantum chromodynamics (QCD). High precision data from the Tevatron and the LHC
provide important constraints on the parton content of the colliding hadrons and enable
accurate determinations of the strong coupling constant. To interpret these data in precision
studies of QCD requires theory predictions at a level of accuracy that is comparable to the
quality of the experimental data. To attain this accuracy in the theory predictions requires
the computation of higher-order perturbative corrections.

The most basic jet production processes are initiated at Born level by 2→ 2 parton
scattering, with single jet inclusive and dijet observables both deriving from the same
Born-level reaction. For these hadron collider jet production processes, the established
next-to-leading order (NLO) QCD predictions [1–5], supplemented with NLO electroweak
corrections [6–8] and parton shower based resummation [9, 10], have long been the baseline
of comparisons between experiment and theory. With residual theory uncertainties of
around ten percent at NLO QCD, these predictions were however no longer sufficient with
the advent of high precision jet production data from the LHC [11].
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Higher-order QCD calculations of jet observables require the handling of infrared
singular configurations that arise from real and virtual corrections to the underlying Born-
level process, and that cancel each other only once all corrections at a given order are added
together. This cancellation of infrared divergences among different subprocess contributions
is usually accomplished by a subtraction method. Several subtraction methods have been
developed [12–19] for next-to-next-to-leading order (NNLO) QCD calculations, and have
been applied to a substantial number of hadron collider processes [20] in calculations
performed on a process-by-process basis with up to now only limited automation.

NNLO QCD corrections to jet production observables were initially computed [21–23]
using the antenna subtraction method [13, 14, 24], thereby retaining only the leading terms
in an expansion in the number of colours and quark flavours in QCD. Since the antenna
subtraction method is based on the colour-ordered decomposition of QCD amplitudes, it
was particularly well-adapted to extract these leading-colour contributions. Subsequently,
full-colour NNLO QCD results [25] for jet production processes were obtained using a residue-
subtraction scheme [15]. Most recently, we completed the full-colour NNLO calculation
of jet production processes [26] using the antenna subtraction method. In this paper, we
would like to complement our numerical results and phenomenological interpretations that
we presented in [26] by a description of the technical details of their calculation.

The implementation of the antenna subtraction method is achieved on a process-by-
process basis using the colour-ordered antenna approach. In this approach, single and double
real emission patterns in colour-ordered matrix elements are identified and used to guide
the construction of the subtraction terms. The subtraction for the double real emission
contribution is usually constructed first and subsequently integrated with additional terms to
form the real-virtual part, and finally the double virtual part. For low multiplicity processes
or in leading colour approximations, this approach usually results in relatively compact
expressions for the subtraction terms. However, the complexity of the implementation
of the colour-ordered antenna subtraction method scales with the number of coloured
particles involved, which for the process considered in this paper, pp→ jj, reaches up to
six at NNLO. Going beyond the leading colour approximation and including all subleading
colour contributions also comes with new complications. In this paper, we discuss these
complications and the successful implementation of the colour-ordered antenna subtraction
method for the full colour dijet production, thus enabling full colour NNLO QCD predictions
for jet production observables at the LHC [26].

This paper is set up as follows. In section 2 we list all the relevant matrix elements in
a colour-decomposed manner for dijet production from proton-proton collisions at NNLO
QCD in full colour. One of the main obstacles is how to deal with interference terms and
this is discussed in section 3 for the construction of the double real antenna subtraction. The
construction of the real-virtual subtraction terms is discussed in section 4, again focusing on
the novel aspects that arise at subleading colour level. Lastly, the double virtual subtraction
is discussed in section 5, thereby demonstrating the analytical cancellation of infrared pole
terms among the different subprocess contributions and establishing the generic structure
of the integrated antenna subtraction terms, combined with the QCD mass factorization
terms, in the form of single and double integrated dipole factors. We conclude with section 6
and document the colour-ordered infrared pole operators and integrated dipole factors
in appendices.
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2 Relevant matrix elements

In this following, we discuss all the relevant matrix elements for the NNLO QCD corrections
to dijet production at the LHC, aiming to establish the notation and to outline the colour-
connections at all colour levels, which will subsequently become relevant for the construction
of the antenna subtraction terms.

At leading order (LO), the basic parton-level dijet production processes are given by
all crossings of the two-to-two parton processes: gg → gg, qg → qg and qq′ → qq′, where
q and q′ denote quarks of identical or different flavour. The cross section at NNLO is
then assembled by combining these partonic subprocess contributions, integrated over their
respective phase spaces, with all terms that result from the mass factorization (MF) of
the parton distributions at NNLO. The NNLO QCD corrections can be divided into three
types according to the number of loops and external legs of their Feynman diagrams:

• RR: the real-real or double real corrections, which consist of the tree-level diagrams
with six external partons.

• RV: the real-virtual corrections, which consist of the one-loop diagrams with five
external partons.

• VV: the virtual-virtual or double virtual corrections, which consist of the two-loop
corrections to the four parton processes.

The NNLO contribution to the cross section thus reads:

dσNNLO =
∫

Φn+2
dσRR +

∫
Φn+1

(
dσRV + dσMF,1

)
+
∫

Φn

(
dσV V + dσMF,2

)
, (2.1)

where the Φn denote the 2 → (n − 2)-parton phase space integrations, and n = 4 is the
parton multiplicity of the underlying Born-level process. The dσRR,RV,V V,MF contain the
projection of all subprocesses onto jj final states, involving the jet reconstruction algorithm
and the application of kinematical cuts.

The phase space integrals of different multiplicities in (2.1) cannot be computed in a
direct manner, since each contribution on the right-hand side contains infrared singularities
from real or virtual unresolved parton exchanges, which only cancel among each other
once all contributions are added together. The singular real-radiation behaviour of the RR
and RV contributions must be subtracted prior to integration, and the explicit infrared
poles must be separated in the RV and VV contributions. We perform the cancellation of
infrared-divergent terms among the different contributions using the antenna subtraction
method [13, 14, 24], which introduces subtraction terms at the RR, RV and VV levels,
resulting in:

dσNNLO =
∫

Φn+2

(
dσRR − dσS

)
+
∫

Φn+1

(
dσRV − dσT

)
+
∫

Φn

(
dσV V − dσU

)
, (2.2)

where each bracketed term on the right hand side is now free of infrared singularities and
can be integrated numerically. They are implemented into the parton-level event generator
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NNLOJET, which enables to compute any infrared-safe observable related to pp→ jj, such
as multi-differential single-jet inclusive or dijet cross sections. Our numerical results for
several LHC jet production observables are reported in a companion paper [26].

The newly introduced subtraction terms have the following structure:

dσS = dσS,1 + dσS,2,

dσT = dσV,S −
∫

1
dσS,1 − dσMF,1,

dσU = −
∫

1
dσV,S −

∫
2

dσS,2 − dσMF,2. (2.3)

In here, dσS,1,2 correspond to the parts contributing to the (n− 1) and (n− 2) parton final
state respectively, and dσV,S subtracts all one-parton unresolved emissions from dσRV . The
integrations over the phase spaces relevant to one-parton or two-parton emissions (indicated
by the respective suffixes) factorize from their original higher multiplicity phase spaces and
are performed analytically [13, 27–33].

The construction of the antenna subtraction terms will be described in detail in
sections 3–5, where we focus in particular on the novel features of the subtraction terms that
appear for the first time in pp→ jj at full colour. These considerations will in particular
be important in view of a future automated generation [34] of antenna subtraction terms
for generic processes.

As we sum over all possible allowed parton identities, we have to classify the processes
contributing at NNLO according to their parton content. We define the following types of
(squared) matrix elements:

• A-type matrix elements: processes for which all the external partons are gluons.

• B-type matrix elements: processes which contain only one quark pair, plus any
additional number of gluons.

• C-type matrix elements: processes which contain two quark pairs of different flavour,
plus any additional number of gluons.

• D-type matrix elements: processes which contain two quark pairs of identical flavour,
plus any additional number of gluons.

• E-type matrix elements: processes which contain three quark pairs, all of different
flavour.

• F-type matrix elements: processes which contain two quark pairs of the same flavour
and a third quark pair of different flavour.

• G-type matrix elements: processes which contain three quark pairs, all of the same
flavour.

The distinction between the identical-flavour and different-flavour multi-quark processes
is such that the identical flavour processes contain only those contributions that appear
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anew (interference terms from interchanging external quark states that are admitted only
for identical flavours) if quark flavours are set equal. For example, non-identical flavour
quark-quark scattering at leading order receives contributions from C-type squared matrix
elements, while identical flavour quark-quark scattering receives contributions from both
C-type and D-type squared matrix elements.

The double real corrections to dijet production contain six external partons, so they
can be of any A-, B-, C-, D-, E-, F- and G-type, while the real-virtual and double virtual
corrections contain only five and four partons respectively, meaning they can only be of
A-, B-, C- or D-type. We use the notation Ml

n({p}) with M ∈ {A,B, C,D, E ,F ,G} for
a generic amplitude containing n external gluons and l loops depending on the external
parton momenta {p}. The helicity labels of the external partons are suppressed and
when considering squared quantities M l

n({p}) we always assume a sum over the helicity
configurations. Squared matrix elements are denoted by capital italic letters, which are put
in boldface when a summation over momentum permutations is involved.

In the following sections we define all the relevant NNLO matrix elements according to
this convention. In view of the antenna subtraction which will be applied separately for
each matrix element type per colour level, all the matrix elements are broken down in a
tower of colour levels, each having their own powers of the colour factors Nc and nf . Each
colour level may be further sub-divided in functions which display some desired behaviour,
i.e. functions which have clear colour connections. Besides all the matrix elements which
form the NNLO corrections to dijet production, we also look at several lower multiplicity
matrix elements. These matrix elements are part of the NLO corrections to dijet production
or can appear as reduced matrix elements in the NNLO subtraction. We list them along
with several of their properties, such as their pole structures.

2.1 All-gluon (A-type) subprocesses

The A-type amplitudes are defined as the all-gluonic amplitudes. We denote an A-type
amplitude containing n gluons and l loops with Aln(g1, g2, . . . , gn), where the ordering of
the labels g1, g2, . . . , gn reflects the colour connections of the gluons, i.e. gluon g2 is colour
connected to gluon g1 and gluon g3, gluon g3 colour connected to gluon g2 and gluon g4,
and so on. The gluons g1 and gn at the endpoint are also colour connected to each other.

2.1.1 Amplitudes

The full tree-level A-type amplitude with n gluons is given by

A0
n = gn−2

s

∑
σ∈Sn/Zn

(gσ(1)gσ(2) . . . gσ(n)) a0
n(gσ(1), gσ(2), . . . , gσ(n)), (2.4)

where gs is the QCD gauge coupling (related to the strong coupling constant by 4παs = g2
s),

Sn the permutation group of n objects, Zn its subgroup of cyclic permutations, (g1g2 . . . gn)
a shorthand notation for the colour structure Tr(T g1T g2 . . . T gn) and a0

n(g1, g2, . . . , gn) the
colour-ordered n-gluon partial amplitudes containing the kinematic information [35]. The
partial amplitudes a0

n fulfill several relations [36]:
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• Invariance under cyclic permutations:

a0
n(g1, g2, . . . , gn) = a0

n(gσ(1), gσ(2), . . . , gσ(n)), (2.5)

with σ ∈ Zn.

• Line reversal symmetry:

a0
n(g1, g2, . . . , gn) = (−1)na0

n(gn, gn−1, . . . , g1). (2.6)

• Dual Ward Identity:

a0
n(g1, g2, g3, . . . , gn) + a0

n(g2, g1, g3, . . . , gn) + a0
n(g2, g3, g1, . . . , gn)

+ · · ·+ a0
n(g2, g3, . . . , g1, gn) = 0, (2.7)

i.e. the sum of amplitudes where one gluon (g1) is placed in between all other gluons,
while keeping the relative order of the other gluons the same, vanishes.

• Gauge invariance of a0
n(g1, g2, . . . , gn).

• Colour ordering: the order of the arguments of a0
n(g1, g2, . . . , gn) reflects their colour

ordering, such that kinematical singularities can appear only if adjacent gluons become
unresolved with respect to each other.

The one-loop amplitude for four external gluons is given by [37]

A1
4 = g2

s

(
αs
2π

)
Nc

 ∑
σ∈S4/Z4

(
gσ(1)gσ(2)gσ(3)gσ(4)

)
A1

4;1

(
gσ(1), gσ(2), gσ(3), gσ(4)

)

+ 1
Nc

∑
ρ∈S4/Z2×Z2

(
gρ(1)gρ(2)

) (
gρ(3)gρ(4)

)
A1

4;3

(
gρ(1), gρ(2); gρ(3), gρ(4)

) , (2.8)

where in the second sum the permutations only go over the orderings which are inequiv-
alent under cyclic permutations of the two subsets {ρ(1), ρ(2)} and {ρ(3), ρ(4)} amongst
themselves, and the interchange of these subsets. The subleading colour partial amplitudes
A1

4;3 can be expressed in terms of the leading colour partial amplitudes A1
4;1. In the case of

four gluons, the relation is simply

A1
4;3(g1, g2; g3, g4) = A1

4;1(g2, g1, g3, g4) +A1
4;1(g2, g3, g1, g4) +A1

4;1(g3, g2, g1, g4). (2.9)

We note that the A1
4;3 amplitude is completely symmetric under the exchange of any two

gluon indices, resulting in cancellations of the subleading colour partial amplitudes with
each other at the squared matrix element level. The leading colour partial amplitude can
be further colour-decomposed into more primitive amplitudes:

A1
n;1(g1, g2, . . . , gn) = a1

n(g1, g2, . . . , gn) + nf
Nc
â1
n(g1, g2, . . . , gn), (2.10)
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where the quark loop contribution proportional to nf has been separated. Adding one more
gluon, we have for the five-gluon one-loop amplitude [38]:

A1
5 = g3

s

(
αs
2π

)
Nc

 ∑
σ∈S5/Z5

(
gσ(1)gσ(2)gσ(3)gσ(4)gσ(5)

)
A1

5;1

(
gσ(1), gσ(2), gσ(3), gσ(4)gσ(5)

)

+ 1
Nc

∑
ρ∈S5/Z2×Z3

(
gρ(1)gρ(2)

) (
gρ(3)gρ(4)gρ(5)

)
A1

5;3

(
gσ(1), gσ(2); gσ(3), gσ(4)gσ(5)

) ,
(2.11)

where the notation follows by extension from the four-gluon one-loop amplitude. The
subleading colour partial amplitude A1

5;3 can again be expressed in terms of the leading
colour amplitudes:

A1
5;3 (g1, g2, g3, g4, g5) = A1

5;1 (g2, g1, g3, g4, g5) +A1
5;1 (g2, g3, g1, g4, g5)

+A1
5;1 (g2, g3, g4, g1, g5) +A1

5;1 (g3, g2, g1, g4, g5)
+A1

5;1 (g3, g2, g4, g1, g5) +A1
5;1 (g3, g4, g2, g1, g5)

+A1
5;1 (g1, g2, g3, g4, g5) +A1

5;1 (g1, g3, g2, g4, g5)
+A1

5;1 (g1, g3, g4, g2, g5) +A1
5;1 (g3, g1, g2, g4, g5)

+A1
5;1 (g3, g1, g4, g2, g5) +A1

5;1 (g3, g4, g1, g2, g5) . (2.12)

2.1.2 Pole structure of the one-loop amplitudes

The poles of the one-loop primitive amplitudes can be expressed in terms of tree-level
amplitudes multiplying the I(1) infrared singularity operators [39], which we express in a
colour-ordered form [13], as summarised in appendix A:

Poles
[
a1
n (g1, g2, g3, . . . , gn)

]
=

2
[
I(1)
gg (ε, s12) + I(1)

gg (ε, s23) + · · ·+ I(1)
gg (ε, sn1)

]
a0
n (g1, g2, g3, . . . , gn) ,

Poles
[
â1
n (g1, g2, g3, . . . , gn)

]
=

2
[
I

(1)
gg,F (ε, s12) + I

(1)
gg,F (ε, s23) + · · ·+ I

(1)
gg,F (ε, sn1)

]
a0
n (g1, g2, g3, . . . , gn) . (2.13)

2.1.3 Four-parton tree-level

The leading order tree-level matrix element for four-gluon scattering is obtained by squar-
ing (2.4) with n = 4. After factoring out an overall (N2

c − 1), all the subleading colour
levels vanish, resulting in∣∣A0

4
∣∣2 = g4

s

(
N2
c − 1

)
N2
c A0

4

= g4
s

(
N2
c − 1

)
N2
c

∑
σ∈S3

A0
4

(
g1, gσ(2), gσ(3), gσ(4)

)
= g4

s

(
N2
c − 1

)
N2
c · 2

[
A0

4 (g1, g2, g3, g4) +A0
4 (g1, g2, g4, g3) +A0

4 (g1, g3, g2, g4)
]
,

(2.14)
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where A0
n is the squared partial amplitude

A0
n(g1, g2, . . . , gn) = a0†

n (g1, g2, . . . , gn) a0
n(g1, g2, . . . , gn), (2.15)

and the properties of the all-gluonic amplitudes have been used to simplify the result into
only three independent orderings of A0

4. Besides being a Born diagram for dijet production
at the LHC, these functions will also appear as reduced matrix elements which are multiplied
by antenna functions in the antenna subtraction. For this reason it is also convenient to
define the interference term of a conjugated amplitude with colour ordering (i1, i2, . . . , in)
multiplied with an amplitude with colour ordering (j1, j2, . . . , jn), which do not need to be
the same:

A0
n,int(i1, i2, . . . , in; j1, j2, . . . , jn) = a0†

n (i1, i2, . . . , in) a0
n(j1, j2, . . . , jn). (2.16)

2.1.4 Five-parton tree-level

For n = 5 all subleading colour levels vanish as well, yielding∣∣A0
5
∣∣2 = g6

s

(
N2
c − 1

)
N3
c A0

5

= g6
s

(
N2
c − 1

)
N3
c

∑
σ∈S4

A0
5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)
. (2.17)

This matrix element is part of the NLO correction, for which single unresolved limits need
to be subtracted, and appears as a reduced matrix element in the NNLO subtraction.

2.1.5 Six-parton tree-level

For n = 6, we obtain the matrix element [40] which forms the all-gluonic double real
correction for dijet production. Double real subtraction terms need to be constructed to
mimic all the single and double unresolved limits of the matrix element, such that it can be
numerically integrated over the whole phase space. Starting from six gluons, not all the
subleading colour levels turn out to be zero after squaring (2.4). We find a leading colour
level and a subleading colour level suppressed by 1/N2

c ,∣∣A0
6
∣∣2 = g8

s

(
N2
c − 1

)
N4
c

[
A0

6 + 2
N2
c

Ã
0
6

]
, (2.18)

where

A0
6 =

∑
σ∈S5

A0
6

(
g1, gσ(2), gσ(3), gσ(4), gσ(5), gσ(6)

)
,

Ã
0
6 =

∑
σ∈S5

a0†
6

(
g1, gσ(2), gσ(3), gσ(4), gσ(5), gσ(6)

) [
a0

6

(
g1, gσ(3), gσ(5), gσ(2), gσ(6), gσ(4)

)
+ a0

6

(
g1, gσ(3), gσ(6), gσ(4), gσ(2), gσ(5)

)
+ a0

6

(
g1, gσ(4), gσ(2), gσ(6), gσ(3), gσ(5)

) ]
.

(2.19)

In (2.19) we see that the leading colour level consists of a sum of coherent squared orderings
just like for the lower multiplicity matrix elements, while the subleading colour level consists
of three incoherent interferences, summed over permutations.
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2.1.6 Four-parton one-loop

The full four-gluon one-loop matrix element contribution is given by interfering the one-loop
amplitude (2.8) with the tree-level amplitude (2.4):

M1
4 (g1, g2, g3, g4) = 2 Re

[
A0†

4 A
1
4

]
=
(
αs
2π

)
g4
s

(
N2
c − 1

)
N3
c

 ∑
σ∈S3

A1
4

(
g1, gσ(2), gσ(3), gσ(4)

)

+nf
Nc

∑
σ∈S3

Â1
4

(
g1, gσ(2), gσ(3), gσ(4)

) , (2.20)

where

A1
n(g1, g2, . . . , gn) = Re

[
a1†
n (g1, g2, . . . , gn) a0

n(g1, g2, . . . , gn)
]
,

Â1
n(g1, g2, . . . , gn) = Re

[
â1†
n (g1, g2, . . . , gn) a0

n(g1, g2, . . . , gn)
]
. (2.21)

Besides the leading Nc colour level, we also have the colour level proportional to nf/Nc

coming from a closed quark loop and in general it is also possible to have additional
subleading nf/N3

c , nf/N5
c , . . . , nf/N

2n+1
c colour levels. The four-parton A-type one-loop

matrix element has only a single nf/Nc colour level, which is referred to as the leading
nf contribution and is considered part of the leading colour approximation. This matrix
element is part of the virtual correction of dijet production, but like for the lower multiplicity
tree-level matrix element, it will also appear as a reduced matrix element in the subtraction
terms. The one-loop matrix element contains infrared poles which factorize onto the tree-
level matrix elements. The pole structure of the functions A1

4 and Â1
4 for a given ordering

follows from (2.13):

Poles
[
A1

4 (a, b, c, d)
]

= 2
[
I(1)
gg (ε, sab) + I(1)

gg (ε, sbc) + I(1)
gg (ε, scd) + I(1)

gg (ε, sda)
]

×A0
4 (a, b, c, d) ,

Poles
[
Â1

4 (a, b, c, d)
]

= 2
[
I

(1)
gg,F (ε, sab) + I

(1)
gg,F (ε, sbc) + I

(1)
gg,F (ε, scd) + I

(1)
gg,F (ε, sda)

]
×A0

4 (a, b, c, d) . (2.22)

2.1.7 Five-parton one-loop

The real-virtual A-type matrix element correction is obtained by interfering the five-gluon
one-loop amplitude [38] with the tree-level amplitude. Broken down in its colour levels it is
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given by

M1
5 (g1, g2, g3, g4, g5)

=
(
αs
2π

)
g6
s

(
N2
c − 1

)
N4
c

×
[∑
σ∈S4

A1
5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)
+ nf
Nc

∑
σ∈S4

Â1
5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)

+ 1
N2
c

∑
σ∈S4

Ã1
5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)
+ nf
N3
c

∑
σ∈S4

ˆ̃A1
5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)]
,

(2.23)

where the subleading colour functions Ã1
5 and ˆ̃A1

5 are obtained from the one independent
interference ordering which contains no common neighbouring partons:

Ã1
5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)
= 2 Re

[
a0†

5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)
× a1

5

(
g1, gσ(4), gσ(2), gσ(5), gσ(3)

) ]
,

ˆ̃A1
5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)
= 2 Re

[
a0†

5

(
g1, gσ(2), gσ(3), gσ(4), gσ(5)

)
× â1

5

(
g1, gσ(4), gσ(2), gσ(5), gσ(3)

) ]
. (2.24)

The one-loop five-gluon matrix element contains both singularities in unresolved phase
space regions and ε-poles from the loop. The subtraction term for this matrix element
will need to subtract these single unresolved limits as well as cancel the poles. The pole
structures of the leading colour functions A1

5 and Â1
5 follow by extension from the four-gluon

functions, while for the subleading colour functions they are

Poles
[
Ã1

5 (a, b, c, d, e)
]

= 2
[
I(1)
gg (ε, sad) + I(1)

gg (ε, sdb) + I(1)
gg (ε, sbe) + I(1)

gg (ε, sec)

+ I(1)
gg (ε, sca)

]
× Re

[
a0†

5 (a, b, c, d, e) a0
5 (a, d, b, e, c)

]
,

Poles
[ ˆ̃A1

5 (a, b, c, d, e)
]

= 2
[
I

(1)
gg,F (ε, sad) + I

(1)
gg,F (ε, sdb) + I

(1)
gg,F (ε, sbe) + I

(1)
gg,F (ε, sec)

+ I
(1)
gg,F (ε, sca)

]
× Re

[
a0†

5 (a, b, c, d, e) a0
5 (a, d, b, e, c)

]
. (2.25)

2.1.8 Four-parton two-loop

Lastly, we have the two-loop four-gluon matrix element which forms the double virtual
correction. It consists of the two-loop amplitude interfered with the tree-level amplitude
and the genuine square of the one-loop amplitude. Decomposed in all its colour levels it is
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given by [41–43]

M2
4 (g1, g2, g3, g4) = 2 Re

[
A0†

4 A
2
4

]
+A1†

4 A
1
4 =

(
αs
2π

)2
g4
s

(
N2
c − 1

)
N4
c

[

A2
4 (g1, g2, g3, g4) + nf

Nc
Â2

4 (g1, g2, g3, g4) +
n2
f

N2
c

ˆ̂
A2

4 (g1, g2, g3, g4)

+ 1
N2
c

Ã2
4 (g1, g2, g3, g4) + nf

N3
c

ˆ̃A2
4 (g1, g2, g3, g4) +

n2
f

N4
c

ˆ̃A2
4 (g1, g2, g3, g4)

+
n2
f

N6
c

ˆ̃̃̂
A2

4 (g1, g2, g3, g4)
]
. (2.26)

Its ε-pole structure is documented in [41–43] and cancels with the integrated subtraction
terms at the VV level.

2.2 Two-quark-plus-gluons (B-type) subprocesses

The B-type matrix elements are matrix elements containing one quark pair plus any number
of gluons. Thus, Bln denotes a B-type amplitude containing one quark pair, n gluons and l
loops. For the functions defined in this section we will use the notation 1, 2 for the qq̄-pair
and i, j, k, . . . for the gluons. The convention for the ordering of the arguments of the
B-type functions will be Bl

n(1, i, j, k, . . . , 2), where the quarks are in the first and last entries
and the gluons in between. As for the A-type amplitudes, the ordering of the parton labels
reflects the colour connections of the partons.

2.2.1 Amplitudes

Similar to the A-type tree-level amplitude, the full B-type tree-level amplitude for any
number of gluons can also be written in a simple expression,

B0
n = gns

∑
σ∈Sn

(gσ(1), gσ(2), . . . , gσ(n))qq̄ b0n(q, gσ(1), gσ(2), . . . , gσ(n), q̄), (2.27)

where (g1, g2, . . . , gn)qq̄ abbreviates the colour matrix product (T g1T g2 . . . T gn)qq̄ and the
partial amplitude containing one quark pair and n gluons is denoted by b0n(q, g1, g2, . . . , gn, q̄).
At one loop, the amplitudes have a more elaborate colour structure. The one-loop amplitude
with two gluons is given by

B1
2 = g2

s

(
αs
2π

)
Nc

 ∑
σ∈S2

(T gσ(1)T gσ(2))qq̄ B
1
2;1

(
q, gσ(1), gσ(2), q̄

)

+ 1
Nc

(T g1T g2) δqq̄ B1
2;3 (q, g1, g2, q̄)

 , (2.28)
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and the five-parton one-loop B-type amplitude reads [44, 45]

B1
3 = g3

s

(
αs
2π

)
Nc

 ∑
σ∈S3

(T gσ(1)T gσ(2)T gσ(3))qq̄ B
1
3;1

(
q, gσ(1), gσ(2), gσ(3), q̄

)
+ 1
Nc

∑
i=1,2,3

(T gi)qq̄ δgjgkB
1
3;3 (q, gi, q̄; gj , gk)

+ 1
Nc

(T g1T g2T g3) δqq̄ B1
3;4 (q, q̄; g1, g2, g3)

+ 1
Nc

(T g3T g2T g1) δqq̄ B1
3;4 (q, q̄; g3, g2, g1)

 . (2.29)

The leading partial amplitude B1
n;1 is the only one which contributes at leading colour and

can be further colour-decomposed into primitive amplitudes:

B1
n;1 (q, g1, . . . , gn, q̄) =

b1n (q, g1, . . . , gn, q̄) + nf
Nc
b̂1n (q, g1, . . . , gn, q̄)−

1
N2
c

b̃1n (q, g1, . . . , gn, q̄) . (2.30)

In contrast to the A-type amplitudes, the primitive amplitudes form the basic building
blocks now, as the subleading colour partial amplitudes, B1

n;i with i > 1, cannot be written
in terms of the leading colour partial amplitude B1

n;1, but are constituted as a sum over
permutations of the same primitive amplitudes:

B1
n;i (q, g1, . . . , gn, q̄) =

(−1)i−1 ∑
σ∈CY{α}{β}

[
b1n (σ (q, g1, . . . , gn, q̄))−

nf
Nc

ˆ̃b1n (σ (q, g1, . . . , gn, q̄))
]
, (2.31)

where {α} = {gi+1, gi, . . . , g1}, {β} = {q, q̄, gi+2, gi+3, . . . , gn}, CY{α}{β} are all the cycli-
cally ordered permutations with q held fixed and ˆ̃b1n a primitive amplitude which can be
related to the amplitude b̂1n in (2.30) by a reflection identity [44].

2.2.2 Pole structure of the one-loop amplitudes

The leading colour partial amplitude has the pole structure [46]:

Poles
[
B1

3;1 (q, g1, g2, g3, q̄)
]

=[ (
I(1)
qg (ε, sq1) + I(1)

gg (ε, s12) + I(1)
gg (ε, s23) + I(1)

qg (ε, s3q̄)
)

+ nf
Nc

(
I

(1)
qg,F (ε, sq1) + I

(1)
gg,F (ε, s12) + I

(1)
gg,F (ε, s23) + I

(1)
qg,F (ε, s3q̄)

)
− 1
N2
c

I
(1)
qq̄ (ε, sqq̄)

]
b03 (q, g1, g2, g3, q̄) , (2.32)
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while for the subleading partial amplitudes we have

Poles
[
B1

3;3 (q, g1, q̄; g2, g3)
]

=[
−I(1)

gg (ε, s13) + I(1)
qg (ε, s1q̄) + I(1)

gg (ε, s23)− I(1)
qg (ε, s2q̄)

]
b03 (q, g1, g2, g3, q̄)

+ [2↔ 3] b03 (q, g1, g3, g2, q̄) + [q ↔ q̄] b03 (q, g3, g2, g1, q̄)
+ [2↔ 3, q ↔ q̄] b03 (q, g2, g1, g3, q̄) ,

Poles
[
B1

3;4 (q, q̄; g1, g2, g3)
]

=[
−I(1)

qg (ε, sq3) + I
(1)
qq̄ (ε, sqq̄) + I(1)

gg (ε, s13)− I(1)
qg (ε, s1q̄)

]
b03 (q, g1, g2, g3, q̄)

+ [1→ 2, 2→ 3, 3→ 1] b03 (q, g2, g3, g1, q̄)
+ [1→ 3, 3→ 2, 2→ 1] b03 (q, g3, g1, g2, q̄) , (2.33)

where the poles for B1
3;3(q, g2, q̄; g3, g1),B1

3;3(q, g3, q̄; g1, g2) and B1
3;4(q, q̄; g3, g2, g1) can be

obtained from appropriate permutations of the above expressions.

2.2.3 Four-parton tree-level

The B-type tree-level amplitude with n = 2 gluons has two colour orderings:

b02(1, i, j, 2) and b02(1, j, i, 2). (2.34)

Defining the following squared functions,

B0
2(1, i, j, 2) =

∣∣b02(1, i, j, 2)
∣∣2,

B̄0
2(1, i, j, 2) =

∣∣b02(1, i, j, 2) + b02(1, j, i, 2)
∣∣2, (2.35)

the full squared four-parton B-type matrix element is then given by∣∣B0
2
∣∣2 = g4

s

(
N2
c − 1

)
Nc

[
B0

2 −
1
N2
c

B̄
0
2

]
, (2.36)

with

B0
2 =

∑
P (i,j)

B0
2 (1, i, j, 2) ,

B̄
0
2 = B̄0

2(1, i, j, 2), (2.37)

where P (i, j) denotes all permutations of i, j. The leading colour function B0
2 has colour

connections as given by the ordering of its arguments, while the subleading colour function
B̄0

2 contains abelian gluons: the gluons i and j are not colour connected to each other but
both to the qq̄ pair. For later convenience, we also define the interference term

B̃0
2,R (1, i, j, 2) = 2 Re

[
b0†2 (1, i, j, 2) b02 (1, j, i, 2)

]
, (2.38)

which can be written in terms of the functions defined above

B̃0
2,R (1, i, j, 2) = B̄0

2 (1, i, j, 2)−B0
2 (1, i, j, 2)−B0

2 (1, j, i, 2) . (2.39)
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2.2.4 Five-parton tree-level

For three gluons, there are 3! = 6 colour-ordered amplitudes b03(1, i, j, k, 2). We define the
following squared matrix elements:

B0
3(1, i, j, k, 2) =

∣∣b03(1, i, j, k, 2)
∣∣2,

B̃0
3(1, i, j, k, 2) =

∣∣b03(1, i, j, k, 2) + b03(1, j, i, k, 2) + b03(1, j, k, i, 2)
∣∣2,

B̄0
3(1, i, j, k, 2) =

∣∣ ∑
P (i,j,k)

b03(1, i, j, k, 2)
∣∣2. (2.40)

The leading colour function B0
3 is a straightforward generalization of B0

2 with an additional
gluon. The other functions, which will appear at subleading colour levels, contain one or
more abelian gluons. The function B̃0

3(1, i, j, k, 2) has the colour structure (1, i, 2)⊗(1, j, k, 2),
so it is understood as a matrix element with two non-abelian gluons j, k and one abelian
gluon i, indicated by the tilde above the function. By convention, the abelian gluons are
placed before the non-abelian gluons in the argument list. When all the gluons in a matrix
element are abelian, this will be indicated by a bar over the function. So B̄0

3(1, i, j, k, 2) is a
matrix element where all three gluons are abelian and thus a generalization of B̄0

2 . The full
squared five-parton B-type matrix element can then be written as

∣∣B0
3
∣∣2 = g6

s

(
N2
c − 1

)
N2
c

[
B0

3 −
1
N2
c

(
B̃

0
3 − B̄

0
3

)
+ 1
N4
c

B̄
0
3

]
, (2.41)

with

B0
3 =

∑
P (i,j,k)

B0
3 (1, i, j, k, 2) ,

B̃
0
3 =

∑
P (i,j,k)

B̃0
3 (1, i, j, k, 2) ,

B̄
0
3 = B̄0

3 (1, i, j, k, 2) . (2.42)

Note that the matrix element with all abelian gluons will always appear at the most
subleading colour level, but can also contribute at the intermediate subleading colour levels.

2.2.5 Six-parton tree-level

The double real B-type matrix element [47] containing one quark pair and four gluons is
given by

∣∣B0
4
∣∣2 = g8

s

(
N2
c − 1

)
N3
c

[
B0

4 −
1
N2
c

(
B̃

0
4 − B̄

0
4 + R0

4

)
+ 1
N4
c

( ˜̃B0
4 − 3B̄

0
4

)
− 1
N6
c

B̄
0
4

]
,

(2.43)
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where

B0
4 =

∑
P (i,j,k,l)

B0
4 (1, i, j, k, l, 2) ,

B̃
0
4 =

∑
P (i,j,k,l)

B̃0
4 (1, i, j, k, l, 2) ,

˜̃B0
4 =

∑
P (i,j,k,l)/Z2

˜̃B0
4 (1, i, j, k, l, 2) ,

B̄
0
4 = B̄0

4 (1, i, j, k, l, 2) ,

R0
4 =

∑
P (i,j,k,l)

R0
4 (1, i, j, k, l, 2) . (2.44)

Here B0
4 , B̃

0
4 ,

˜̃B0
4 and B̄0

4 are defined analogously as for the lower multiplicity B-type matrix
elements, with the number of tildes above the function specifying the number of abelian
gluons and the bar specifying that all gluons are abelian. In the definition of ˜̃B0

4, the sum
goes over all permutations of i, j, k, l modulo the interchanges of the two abelian gluons. A
new feature in the six-parton B-type matrix element is observed. It is no longer possible
to group all the terms in terms of these squared (abelian gluonic) functions. Remainder
interference terms remain which we group together in the R-term R0

4. Each single ordering
of the R-term is an interference of eight amplitudes:

R0
4 (1, i, j, k, l, 2) = Re

[
b0†4 (1, i, j, k, l, 2)

(
b04 (1, j, i, l, k, 2) + b04 (1, j, l, i, k, 2)

+ b04 (1, j, l, k, i, 2) + b04 (1, k, i, l, j, 2) + b04 (1, k, j, l, i, 2)

+ b04 (1, l, i, k, j, 2) + b04 (1, l, j, i, k, 2) + b04 (1, l, k, j, i, 2)
)]
. (2.45)

These remainder interference terms also occur for n > 6 B-type matrix elements, with the
consequence that it is no longer straightforward to identify the unresolved limits by just
examining the colour connections, which render the construction of the subtraction term
more involved.

2.2.6 Four-parton one-loop

For the following loop matrix elements, tildes and bars above the squared matrix elements
will merely signify the degree in subleading colour, and not necessarily the number of abelian
gluons, as was the convention for the tree-level matrix elements. Likewise, the number
of hats above a functions signifies the power of its colour factor nf . The full four-parton
one-loop B-type matrix element [37] is then written as

M1
4 (q, g1, g2, q̄) =

(
αs
2π

)
g4
s

(
N2
c − 1

)
N2
c

[
B1

2 (q, g1, g2, q̄) +B1
2 (q, g2, g1, q̄)

+ nf
Nc

(
B̂1

2 (q, g1, g2, q̄) + B̂1
2 (q, g2, g1, q̄)

)
+ 1
N2
c

B̃1
2 (q, g1, g2, q̄)

+ nf
N3
c

ˆ̃B1
2 (q, g1, g2, q̄) + 1

N4
c

˜̃B1
2 (q, g1, g2, q̄)

]
, (2.46)
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where each function appearing at the different colour levels is build up from the interferences
of several tree-level amplitudes and one-loop amplitudes in (2.30):

B1
2 (q,g1,g2, q̄) = 2Re

[
b1†2 (q,g1,g2, q̄) b02 (q,g1,g2, q̄)

]
,

B̂1
2 (q,g1,g2, q̄) = 2Re

[
b̂1†2 (q,g1,g2, q̄) b02 (q,g1,g2, q̄)

]
,

B̃1
2 (σ ({p})) = B̃1

2,b (σ ({p}))+B̃1
2,c (σ ({p}))+B̃1

2,d (σ ({p}))+B̃1
2,e (σ ({p}))

+B̃1
2,f (σ ({p})) ,

ˆ̃B1
2 (q,g1,g2, q̄) = 2Re

[(
b̂1†2 (q,g1,g2, q̄)+b̂1†2 (q,g2,g1, q̄)

)(
b02 (q,g1,g2, q̄)+b02 (q,g2,g1, q̄)

)]
,

˜̃B1
2 (q,g1,g2, q̄) = 2Re

[(
b1†2 (q,g1,g2, q̄)+b1†2 (q,g2,g1, q̄)

)(
b02 (q,g1,g2, q̄)+b02 (q,g2,g1, q̄)

)]
,

(2.47)

where the first SLC matrix element B̃1
2 has been partitioned into several subfunctions

coming from the different contractions of the tree-level and one-loop colour structures:

B̃1
2,b (q,g1,g2, q̄) = 2Re

[
B1†

2;3 (q,g1,g2, q̄) b02 (q,g1,g2, q̄)
] ∣∣

SLC,

B̃1
2,c (q,g1,g2, q̄) = 2Re

[
B1†

2;3 (q,g1,g2, q̄) b02 (q,g2,g1, q̄)
] ∣∣

SLC,

B̃1
2,d (q,g1,g2, q̄) = 2Re

[
B1†

2;1 (q,g1,g2, q̄) b02 (q,g1,g2, q̄)
] ∣∣

SLC,

B̃1
2,e (q,g1,g2, q̄) = 2Re

[
B1†

2;1 (q,g1,g2, q̄) b02 (q,g2,g1, q̄)+B1†
2;1 (q,g2,g1, q̄)b02 (q,g1,g2, q̄)

] ∣∣
SLC,

B̃1
2,f (q,g1,g2, q̄) = 2Re

[
B1†

2;1 (q,g2,g1, q̄) b02 (q,g2,g1, q̄)
] ∣∣

SLC, (2.48)

where
∣∣
SLC means the operation of extracting the coefficient of the subleading 1/N2

c contri-
bution. The singular structure of the leading Nc function B1

2(1, i, j, 2) for a given ordering
is

Poles
[
B1

2 (1, i, j, 2)
]

= 2
[
I(1)
qg (ε, s1i) + I(1)

qg (ε, s2j) + I(1)
gg (ε, sij)

]
B0

2 (1, i, j, 2) , (2.49)

and similar for the leading nf function B̂1
2(1, i, j, 2),

Poles
[
B̂1

2 (1, i, j, 2)
]

= 2
[
I

(1)
qg,F (ε, s1i) + I

(1)
qg,F (ε, s2j) + I

(1)
gg,F (ε, sij)

]
B0

2(1, i, j, 2).
(2.50)
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The subfunctions at the first subleading Nc colour level have lengthy pole expressions:

Poles
[
B̃1

2,b (1, i, j,2)
]

=
[
I

(1)
qq̄ (ε,s12)+I(1)

gg (ε,sij)+I(1)
qg (ε,s1i)

−2I(1)
qg (ε,s1j)−2I(1)

qg (ε,s2i)+I(1)
qg (ε,s2j)

]
B0

2 (1, i, j,2)

+
[
−I(1)

qq̄ (ε,s12)−I(1)
gg (ε,sij)+I(1)

qg (ε,s1i)+I(1)
qg (ε,s2j)

]
B0

2 (1, j, i,2)

+
[
I

(1)
qq̄ (ε,s12)+I(1)

gg (ε,sij)−I(1)
qg (ε,s1i)−I(1)

qg (ε,s2j)
]
B̄0

2 (1, i, j,2) ,

Poles
[
B̃1

2,c (1, i, j,2)
]

=
[
−I(1)

qq̄ (ε,s12)−I(1)
gg (ε,sij)+I(1)

qg (ε,s1j)+I(1)
qg (ε,s2i)

]
B0

2 (1, i, j,2)

+
[
I

(1)
qq̄ (ε,s12)+I(1)

gg (ε,sij)−2I(1)
qg (ε,s1i)

+I(1)
qg (ε,s1j)+I(1)

qg (ε,s2i)−2I(1)
qg (ε,s2j)

]
B0

2 (1, j, i,2)

+
[
I

(1)
qq̄ (ε,s12)+I(1)

gg (ε,sij)−I(1)
qg (ε,s1j)−I(1)

qg (ε,s2i)
]
B̄0

2 (1, i, j,2) ,

Poles
[
B̃1

2,d (1, i, j,2)
]

= 2
[
−I(1)

qq̄ (ε,s12)−I(1)
gg (ε,sij)

−I(1)
qg (ε,s1i)−I(1)

qg (ε,s2j)
]
B0

2 (1, i, j,2) ,

Poles
[
B̃1

2,e (1, i, j,2)
]

=
[
2I(1)
gg (ε,sij)+I(1)

qg (ε,s1i)

+I(1)
qg (ε,s1j)+I(1)

qg (ε,s2i)+I(1)
qg (ε,s2j)

]
B0

2 (1, i, j,2)

+
[
2I(1)
gg (ε,sij)+I(1)

qg (ε,s1i)

+I(1)
qg (ε,s1j)+I(1)

qg (ε,s2i)+I(1)
qg (ε,s2j)

]
B0

2 (1, j, i,2)

+
[
−2I(1)

gg (ε,sij)−I(1)
qg (ε,s1i)

−I(1)
qg (ε,s1j)−I(1)

qg (ε,s2i)−I(1)
qg (ε,s2j)

]
B̄0

2 (1, i, j,2) ,

Poles
[
B̃1

2,f (1, i, j,2)
]

= 2
[
−I(1)

qq̄ (ε,s12)−I(1)
gg (ε,sij)

−I(1)
qg (ε,s1j)−I(1)

qg (ε,s2i)
]
B0

2 (1, j, i,2) , (2.51)

whereas their total yields a relatively compact expression, with many poles cancelling
against each other:

Poles
[
B̃1

2 (1, i, j, 2)
]

=

− 2I(1)
qq̄ (ε, s12)B0

2 (1, i, j, 2)− 2I(1)
qq̄ (ε, s12)B0

2 (1, j, i, 2)

+ 2
[
I

(1)
qq̄ (ε, s12)− I(1)

qg (ε, s1i)− I(1)
qg (ε, s1j)− I(1)

qg (ε, s2i)− I(1)
qg (ε, s2j)

]
B̄0

2 (1, i, j, 2) .
(2.52)

The subleading nf function ˆ̃B1
2(1, i, j, 2) has the pole structure

Poles
[ ˆ̃B1

2 (1, i, j, 2)
]

= 2
[
− I(1)

qg,F (ε, s1i)− I(1)
qg,F (ε, s1j)

− I(1)
qg,F (ε, s2i)− I(1)

qg,F (ε, s2j)
]
B̄0

2(1, i, j, 2), (2.53)
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and lastly, the pole structure of the subsubleading Nc function ˜̃B1
2(1, i, j, 2) is given by

Poles
[ ˜̃B1

2 (1, i, j, 2)
]

= 2I(1)
qq̄ (ε, s12) B̄0

2 (1, i, j, 2) . (2.54)

2.2.7 Five-parton one-loop

The full five-parton B-type squared matrix element [44] is obtained by interfering the full
one-loop amplitude (2.29) with its tree-level counterpart. It is decomposed into colour levels
as follows:

M1
5 (q,g1,g2,g3, q̄) =

(
αs
2π

)
g6
s

(
N2
c −1

)
N3
c

[
B1

3 (q,g1,g2,g3, q̄)+ nf
Nc
B̂1

3 (q,g1,g2,g3, q̄)

+ 1
N2
c

B̃1
3 (q,g1,g2,g3, q̄)+ nf

N3
c

ˆ̃B1
3 (q,g1,g2,g3, q̄)+ 1

N4
c

˜̃B1
3 (q,g1,g2,g3, q̄)

+ nf
N5
c

ˆ̃̃
B1

3 (q,g1,g2,g3, q̄)+ 1
N6
c

B̄1
3 (q,g1,g2,g3, q̄)

]
. (2.55)

The contributions at the leading Nc and nf level simply consist of sums of coherent squares,

B1
3 (q, g1, g2, g3, q̄) =

∑
σ∈S3

Re
[
b1†3

(
q, gσ(1), gσ(2), gσ(3), q̄

)
b03

(
q, gσ(1), gσ(2), gσ(3), q̄

)]
,

B̂1
3 (q, g1, g2, g3, q̄) =

∑
σ∈S3

Re
[
b̂1†3

(
q, gσ(1), gσ(2), gσ(3), q̄

)
b03

(
q, gσ(1), gσ(2), gσ(3), q̄

)]
,

(2.56)

while the structure of the subleading colour contributions are more involved. The infrared
pole structure of the functions at the different colour levels derives from the infrared ε-pole
structure of the underlying one-loop amplitudes that was described in section 2.2.2 above.

2.2.8 Four-parton two-loop

The two-loop two-quark two-gluon matrix element yields the double virtual B-type con-
tribution. It consists of the two-loop amplitude interfered with the tree-level amplitude
and the genuine square of the one-loop amplitude. Its colour level decomposition is given
as [48–50]

M2
4 (q, g1, g2, q̄) =

(
αs
2π

)2
g4
s

(
N2
c − 1

)
N3
c

[
B2

2 (q, g1, g2, q̄) +B2
2 (q, g2, g1, q̄)

+ nf
Nc

(
B̂2

2 (q, g1, g2, q̄) + B̂2
2 (q, g2, g1, q̄)

)
+
n2
f

N2
c

(
ˆ̂
B2

2 (q, g1, g2, q̄) + ˆ̂
B2

2 (q, g2, g1, q̄)
)

+ 1
N2
c

B̃2
2 (q, g1, g2, q̄) + nf

N3
c

ˆ̃B2
2 (q, g1, g2, q̄) +

n2
f

N4
c

ˆ̃̂
B2

2 (q, g1, g2, q̄)

+ 1
N4
c

˜̃B2
2 (q, g1, g2, q̄) + nf

N5
c

ˆ̃̃
B2

2 (q, g1, g2, q̄) + 1
N6
c

˜̃̃
B2

2 (q, g1, g2, q̄)
]
. (2.57)

Its ε-pole structure is documented in [48, 50] and cancels with the integrated subtraction
terms at the VV level.
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2.3 Four-quark-plus-gluons different-flavour (C-type) subprocesses

We call matrix elements containing two quark pairs of non-identical flavour plus any number
of gluons C-type matrix elements. We use the notation C ln for a C-type matrix element
containing n gluons and l loops.

2.3.1 Amplitudes

The full amplitude for two non-identical flavour quark pairs at tree-level is given by

C0
0

(
q, q̄, Q, Q̄

)
= g2

s

(
δqQ̄δQq̄ −

1
Nc
δqq̄δQQ̄

)
c0

0

(
q, Q̄,Q, q̄

)
, (2.58)

where there are only the two colour structures of the quark lines: δqQ̄δQq̄ for when the
quarks of different flavour are connected and δqq̄δQQ̄ for when quarks of the same flavour are
connected, which is subleading by a factor of 1/Nc. For the four-parton tree-level C-type
amplitude, the partial amplitude c0

0 multiplying the two colour structures is the same, and
can thus be factorized. This is no longer the case for the one-loop amplitude

C1
0

(
q, q̄, Q, Q̄

)
= g2

s

(
αs
2π

)
Nc

(
δqQ̄δQq̄ c

1
0,l

(
q, Q̄,Q, q̄

)
− 1
Nc
δqq̄δQQ̄ c

1
0,s

(
q, q̄, Q, Q̄

))
,

(2.59)
where the leading and subleading partial amplitudes are now different and can be further
colour-decomposed as

c1
0,l

(
q, Q̄,Q, q̄

)
= C1

0,l

(
q, Q̄,Q, q̄

)
+ nf
Nc
Ĉ1

0,l

(
q, Q̄,Q, q̄

)
+ 1
N2
c

C̃1
0,l

(
q, Q̄,Q, q̄

)
,

c1
0,s

(
q, q̄, Q, Q̄

)
= C1

0,s

(
q, q̄, Q, Q̄

)
+ nf
Nc
Ĉ1

0,s

(
q, q̄, Q, Q̄

)
+ 1
N2
c

C̃1
0,s

(
q, q̄, Q, Q̄

)
. (2.60)

The five-parton C-type amplitude has the same structure at tree i = 0 and one-loop i = 1
level [45, 51]:

Ci1
(
q, q̄, Q, Q̄, g

)
= g3

s

(
αs
2π

)i [
T g
qQ̄
δQq̄ c

i
1,a

(
q, g, Q̄;Q, q̄

)
+ T gQq̄δqQ̄ c

i
1,b

(
q, Q̄;Q, g, q̄

)
− 1
Nc
T gqq̄δQQ̄ c

i
1,c

(
q, g, q̄;Q, Q̄

)
− 1
Nc
T g
QQ̄
δqq̄ c

i
1,d

(
q, q̄;Q, g, Q̄

)]
,

(2.61)

where we have four partial amplitudes ci1,j , with j ∈ {a, b, c, d} corresponding to the four
possible gluon positions in between the quarks. For the tree-level amplitudes, it is also
useful to define

c0
1,γ1

(
q, q̄, Q, Q̄, g

)
= c0

1,a

(
q, g, Q̄;Q, q̄

)
+ c0

1,b

(
q, Q̄;Q, g, q̄

)
,

c0
1,γ2

(
q, q̄, Q, Q̄, g

)
= c0

1,c

(
q, g, q̄;Q, Q̄

)
+ c0

1,d

(
q, q̄;Q, g, Q̄

)
, (2.62)

where the following relation holds:

c1,γ
(
q, q̄, Q, Q̄, g

)
= c1,γ1

(
q, q̄, Q, Q̄, g

)
= c1,γ2

(
q, q̄, Q, Q̄, g

)
. (2.63)
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The one-loop amplitudes [51] in (2.61) can be further colour-decomposed into the more
primitive sub-amplitudes:

c1
1,a

(
q, g, Q̄;Q, q̄

)
= Nc C1

1,a

(
q, g, Q̄;Q, q̄

)
+ nf Ĉ1

1,a

(
q, g, Q̄;Q, q̄

)
+ 1
Nc
C̃1

1,a

(
q, g, Q̄;Q, q̄

)
,

c1
1,b

(
q, Q̄;Q, g, q̄

)
= Nc C1

1,b

(
q, Q̄;Q, g, q̄

)
+ nf Ĉ1

1,b

(
q, Q̄;Q, g, q̄

)
+ 1
Nc
C̃1

1,b

(
q, Q̄;Q, g, q̄

)
,

c1
1,c

(
q, g, q̄;Q, Q̄

)
= Nc C1

1,c

(
q, g, q̄;Q, Q̄

)
+ nf Ĉ1

1,c

(
q, g, q̄;Q, Q̄

)
+ 1
Nc
C̃1

1,c

(
q, g, q̄;Q, Q̄

)
,

c1
1,d

(
q, q̄;Q, g, Q̄

)
= Nc C1

1,d

(
q, q̄;Q, g, Q̄

)
+ nf Ĉ1

1,d

(
q, q̄;Q, g, Q̄

)
+ 1
Nc
C̃1

1,d

(
q, q̄;Q, g, Q̄

)
.

(2.64)

Like for the tree-level amplitudes, it is also useful to define

C1
1,γ1

(
q, q̄, Q, Q̄, g

)
= C1

1,a

(
q, g, Q̄;Q, q̄

)
+ C1

1,b

(
q, Q̄;Q, g, q̄

)
,

C1
1,γ2

(
q, q̄, Q, Q̄, g

)
= C1

1,c

(
q, g, q̄;Q, Q̄

)
+ C1

1,d

(
q, q̄;Q, g, Q̄

)
,

Ĉ1
1,γ1

(
q, q̄, Q, Q̄, g

)
= Ĉ1

1,a

(
q, g, Q̄;Q, q̄

)
+ Ĉ1

1,b

(
q, Q̄;Q, g, q̄

)
,

Ĉ1
1,γ2

(
q, q̄, Q, Q̄, g

)
= Ĉ1

1,c

(
q, g, q̄;Q, Q̄

)
+ Ĉ1

1,d

(
q, q̄;Q, g, Q̄

)
,

C̃1
1,γ1

(
q, q̄, Q, Q̄, g

)
= C̃1

1,a

(
q, g, Q̄;Q, q̄

)
+ C̃1

1,b

(
q, Q̄;Q, g, q̄

)
,

C̃1
1,γ2

(
q, q̄, Q, Q̄, g

)
= C̃1

1,c

(
q, g, q̄;Q, Q̄

)
+ C̃1

1,d

(
q, q̄;Q, g, Q̄

)
, (2.65)

where only the hatted amplitude fulfills a similar identity as for the tree-level amplitude:

Ĉ1
1,γ

(
q, q̄, Q, Q̄, g

)
= Ĉ1

1,γ1

(
q, q̄, Q, Q̄, g

)
= Ĉ1

1,γ2

(
q, q̄, Q, Q̄, g

)
. (2.66)

The full expressions of the amplitudes can be found in [51]. The six-parton C-type tree-level
amplitude is given by

C0
2

(
q, q̄, Q, Q̄, g1, g2

)
=

g4
s

[
(T g1T g2)qQ̄ δQq̄ c

0
2,a

(
q, g1, g2, Q̄;Q, q̄

)
+ (T g1T g2)Qq̄ δqQ̄ c0

2,b

(
q, Q̄;Q, g1, g2, q̄

)
+ T g1

qQ̄
T g2
Qq̄ c

0
2,c

(
q, g1, Q̄;Q, g2, q̄

)
+ 1
Nc

(T g1T g2)qq̄ δQQ̄ c̃
0
2,a

(
q, g1, g2, q̄;Q, Q̄

)
+ 1
Nc

(T g1T g2)QQ̄ δqq̄ c̃
0
2,b

(
q, q̄;Q, g1, g2, Q̄

)
+ 1
Nc
T g1
qq̄ T

g2
QQ̄

c̃0
2,c

(
q, g1, q̄;Q, g2, Q̄

)
+ (g1 ↔ g2)

]
, (2.67)

where the six colour structures plus the additional six from interchanging g1 and g2 represent
the different possibilities of the gluon placements in between the quark lines.
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2.3.2 Pole structure of the one-loop amplitudes

The pole structures of the five-parton one-loop partial amplitudes are given by [51]

Poles
[
c1

1,a

]
=

Nc

[
I(1)
qg

(
ε, sQ̄g

)
+ I

(1)
qq̄ (ε, sq̄Q) + I(1)

qg (ε, sqg)
]
c0

1,a

(
q, g, Q̄;Q, q̄

)
− 1
Nc

[
− I(1)

qq̄

(
ε, sq̄Q̄

)
+ I

(1)
qq̄

(
ε, sqQ̄

)
+ I

(1)
qq̄

(
ε, sQQ̄

)
+ I

(1)
qq̄ (ε, sqq̄) + I

(1)
qq̄ (ε, sq̄Q)− I(1)

qq̄ (ε, sqQ)
]
c0

1,a

(
q, g, Q̄;Q, q̄

)
− 1
Nc

[
−I(1)

qq̄

(
ε, sq̄Q̄

)
+ I(1)

qg

(
ε, sQ̄g

)
+ I

(1)
qq̄ (ε, sq̄Q)− I(1)

qg (ε, sQg)
]
c0

1,c

(
q, g, q̄;Q, Q̄

)
− 1
Nc

[
I

(1)
qq̄ (ε, sq̄Q)− I(1)

qg (ε, sq̄g)− I(1)
qq̄ (ε, sqQ) + I(1)

qg (ε, sqg)
]
c0

1,d(Q, g, Q̄; q, q̄), (2.68)

and

Poles
[
c1

1,c

]
=

Nc

[
I

(1)
qq̄

(
ε, sQQ̄

)
+ I(1)

qg (ε, sq̄g) + I(1)
qg (ε, sqg)

]
c0

1,c

(
q, g, q̄;Q, Q̄

)
− 1
Nc

[
− I(1)

qq̄

(
ε, sq̄Q̄

)
+ I

(1)
qq̄

(
ε, sqQ̄

)
+ I

(1)
qq̄

(
ε, sQQ̄

)
+ I

(1)
qq̄ (ε, sqq̄) + I

(1)
qq̄ (ε, sq̄Q)− I(1)

qq̄ (ε, sqQ)
]
c0

1,c

(
q, g, q̄;Q, Q̄

)
+Nc

[
I

(1)
qq̄

(
ε, sq̄Q̄

)
− I(1)

qq̄

(
ε, sQQ̄

)
− I(1)

qg (ε, sq̄g) + I(1)
qg (ε, sQg)

]
c0

1,a

(
q, g, Q̄;Q, q̄

)
+Nc

[
−I(1)

qq̄

(
ε, sQQ̄

)
+ I(1)

qg

(
ε, sQ̄g

)
+ I

(1)
qq̄ (ε, sqQ)− I(1)

qg (ε, sqg)
]
c0

1,b

(
Q, g, q̄; q, Q̄

)
.

(2.69)

The pole structures of the remaining two partial amplitudes can be obtained by permuting
the quark labels:

Poles
[
c1

1,b

]
= Poles

[
c1

1,a

] ∣∣
q↔Q,q̄↔Q̄, Poles

[
c1

1,d

]
= Poles

[
c1

1,c

] ∣∣
q↔Q,q̄↔Q̄. (2.70)

2.3.3 Four-parton tree-level

Squaring (2.58), one obtains the full four-parton C-type matrix element∣∣C0
0
∣∣2 = g4

s

(
N2
c − 1

)
C0

0

(
q, Q̄,Q, q̄

)
, (2.71)

with C0
0 = |c0

0|2.

2.3.4 Five-parton tree-level

Squaring (2.61) with i = 0, we obtain the two quark-pairs of different flavour with one
external gluon matrix element∣∣C0

1

(
q, q̄,Q,Q̄,g

)∣∣2 = g6
s

(
N2
c −1

)
Nc

[
C0

1,a

(
q,g, Q̄,Q, q̄

)
+C0

1,b

(
q,Q̄,Q,g, q̄

)
+ 1
N2
c

(
C0

1,c

(
q,g, q̄,Q,Q̄

)
+C0

1,d

(
q, q̄,Q,g, Q̄

)
−2C0

1,γ

(
q, q̄,Q,Q̄,g

))]
,

(2.72)

– 21 –



J
H
E
P
1
0
(
2
0
2
2
)
0
4
0

where C0
1,j = |c0

1,j |2 for j ∈ {a, b, c, d, γ}. For the construction of the subtraction terms, it
is convenient to define the general interference of the five-parton C-type amplitudes. We
define all six possibilities as

C0
1,ij

(
q, q̄, Q, Q̄, g

)
= 2 Re

[
c0

1,i c
0†
1,j

]
with i, j ∈ {a, b, c, d} . (2.73)

2.3.5 Six-parton tree-level

The six-parton tree-level squared matrix element [52] is decomposed into colour levels as
follows: ∣∣C0

2
∣∣2 = g8

s

(
N2
c − 1

)
N2
c

[
C0

2

(
q, q̄, Q, Q̄, g1, g2

)
+ 1
N2
c

C̃0
2

(
q, q̄, Q, Q̄, g1, g2

)
+ 1
N4
c

˜̃C0
2

(
q, q̄, Q, Q̄, g1, g2

) ]
, (2.74)

where the leading colour matrix element C0
2 consists of coherent squares of the leading

colour partial amplitudes in (2.67), while the subleading matrix elements C̃0
2 and ˜̃C0

2 receive
contributions from interferences of both leading and subleading amplitudes.

2.3.6 Four-parton one-loop

The full four-parton one-loop C-type matrix element is given by [37]

M1
4
(
q,Q̄,Q, q̄

)
=
(αs

2π
)
g4
s

(
N2
c −1

)
Nc

[
C1

0
(
q,Q̄,Q, q̄

)
+ nf
Nc

Ĉ1
0
(
q,Q̄,Q, q̄

)
+ 1
N2
c

C̃1
0
(
q,Q̄,Q, q̄

)]
,

(2.75)
where

C1
0

(
q, Q̄,Q, q̄

)
= 2 Re

[
C1†

0,l

(
q, Q̄,Q, q̄

)
c0

0

(
q, Q̄,Q, q̄

)]
,

Ĉ1
0

(
q, Q̄,Q, q̄

)
= 2 Re

[
Ĉ1†

0,l

(
q, Q̄,Q, q̄

)
c0

0

(
q, Q̄,Q, q̄

)]
,

C̃1
0

(
q, Q̄,Q, q̄

)
= 2 Re

[
C̃1†

0,l

(
q, Q̄,Q, q̄

)
c0

0

(
q, Q̄,Q, q̄

)]
. (2.76)

Note that only the leading colour amplitude c1
0,l contributes at the squared matrix element

with the subleading c1
0,s amplitude completely absent as it cancels out in the sum. Using

the notation (1, j, i, 2) = (q, Q̄,Q, q̄), the singular structure of C1
0 (1, j, i, 2) is given by

Poles
[
C1

0 (1, j, i, 2)
]

= 2
[
I

(1)
qq̄ (ε, s1j) + I

(1)
qq̄ (ε, s2i)

]
C0

0 (1, j, i, 2) , (2.77)

while the leading nf function Ĉ1
0 (1, j, i, 2) displays no ε-poles,

Poles
[
Ĉ1

0 (1, j, i, 2)
]

= 0. (2.78)

At subleading colour we have for C̃1
0 (1, j, i, 2):

Poles
[
C̃1

0 (1, j, i, 2)
]

=
[
− 2I(1)

qq̄ (ε, s12)− 2I(1)
qq̄ (ε, sij)− 4I(1)

qq̄ (ε, s1j)− 4I(1)
qq̄ (ε, s2i)

+ 4I(1)
qq̄ (ε, s1i) + 4I(1)

qq̄ (ε, s2j)
]
C0

0 (1, j, i, 2) . (2.79)
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Here we can observe the different behaviour of C1
0 and C̃1

0 under an interchange of the
secondary quark pair: Q ↔ Q̄. The pole structure of the leading colour matrix element
C1

0 is fully symmetric under this i↔ j interchange, with also C0
0(1, j, i, 2) = C0

0(1, i, j, 2),
while for the subleading colour matrix element C̃1

0(1, j, i, 2), we note a symmetric part in
the first two terms and an asymmetric part in the last four terms. This observation plays
an important role in the construction of the subtraction term for the SLC real-virtual
correction discussed in section 4.1.

2.3.7 Five-parton one-loop

Interfering the one-loop amplitude with the tree-level amplitude (2.61) yields the five-parton
one-loop C-type matrix element

M1
5

(
q, q̄,Q,Q̄,g

)
=
(
αs
2π

)
g6
s

(
N2
c −1

)
N2
c

[
+
(
C1

1,a

(
q,g, Q̄;Q,q̄

)
+C1

1,b

(
q,Q̄;Q,g, q̄

))
+ nf
Nc

(
Ĉ1

1,a

(
q,g, Q̄;Q,q̄

)
+Ĉ1

1,b

(
q,Q̄;Q,g, q̄

))
+ 1
N2
c

(
C̃1

1,a

(
q,g, Q̄;Q,q̄

)
+C̃1

1,b

(
q,Q̄;Q,g, q̄

)
+C1

1,c

(
q,g, q̄;Q,Q̄

)
+C1

1,d

(
q, q̄;Q,g,Q̄

)
−C1

1,γ1

(
q, q̄,Q,Q̄,g

)
−C1

1,γ2

(
q, q̄,Q,Q̄,g

))
+ nf
N3
c

(
Ĉ1

1,c

(
q,g, q̄;Q,Q̄

)
+Ĉ1

1,d

(
q, q̄;Q,g,Q̄

)
−2Ĉ1

1,γ

(
q, q̄,Q,Q̄,g

))
+ 1
N4
c

(
C̃1

1,c

(
q,g, q̄;Q,Q̄

)
+C̃1

1,d

(
q, q̄;Q,g,Q̄

)
−C̃1

1,γ1

(
q, q̄,Q,Q̄,g

)
−C̃1

1,γ2

(
q, q̄,Q,Q̄,g

))]
,

(2.80)
where the functions are given by

C1
1,i = 2 Re

[
C0†

1,i C
1
1,i

]
, Ĉ1

1,i = 2 Re
[
C0†

1,i Ĉ
1
1,i

]
, C̃1

1,i = 2 Re
[
C0†

1,i C̃
1
1,i

]
, (2.81)

for i ∈ {a, b, c, d, γ, γ1, γ2}. The above expression clearly shows where each partial amplitude
ends up when squaring the full amplitude to obtain the squared matrix element, which
is helpful in the construction of the antenna subtraction terms. However, due to possible
cancellations of unresolved limits or ε-poles between the several functions, it is sometimes
simpler to construct the subtraction term for the whole colour level at once. For this reason
and for later convenience in referencing this matrix element, we collect all the functions per
colour level into one single function,

M1
5

(
q, q̄,Q,Q̄,g

)
=
(
αs
2π

)
g6
s

(
N2
c −1

)
N2
c

[
C1

1

(
q, q̄,Q,Q̄,g

)
+ nf
Nc
Ĉ1

1

(
q, q̄,Q,Q̄,g

)
+ 1
N2
c

C̃1
1

(
q, q̄,Q,Q̄,g

)
+ nf
N3
c

ˆ̃C1
1

(
q, q̄,Q,Q̄,g

)
+ 1
N4
c

˜̃C1
1

(
q, q̄,Q,Q̄,g

)]
.

(2.82)
The infrared pole structure derives from the pole structure of the underlying one-loop
amplitudes documented in section 2.3.2 above.
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2.3.8 Four-parton two-loop

The two-loop non-identical flavour four-quark matrix element yields the double virtual
C-type contribution. It consists of the two-loop amplitude interfered with the tree-level
amplitude and the genuine square of the one-loop amplitude. Its colour level decomposition
is given as [53, 54]

M2
4

(
q, Q̄,Q, q̄

)
=
(
αs
2π

)2
g4
s

(
N2
c − 1

)
N2
c

[
C2

0

(
q, Q̄,Q, q̄

)
+ nf
Nc
Ĉ2

0

(
q, Q̄,Q, q̄

)
+
n2
f

N2
c

ˆ̂
C2

0

(
q, Q̄,Q, q̄

)
+ 1
N2
c

C̃2
0

(
q, Q̄,Q, q̄

)
+ nf
N3
c

ˆ̃C2
0

(
q, Q̄,Q, q̄

)
+ 1
N4
c

˜̃C2
0

(
q, Q̄,Q, q̄

)]
. (2.83)

Its ε-pole structure is documented in [53, 54] and cancels with the integrated subtraction
terms at the VV level.

2.4 Four-quark-plus-gluons identical-flavour-interference (D-type)
subprocesses

For matrix elements containing two quark pairs of identical flavour, new interferences and
consequently new colour connections independent of the C-type squared matrix elements
appear because of the possibility to interchange external quark states. We label these new
identical-flavour-only interferences as D-type matrix elements. We use the notation Dl

n for
a D-type squared matrix element containing n gluons and l loops.

At the level of the amplitudes, no new objects are introduced since all D-type squared
matrix elements are constituted from interferences of C-type amplitudes that were not
permitted for the non-identical flavour case.

2.4.1 Four-parton tree-level

The two identical flavour quark pair amplitude is obtained from the non-identical amplitude
by addition of the same amplitude where the antiquark momenta have been interchanged:
q̄ ↔ Q̄. Denoting the identical two quark pair squared tree-level matrix element by M0

4,id.
and explicitly keeping the different quark pair labels for the identical flavour quarks to see
which momenta exactly are interchanged, we obtain

M0
4,id. (q, q̄, q, q̄) =

∣∣C0
0

(
q, Q̄,Q, q̄

)
− C0

0

(
q, q̄, Q, Q̄

) ∣∣2
= C0

0

(
q, Q̄,Q, q̄

)
+ C0

0

(
q, q̄, Q, Q̄

)
+ 1
Nc
D0

0

(
q, q̄, Q, Q̄

)
, (2.84)

where we have two C-type matrix elements, with one related by q̄ ↔ Q̄ from the other, and
the interference term

D0
0

(
q, q̄, Q, Q̄

)
= −2 Re

[
C0†

0

(
q, Q̄,Q, q̄

)
C0

0

(
q, q̄, Q, Q̄

)]
. (2.85)

These type of interferences between the C-type amplitudes defined above with C-type
amplitudes with interchanged antiquark momenta are precisely what defines our D-type
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squared matrix elements. By definition, they have symmetry properties under interchange
of q̄ ↔ Q̄ or q ↔ Q. It can be seen in (2.84) that the D-type contributions are suppressed
by a factor of 1/Nc with respect to the C-type contributions, resulting in all D-type matrix
elements belonging to the SLC. This means that all the D-type contributions appearing
as double real, real-virtual or double virtual corrections, even their leading colour level,
are beyond the LC-approximation at NNLO used for dijet production from proton-proton
collisions [22, 23, 55]. For the higher multiplicity or loop matrix elements in the remainder
of this section, we only discuss the genuine D-type matrix elements, and not the full matrix
element for identical quarks, as this can be obtained by addition of the C-type matrix
elements defined above.

2.4.2 Five-parton tree-level

The full D-type five-parton tree-level matrix element is given by

M0
4

(
q, q̄,Q,Q̄,g

)
=−2Re

[
C0†

1

(
q, q̄,Q,Q̄,g

)
C0

1

(
q,Q̄,Q, q̄,g

)]
= g6

s

(
N2
c −1

)[
D0

1

(
q, q̄,Q,Q̄,g

)
+D0

1

(
q,Q̄,Q, q̄,g

)
−D0

1,γ

(
q, q̄,Q,Q̄,g

)
− 1
N2
c

D0
1,γ

(
q, q̄,Q,Q̄,g

)]
, (2.86)

where the D-type subfunctions are defined by

D0
1

(
q, q̄, Q, Q̄, g

)
= 2 Re

[
C0

1,a

(
q, g, q̄, Q, Q̄

)
C0†

1,c

(
q, g, q̄, Q, Q̄

)
+ C0

1,b

(
q, q̄, Q, g, Q̄

)
C0†

1,d

(
q, q̄, Q, g, Q̄

)]
,

D0
1,γ

(
q, q̄, Q, Q̄, g

)
= 2 Re

[(
C0

1,a

(
q, g, Q̄,Q, q̄

)
+ C0

1,b

(
q, Q̄,Q, g, q̄

))
×
(
C0

1,c

(
q, g, Q̄,Q, q̄

)
+ C0

1,d

(
q, Q̄,Q, g, q̄

))†]
. (2.87)

Novel five-parton interference terms appear as the reduced matrix element in the NLO
subtraction, so we conveniently define

D0
1,i

(
q, q̄, Q, Q̄, g

)
= 2 Re

[
C0

1,i

(
q, g, Q̄,Q, q̄

)
C0†

1,i

(
q, g, q̄, Q, Q̄

)]
with i ∈ {a, b, c, d} ,

D0
1,ij

(
q, q̄, Q, Q̄, g

)
= 2 Re

[
C0

1,i

(
q, g, Q̄,Q, q̄

)
C0†

1,j

(
q, q̄, Q, g, Q̄

)]
with i, j ∈ {a, b, c, d} .

(2.88)

The D-type matrix elements in (2.87) can also be expressed in terms of the interference terms

D0
1

(
q, q̄, Q, Q̄, g

)
= D0

1,ca

(
q, q̄, Q, Q̄, g

)
+D0

1,db

(
q, q̄, Q, Q̄, g

)
,

D0
1

(
q, Q̄,Q, q̄, g

)
= D0

1,ac

(
q, q̄, Q, Q̄, g

)
+D0

1,bd

(
q, q̄, Q, Q̄, g

)
,

D0
1,γ

(
q, q̄, Q, Q̄, g

)
= D0

1,a

(
q, q̄, Q, Q̄, g

)
+D0

1,b

(
q, q̄, Q, Q̄, g

)
+D0

1,ab

(
q, q̄, Q, Q̄, g

)
+D0

1,ba

(
q, q̄, Q, Q̄, g

)
. (2.89)
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2.4.3 Six-parton tree-level

Similar to the C-type, the D-type six-parton matrix element is decomposed into the following
colour levels:

M0
6

(
q, q̄, Q, Q̄, g1, g2

)
= −2 Re

[
C0

1

(
q, q̄, Q, Q̄, g1, g2

)†
C0

1

(
q, Q̄,Q, q̄, g1, g2

)]
= g8

s

(
N2
c − 1

)
Nc

[
D0

2

(
q, q̄, Q, Q̄, g1, g2

)
+ 1
N2
c

D̃0
2

(
q, q̄, Q, Q̄, g1, g2

)
+ 1
N4
c

˜̃D0
2

(
q, q̄, Q, Q̄, g1, g2

)]
. (2.90)

2.4.4 Four-parton one-loop

The full one-loop D-type squared matrix element reads as follows [37]:

M1
4

(
q, q̄, Q, Q̄

)
=
(
αs
2π

)
g4
s

(
N2
c − 1

) [
D1

0

(
q, Q̄,Q, q̄

)
+ nf
Nc
D̂1

0

(
q, Q̄,Q, q̄

)
+ 1
N2
c

D̃1
0

(
q, Q̄,Q, q̄

)]
, (2.91)

where

D1
0

(
q, Q̄,Q, q̄

)
= 2 Re

[
C1†

0,s

(
q, q̄, Q, Q̄

)
c0

0

(
q, q̄, Q, Q̄

)
+
(
q̄ ↔ Q̄

)]
,

D̂1
0

(
q, Q̄,Q, q̄

)
= 2 Re

[
Ĉ1†

0,s

(
q, q̄, Q, Q̄

)
c0

0

(
q, q̄, Q, Q̄

)
+
(
q̄ ↔ Q̄

)]
,

D̃1
0

(
q, Q̄,Q, q̄

)
= 2 Re

[
C̃1†

0,s

(
q, q̄, Q, Q̄

)
c0

0

(
q, q̄, Q, Q̄

)
+
(
q̄ ↔ Q̄

)]
. (2.92)

Due to the interchanged antiquarks, the roles of the leading and subleading partial amplitudes
in (2.60) are reversed: the four-parton one-loop D-type matrix elements consists of only the
subleading amplitude c1

0,s in place of c1
0,l. For later convenience in the construction of the

subtraction terms we define the following subfunctions:

D1
0,a

(
q, Q̄,Q, q̄

)
= Re

[
C1†

0,l

(
q, Q̄,Q, q̄

)
c0

0

(
q, q̄, Q, Q̄

)]
,

D1
0,b

(
q, Q̄,Q, q̄

)
= −Re

[
C1†

0,s

(
q, q̄, Q, Q̄

)
c0

0

(
q, q̄, Q, Q̄

)]
,

D1
0,c

(
q, Q̄,Q, q̄

)
= Re

[
C1†

0,l

(
q, q̄, Q, Q̄

)
c0

0

(
q, Q̄,Q, q̄

)]
,

D1
0,d

(
q, Q̄,Q, q̄

)
= −Re

[
C1†

0,s

(
q, Q̄,Q, q̄

)
c0

0

(
q, Q̄,Q, q̄

)]
, (2.93)

where the following relation holds:

D1
0

(
q, Q̄,Q, q̄

)
= −2

(
D1

0,b (i, l, k, j) +D1
0,d (i, l, k, j)

)
. (2.94)

Using the notation (i, j, k, l) = (q, q̄, Q, Q̄), the infrared pole structure of the individual
functions can be expressed as follows:

Poles
[
D1

0 (i, l, k, j)
]

=
[
2I(1)
qq̄ (ε, sik) + 2I(1)

qq̄ (ε, sjl)
]
D0

0 (i, l, k, j) ,

Poles
[
D̂1

0 (i, l, k, j)
]

= 0,

Poles
[
D̃1

0 (i, l, k, j)
]

=
[
− 2I(1)

qq̄ (ε, sil)− 2I(1)
qq̄ (ε, skj)− 2I(1)

qq̄ (ε, sij)− 2I(1)
qq̄ (ε, skl)

+ 2I(1)
qq̄ (ε, sik) + 2I(1)

qq̄ (ε, sjl)
]
D0

0 (i, l, k, j) . (2.95)
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The pole structure of the D-type subfunctions are given by

Poles
[
D1

0,a (i, l, k, j)
]

= 1
2
[
I

(1)
qq̄ (ε, sil) + I

(1)
qq̄ (ε, skj)

]
D0

0 (i, l, k, j) ,

Poles
[
D1

0,b (i, l, k, j)
]

= −1
2
[
I

(1)
qq̄ (ε, sik) + I

(1)
qq̄ (ε, sjl)

]
D0

0 (i, l, k, j) ,

Poles
[
D1

0,c (i, l, k, j)
]

= 1
2
[
I

(1)
qq̄ (ε, sij) + I

(1)
qq̄ (ε, skl)

]
D0

0 (i, l, k, j) ,

Poles
[
D1

0,d (i, l, k, j)
]

= −1
2
[
I

(1)
qq̄ (ε, sik) + I

(1)
qq̄ (ε, sjl)

]
D0

0(i, l, k, j). (2.96)

2.4.5 Five-parton one-loop

The five-parton one-loop D-type contribution is obtained by interfering the C-type four-
quark one-gluon amplitudes with their tree-level counterparts with a crossing of the external
quarks. It reads as follows:

M1
5

(
q, q̄, Q, Q̄, g

)
= −2 Re

[
C1†

1

(
q, q̄, Q, Q̄, g1

)
C0

1

(
q, Q̄,Q, q̄, g1

)
+
(
q̄ ↔ Q̄

)]
=
(
αs
2π

)
g6
s

(
N2
c − 1

)
Nc

[
D1

1

(
q, q̄, Q, Q̄, g

)
−D1

1,γ1

(
q, q̄, Q, Q̄, g

)
+ nf
Nc

(
D̂1

1

(
q, q̄, Q, Q̄, g

)
− D̂1

1,γ

(
q, q̄, Q, Q̄, g

))
+ 1
N2
c

(
D̃1

1

(
q, q̄, Q, Q̄, g

)
− D̃1

1,γ1

(
q, q̄, Q, Q̄, g

)
−D1

1,γ2

(
q, q̄, Q, Q̄, g

))
− nf
N3
c

ˆ̃D1
1,γ

(
q, q̄, Q, Q̄, g

)
− 1
N4
c

D̃1
1,γ2

(
q, q̄, Q, Q̄, g

)
+
(
q̄ ↔ Q̄

) ]
,

(2.97)
where the functions are defined in terms of the C-type amplitudes in section 2.3.1,

D1
1
(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,c
(
q,g, q̄,Q,Q̄

)
C1

1,a
(
q,g, q̄,Q,Q̄

)
+C0†

1,d
(
q, q̄,Q,g, Q̄

)
C1

1,b
(
q, q̄,Q,g, Q̄

)
+C0†

1,a
(
q,g, q̄,Q,Q̄

)
C1

1,c
(
q,g, q̄,Q,Q̄

)
+C0†

1,b
(
q, q̄,Q,g, Q̄

)
C1

1,d
(
q, q̄,Q,g, Q̄

)]
,

D̂1
1
(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,c
(
q,g, q̄,Q,Q̄

)
Ĉ1

1,a
(
q,g, q̄,Q,Q̄

)
+C0†

1,d
(
q, q̄,Q,g, Q̄

)
Ĉ1

1,b
(
q, q̄,Q,g, Q̄

)
+C0†

1,a
(
q,g, q̄,Q,Q̄

)
Ĉ1

1,c
(
q,g, q̄,Q,Q̄

)
+C0†

1,b
(
q, q̄,Q,g, Q̄

)
Ĉ1

1,d
(
q, q̄,Q,g, Q̄

)]
,

D̃1
1
(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,c
(
q,g, q̄,Q,Q̄

)
C̃1

1,a
(
q,g, q̄,Q,Q̄

)
+C0†

1,d
(
q, q̄,Q,g, Q̄

)
C̃1

1,b
(
q, q̄,Q,g, Q̄

)
+C0†

1,a
(
q,g, q̄,Q,Q̄

)
C̃1

1,c
(
q,g, q̄,Q,Q̄

)
+C0†

1,b
(
q, q̄,Q,g, Q̄

)
C̃1

1,d
(
q, q̄,Q,g, Q̄

)]
,

D1
1,γ1

(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,γ
(
q, q̄,Q,Q̄,g

)
C1

1,γ1

(
q,Q̄,Q, q̄,g

)]
,

D1
1,γ2

(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,γ
(
q, q̄,Q,Q̄,g

)
C1

1,γ2

(
q,Q̄,Q, q̄,g

)]
,

D̂1
1,γ
(
q, q̄,Q,Q̄,g

)
= D̂1

1,γ1

(
q, q̄,Q,Q̄,g

)
= D̂1

1,γ2

(
q, q̄,Q,Q̄,g

)
,

D̂1
1,γ1

(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,γ
(
q, q̄,Q,Q̄,g

)
Ĉ1

1,γ1

(
q,Q̄,Q, q̄,g

)]
,

D̂1
1,γ2

(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,γ
(
q, q̄,Q,Q̄,g

)
Ĉ1

1,γ2

(
q,Q̄,Q, q̄,g

)]
,

D̃1
1,γ1

(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,γ
(
q, q̄,Q,Q̄,g

)
C̃1

1,γ1

(
q,Q̄,Q, q̄,g

)]
,

D̃1
1,γ2

(
q, q̄,Q,Q̄,g

)
= 2Re

[
C0†

1,γ
(
q, q̄,Q,Q̄,g

)
C̃1

1,γ2

(
q,Q̄,Q, q̄,g

)]
. (2.98)
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The infrared pole structure results from the pole structure of the underlying one-loop
amplitudes documented in section 2.3.2 above.

2.4.6 Four-parton two-loop

The two-loop identical-flavour-only four-quark matrix element yields the double virtual
D-type contribution, obtained from the same one-loop and two-loop four-quark amplitudes
as the C-type contribution, but interfered in a different manner [56]:

M2
4

(
q, Q̄,Q, q̄

)
=
(
αs
2π

)2
g4
s

(
N2
c − 1

)
Nc

[
D2

0

(
q, Q̄,Q, q̄

)
+ nf
Nc
D̂2

0

(
q, Q̄,Q, q̄

)
+
n2
f

N2
c

ˆ̂
D2

0

(
q, Q̄,Q, q̄

)
+ 1
N2
c

D̃2
0

(
q, Q̄,Q, q̄

)
+ nf
N3
c

ˆ̃D2
0

(
q, Q̄,Q, q̄

)
+ 1
N4
c

˜̃D2
0

(
q, Q̄,Q, q̄

)]
. (2.99)

Its ε-pole structure is documented in [56].

2.5 Six-quark three-flavour (E-type) subprocesses

We call matrix elements containing three quark pairs of non-identical flavour E-type matrix
elements [57, 58]. We use the notation Eln for a E-type matrix element containing n gluons
and l loops and use the notation (q, q̄, Q, Q̄, R, R̄) for the three quark pairs. As they contain
at least six external partons by definition, they are only present at the double real level for
dijet production at NNLO. The full tree-level amplitude with zero gluons is given by

E0,full
0 = g4

s

[
δqQ̄δQR̄δRq̄ E

0
0

(
q, Q̄,Q, R̄, R, q̄

)
+ δqR̄δRQ̄δQq̄ E

0
0

(
q, R̄, R, Q̄,Q, q̄

)
− 1
Nc

(
δqq̄δQR̄δRQ̄ Ẽ

0
0

(
Q, R̄,R, Q̄, q, q̄

)
+ δQQ̄δqR̄δRq̄ Ẽ

0
0

(
q, R̄, R, q̄, Q, Q̄

)
+ δRR̄δqQ̄δQq̄ Ẽ

0
0

(
q, Q̄,Q, q̄, R, R̄

))
+ 1
N2
c

δqq̄δQQ̄δRR̄
˜̃E0
0

(
q, q̄, Q, Q̄, R, R̄

)]
,

(2.100)

where the following relations among the colour-ordered amplitudes hold:
˜̃E0
0

(
q, q̄, Q, Q̄, R, R̄

)
= E0

0

(
q, Q̄,Q, R̄, R, q̄

)
+ E0

0

(
q, R̄, R, Q̄,Q, q̄

)
,

2 ˜̃E
0
0

(
q, q̄, Q, Q̄, R, R̄

)
= Ẽ0

0

(
Q, R̄,R, Q̄, q, q̄

)
+ Ẽ0

0

(
q, R̄, R, q̄, Q, Q̄

)
+ Ẽ0

0

(
q, Q̄,Q, q̄, R, R̄

)
.

(2.101)

Squaring (2.100) we obtain

E0,full
0

(
q, q̄,Q,Q̄,R,R̄

)
=
∣∣E0,full

0
(
q, q̄,Q,Q̄,R,R̄

)∣∣2
= g8

s

(
N2
c −1

)
Nc
[
E0

0
(
q,Q̄,Q,R̄,R, q̄

)
+E0

0
(
q, R̄,R,Q̄,Q, q̄

)
+ 1
N2
c

(
Ẽ0

0
(
q,Q̄,Q, q̄,R,R̄

)
+Ẽ0

0
(
R,Q̄,Q,R̄,q, q̄

)
+Ẽ0

0
(
q, R̄,R, q̄,Q,Q̄

)
−3 ˜̃E0

0
(
q, q̄,Q,Q̄,R,R̄

))]
, (2.102)
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where
E0

0 = |E0
0 |2, Ẽ0

0 = |Ẽ0
0 |2,

˜̃E0
0 = | ˜̃E0

0 |2. (2.103)

2.6 Six-quark two-flavour-interference (F-type) subprocesses

We define the F-type matrix elements containing two quark pairs of identical flavour and
one quark pair of distinct flavour in terms of the E-type amplitudes in the same way as we
defined the D-type matrix elements related to the C-type amplitudes. Using the notation
F ln for an F-type matrix element containing n gluons and l loops and taking (q, q̄) = (Q, Q̄),
we have for the full two-identical-flavour six-quarks matrix element:

M0
0,two-id.

(
q, q̄, q, q̄, R, R̄

)
=
∣∣E0,full

0

(
q, q̄, Q, Q̄, R, R̄

)
− E0,full

0

(
q, Q̄,Q, q̄, R, R̄

) ∣∣2
= E0,full

0

(
q, q̄, Q, Q̄, R, R̄

)
+ E0,full

0

(
q, Q̄,Q, q̄, R, R̄

)
+ F 0,full

0

(
q, q̄, Q, Q̄, R, R̄

)
. (2.104)

The full F-type matrix element is suppressed by 1/Nc with respect to the full E-type matrix
element and is given by

F 0,full
0

(
q, q̄,Q,Q̄,R,R̄

)
= g8

s

(
N2
c −1

)[
−F 0

0

(
q, q̄,Q,R̄,R,Q̄

)
−F 0

0

(
q,Q̄,Q,R̄,R, q̄

)
−F 0

0

(
Q,Q̄,q, R̄,R, q̄

)
−F 0

0

(
Q,q̄,q, R̄,R,Q̄

)
−F̃ 0

0

(
q, q̄,Q,Q̄,R,R̄

)
−F̃ 0

0

(
q,Q̄,Q, q̄,R,R̄

)
+3 ˜̃F 0

0

(
q, q̄,Q,Q̄,R,R̄

)
+ 1
N2
c

(
F̃ 0

0

(
q, q̄,Q,Q̄,R,R̄

)
+F̃ 0

0

(
q,Q̄,Q, q̄,R,R̄

)
−3 ˜̃F 0

0

(
q, q̄,Q,Q̄,R,R̄

))]
, (2.105)

where

F 0
0

(
q, q̄, Q, R̄, R, Q̄

)
= 2 Re

[
E0

0

(
q, q̄, Q, R̄, R, Q̄

)
Ẽ0†

0

(
q, R̄, R, q̄, Q, Q̄

)]
,

F̃ 0
0

(
q, q̄, Q, Q̄, R, R̄

)
= 2 Re

[
Ẽ0

0

(
q, q̄, Q, Q̄, R, R̄

) ˜̃E0†
0

(
q, q̄, Q, Q̄, R, R̄

)]
,

˜̃F 0
0

(
q, q̄, Q, Q̄, R, R̄

)
= 2 Re

[ ˜̃E0
0

(
q, Q̄,Q, q̄, R, R̄

) ˜̃E0†
0

(
q, q̄, Q, Q̄, R, R̄

)]
. (2.106)

2.7 Six-quark all-identical-flavour-interference (G-type) subprocesses

Lastly, we have the G-type matrix elements containing three-identical-flavour quark pairs.
We use the notation Gln for a G-type matrix element containing n gluons at l loops
and have (q, q̄) = (Q, Q̄) = (R, R̄). The full identical matrix element consists of the six
antisymmetrized permutations:

M0
0,id.(q, q̄, q, q̄, q, q̄) =

∣∣E0,full
0

(
q, q̄, Q, Q̄, R, R̄

)
− E0,full

0

(
q, Q̄,Q, q̄, R, R̄

)
+ E0,full

0

(
q, Q̄,Q, R̄, R, q̄

)
− E0,full

0

(
q, R̄,Q, Q̄, R, q̄

)
+ E0,full

0

(
q, R̄,Q, q̄, R, Q̄

)
− E0,full

0

(
q, q̄, Q, R̄, R, Q̄

) ∣∣2. (2.107)

– 29 –



J
H
E
P
1
0
(
2
0
2
2
)
0
4
0

The colour connections new to the E- and F-type matrix elements are collected in the
G-type matrix element, which broken down in its colour levels reads

G0,full
0

(
q, q̄, Q, Q̄, R, R̄

)
= g8

s

(
N2
c − 1

)
Nc

[
G0

0

(
q, q̄, Q, Q̄, R, R̄

)
+ 1
N2
c

(
G̃0

0

(
q, q̄, Q, Q̄, R, R̄

)
− ˜̃G0

0

(
q, q̄, Q, Q̄, R, R̄

))
− 1
N4
c

˜̃G0
0

(
q, q̄, Q, Q̄, R, R̄

)]
. (2.108)

3 Double real subtraction

All six-parton matrix elements that were introduced in the previous section enter the
double-real contribution to the dijet cross section. Their numerical implementation into
a parton-level event generator requires the construction of subtraction terms, which we
discuss in the following.

The double real subtraction, denoted by dσS , needs to reproduce single and double
unresolved limits of all squared matrix elements in dσRR. We partition dσS into the
following parts [14]:

dσS = dσS,a + dσS,b + dσS,c + dσS,d + dσS,e, (3.1)

where each part has a specific purpose and general form:

• dσS,a: this part is responsible for subtracting the single unresolved limits of the RR
squared matrix elements and has the general form of three-parton antennae times a
reduced (n+ 1)-parton matrix element:

dσS,a ⊃ NRR dΦn+2X
0
3 ({pn+2})M0

n+1 ({p̃n+1}) J (n+1)
n ({p̃n+1}) , (3.2)

where overall factors are collected in NRR, dΦn+2 is the (2→ n)-particle phase space
measure and the tilde in {p̃n+1} denotes that the (n + 1)-momenta set is a single
mapped momenta set. The X0

3 denotes a three-parton antenna function [28, 29, 59]
which mimics the behaviour of the matrix elements in single unresolved limits. The
reduced matrix element contains (n + 1) particles and at NNLO the jet function
J

(n+1)
n allows one parton to become unresolved. These limits have to be accounted

for by subtraction terms in the other parts.

• dσS,b: this part consists of X0
4 antenna functions [13], which reproduce the behaviour of

the RR matrix element in genuine double unresolved limits, and its associated iterated
X0

3X
0
3 antennae. We further partition dσS,b into dσS,b1 and dσS,b2 accordingly:

dσS,b1 ⊃ NRR dΦn+2X
0
4 ({pn+2})M0

n({p̃n})J (n)
n ({p̃n}),

dσS,b2 ⊃ NRR dΦn+2X
0
3 ({pn+2})X0

3 ({p̃n+1})M0
n({ ˜̃pn})J (n)

n ({ ˜̃pn}). (3.3)

Here the double tilde denotes a doubly mapped momenta set arising from the iterated
X0

3 antennae. The terms in dσS,b1 subtract colour-connected double unresolved limits.
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The X0
4 antenna functions themselves contain single unresolved limits, which do not

correspond to the single unresolved limits of the RR matrix element. In these limits,
the X0

4 antennae collapse onto X0
3 antennae, so these limits are removed by the

iterated X0
3 antennae in dσS,b2 .

• dσS,c: these terms have the general form:

dσS,c ⊃ NRR dΦn+2X
0
3 ({pn+2})X0

3 ({p̃n+1})M0
n({ ˜̃pn})J (n)

n ({ ˜̃pn}), (3.4)

where the two X0
3 antennae have one or more common momenta (related by a

mapping). These terms appear when subtracting almost colour-connected limits and
other spurious limits.

• dσS,d: this part subtracts colour-disconnected limits and has the form

dσS,d ⊃ NRR dΦn+2X
0
3 ({pn+2})X0

3 ({p̃n+1})M0
n({ ˜̃pn})J (n)

n ({ ˜̃pn}), (3.5)

where there are no common momenta in the two X0
3 antenna functions. Consequently,

although the arguments of the second X0
3 are taken from the {p̃n+1} momentum set

(to assure phase space factorization), they are not affected by the first phase space
mapping and are taken unmodified out of the {pn+2} momenta set.

• dσS,e: after all the previous parts have been added together, there is still the possibility
of a mismatch in single soft limits between the subtraction terms and the squared
matrix element, which is caused by the mapped momenta in the antennae. These
mismatches are resolved by adding large angle soft (LAS) terms [14]:

dσS,e ⊃ NRR dΦn+2
(
SFF ({pn+2})− SFF ({p̃n+1})

)
×X0

3 ({p̃n+1})M0
n({ ˜̃pn})J (n)

n ({ ˜̃pn}). (3.6)

In general, the mapping in the soft functions can be any of the initial-initial, initial-final
or final-final type, but for our dijet processes, there are sufficient partons present to
always use a final-final mapping. As the FF mapping has some advantages compared
to the other mappings in terms of convergence in the unresolved limits, we choose to
always employ the FF mappings for the LAS terms.

The above subtraction terms are integrated analytically over the unresolved phase
space associated to the antenna functions contained in them by assigning them to either
dσS,1 or dσS,2 defined in (2.3) above: dσS,a, dσS,b2 and dσS,e belong to dσS,1, while dσS,b1

and dσS,d belong to dσS,2. dσS,c is split between both.
In the colour-ordered antenna subtraction method, we generally construct the double

real subtraction in the order above, guided by the behaviour of the matrix element in
unresolved limits. For most of the RR parton-level subprocesses described in section 2 above,
it is straightforward to identify the hard radiator partons and the unresolved partons for
each colour-ordered squared matrix element containing quarks, gluons and abelian gluons.
The construction of the subtraction terms then follows in a straightforward, albeit tedious
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and lengthy manner, as described in detail in [14]. We will not repeat this description
here, but instead focus on the new type of antenna subtraction terms that are required for
genuine interference-type squared matrix elements, which first appear for processes with
four coloured partons at Born level. In the subleading colour all-gluon contribution to dijet
production, the required antenna subtraction terms were already described elsewhere [60].
We thus focus in the following on the more general case involving quarks and gluons.

The full squared six-parton B-type matrix element was shown in section 2.2.5 to
be constructed from functions containing quarks, gluons and abelian gluons, with some
remainder interference terms at the 1/N2

c colour level grouped together in R0
4. For the

R-term R0
4, there is no clear colour connection defined at the squared amplitude level, even

after including the notion of abelian gluons, thus its unresolved limits are not immediately
clear. In the following, we discuss how to find all the unresolved limits of R0

4 and subsequently
construct the double real subtraction for these terms.

3.1 Single unresolved limits of genuine interference B-type contributions

We can exploit our knowledge of the unresolved limits of all the other B-type squared matrix
elements besides the R-term to find the unresolved limits of R0

4. This is done by knowing
how the full B-type matrix element behaves in certain limits and comparing it with the
terms coming from the well-defined B-type squared functions in that limit. Any missing
term from the full B-type matrix element not produced by the B-type functions must come
from the R-term. We do these comparisons in a colour-ordered way, such that we only need
to consider the colour level relevant to the R-term.

3.1.1 Single gluon-gluon collinear gg → G

We consider the full matrix element |B0
4| in the gluon-gluon collinear limit. It factorizes

into a splitting function and a reduced multiplicity matrix element (omitting here and in
the following the tensor indices related to angular-dependent terms in the gluon-to-gluon
splitting function): ∣∣B0

4
∣∣2 g‖g−−→ P gg→G

∣∣B0
3
∣∣2. (3.7)

The full splitting function carries a factor of g2
s and CA = Nc and the full reduced matrix

element is given by (2.41). This yields the result

∣∣B0
4
∣∣2 g‖g−−→ g8

s

(
N2
c − 1

)
N3
c Pgg→G

[
B0

3 −
1
N2
c

(
B̃

0
3 − B̄

0
3

)
+ 1
N4
c

B̄
0
3

]
. (3.8)

We can also obtain this result by taking the collinear limit of the B-type functions in (2.43).
Since abelian gluons have no collinear limit with each other, we immediately see why the
1/N6

c colour level disappears in this limit, as B̄
0
4 contains no non-abelian gluons. Focusing

on the 1/N2
c colour level where the R-term resides, we thus note that B̄

0
4 has no contribution

in the collinear limit and the B̃
0
4 term can only contribute when the collinear gluons are

non-abelian. We also know that the sum of all terms must factor onto a full B̃
0
3 function

minus a full B̄
0
3 function. The B̃

0
4 function can never factor onto the all abelian-gluon B̄

0
3
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function, leaving the R-term as its only source. Keeping track of all the orderings we see
that in the gluon-gluon collinear limit i‖j

B̃
0
4
i‖j−−→ Pgg→G

[
B̃0

3 (1, k, (ij) , l, 2) + B̃0
3 (1, k, l, (ij) , 2)

+ B̃0
3 (1, l, (ij) , k, 2) + B̃0

3 (1, l, k, (ij) , 2)
]
, (3.9)

which lacks the two orderings

B̃0
3(1, (ij), k, l, 2), B̃0

3(1, (ij), l, k, 2), (3.10)

needed to form the full B̃
0
3 function at the reduced matrix element level. This means that

the R-term must exactly factorize in such a way so as to provide these missing orderings
plus the B̄

0
3 term:

R0
4
i‖j−−→ Pgg→G

[
B̃0

3(1, (ij), k, l, 2) + B̃0
3(1, (ij), l, k, 2)− B̄0

3(1, (ij), k, l, 2)
]
. (3.11)

The R-term in the gluon-gluon collinear limit thus factorizes into functions where the
composite gluon is abelian.

3.1.2 Single quark-antiquark collinear q̄q → G

In the quark-antiquark collinear limit, the full B-type squared matrix element factorizes
into a splitting function and a reduced all-gluon squared matrix element:∣∣B0

4
∣∣2 q‖q̄−−→ P qq̄→G

∣∣A0
5
∣∣2. (3.12)

The splitting function carries a factor of g2
s and TR and the full reduced matrix element is

given by (2.17). The full five-gluon squared matrix element has no subleading colour terms,
since these vanish by the Dual Ward Identity for all-gluonic amplitudes. This yields the
result ∣∣B0

4
∣∣2 q‖q̄−−→ g8

s

(
N2
c − 1

)
N3
c (TRPqq̄→G) A0

5. (3.13)

Noting that both B̃
0
4 and B̄

0
4 independently have no singular quark-antiquark collinear

limit since they would reduce to a gluonic matrix element containing abelian gluon(s), we
can conclude that the R-term also has no singular quark-antiquark collinear limit.

3.1.3 Single quark-gluon collinear qg → Q

To determine the behaviour of the R-term in the single-collinear quark-gluon limits, we
use the known collinear factorization for colour-ordered amplitudes and note that to get a
sufficiently singular collinear limit at the squared amplitude level we must have the partons
colour adjacent in both the amplitude and conjugated amplitude. From the definition of a
single ordering of the R-term in (2.45), we can immediately see that there are no single
quark-gluon collinear limits: quark 1 is adjacent to gluon i in the conjugated amplitude,
but this is never the case in the amplitudes this particular conjugated amplitude multiplies;
the same holds for quark 2 with gluon l.
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3.1.4 Single soft limit

The collinear limits of the R-term could easily be found because of the factorization onto
the five-parton squared matrix elements, but unfortunately this is not the case for the
soft gluon limit. As the R-term does not have clear colour connections at the squared
matrix element level, its soft limit is not immediately clear. Thus, it is now necessary to
look at how the matrix element behaves in unresolved limits at the amplitude level. The
factorization of a colour-ordered amplitude in a single soft limit is given by

M0
n(. . . , a, i, b, . . . ) i→0−−→ Sµ(a, i, b)εµM0

n−1(. . . , a, b, . . . ), (3.14)

where εµ is the gluon polarization vector and Sµ the single soft current [61]

Sµ(a, i, b) = 2
(
aµ

sai
− bµ

sbi

)
. (3.15)

Squaring the single soft current and averaging over the unresolved gluon polarizations using
the polarization tensor yields the familiar soft eikonal factor,

Saib = 1
2d

µνSµ(a, i, b)Sν(a, i, b) = 2sab
saisib

, (3.16)

but when we have an interference term of an amplitude where i becomes soft in between
a, b multiplied by a conjugated amplitude where i becomes soft in between c, d we get

M0†
n (. . . , a, i, b, . . . )M0

n(. . . , c, i, d, . . . ) i→0−−→
1
2
[
Said + Sbic − Saic − Sbid

]
M0†

n−1(. . . , a, b, . . . )M0
n−1(. . . , c, d, . . . ), (3.17)

which can simply be shown by interfering two incoherent colour orderings of the soft current:

1
2d

µνSµ (a, i, b)Sν (c, i, d) = 2
(
aµ

sai
− bµ

sbi

)(
cµ
sci
− dµ
sdi

)
,

= 1
2 [Said + Sbic − Saic − Sbid] . (3.18)

Alternatively, preparing for the double soft current below, the above relation can also be
shown by using the following properties of the single soft current:

1. Reflection: Sµ(b, i, a) = −Sµ(a, i, b),

2. Left shuffle: Sµ(a, i, b) = Sµ(c, i, b)− Sµ(c, i, a),

3. Right shuffle: Sµ(a, i, b) = Sµ(a, i, c) + Sµ(c, i, b),

where the first and second properties can simply be inferred from looking at the explicit
expression of the soft current and the third property follows from the other two.

Using these identities for the soft limit of a general interference term, the soft limit of
the R-term can be expressed by combinations of eikonal factors multiplying an interference
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of five-parton amplitudes. For example, for the single ordering of the R-term R0
4(1, i, j, k, l, 2)

we find in the i soft limit:

R0
4(1, i, j, k, l, 2) i→0−−→1

2
[
S1il + Sjij − S1ij − Sjil

]
b0†3 (1, j, k, l, 2) b03(1, j, l, k, 2)

+1
2
[
S1ik + Sjil − S1il − Sjik

]
b0†3 (1, j, k, l, 2) b03(1, j, l, k, 2)

+1
2
[
S1i2 + Sjik − S1ik − Sji2

]
b0†3 (1, j, k, l, 2) b03(1, j, l, k, 2)

+1
2
[
S1il + Sjik − S1ik − Sjil

]
b0†3 (1, j, k, l, 2) b03(1, k, l, j, 2)

+1
2
[
S1i2 + Sjil − S1il − Sji2

]
b0†3 (1, j, k, l, 2) b03(1, k, j, l, 2)

+1
2
[
S1ik + Sjil − S1il − Sjik

]
b0†3 (1, j, k, l, 2) b03(1, l, k, j, 2)

+1
2
[
S1ik + Sjij − S1ij − Sjik

]
b0†3 (1, j, k, l, 2) b03(1, l, j, k, 2)

+1
2
[
S1i2 + Sjij − S1ij − Sji2

]
b0†3 (1, j, k, l, 2) b03(1, l, k, j, 2). (3.19)

These reduced interference terms cannot be written into a squared function or sum of
squared functions, even when summed over all 24 orderings. Thus, we define

B0
3,int (i1, i2, i3, i4, i5, j1, j2, j3, j4, j5) = 2 Re

[
b0†3 (i1, i2, i3, i4, i5) b03 (j1, j2, j3, j4, j5)

]
,

(3.20)
as the reduced matrix element when it consists of a general interference.

Having identified all the single unresolved limits of the R-term, the construction of the
dσS,a subtraction follows as usual. Eikonal factors are promoted to X0

3 antenna functions
which capture all the soft as well as the collinear gluon-gluon limits. Any quark-gluon
collinear limit produced by the X0

3 antennae cancels out in the total sum of all terms,
which is consistent with what we found before. This approach of taking the soft limit at
amplitude level to construct the dσS,a subtraction term also works for the well-defined
squared B-type functions containing (abelian) gluons. Exactly the same subtraction terms
are generated in this way as in the standard approach using the colour connections of the
squared matrix elements, meaning that although helpful to understand the matrix element
better, it is not strictly necessary to organise the amplitudes into squared functions. As
even higher multiplicity B-type matrix elements (e.g. |B0

5|) will also contain remaining
interference terms like the R-term R0

4 at subleading colour levels, the approach at amplitude
level works the same way as for the six-parton B-type matrix element to construct the dσS,a
subtraction, and would be the preferred method, if one seeks to automate the construction
of the subtraction terms [34].

3.2 Double unresolved limits of genuine interference B-type contributions

In the following, we examine the double unresolved limits of the R-term for the construction
of the double real subtraction terms. The NNLO collinear limits can be determined in the
same way as was done for the single collinear limits, because they factorize nicely onto the
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reduced squared matrix elements. For the double soft limit however, this is again not the
case and we will need to determine how the R-term behaves in a double soft limit at the
amplitude level.

3.2.1 Triple collinear ggg → G

First we consider the gluon-gluon-gluon triple collinear limit, in which the full matrix
element factorizes as ∣∣B0

4
∣∣2 g‖g‖g−−−→ P ggg→G

∣∣B0
2
∣∣2. (3.21)

The full splitting function carries a factor of g4
s and C2

A = N2
c as well as being summed over

six gluon orderings. The reduced matrix element is given by (2.36), resulting in∣∣B0
4
∣∣2 g‖g‖g−−−→ g8

s

(
N2
c − 1

)
N3
c Pggg→G

[
B0

2 −
1
N2
c

B̄
0
2

]
. (3.22)

The lack of non-abelian gluons at the 1/N4
c and 1/N6

c colour levels means that these terms
do not contribute to the limit. At the 1/N2

c colour level, the B̃
0
4 term fully reproduces the

B̄
0
2 term, and so there is no limit left over for R0

4 to contribute to.

3.2.2 Triple collinear qgg → Q

The qgg → Q splitting function has the decomposition into the colour-ordered splitting
functions:

P qgg→Q = N2
c Pqgg→Q −

(
Pqgg→Q − P̃qgg→Q

)
+ 1
N2
c

P̃qgg→Q. (3.23)

The full B-type matrix element in this limit then factorizes according to∣∣B0
4
∣∣2 q‖g‖g−−−→g8

s

(
N2
c − 1

)
Nc

[
N2
c Pqgg→Q −

(
Pqgg→Q − P̃qgg→Q

)
+ 1
N2
c

P̃qgg→Q

]
×
[
B0

2 −
1
N2
c

B̄
0
2

]
= g8

s

(
N2
c − 1

)
N3
c

[
Pqgg→QB0

2

− 1
N2
c

((
Pqgg→Q − P̃qgg→Q

)
B0

2 + Pqgg→QB̄
0
2

)
+ 1
N4
c

((
Pqgg→Q − P̃qgg→Q

)
B̄

0
2 + P̃qgg→QB0

2

)
− 1
N6
c

(
P̃qgg→QB̄

0
2

)]
. (3.24)

At the 1/N2
c colour level we observe that we can receive contributions to this limit from the

B̃
0
4, B̄

0
4 and R0

4 terms. The B̃
0
4 terms have two types of limits: a splitting factoring onto

the subleading colour matrix element,

B̃0
4 (1, i, j, k, l, 2) 1‖j‖k−−−→ Pqgg→QB̄

0
2((1jk), i, l, 2), (3.25)

and an abelian splitting factoring onto a leading colour matrix element,

B̃0
4(1, i, j, k, l, 2) 1‖i‖j−−−→ P̃qgg→QB

0
2((1ij), k, l, 2). (3.26)
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The B̄
0
4 term only has the latter type, but factorizes onto the subleading colour matrix

element instead. Keeping track of all the orderings, their full factorization is given by

B̃
0
4

q‖g‖g−−−→ 2
(
P̃qgg→QB0

2 + Pqgg→QB̄
0
2

)
,

B̄
0
4

q‖g‖g−−−→ P̃qgg→QB̄
0
2, (3.27)

where we note that here Pqgg→Q contains both gluon orderings. From this we can infer the
factorization of the R-term:

R0
4
q‖g‖g−−−→

(
P̃qgg→Q − Pqgg→Q

) (
B̄

0
2 −B0

2

)
, (3.28)

where the combination of reduced matrix elements is exactly the interference matrix element
B̃0

2,R defined in (2.38). Note that the combination of splitting functions (P̃qgg→Q − Pqgg→Q)
can also be written as an interference of splitting amplitudes [62] in the form,

P̃qgg→Q − Pqgg→Q = 2 Re
[∑
λ

Split†(1, i, j; {λ}) Split(1, j, i; {λ})
]
. (3.29)

3.2.3 Triple collinear gq̄q → G

In the g‖q̄‖q limit we have the factorization

∣∣B0
4
∣∣2 g‖q̄‖q−−−→ P gq̄q→G

∣∣A0
4
∣∣2, (3.30)

where the full gluon matrix element is given by (2.14). The full gq̄q → G splitting function
has the decomposition

P gq̄q→G = NcTRPgq̄q −
1
Nc
TRP̃gq̄q, (3.31)

which gives the following factorization:

∣∣B0
4
∣∣2 g‖q̄‖q−−−→ g8

s

(
N2
c − 1

)
N3
c

[
TRPgq̄qA

0
4 −

1
N2
c

TRP̃gq̄qA
0
4

]
, (3.32)

where Pgq̄q is summed over the two orderings gq̄q and q̄qg. In this limit ˜̃B0
4 and B̄

0
4 reduce

to all gluon matrix elements containing abelian gluon(s), which vanish by the Dual Ward
Identity. At the 1/N2

c colour level, the B̃
0
4 does have some non-vanishing limits when the

collinear gluon is abelian. In this limit it reduces exactly to A0
4, leaving no limit left over

for the R-term.

3.2.4 Double single collinear limits

In the limit where distinct pairs of gluons become collinear, say i‖j and k‖l, the full matrix
element factorizes as∣∣B0

4
∣∣2 i‖j, k‖l−−−−→ P ij→GP kl→G

∣∣B0
2
∣∣2

= g8
s

(
N2
c − 1

)
N3
c Pij→GPkl→G

[
B0

2 −
1
N2
c

B̄
0
2

]
. (3.33)
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Due to the lack of sufficient non-abelian gluons in B̃
0
4 and B̄

0
4, we can immediately see the

factorization of the R-term in this limit:

R0
4
i‖j, k‖l−−−−→ Pij→GPkl→GB̄

0
2. (3.34)

Alternatively, we could take the two gg-collinear limits in a sequential manner, using the
result of the single gg-collinear factorization of the R-term, which gives the same result.
Since the R-term does not have any singular qg-collinear limits, even after one gg-collinear
limit, we can also conclude that it has no double gg,qg-collinear or double qg,qg-collinear
limit. In the same way, the double q̄q, gg-collinear limit is absent because the R-term has
no q̄q limit.

3.2.5 Double soft limit

For the double soft limit of the R-term it is necessary to look into the double soft limit at
the amplitude level. The double soft limit of a colour-ordered amplitude where the two soft
gluons are not colour connected simply results in two single soft currents,

M0
n(. . . , a, i, b, . . . , c, j, d, . . . ) i,j→0−−−→ Sµ(a, i, b)Sν(c, j, d)εµενM0

n−2(. . . , a, b . . . , c, d, . . . ).
(3.35)

In the colour-connected double soft limit we have a factorization into the double soft
current [62–64],

M0
n(. . . , a, i, j, b, . . . ) i,j→0−−−→ Sµν(a, i, j, b)εµενM0

n−2(. . . , a, b, . . . ), (3.36)

where

Sµν (a, i, j, b) = 4
(

1
sij (sai + saj)

(aµiν − aνjµ) + 1
sij (sbi + sbj)

(bνjµ − bµiν)

+gµν
(sajsbi − saisbj)

2sij (sai + saj) (sbi + sbj)

+aµaν
1

sai (sai + saj)
+ bµbν

1
sbj (sbi + sbj)

− aµbν
1

saisbj

)
. (3.37)

Squaring the double soft amplitude and averaging over the soft gluon polarizations for a
coherent ordering gives by definition the double soft function

Saijb = 1
4d

µρdνσSµν(a, i, j, b)Sρσ(a, i, j, b). (3.38)

The R-term consists of many interference terms, and for a generic interference amplitude,
we now have several possibilities in the double soft limit:

1. Coherent colour-connected ordering:

M†n(. . . , a, i, j, b, . . . )Mn(. . . , a, i, j, b, . . . ) i,j→0−−−→ Sµν(a, i, j, b)Sµν(a, i, j, b)Mn−2.

(3.39)

– 38 –



J
H
E
P
1
0
(
2
0
2
2
)
0
4
0

2. Colour-connected gluons between different partons:

M†n(. . . , a, i, j, b, . . . )Mn(. . . , c, i, j, d, . . . ) i,j→0−−−→ Sµν(a, i, j, b)Sµν(c, i, j, d)Mn−2.

(3.40)

3. Colour-disconnected times colour-connected:

M†n(. . . , a, i, b, . . . , c, j, d, . . . )Mn(. . . , e, i, j, f, . . . ) i,j→0−−−→

Sµ(a, i, b)Sν(c, j, d)Sµν(e, i, j, f)Mn−2. (3.41)

4. All colour-disconnected:

M†n(. . . , a, i, b, . . . , c, j, d, . . . )Mn(. . . , e, i, f, . . . , g, j, h, . . . ) i,j→0−−−→

Sµ(a, i, b)Sν(c, j, d)Sµ(e, i, f)Sν(g, j, h)Mn−2. (3.42)

Note that in the first and second possibilities the gluons in one of the amplitudes could also
be in reverse order with respect to the other amplitude. We will touch upon these cases
later on and see that they can be converted to the other possibilities. For possibility 1, the
double soft amplitude can be squared and in section 3.1.4 it was shown how the interference
of single soft currents in possibility 4 can be expressed in terms of soft eikonal factors. This
is necessary for the antenna subtraction method, because the antenna functions are only
able to capture the soft singular limits in the form of squared soft factors. In contrast to
the single soft current, it is now not straightforward to express the type of soft interferences
from possibility 2 and 3 in terms of known squared factors, so we cannot easily identify
which antenna functions are able to capture all the double soft limits. Therefore, we seek
properties for the double soft current as was done for the single soft current to help simplify
all the generic interferences of single and double soft amplitudes of the R-term into products
of soft eikonal factors and double soft factors.

The double soft current satisfies a decoupling identity when symmetrized over
soft gluons:

Sµν(a, i, j, b) + Sνµ(a, j, i, b) = Sµ(a, i, b)Sν(a, j, b), (3.43)

which can easily be seen by the fact that the first three terms in (3.37) are antisymmetric
under (i↔ j, µ↔ ν) and by using the partial fractioning in the fourth and fifth terms to
eliminate the three-particle denominators.

The decoupling identity can be used to derive the square of the interference of two
double soft currents which differ only by soft gluon orderings,∑

(i,j)

1
4d

µρdνσSµν(a, i, j, b)Sσρ(a, j, i, b) = SaibSajb − Saijb − Sajib, (3.44)

where ∑(i,j) denotes the sum over the i ↔ j swapped term with also the indices of the
double soft currents swapped (µ↔ ν, ρ↔ σ). Examining the double soft current further,
it is obvious that it also possesses a reflection property,

Sµν(a, i, j, b) = Sνµ(b, j, i, a). (3.45)
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Using the decoupling identity we can then obtain the expression for the double soft current
with swapped hard partons, analogous to the reflection property of the single soft current,

Sµν(b, i, j, a) = Sνµ(a, j, i, b)
= −Sµν(a, i, j, b) + Sµ(a, i, b)Sν(a, j, b). (3.46)

The double soft current also satisfies a left shuffle identity,

Sµν(a, i, j, b) = Sµν(c, i, j, b)− Sµν(c, i, j, a)− Sµ(c, i, a)Sν(a, j, b), (3.47)

and a right shuffle identity follows by using the reflection, decoupling and left shuffle
properties:

Sµν(a, i, j, b) = Sµν(a, i, j, c) + Sµν(c, i, j, b) + Sµ(a, i, c)Sν(c, j, b). (3.48)

Using the decoupling identity (or by relabelling), we can also write down shuffle identities
for the currents with reversed soft gluons,

Sνµ(a, j, i, b) = Sνµ(c, j, i, b)− Sνµ(c, j, i, a)− Sµ(b, i, a)Sν(a, j, c),
Sνµ(a, j, i, b) = Sνµ(a, j, i, c) + Sνµ(c, j, i, b) + Sµ(b, i, c)Sν(c, j, a). (3.49)

There are two relations corresponding to the two possible orderings of the symmetrized
soft gluons,

Sµν(a, i, j, b)Sµν(c, i, j, d) + Sνµ(a, j, i, b)Sνµ(c, j, i, d),
Sµν(a, i, j, b)Sνµ(c, j, i, d) + Sνµ(a, j, i, b)Sµν(c, i, j, d). (3.50)

The second configuration, where the soft gluon ordering is different in the two interfered
currents, can be related to the first configuration using the decoupling identity,∑

(i,j)
Sµν(a, i, j, b)Sνµ(c, j, i, d) =

∑
(i,j)
Sµν(a, i, j, b)

[
− Sµν(c, i, j, d) + Sµ(c, i, d)Sν(c, j, d)

]
=
∑
(i,j)
−Sµν(a, i, j, b)Sµν(c, i, j, d)

+Sµ(c, i, d)Sν(c, j, d)
∑
(i,j)
Sµν(a, i, j, b)

=
∑
(i,j)
−Sµν(a, i, j, b)Sµν(c, i, j, d)

+Sµ(a, i, b)Sν(a, j, b)Sµ(c, i, d)Sν(c, j, d), (3.51)

and so the two configurations are only different by products of single soft currents, which
can be expressed as sums of soft factors,

Sµ(a, i, b)Sν(a, j, b)Sµ(c, i, d)Sν(c, j, d) =
1
4
(
Said + Sbic − Saic − Sbid

)(
Sajd + Sbjc − Sajc − Sbjd

)
. (3.52)
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The different identities derived in this section and in section 3.1.4 are sufficient to
re-express the double soft limit of the R-term into a suitable form for antenna subtraction:

R0
4
k,l→0−−−→

(
− S1k2S1li + S1k2S1lj + S1k2S2li − S1k2S2lj − 2S1k2Silj

− S1kiS1l2 + S1kiS1lj + S1kiS2lj

+ S1kjS1l2 + S1kjS1li − 2S1kjS1lj − S1kjS2li + 2S1kjSilj

+ S2kiS1l2 − S2kiS1lj − 2S2kiS2li + S2kiS2lj + 2S2kiSilj

− S2kjS1l2 + S2kjS1li + S2kjS2li

− 2SikjS1l2 + 2SikjS1lj + 2SikjS2li − 2SikjSilj
)
B0

2(1, i, j, 2) + (i↔ j)
+
(
− 2S1kl2 − 2S1lk2

+ 2S1k2S1l2 − 2S1k2Silj

− S1kiS2li + S1kiS2lj + S1kiSilj

+ S1kjS2li − S1kjS2lj + S1kjSilj

− S2kiS1li + S2kiS1lj + S2kiSilj

+ S2kjS1li − S2kjS1lj + S2kjSilj

− 2SikjS1l2 + SikjS1li + SikjS1lj + SikjS2li + SikjS2lj − 2SikjSilj
)

×B̃0
2,R(1, i, j, 2), (3.53)

where we see that all the products of the single and double soft currents at amplitude
level have been re-expressed in terms of only iterated single eikonal factors and double soft
factors at the squared matrix element level. The reduced amplitudes have been squared to
leading colour functions B0

2 or are present as the interference matrix element B̃0
2,R. Each

soft factor can now be promoted to a corresponding antenna function to obtain the first
candidate subtraction for the R-term. Focusing only at the double soft factors, we see that
we get the following X0

4 terms:

− 2A0
4 (1, k, l, 2) B̃0

2,R ([1] , i, j, [2]) and − 2A0
4 (1, l, k, 2) B̃0

2,R ([1], i, j, [2]) . (3.54)

If we also promote the 2S1k2S1l2B̃
0
2,R(1, i, j, 2) term to 2 Ã0

4(1, k, l, 2)B̃0
2,R([1], i, j, [2]), we

see that we end up with exactly the correct structure of X0
4 terms we needed to subtract all

the triple collinear limits of the R-term. The construction of dσS,b1 has been completed, and
having found all the functions to account for the soft limits, the construction for the rest of
dσS can continue in the same manner as for the other B-type matrix elements. Dressing
the dσS,b1 terms with X0

3X
0
3 , adding dσS,a and the newly dσS,c and dσS,d terms obtained

from (3.53), all the single collinear limits of the R-term are also correctly reproduced. Due
to the cross talk of the several terms with mapped momenta, the soft limits are however
not correctly subtracted anymore, but this is fixed by the usual process of adding LAS
terms [14], thereby completing the construction of dσS for the R-term.

3.2.6 Tests of the RR subtraction term

To assess how well the subtraction term dσS approaches the matrix element dσRR that
it is supposed to subtract in unresolved limits, we take the double soft gluons and q‖g‖g
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Figure 1. Spike plots of the ratio dσRR/dσS verifying the correct behaviour of the subtraction
terms for the R-term in the double soft gluons (left) and triple collinear q‖g‖g (right) limits.

triple collinear limits for the R-term as examples. The validity of the subtraction term is
tested as described in [65] by generating a number of phase space points approaching the
considered IR limit at

√
s = 1000GeV, and for each point the following ratio is calculated:

XRR = dσRR
dσS . (3.55)

This ratio is expected to converge to unity as the points go deeper into the IR limit. The
depth of the IR divergence is controlled by a variable x, which is defined in terms of momenta
invariants in a suitable way for each considered unresolved limit. For the exemplary double
soft i, j → 0 and triple collinear 1‖i‖j limits in the 1, 2→ i, j, k, l scattering processes, x
is defined as x = 1 − skl/s and x = s1ij/s respectively. Three different values for x are
considered for each limit, with smaller x representing larger IR depth. The results for XRR

are histogrammed and shown in figure 1 where the number of points which fall outside
the plot range are also denoted. For both limits we observe narrower spikes around unity
and less outliers as x becomes smaller, meaning the subtraction term mimics the matrix
element better as the points become closer to the IR singularity. After the full subtraction
term dσS successfully produces sufficiently narrow spikes in the spike plots for each possible
unresolved limit, dσS can be considered a working subtraction term.

4 Real-virtual subtraction

All five-parton one-loop matrix elements that were introduced in section 2 enter the real-
virtual contribution to the dijet cross section. The antenna subtraction terms that are
required for their numerical implementation are discussed in the following, focusing in
particular on novel aspects that first appear for processes with four external partons at
Born level.

Since the RV corrections are (n + 1)-parton matrix elements, we now only need to
consider single unresolved limits. For the one-loop matrix elements we have the following
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factorization in soft limits [66, 67]:

M1
n+1(. . . , a, b, c, . . . ) b→0−−→ SabcM

1
n(. . . , a, c, . . . ) + S

(1)
abc(ε)M

0
n(. . . , a, c, . . . ), (4.1)

and similarly for collinear limits [66, 68]:

M1
n+1(. . . , i, j, . . . ) i‖j−−→ Pij→K

sij
M1
n(. . . ,K, . . . ) +

P
(1)
ij→K
sij

M0
n(. . . ,K, . . . ), (4.2)

where we have the same unresolved factors from the tree-level factorization, but now
factoring onto a reduced one-loop matrix element, and additional terms which have the
form of a one-loop soft factor [69] or one-loop splitting function [66, 70] times a reduced
tree-level matrix element. In the antenna subtraction method, these unresolved limits of the
RV corrections are subtracted in the same way by “tree times loop” (T × L) X0

3M
1
n terms

and “loop times tree” (L× T ) X1
3M

0
n terms, where X1

3 is a one-loop antenna function [13].
Besides mimicking the behaviour of the matrix element in unresolved limits, the subtraction
term also needs to cancel the explicit ε-poles of the one-loop matrix element, which can be
obtained from the relevant one-loop amplitude expressions in section 2.

Similar as for the RR level, we partition the whole subtraction term into the follow-
ing parts [14]:

dσT = dσT,a + dσT,b + dσT,c + dσT,e, (4.3)
and briefly describe each part:

• dσT,a: this part consists of the integrated dσS,a terms:

dσT,a ⊃ NRV
∫ dx1

x1

dx2
x2

dΦn+1X 0
3 (sij)M0

n+1({pn+1})J (n+1)
n ({pn+1}), (4.4)

and removes the explicit ε-poles of the RV squared matrix element. The calligraphic
X 0

3 denotes an integrated antenna and the reduced matrix elements here are (n+ 1)-
parton squared matrix elements which can develop single unresolved limits. These
limits, not associated with the RV matrix element, have to be taken care of by
subtraction terms in the other parts. dσT,a combines with dσMF,1 to yield the single
integrated dipole factors J (1)

2 that are listed in appendix B, multiplying the reduced
squared matrix elements.

• dσT,b: this part is responsible for subtracting the single unresolved limits of the RV
matrix element. The one-loop antennae and reduced matrix elements can contain
explicit ε-poles which are not associated to the RV matrix element. These poles are
removed by terms of the form X 0

3X
0
3M

0
n. We thus further partition dσT,b into dσT,b1

and dσT,b2 parts, corresponding to the L× T , T × L terms and the terms cancelling
the poles of the one-loop antennae and reduced matrix elements:

dσT,b1 ⊃ NRV
∫ dx1

x1

dx2
x2

dΦn+1X
1
3 ({pn+1})δ(1−x1)δ(1−x2)M0

n({p̃n})J (n)
n ({p̃n})

+NRV
∫ dx1

x1

dx2
x2

dΦn+1X
0
3 ({pn+1})δ(1−x1)δ(1−x2)M1

n({p̃n})J (n)
n ({p̃n}),

dσT,b2 ⊃ NRV
∫ dx1

x1

dx2
x2

dΦn+1X 0
3 (sij)X0

3 ({pn+1})M0
n({p̃n})J (n)

n ({p̃n}). (4.5)
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The one-loop antennae in the dσT,b1 subtraction are renormalized at the scale of the
invariant mass of their antenna partons sabc, while the one-loop matrix elements are
renormalized at the renormalization scale µ2

r. This mismatch is corrected by the
following replacement:

X1
3 (a, b, c)→ X1

3 (a, b, c) + b0
ε
X0

3 (a, b, c)
(( |sabc|

µ2
r

)−ε
− 1

)
. (4.6)

• dσT,c: this part cancels the single unresolved limits of the reduced squared matrix
elements in dσT,a and consists of terms of the form:

dσT,c ⊃ NRV
∫ dx1

x1

dx2
x2

dΦn+1X 0
3 (sij)X0

3 ({pn+1})M0
n({p̃n})J (n)

n ({p̃n}). (4.7)

These terms partly originate from integration of dσS,c terms over the antenna phase
space of the first X0

3 , and partly of terms newly introduced here, which will conse-
quently be subtracted again at the double virtual level.

• dσT,e: the soft functions in the LAS terms are integrated and added back at the RV
level:

dσT,e ⊃ NRV
∫ dx1

x1

dx2
x2

dΦn+1 SFFX0
3 ({pn+1})M0

n({p̃n})J (n)
n ({p̃n}). (4.8)

Note the absence of a dσT,d part corresponding to integration of dσS,d, since the colour-
disconnected terms are usually added back at the VV level.

Novel features of the RV subtraction terms for dijet processes are discussed on two
examples in the following.

4.1 RV subtraction for the subsubleading colour C-type matrix element

We first discuss the antenna subtraction for the subsubleading colour (SSLC) C-type matrix
element ˜̃C1

1(q, q̄, Q, Q̄, g) defined in (2.82), as this matrix element still admits a relatively
compact form of its subtraction terms while already exposing some of the key features of
the RV subtraction. For definiteness, we take the crossing where q, Q̄ are in the initial state
and use the notational abbreviation (1, i, j, 2, k) = (q, q̄, Q, Q̄, g) in this section.

The first step is to cancel the explicit ε-poles of the matrix element by dσT,a. The pole
structure for the full SSLC level is given by

Poles
[ ˜̃C1

1 (1, i, j, 2, k)
]

= 2
[
I

(1)
qq̄ (ε, s1i) + I

(1)
qq̄ (ε, s2j) + 2I(1)

qq̄ (ε, s12) + 2I(1)
qq̄ (ε, sij)

− 2I(1)
qq̄ (ε, s1j)− 2I(1)

qq̄ (ε, s2i)
]
C0

1,γ (1, i, j, 2, k)

− 2
[
I

(1)
qq̄ (ε, s1i) + I

(1)
qq̄ (ε, s2j) + I

(1)
qq̄ (ε, s12) + I

(1)
qq̄ (ε, sij)

− I(1)
qq̄ (ε, s1j)− I(1)

qq̄ (ε, s2i)
] (
C0

1,c(1, i, j, 2, k) + C0
1,d(1, i, j, 2, k)

)
.

(4.9)
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This expression can directly be used to construct dσT,a by using the known pole structures
of the integrated three-parton antenna functions [13] and matching the poles. Taking also
the mass factorization terms into account, we obtain the general expression:

dσT,a =
∑
i,j

cijJ (1)
2 (i, j)M0

5 , (4.10)

where cij denote numerical coefficients and J (1)
2 are the single integrated dipoles given in

appendix B which contain integrated X0
3 antennae and mass factorization kernels. One

could then also unintegrate dσT,a to obtain dσS,a which subtracts all single unresolved
limits of the corresponding matrix element which forms the double real correction ( ˜̃C0

2 in
this example). This approach from using the infrared singularity structure of the virtual
corrections to construct the virtual subtraction term first, and subsequently unintegrating
to obtain the real subtraction term [34] works well at NLO due to its relative simplicity.

After achieving the explicit pole cancellation, we look at the single unresolved limits of
the RV matrix element. The single collinear quark-antiquark limits of ˜̃C1

1 (q, q̄, Q, Q̄, g) are
easily reproduced by the following terms:

dσT,b1 ⊃ − 1
2E

0
3,qq′(1, j, 2) ˜̃B1

2([1], k, [2], i)

− 1
2E

0
3,q′(i, j, 2) ˜̃B1

2(1, k, [2], [i, j])

− 1
2E

0
3,q′(j, 1, i) ˜̃B1

2([j, i], k, [1], 2)

− 1
2E

0
3,qq′(2, 1, i) ˜̃B1

2(j, k, [1], [2])

− 1
2Ẽ

1
3,qq′(1, j, 2)B̄0

2([1], k, [2], i)

− 1
2Ẽ

1
3,q′(i, j, 2)B̄0

2(1, k, [2], [i, j])

− 1
2Ẽ

1
3,q′(j, 1, i)B̄0

2([j, i], k, [1], 2)

− 1
2Ẽ

1
3,qq′(2, 1, i)B̄0

2(j, k, [1], [2]). (4.11)

The unresolved limits involving the gluon, especially the soft limit, are less straightforward
due to similar reasons as for the double real subtraction. Here we make use of the known
pole structures of the antenna functions and matrix element to find the correct subtraction
terms for the soft gluon limit. To construct these subtraction terms we take the soft gluon
k limit of (4.9). For a generic five-parton one-loop colour-ordered matrix element, one then
obtains an expression of a sum of products of infrared singularity operators I(1), eikonal
factors S and four-parton reduced tree-level matrix elements:

M1
5 (1, i, j, 2, k) sing.−−−→

k soft

∑
a,b∈{1,i,j,2}

∑
c,d∈{1,i,j,k,2}

∑
e

CabcdeSakbI
(1)
pp′∈{q,g}(ε, scd)M

0
4,e, (4.12)

where Cabcde contains the relevant colour factors and integer multiplicity factors, depending
on the involved partons and reduced matrix element. For the case of the SSLC C-type matrix
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element in this example, this expression can still be written in a relatively compact form:

Poles
[ ˜̃C1

1 (1, i, j, 2, k)
] ∣∣
k→0 =

+
[
2I(1)
qq̄ (ε, s1i) + 2I(1)

qq̄ (ε, s2j) + 4I(1)
qq̄ (ε, s12) + 4I(1)

qq̄ (ε, sij)− 4I(1)
qq̄ (ε, s1j)− 4I(1)

qq̄ (ε, s2i)
]

× (S1ki + S2kj)C0
0 (1, 2, j, i)

+
[
4I(1)
qq̄ (ε, s1i) + 4I(1)

qq̄ (ε, s2j) + 6I(1)
qq̄ (ε, s12) + 6I(1)

qq̄ (ε, sij)− 6I(1)
qq̄ (ε, s1j)− 6I(1)

qq̄ (ε, s2i)
]

× (S1k2 + Sikj − S1kj − S2ki)C0
0 (1, 2, j, i) . (4.13)

The above expression has to be reproduced by the L× T and T × L subtraction terms in
the same soft limit: eikonal factors by the antenna functions and the five-parton reduced
matrix elements and the I(1) functions by the one-loop antennae in the L × T terms as
well as the one-loop matrix elements in the T × L terms. The known pole structures of
the one-loop antennae [13] and matrix elements in section 2.3.2, as well as their known
behaviour in the single soft limit then guides us in constructing the correct terms to match
the behaviour in (4.13). In this example the L× T terms are given by

dσT,b1 ⊃ + Ã1
3,q (1, k, i)C0

0 ([1] , 2, j, [i, k])

+ Ã1
3,q (2, k, j)C0

0 (1, [2] , [j, k] , i)

+ 2Ã1
3,qq̄ (1, k, 2)C0

0 ([1] , [2] , j, i)

+ 2Ã1
3 (i, k, j)C0

0 (1, 2, [j, k] , [i, k])

− 2Ã1
3,q (1, k, j)C0

0 ([1] , 2, [j, k] , i)

− 2Ã1
3,q (2, k, i)C0

0 (1, [2], j, [i, k]) , (4.14)

which do not contribute in the soft k limit. The terms in (4.13) thus have to be fully
accounted by the T × L terms. Here, we observe a similar pattern in the pole structures
multiplying the soft factors and reduced matrix element as for the one-loop matrix element
C̃1

0 in (2.79). For the first line in the right-hand side of (4.13) containing the soft factors
which are even in the 2↔ j interchange, we can promote the soft factors to A0

3 antennae
and match the poles and reduced matrix element with −C̃1

0(1, 2, j, i). However, for the
second line containing a combination of soft factors odd under the 2↔ j interchange, the
coefficients of the infrared operators do not match up with the one-loop four-parton matrix
element. The reduced tree-level matrix element C0

0(1, 2, j, i) does match up and we recall
that it is invariant under a 2↔ j interchange. Thus, we can resolve this mismatch by using
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an antisymmetrized combination of the C̃1
0 functions as follows:

dσT,b1 ⊃ − A0
3,q (1, k, i) C̃1

0 ([1] , 2, j, [i, k])

− A0
3,q (2, k, j) C̃1

0 (1, [2] , [j, k] , i)

− 7
4A

0
3,qq̄ (1, k, 2) C̃1

0 ([1] , [2] , j, i)

− 7
4A

0
3 (i, k, j) C̃1

0 (1, 2, [j, k] , [i, k])

+ 7
4A

0
3,q (1, k, j) C̃1

0 ([1] , 2, [j, k] , i)

+ 7
4A

0
3,q (2, k, i) C̃1

0 (1, [2] , j, [i, k])

− 1
4A

0
3,qq̄ (1, k, 2) C̃1

0 ([1] , j, [2] , i)

− 1
4A

0
3 (i, k, j) C̃1

0 (1, [j, k] , 2, [i, k])

+ 1
4A

0
3,q (1, k, j) C̃1

0 ([1], [j, k], 2, i)

+ 1
4A

0
3,q(2, k, i)C̃1

0 (1, j, [2], [i, k]), (4.15)

where the C̃1
0 in the second block have their secondary quarks interchanged with respect

to the first block. Adding all L× T and T × L terms together completes the dσT,b1 part
which reproduces all the collinear and soft limits of the real-virtual matrix element.

dσT,b1 is not free of ε-poles, as it consists of one-loop antenna functions in the L× T
terms and one-loop matrix elements in the T × L terms. The poles of the one-loop antenna
functions are known [13] and the poles of the one-loop reduced matrix elements are given in
section 2.2.6. Knowing the full pole structure, these poles are then subtracted by X 0

3X
0
3Mn

terms, which come from integrated iterated X0
3X

0
3Mn terms from the RR subtraction or

are newly introduced here at the RV level, until dσT,b1 + σT,b2 is free of ε-poles. Similarly,
dσT,a is not free of unresolved limits, as we can have single unresolved limits in the reduced
five-parton tree-level matrix elements. These unresolved limits can again be subtracted by
terms of the form X 0

3X
0
3Mn. The remaining dσT,b2 , dσT,c and dσT,e terms which account

for these unresolved limits and poles not associated to the RV matrix elements are obtained
using standard procedures [14] and are not discussed here.

We note that for one-loop matrix elements at subleading colour, the factorization in
the soft gluon limits also factors onto interference terms. It is therefore usually necessary
to partition the one-loop reduced matrix element into subfunctions encapsulating these
interferences. For the C-type matrix elements in this example the (anti)-symmetrized
combinations of C̃1

0 coincide with the required subfunctions for the soft limit. For the
D-type RV subtraction terms, we encounter a similar issue where we require the use of the
subfunctions D1

0,i with i ∈ {a, b, c, d} as defined in (2.93). In the B-type RV subtraction
example we discuss next we will also need reduced one-loop interference matrix elements.
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4.2 RV subtraction for the subleading colour B-type matrix element

In the following, we discuss the antenna subtraction for the first subleading colour level
B-type RV squared matrix element B̃1

3 , which has as double real counter part the B̃
0
4, B̄

0
4

in (2.43) as well as the interference terms R0
4 discussed in sections 3.1 and 3.2. The pole

structure of the RV correction can simply be obtained from the expressions in section 2.2.2.
For the leading colour functions B1

3 and B̂1
3 which consist of coherent one-loop primitive

amplitudes interfered with tree-level amplitudes, the pole structure is particularly simple
and transparent. This transparency in the pole structure and unresolved limits guides the
construction of the LC subtraction terms. At the SLC levels however, the pole structure is
much less transparent due to the subleading partial amplitudes and incoherent interferences,
which complicates the construction of the SLC subtraction terms. The B̃1

3 matrix element
receives contributions from all the subleading colour partial amplitudes B3;3 and B3;4, as
well as incoherent interferences of the leading partial amplitude B1

3;1. For definiteness, we
take the quark pair in the initial state and use the shorthand notation (1, i, j, k, 2) for
(q, g1, g2, g3, q̄). All other crossings follow the same construction principles.

The first step to cancel the explicit ε-poles is achieved by integrating the corresponding
dσS,a terms and adding them back here. For the B̃1

3(1, i, j, k, 2), this implies contributions
from the subtraction associated with B̃

0
4, B̄

0
4 and the remainder interference terms R0

4.
While these dσT,a terms at SLC are thus numerous integrated antenna functions factoring
onto tree-level interference B0

3,int terms, this procedure at SLC is no different than at LC,
given that the RR subtraction term has been constructed previously.

Next, we look at the unresolved limits of B̃1
3(1, i, j, k, 2). The L× T terms can still be

written in a compact form, as there are only few distinct four-parton reduced tree-level matrix
elements. The following terms have the required one-loop soft and collinear behaviour:

dσT,b ⊃
∑

P (i,j,k)

1
2
[

+A1
3(1, k, 2)B̃0

2,R([1], i, j, [2])

+ Ã1
3(1, k, 2)B̃0

2,R([1], i, j, [2])
+ Ã1

3(1, k, 2)B̄0
2([1], i, j, [2])

− d1
3,q(1, k, i)B̄0

2([1], [i, k], j, 2)
− d1

3,q(1, k, j)B̄0
2([1], i, [j, k], 2)

− d1
3,q(2, k, i)B̄0

2(1, [i, k], j, [2])

− d1
3,q(2, k, j)B̄0

2(1, i, [j, k], [2])
]
. (4.16)

In the crossings where at least one quark are in the final state, it is necessary to also subtract
the quark-antiquark limits with −G̃1

3(i, 1, 2)A0
4.

The T × L terms are less compact. In the collinear limits, there is again a com-
pact factorization of splitting functions times full four-parton one-loop squared matrix
elements, e.g.

B̃1
3 (1, i, j, k, 2) 1‖i−−−→

T×L
Pqg→Q

[
B̃1

2((1i), j, k, 2)−B1
2((1i), j, k, 2)−B1

2(1i, k, j, 2)
]
,

B̃1
3(1, i, j, k, 2) i‖j−−−→

T×L
Pgg→G

[
2B̃1

2(1, (ij), k, 2)
]
. (4.17)
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On the other hand, the soft limit factors onto many different interferences and it becomes
necessary to make use of all the subfunctions defined in section 2.2.6. In the soft limit we
have the following T × L terms:

B̃1
3(1, i, j, k, 2) k→0−−−→

T×L

1
2
[

(−S1kj − S2ki + Sikj)B1
2(1, i, j, 2)

+ (−S1ki − S2kj + Sikj)B1
2(1, j, i, 2)

+ (S1k2 + S1ki − S1kj − S2ki + S2kj + 2Sikj)B̃1
2,b(1, i, j, 2)

+ (S1k2 − S1ki + S1kj + S2ki − S2kj + 2Sikj)B̃1
2,c(1, i, j, 2)

+ (S1ki + S2kj + Sikj)B̃1
2,d(1, i, j, 2)

+ (−S1k2 + S1ki + S1kj + S2ki + S2kj)B̃1
2,e(1, i, j, 2)

+ (S1kj + S2ki + Sikj)B̃1
2,f (1, i, j, 2)

]
+ (i↔ j). (4.18)

Promoting the eikonal factors to tree-level antenna functions and adding the L× T terms
then subtracts all the unresolved limits of B̃1

3(1, i, j, k, 2), which concludes dσT,b1 .
Although the expressions for dσT,a and dσT,b are less compact than what one usually

finds at LC, knowing the behaviour and pole structure of each interference matrix element,
the interplay between the different terms to cancel the unresolved limits and ε-poles can
be achieved in the same manner as at LC. The main novel feature here is the appearance
of the subfunctions B̃1

2,x(1, i, j, 2) in the reduced squared matrix elements of the dσT,b
subtraction term.

4.2.1 Tests of the RV subtraction term

The correctness of the ε-pole structure of the real-virtual subtraction is checked analytically,
while the behaviour of dσT in unresolved limits is tested numerically, in the same way as
was done for the double real subtraction. The results for the single soft and single collinear
g‖g limits for B̃1

3 are shown in figure 2 as examples. The parameter controlling the depth
of the IR tests is given by x = 1− sjk/s and x = sij/s for the single soft i→ 0 and single
collinear i‖j limits in 1, 2→ i, j, k scattering processes.

5 Double virtual subtraction

The double virtual correction has no unresolved limits but contains ε-poles up to order four,
which must be cancelled by the subtraction term. The singularity structure of the matrix
element can be obtained from Catani’s factorization formula [39] and after expanding in the
colour levels, we can express the pole structure of each colour-ordered double virtual matrix
element in terms of the colour-ordered infrared operators I(1), I(2) listed in appendix A,
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Figure 2. Spike plots of the ratio dσRV/dσT verifying the correct behaviour of the subtraction
terms for B̃1

3 in the single soft gluon (left) and single collinear q‖g (right) limits.

and single poles:

Poles
[
M2
n ({pn})

]
=
∑
ij

[
c1,ijI

(1) (ε, sij)
(
M1
n ({pn})−

β0
ε
M0
n ({pn})

)

+
∑
kl

cijklI
(1) (ε, sij) I(1) (ε, skl)M0

n ({pn})

+c2,ijI
(2) (ε, sij)M0

n ({pn})

+c3,ijH
(2) (ε)M0

n ({pn})
]
, (5.1)

where the cx denote numerical coefficients and explicit expressions of the I(2) operators can
be found in appendix A. The H(2)(ε) terms in (5.1) contain poles of maximal order one and
are process dependent. We give their expressions [41, 48, 53] for dijet processes (A-type,
B-type and C-/D-type matrix elements) also in colour-ordered form:

H
(2)
A = 4

(
N2
cH

(2)
g,N2

c
+NcnfH

(2)
g,nf

+ n2
fH

(2)
g,n2

f
+ +nf

Nc
H

(2)
g,nf/Nc

)
,

H
(2)
B = 2

(
N2
c

(
H

(2)
g,N2

c
+H

(2)
q,N2

c

)
+Ncnf

(
H(2)
g,nf

+H(2)
q,nf

)
+n2

fH
(2)
g,n2

f
+H(2)

q + nf
Nc

(
H

(2)
g,nf/Nc

+H
(2)
q,nf/Nc

)
+ 1
N2
c

H
(2)
q,1/N2

c

)
,

H
(2)
C = 4

(
N2
cH

(2)
q,N2

c
+H(2)

q + 1
N2
c

H
(2)
q,1/N2

c
+NcnfH

(2)
q,nf

+ nf
Nc
H

(2)
q,nf/Nc

)
, (5.2)
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where the individual colour level contributions are given by

H
(2)
q,N2

c
= 409

864 −
11π2

96 + 7ζ3
4 , H

(2)
g,N2

c
= 5

12 + 11π2

144 + ζ3
2 ,

H(2)
q,nf

= − 25
216 + π2

48 , H(2)
g,nf

= − 89
108 −

π2

72 ,

H
(2)
g,n2

f
= 5

27 ,

H(2)
q = − 41

108 −
π2

96 −
ζ3
4 ,

H
(2)
q,nf/Nc

= 25
216 −

π2

48 , H
(2)
g,nf/Nc

= −1
4 ,

H
(2)
q,1/N2

c
= − 3

32 + π2

8 −
3ζ3
2 . (5.3)

All these ε-poles should be cancelled by the appropriate integrated subtraction terms
from the double real and real-virtual contributions, which is checked analytically. With the
process of constructing the subtraction terms starting at the double real level, continuing
to the real-virtual level, and lastly the double virtual level, there is no more freedom left to
add any new subtraction terms at the double virtual level. All subtraction terms of the RR
or RV type which have not been integrated and added back must reappear at the VV level.
Once this has been checked and the poles of the VV matrix element are correctly cancelled,
a complete and consistent subtraction at NNLO has been performed.

The full double virtual subtraction term is obtained by combining all integrated RR
and RV subtraction terms with the NNLO mass factorization term dσMF,2, as outlined
in (2.3). It takes the general form:

dσU = NV V
∫ dx1

x1

dx2
x2

dΦn J
(n)
n ({pn})

[∑
i,j

c
(1)
ij J

(1)
2 (pi, pj)M1

n ({pn})

+
∑
i,j,k,l

c
(1⊗1)
ijkl J

(1)
2 (pi, pj)⊗ J (1)

2 (pk, pl)M0
n ({pn})

+
∑
i,j

c
(2)
ij J

(2)
2 (pi, pj)M0

n ({pn})
]
, (5.4)

where c(1)
ij , c(1⊗1)

ijkl and c(2)
ij denote numerical coefficients. The first line of (5.4) consists of

single integrated dipoles multiplied by a one-loop reduced matrix element. They are the
integrated T × L terms in dσT,b1 of the real-virtual subtraction which have been added
back here. The second line has its origin in the X 0

3X
0
3M terms in dσT,b2 and dσT,c. The

last line consists of the new double integrated dipoles J (2)
2 , which are defined such that we

have a similar structure as for the NLO virtual subtraction. They contain the integrated
four-parton antennae from dσS,b, integrated one-loop antennae from the L × T terms in
dσT,b, X 0

3X 0
3 terms which have not yet been accounted for, as well as mass factorization
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kernels for initial-state configurations. The general form of the J (2)
2 is given by

J (2)
2 (pi, pj) =

∑
k

c1,kX 0
4,k (sij) + c2,kX 1

3,k (sij) + c3,k
β0
ε

(
sij
µ2

)−ε
X 0

3,k (sij)

+
∑
l

(
c4,kl

[
X 0

3,k ⊗X 0
3,l

]
+ c5,kl

[
X 0

3,k ⊗ Γ(1)
l

]
+ c6,kl

[
Γ(1)
k ⊗ Γ(1)

l

])
+ c7,kΓ̄(2)

k ,

(5.5)

where the sum goes over the appropriate antennae and mass factorization kernels and the
cx denote numerical coefficients. Written in this form, one can immediately establish the
cancellation of ε-poles between the subtraction term and the double virtual matrix element.
The full list of the J (2)

2 integrated dipole factors is given in appendix C.
As simple examples, we discuss the pole structure of the two-loop virtual contribution

and the dipole structure of the associated double virtual subtraction term for selected
colour levels of the B-type process. We select those contributions that have a particularly
compact form, thereby illustrating the essential features of the pole cancellation at the
double virtual level.

The pole structure of the leading Nc colour level function B2
2(1, 2, 3, 4) for a given

colour ordering is given by

Poles
[
B2

2 (1, 2, 3, 4)
]

=

+2
[
I(1)
qg (ε, s12) + I(1)

gg (ε, s23) + I(1)
qg (ε, s34)

] (
B1

2 (1, 2, 3, 4)− b0
ε
B0

2 (1, 2, 3, 4)
)

−2
[
I(1)
qg (ε, s12) + I(1)

gg (ε, s23) + I(1)
qg (ε, s34)

]
×
[
I(1)
qg (ε, s12) + I(1)

gg (ε, s23) + I(1)
qg (ε, s34)

]
B0

2 (1, 2, 3, 4)

+2
[
I(2)
qg (ε, s12) + I(2)

gg (ε, s23) + I(2)
qg (ε, s34)

]
B0

2 (1, 2, 3, 4)

+2
[
2H(2)

q,N2
c

+ 2H(2)
g,N2

c

]
B0

2(1, 2, 3, 4), (5.6)

and the leading nf by

Poles
[
B̂2

2 (1, 2, 3, 4)
]

=

+2
[
I(1)
qg (ε, s12) + I(1)

gg (ε, s23) + I(1)
qg (ε, s34)

] (
B̂1

2 (1, 2, 3, 4)− b0,F
ε
B0

2 (1, 2, 3, 4)
)

+2
[
I

(1)
qg,F (ε, s12) + I

(1)
gg,F (ε, s23) + I

(1)
qg,F (ε, s34)

] (
B1

2 (1, 2, 3, 4)− b0
ε
B0

2 (1, 2, 3, 4)
)

−4
[
I(1)
qg (ε, s12) + I(1)

gg (ε, s23) + I(1)
qg (ε, s34)

]
×
[
I

(1)
qg,F (ε, s12) + I

(1)
gg,F (ε, s23) + I

(1)
qg,F (ε, s34)

]
B0

2 (1, 2, 3, 4)

+2
[
I

(2)
qg,F (ε, s12) + I

(2)
gg,F (ε, s23) + I

(2)
qg,F (ε, s34)

]
B0

2 (1, 2, 3, 4)

+2
[
2H(2)

q,nf
+ 2H(2)

g,nf

]
B0

2(1, 2, 3, 4). (5.7)

Here, one can clearly see that the poles have the expected structure associated with the
colour-connected singularities and that all the squared matrix elements on which the
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infrared singularity functions factor on are the colour-coherent squared leading colour
matrix elements. The expressions for the subleading colour levels are less compact and
somewhat lack these nice structures and naturally involve interferences of the colour-ordered
amplitudes. The pole structure of the most subleading Nc colour level of the two-loop
B-type matrix element is however particularly simple and we take it as an example again in
the qq̄-crossing,

Poles
[
B̄2

2 (1, 3, 4, 2)
]

= −2I(1)
qq (ε, s12) ˜̃B1

2 (1, 3, 4, 2)

+2I(1)
qq (ε, s12) I(1)

qq (ε, s12) B̄0
2 (1, 3, 4, 2)

−2
(
2H(2)

q,1/N2
c

)
B̄0

2 (1, 3, 4, 2) . (5.8)

We observe no infrared operators involving quark-gluon or gluon-gluon momenta invari-
ants, following the colour-disconnected behaviour of the abelian gluons. The integrated
subtraction terms for B̄2

2(1, 3, 4, 2) are given by

dσU = J (1)
2
(
1̄q, 2̄q̄

) ˜̃B1
2 (1, 3, 4, 2)

+1
2J

(1)
2
(
1̄q, 2̄q̄

)
⊗ J (1)

2
(
1̄q, 2̄q̄

)
B̄0

2 (1, 3, 4, 2)

+J̄ (2)
2
(
1̄q, 2̄q̄

)
B̄0

2 (1, 3, 4, 2) , (5.9)

thereby illustrating the integrated dipole structure in (5.4) in practice.
In our approach of constructing the antenna subtraction terms from the known IR di-

vergent behaviour of the RR and RV squared matrix elements, the analytic pole cancellation
in the VV contribution provides a strong cross-check on the correctness of the subtraction
terms at the RR and RV levels. This argument could be turned around by starting the
construction of the subtraction terms at the VV level, by matching the known pole structure
of two-loop squared matrix elements and mass factorization terms onto a combination of
integrated dipole factors. A systematic unintegration of these dipole factors [34] could then
yield the RV and RR antenna subtraction terms in a systematic and algorithmic manner.

6 Conclusion

In this paper, we documented the details of the NNLO QCD calculation in full colour
for jet production observables at the LHC [26] using the antenna subtraction method.
All the relevant matrix elements were listed in a colour-decomposed manner, along with
several properties such as their colour connections and pole structures. The use of the
traditional colour-ordered antenna subtraction method to construct the NNLO subtraction
terms starting from the double real and ending at the double virtual level was summarized.
Several complications within this approach that arise due to the more involved structure of
the high parton multiplicity matrix elements at the subleading colour levels were highlighted
and explicit examples of the RR, RV and VV subtractions were discussed to show how
to subtract all unresolved limits and cancel all the ε-poles without needing new antenna
functions or performing new analytic integrals. Building upon earlier developments at
leading colour [14], we introduced the full set of integrated dipole terms for full colour, which
allow the infrared pole cancellation between integrated subtraction terms, mass factorization
terms and virtual matrix elements to be structured in a compact and modular manner.
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Although successful, with phenomenological results reported in [26], this paper also
illustrates the need for an automated method to apply the antenna subtraction at NNLO in
full colour, considering both the more involved structure of subleading colour contributions
and that the complexity only increases as the multiplicity of coloured particles in the process
grows. This has motivated the development of the colourful antenna subtraction method, a
reformulation of the antenna subtraction where the predictability of the pole structures of
loop-amplitudes in colour space is used to generate the subtraction terms in an automated
procedure starting at the double virtual and cascading to the double real level. Progress in
this colourful antenna subtraction method has already been made and applied for gluonic
three-jet production from proton-proton collisions and continues to be developed [34].
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A Colour-ordered infrared singularity operators

The infrared pole structure of renormalized one-loop and two-loop QCD scattering ampli-
tudes can be described in terms of infrared pole operators [39], which are tensors in colour
space. The antenna subtraction terms are constructed for colour-ordered subprocesses,
thus requiring a rearrangement of the infrared singularity operators into a colour-ordered
form [13], which was used throughout this paper. The colour-ordered singularity operators
are listed for reference in the following.

The I(1) infrared singularity operators for different partonic emitters are:

I
(1)
qq̄ (ε, sqq̄) = − eεγE

2Γ(1− ε)

( 1
ε2

+ 3
2ε

)
Re(−sqq̄)−ε,

I(1)
qg (ε, sqg) = − eεγE

2Γ(1− ε)

( 1
ε2

+ 5
3ε

)
Re(−sqg)−ε,

I(1)
gg (ε, sgg) = − eεγE

2Γ(1− ε)

( 1
ε2

+ 11
6ε

)
Re(−sgg)−ε,

I
(1)
qg,F (ε, sqg) = 0,

I
(1)
qg,F (ε, sqg) = − eεγE

2Γ(1− ε)
1
6εRe(−sqg)−ε,

I
(1)
gg,F (ε, sgg) = − eεγE

2Γ(1− ε)
1
3εRe(−sgg)−ε, (A.1)
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and the corresponding I(2) infrared singularity operators are given by:

I
(2)
qq̄ (ε, sqq̄) = Γ(1− 2ε)

eεγEΓ(1− ε)

(
b0
ε

+ k0

)
I

(1)
qq̄ (2ε, sqq̄),

I(2)
qg (ε, sqg) = Γ(1− 2ε)

eεγEΓ(1− ε)

(
b0
ε

+ k0

)
I(1)
qg (2ε, sqg),

I(2)
gg (ε, sgg) = Γ(1− 2ε)

eεγEΓ(1− ε)

(
b0
ε

+ k0

)
I(1)
gg (2ε, sgg),

I
(2)
qq̄,F (ε, sqq̄) = Γ(1− 2ε)

eεγEΓ(1− ε)

[(
b0,F
ε

+ k0,F

)
I

(1)
qq̄ (2ε, sqq̄) +

(
b0
ε

+ k0

)
I

(1)
qq̄,F (2ε, sqq̄)

]
,

I
(2)
qg,F (ε, sqg) = Γ(1− 2ε)

eεγEΓ(1− ε)

[(
b0,F
ε

+ k0,F

)
I(1)
qg (2ε, sqg) +

(
b0
ε

+ k0

)
I

(1)
qg,F (2ε, sqg)

]
,

I
(2)
gg,F (ε, sgg) = Γ(1− 2ε)

eεγEΓ(1− ε)

[(
b0,F
ε

+ k0,F

)
I(1)
gg (2ε, sgg) +

(
b0
ε

+ k0

)
I

(1)
gg,F (2ε, sgg)

]
,

I
(2)
qq̄,F 2(ε, sqq̄) = Γ(1− 2ε)

eεγEΓ(1− ε)

(
b0,F
ε

+ k0,F

)
I

(1)
qq̄,F (2ε, sqg),

I
(2)
qg,F 2(ε, sqg) = Γ(1− 2ε)

eεγEΓ(1− ε)

(
b0,F
ε

+ k0,F

)
I

(1)
qg,F (2ε, sqg),

I
(2)
gg,F 2(ε, sgg) = Γ(1− 2ε)

eεγEΓ(1− ε)

(
b0,F
ε

+ k0,F

)
I

(1)
gg,F (2ε, sgg), (A.2)

where b0, b0,F and k0, k0,F are the coefficients of the colour-ordered β-function and collinear
coefficient:

β0 = b0Nc + b0,F nf , b0 = 11
6 , b0,F = −1

3 ,

K = k0Nc + k0,F nf , k0 = 67
18 −

π2

6 , k0,F = −5
9 . (A.3)

B Single integrated dipoles J (1)
2

All the final-final, initial-final and initial-initial single integrated dipoles J (1)
2 used in the

dijet subtraction terms are collected here. Initial states are identified by using an overhead
bar and subscript q, g labels are added to denote the parton species. The mass factorization
kernels Γ(1) can be found in [14]. Identity-changing antennae are accompanied by the factors
Sg→q or Sq→g, which correct for the fact that the degrees of freedom in d-dimensions are
different for a gluon and quark. Explicitly they are

Sg→q = Sg
Sq

= 2− 2ε
2 = 1− ε,

Sq→g = Sq
Sg

= 2
2− 2ε = 1

1− ε . (B.1)
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B.1 Final-final

The final-final single integrated dipoles are given by

J (1)
2 (iq, jq̄) = A0

3(sij),

Ĵ (1)
2 (iq, jq̄) = 0,

J (1)
2 (iq, jg) = 1

2D
0
3(sij),

Ĵ (1)
2 (iq, jg) = 1

2E
0
3 (sij),

J (1)
2 (ig, jg) = 1

3F
0
3 (sij),

Ĵ (1)
2 (ig, jg) = G0

3(sij). (B.2)

B.2 Initial-final

The initial-final single integrated dipoles are given by

J (1)
2 (1̄q, iq̄) = A0

3,q(s1̄i)− Γ(1)
qq (x1)δ(1− x2),

Ĵ (1)
2 (1̄q, iq̄) = 0,

J (1)
2 (1̄q, ig) = 1

2D
0
3,q(s1̄i)− Γ(1)

qq (x1)δ(1− x2),

Ĵ (1)
2 (1̄q, ig) = 1

2E
0
3,q′(s1̄i),

J (1)
2 (iq, 1̄g) = D0

3,g→g(s1̄i)−
1
2Γ(1)

gg (x1)δ(1− x2),

Ĵ (1)
2 (iq, 1̄g) = −1

2Γ̂(1)
gg (x1)δ(1− x2),

J (1)
2 (1̄g, ig) = 1

2F
0
3,g(s1̄i)−

1
2Γ(1)

gg (x1)δ(1− x2),

Ĵ (1)
2 (1̄g, ig) = 1

2G
0
3,g(s1̄i)−

1
2Γ̂(1)

gg (x1)δ(1− x2),

J (1)
2,g→q(1̄q, iq̄) = −1

2A
0
3,g(s1̄i)− Sg→qΓ(1)

qg (x1)δ(1− x2),

J (1)
2,g→q(1̄q, ig) = −D0

3,g(s1̄i)− Sg→qΓ(1)
qg (x1)δ(1− x2),

J (1)
2,q→g(iq, 1̄g) = −E0

3,q′(s1̄i)− Sq→gΓ(1)
gq (x1)δ(1− x2),

J (1)
2,q→g(ig, 1̄g) = −G0

3,q(s1̄i)− Sq→gΓ(1)
gq (x1)δ(1− x2). (B.3)

B.3 Initial-initial

The initial-initial single integrated dipoles are given by

J (1)
2
(
1̄q, 2̄q̄

)
= A0

3,qq̄ (s1̄2̄)− Γ(1)
qq (x1) δ (1− x2)− Γ(1)

qq (x2) δ (1− x1) ,

Ĵ (1)
2
(
1̄q, 2̄q̄

)
= 0,
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1
0
(
2
0
2
2
)
0
4
0

J (1)
2
(
1̄q, 2̄g

)
= D0

3,qg (s1̄2̄)− Γ(1)
qq (x1) δ (1− x2)− 1

2Γ(1)
gg (x2) δ (1− x1) ,

Ĵ (1)
2
(
1̄q, 2̄g

)
= −1

2Γ̂(1)
gg (x2) δ (1− x1) ,

J (1)
2
(
1̄g, 2̄g

)
= F0

3,gg (s1̄2̄)− 1
2Γ(1)

gg (x1) δ (1− x2)− 1
2Γ(1)

gg (x2) δ (1− x1) ,

Ĵ (1)
2
(
1̄g, 2̄g

)
= −1

2Γ̂(1)
gg (x1) δ (1− x2)− 1

2Γ̂(1)
gg (x2) δ (1− x1) ,

J (1)
2,g→q

(
1̄q, 2̄q̄

)
= −A0

3,qg (s1̄2̄)− Sg→qΓ(1)
qg (x2) δ (1− x1) ,

J (1)
2,g→q

(
1̄q, 2̄g

)
= −D0

3,gg (s1̄2̄)− Sg→qΓ(1)
qg (x1) δ (1− x2) ,

J (1)
2,q→g

(
1̄q, 2̄g

)
= −E0

3,q′q (s1̄2̄)− Sq→gΓ(1)
gq (x2) δ (1− x1) ,

J (1)
2,q→g

(
1̄g, 2̄g

)
= −G0

3,gq (s1̄2̄)− Sq→gΓ(1)
gq (x2) δ (1− x1) . (B.4)

C Double integrated dipoles J (2)
2

All the final-final, initial-final and initial-initial double integrated dipoles J (2)
2 used in

the dijet subtraction terms are collected here. We use the notation δi = δ(1 − xi) and
Γ(l)
ab,i = Γ(l)

ab (xi) for i ∈ {1, 2}. The expressions of the reduced two-loop mass factorization
kernels Γ̄(2) can be found in [14].

C.1 Identity preserving: quark-antiquark

C.1.1 Final-final

J (2)
2 (1q, 2q̄) = A0

4 (s12) +A1
3 (s12) + b0

ε

(
s12
µ2

)−ε
A0

3 (s12)− 1
2
[
A0

3 ⊗A0
3

]
(s12) ,

J̃ (2)
2 (1q, 2q̄) = 1

2Ã
0
4 (s12) + 2C0

4 (s12) + Ã1
3 (s12)− 1

2
[
A0

3 ⊗A0
3

]
(s12) ,

Ĵ (2)
2 (1q, 2q̄) = B0

4 (s12) + Â1
3 (s12) + b0,F

ε

(
s12
µ2

)−ε
A0

3 (s12) ,

J̄ (2)
2 (1q, 2q̄) = 1

2Ã
0
4 (s12) + Ã1

3 (s12)− 1
2
[
A0

3 ⊗A0
3

]
(s12) . (C.1)

C.1.2 Initial-final

J (2)
2
(
1̄q, 2q̄

)
= A0

4,q (s1̄2) +A1
3,q (s1̄2) + b0

ε

(
s1̄2
µ2

)−ε
A0

3,q (s1̄2)

−1
2
[
A0

3,q ⊗A0
3,q

]
(s1̄2)− Γ̄(2)

qq,1δ2,

J̃ (2)
2
(
1̄q, 2q̄

)
= Ã0

4,q (s1̄2) + 2C̃0
4,q (s1̄2) + C̃0

4,q̄ (s1̄2) + Ã1
3,q (s1̄2)

−1
2
[
A0

3,q ⊗A0
3,q

]
(s1̄2) + ˜̄̃Γ(2)

qq,1δ2,

Ĵ (2)
2
(
1̄q, 2q̄

)
= B0

4,q (s1̄2) + Â1
3,q (s1̄2) + b0,F

ε

(
s1̄2
µ2

)−ε
A0

3,q (s1̄2)− ˆ̄Γ(2)
qq,1δ2,

J̄ (2)
2
(
1̄q, 2q̄

)
= 1

2A
0
4,q (s1̄2) + Ã1

3,q (s1̄2)− 1
2
[
A0

3,q ⊗A0
3,q

]
(s1̄2) . (C.2)
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J
H
E
P
1
0
(
2
0
2
2
)
0
4
0

C.1.3 Initial-initial

J (2)
2
(
1̄q, 2̄q̄

)
= A0

4,qq̄ (s1̄2̄) +A1
3,qq̄ (s1̄2̄) + b0

ε

(
s1̄2̄
µ2

)−ε
A0

3,qq̄ (s1̄2̄)

−1
2
[
A0

3,qq̄ ⊗A0
3,qq̄

]
(s1̄2̄)− Γ̄(2)

qq,1δ2 − Γ̄(2)
qq,2δ1,

J̃ (2)
2
(
1̄q, 2̄q̄

)
= 1

2Ã
0
4,qq̄ (s1̄2̄) + 2C0

4,qq̄ (s1̄2̄) + 2C0
4,q̄q (s1̄2̄) + Ã1

3,qq̄ (s1̄2̄)

−1
2
[
A0

3,qq̄ ⊗A0
3,qq̄

]
(s1̄2̄) + ˜̄̃Γ(2)

qq,1δ2 + ˜̄̃Γ(2)
qq,2δ1,

Ĵ (2)
2
(
1̄q, 2̄q̄

)
= B0

4,qq̄ (s1̄2̄) + Â1
3,qq̄ (s1̄2̄) + b0,F

ε

(
s1̄2̄
µ2

)−ε
A0

3,qq̄ (s1̄2̄)− ˆ̄Γ(2)
qq,1δ2 − ˆ̄Γ(2)

qq,2δ1,

J̄ (2)
2
(
1̄q, 2̄q̄

)
= 1

2Ã
0
4,qq̄ (s1̄2̄) + Ã1

3,qq̄ (s1̄2̄)− 1
2
[
A0

3,qq̄ ⊗A0
3,qq̄

]
(s1̄2̄) . (C.3)

C.2 Identity preserving: quark-gluon

C.2.1 Final-final

J (2)
2 (1q, 2g) = 1

2D
0
4 (s12) + 1

2D
1
3 (s12) + 1

2
b0
ε

(
s12
µ2

)−ε
D0

3 (s12)− 1
4
[
D0

3 ⊗D0
3

]
(s12) ,

Ĵ (2)
2 (1q, 2g) = 1

2E
0
4 (s12) + 1

2E
1
3 (s12) + 1

2D̂
1
3 (s12) + 1

2
b0
ε

(
s12
µ2

)−ε
E0

3 (s12)

+1
2
b0,F
ε

(
s12
µ2

)−ε
D0

3 (s12)− 1
2
[
E0

3 ⊗D0
3

]
(s12) ,

ˆ̃J (2)
2 (1q, 2g) = 1

2 Ẽ
0
4 (s12) + 1

2 Ẽ
1
3 (s12) ,

ˆ̃̂
J (2)

2 (1q, 2g) = 1
2 Ê

1
3 (s12) + 1

2
b0,F
ε

(
s12
µ2

)−ε
E0

3 (s12)− 1
4
[
E0

3 ⊗ E0
3

]
(s12) . (C.4)

C.2.2 Initial-final: quark-initiated

J (2)
2
(
1̄q, 2g

)
= 1

2D
0
4,q (s1̄2) + 1

2D
1
3,q (s1̄2) + 1

2
b0
ε

(
s1̄2
µ2

)−ε
D0

3,q (s1̄2)

−1
4
[
D0

3,q ⊗D0
3,q

]
(s1̄2)− Γ̄(2)

qq,1δ2,

Ĵ (2)
2
(
1̄q, 2g

)
= E0

4,q (s1̄2) + 1
2E

1
3,q (s1̄2) + 1

2D̂
1
3,q (s1̄2) + 1

2
b0
ε

(
s1̄2
µ2

)−ε
E0

3,q (s1̄2)

+1
2
b0,F
ε

(
s1̄2
µ2

)−ε
D0

3,q (s1̄2)− 1
2
[
E0

3,q ⊗D0
3,q

]
(s1̄2)− ˆ̄Γ(2)

qq,1δ2,

ˆ̃J (2)
2
(
1̄q, 2g

)
= 1

2 Ẽ
0
4,q (s1̄2) + 1

2 Ẽ
1
3,q (s1̄2) ,

ˆ̃̂
J (2)

2
(
1̄q, 2g

)
= 1

2 Ê
1
3,q (s1̄2) + 1

2
b0,F
ε

(
s1̄2
µ2

)−ε
E0

3,q (s1̄2)− 1
4
[
E0

3,q ⊗ E0
3,q

]
(s1̄2) . (C.5)
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H
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)
0
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C.2.3 Initial-final: gluon-initiated

J (2)
2
(
1̄g, 2q

)
= D0

4,g (s1̄2) + 1
2D

0
4,g′ (s1̄2) +D1

3,g (s1̄2) + b0
ε

(
s1̄2
µ2

)−ε
D0

3,g (s1̄2)

−
[
D0

3,g→g ⊗D0
3,g→g

]
(s1̄2)− 1

2Γ̄(2)
gg,1δ2 −

[
D0

3,g→q ⊗D0
3,q

]
(s1̄2)

−
[
D0

3,g→q ⊗ Γ(1)
gg,1

]
+ 2

[
D0

3,g→q ⊗ Γ(1)
qq,1

]
−A0

4,g (s1̄2)

−1
2Ã

0
4,g (s1̄2)− 1

2A
1
3,g (s1̄2)− 1

2Ã
1
3,g (s1̄2)− 1

2
b0
ε

(
s1̄2
µ2

)−ε
A0

3,g (s1̄2)

+
[
A0

3,q ⊗A0
3,g

]
(s1̄2) + 1

2
[
Γ(1)
gg,1 ⊗A

0
3,g

]
−
[
Γ(1)
qq,1 ⊗A

0
3,g

]
,

Ĵ (2)
2
(
1̄g, 2q

)
= E0

4,g (s1̄2) + D̂1
3,g (s1̄2) + b0,F

ε

(
s1̄2
µ2

)−ε
D0

3,g (s1̄2)−
[
E0

3,q ⊗D0
3,g→q

]
(s1̄2)

−
[
Γ̂(1)
gg,1 ⊗D

0
3,g→q

]
− 1

2
ˆ̄Γ(2)
gg,1δ2 + Sg→q

[
Γ(1)
qg,1 ⊗ E

0
3,q′

]
+ 1

2
[
Γ(1)
qg,1 ⊗ Γ(1)

gq,1

]
− 1

2Â
1
3,g (s1̄2)− 1

2
b0,F
ε

(
s1̄2
µ2

)−ε
A0

3,g (s1̄2) + 1
2
[
Γ̂(1)
gg,1 ⊗A

0
3,g

]
,

ˆ̃J (2)
2
(
1̄g, 2q

)
= 1

2 Ẽ
0
4,g (s1̄2) + 1

2
ˆ̄̃Γ(2)
gg,1δ2 + Sg→q

[
Γ(1)
qg,1 ⊗ E

0
3,q′

]
+ 1

2
[
Γ(1)
qg,1 ⊗ Γ(1)

gq,1

]
,

ˆ̂J (2)
2
(
1̄g, 2q

)
= −1

2
ˆ̄̂
Γ(2)
gg,1δ2. (C.6)

C.2.4 Initial-initial

J (2)
2
(
1̄q, 2̄g

)
= D0,adj

4,qg (s1̄2̄) + 1
2D

0,nadj
4,qg (s1̄2̄) +D1

3,qg (s1̄2̄) + b0
ε

(
s1̄2̄
µ2

)−ε
D0

3,qg (s1̄2̄)

−
[
D0

3,qg ⊗D0
3,qg

]
(s1̄2̄)− Γ̄(2)

qq,1δ2 −
1
2Γ̄(2)

gg,2δ1,

Ĵ (2)
2
(
1̄q, 2̄g

)
= E0

4,qg (s1̄2̄) + D̂1
3,qg (s1̄2̄) + b0,F

ε

(
s1̄2̄
µ2

)−ε
D0

3,qg (s1̄2̄)− ˆ̄Γ(2)
qq,1δ2

−1
2

ˆ̄Γ(2)
gg,2δ1 + Sg→q

[
Γ(1)
qg,2 ⊗ E

0
3,qq′

]
+ 1

2
[
Γ(1)
qg,2 ⊗ Γ(1)

gq,2

]
,

ˆ̃J (2)
2
(
1̄q, 2̄g

)
= 1

2 Ẽ
0
4,qg (s1̄2̄) + 1

2
ˆ̄̃Γ(2)
gg,2δ1 + Sg→q

[
Γ(1)
qg,2 ⊗ E

0
3,qq′

]
+ 1

2
[
Γ(1)
qg,2 ⊗ Γ(1)

gq,2

]
,

ˆ̂J (2)
2
(
1̄q, 2̄g

)
= −1

2
ˆ̄̂
Γ(2)
gg,2δ1. (C.7)
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C.3 Identity preserving: gluon-gluon

C.3.1 Final-final

J (2)
2 (1g, 2g) = 1

4F
0
4 (s12) + 1

3F
1
3 (s12) + 1

3
b0
ε

(
s12
µ2

)−ε
F0

3 (s12)− 1
9
[
F0

3 ⊗F0
3

]
(s12) ,

Ĵ (2)
2 (1g, 2g) = G0

4 (s12) + G1
3 (s12) + 1

3 F̂
1
3 (s12) + b0

ε

(
s12
µ2

)−ε
G0

3 (s12)

+1
3
b0,F
ε

(
s12
µ2

)−ε
F0

3 (s12)− 2
3
[
G0

3 ⊗F0
3

]
(s12) ,

ˆ̃J (2)
2 (1g, 2g) = 1

2 G̃
0
4 (s12) + 1

2 G̃
1
3 (s12) ,

ˆ̃̂
J (2)

2 (1g, 2g) = 1
2H

0
4 (s12) + Ĝ1

3 (s12) + b0,F
ε

(
s12
µ2

)−ε
G0

3 (s12)−
[
G0

3 ⊗ G0
3

]
(s12). (C.8)

C.3.2 Initial-final

J (2)
2
(
1̄g, 2g

)
= 1

2F
0
4,g (s1̄2) + 1

2F
1
3,g (s1̄2) + 1

2
b0
ε

(
s1̄2
µ2

)−ε
F0

3,g (s1̄2)

− 1
4
[
F0

3,g ⊗F0
3,g

]
(s1̄2)− 1

2Γ̄(2)
gg,1δ2,

Ĵ (2)
2
(
1̄g, 2g

)
= G0

4,g (s1̄2) + 1
2G

1
3,g (s1̄2) + 1

2 F̂
1
3,g (s1̄2) + 1

2
b0
ε

(
s1̄2
µ2

)−ε
G0

3,g (s1̄2)

+ 1
2
b0,F
ε

(
s1̄2
µ2

)−ε
F0

3,g (s1̄2)− 1
2
[
G0

3,g ⊗F0
3,g

]
(s1̄2)− 1

2
ˆ̄Γ(2)
gg,1δ2

+ Sg→q
[
Γ(1)
qg,1 ⊗ G

0
3,q′

]
+ 1

2
[
Γ(1)
qg,1 ⊗ Γ(1)

gq,1

]
,

ˆ̃J (2)
2
(
1̄g, 2g

)
= 1

2 G̃
0
4,g (s1̄2) + 1

2 G̃
1
3,g (s1̄2) + 1

2
ˆ̄̃Γ(2)
gg,1δ2

+ Sg→q
[
Γ(1)
qg,1 ⊗ G

0
3,q′

]
+ 1

2
[
Γ(1)
qg,1 ⊗ Γ(1)

gq,1

]
,

ˆ̂J (2)
2
(
1̄g, 2g

)
= 1

2 Ĝ
1
3 (s1̄2) + 1

2
b0,F
ε

(
s1̄2
µ2

)−ε
G0

3,g (s1̄2)− 1
4
[
G0

3,g ⊗ G0
3,g

]
(s1̄2)− 1

2
ˆ̄̂
Γ(2)
gg,1δ2.

(C.9)

C.3.3 Initial-initial

J (2)
2
(
1̄g, 2̄g

)
= F0,adj

4,gg (s1̄2̄) + 1
2F

0,nadj
4,gg (s1̄2̄) + F1

3,gg (s1̄2̄) + b0
ε

(
s1̄2̄
µ2

)−ε
F0

3,gg (s1̄2̄)

−
[
F0

3,gg ⊗F0
3,gg

]
(s1̄2̄)− 1

2Γ̄(2)
gg,1δ2 −

1
2Γ̄(2)

gg,2δ1,
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J
H
E
P
1
0
(
2
0
2
2
)
0
4
0

Ĵ (2)
2
(
1̄g, 2̄g

)
= G0

4,gg (s1̄2̄) + F̂1
3,gg (s1̄2̄) + b0,F

ε

(
s1̄2̄
µ2

)−ε
F0

3,gg (s1̄2̄)

−1
2

ˆ̄Γ(2)
gg,1δ2 + Sg→q

[
Γ(1)
qg,1 ⊗ G

0
3,qg

]
+ 1

2
[
Γ(1)
qg,1 ⊗ Γ0

gq,1

]
−1

2
ˆ̄Γ(2)
gg,2δ1 + Sg→q

[
Γ(1)
qg,2 ⊗ G

0
3,qg

]
+ 1

2
[
Γ(1)
qg,2 ⊗ Γ0

gq,2

]
,

ˆ̃J (2)
2
(
1̄g, 2̄g

)
= G̃0

4,gg (s1̄2̄)

+ˆ̄̃Γ(2)
gg,1δ2 + 2Sg→q

[
Γ(1)
qg,1 ⊗ G

0
3,qg

]
+
[
Γ(1)
qg,1 ⊗ Γ0

gq,1

]
+ˆ̄̃Γ(2)

gg,2δ1 + 2Sg→q
[
Γ(1)
qg,2 ⊗ G

0
3,qg

]
+
[
Γ(1)
qg,2 ⊗ Γ0

gq,2

]
,

ˆ̃̂
J (2)

2
(
1̄g, 2̄g

)
= −1

2
ˆ̄̂
Γ(2)
gg,1δ2 −

1
2

ˆ̄̂
Γ(2)
gg,2δ1. (C.10)

C.4 Identity changing: g → q

C.4.1 Initial-final

J (2)
2,g→q

(
1̄g→q, 2q̄

)
= −A0

4,g (s1̄2)− 1
2A

1
3,g (s1̄2)− 1

2
b0
ε

(
s1̄2
µ2

)−ε
A0

3,g (s1̄2)

+1
2
[
A0

3,g ⊗A0
3,q

]
(s1̄2)− Sg→qΓ̄(2)

qg,1δ2

+1
2
[
A0

3,g ⊗ Γ(1)
gg,1

]
+ 1

2Sg→q
[
Γ(1)
qg,1 ⊗ Γ(1)

gg,1

]
−1

2
[
A0

3,g ⊗ Γ(1)
qq,1

]
− 1

2Sg→q
[
Γ(1)
qg,1 ⊗ Γ(1)

qq,1

]
,

Ĵ (2)
2,g→q

(
1̄g→q, 2q̄

)
= −1

2Â
1
3,g (s1̄2)− 1

2
b0,F
ε

(
s1̄2
µ2

)−ε
A0

3,g (s1̄2)

+1
2
[
A0

3,g ⊗ Γ̂(1)
gg,1

]
+ 1

2Sg→q
[
Γ(1)
qg,1 ⊗ Γ̂(1)

gg,1

]
− Sg→q ˆ̄Γ(2)

qg,1δ2,

J̃ (2)
2,g→q

(
1̄g→q, 2q̄

)
= −Ã0

4,g (s1̄2)− Ã1
3,g (s1̄2) +

[
A0

3,g ⊗A0
3,q

]
(s1̄2)−

[
Γ(1)
qq,1 ⊗A

0
3,g

]
−Sg→q

[
Γ(1)
qg,1 ⊗ Γ(1)

qq,1

]
+ 2Sg→q ˜̄Γ(2)

qg,1δ2. (C.11)

C.4.2 Initial-initial

J (2)
2,g→q

(
1̄g→q, 2̄q̄

)
= −A0

4,qg (s1̄2̄)−A0,nadj
4,qg (s1̄2̄)−A1

3,qg (s1̄2̄)− b0
ε

(
s1̄2̄
µ2

)−ε
A0

3,qg (s1̄2̄)

+
[
A0

3,qg ⊗A0
3,qq

]
(s1̄2̄)−

[
Γ(1)
qq,1 ⊗A

0
3,qg

]
+
[
Γ(1)
gg,1 ⊗A

0
3,qg

]
−1

2Sg→q
[
Γ(1)
qg,1 ⊗ Γ(1)

qq,1

]
+ 1

2Sg→q
[
Γ(1)
qg,1 ⊗ Γ(1)

gg,1

]
− Sg→qΓ̄(2)

qg,1δ2,

J (2)
2,g→q

(
1̄g→q, 2̄q̄

)
= −Â1

3,qg (s1̄2̄)− b0,F
ε

(
s1̄2̄
µ2

)−ε
A0

3,qg (s1̄2̄)

+
[
Γ̂(1)
gg,1 ⊗A

0
3,qg

]
+ 1

2Sg→q
[
Γ(1)
qg,1 ⊗ Γ̂(1)

gg,1

]
− Sg→q ˆ̄Γ(2)

qg,1δ2,

J̃ (2)
2,g→q

(
1̄g→q, 2̄q̄

)
= −Ã0

4,qg (s1̄2̄)− Ã1
3,qg (s1̄2̄) +

[
A0

3,qg ⊗A0
3,qq

]
(s1̄2̄)

−
[
Γ(1)
qq,1 ⊗A

0
3,qg

]
− 1

2Sg→q
[
Γ(1)
qg,1 ⊗ Γ(1)

qq,1

]
+ Sg→q

˜̄Γ(2)
qg,1δ2. (C.12)
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C.5 Identity changing: q → g

C.5.1 Initial-final

J̃ (2)
2,q→g

(
1̄q→g, 2g

)
= −Ẽ0

4,q′ (s1̄2)− Ẽ1
3,q′ (s1̄2) +

[
E0

3,q′ ⊗ Γ(1)
qq,1

]
+ 1

2Sq→g
[
Γ(1)
qq,1 ⊗ Γ(1)

gq,1

]
+ Sq→g

˜̄Γ(2)
gq,1δ2,

Ĵ (2)
2,q→g

(
1̄q→g, 2g

)
= −H0

4,q (s1̄2)− Ĝ1
3,q′ (s1̄2)− b0,F

ε

(
s1̄2
µ2

)−ε
G0

3,q′ (s1̄2)

+ Sq→g
[
Γ(1)
gq,1 ⊗ G

0
3,g

]
− 1

2Sq→g
[
Γ(1)
gq,1 ⊗ Γ̂(1)

gg,1

]
+ Sq→g

ˆ̄Γ(2)
gq,1δ2.

(C.13)

C.5.2 Initial-initial: quark-gluon

J (2)
2,q→g

(
1̄q→g, 2̄g

)
= −G0,adj

4,qg (s1̄2̄)− G0,nadj
4,qg (s1̄2̄)− G1

3,qg (s1̄2̄)− b0
ε

(
s1̄2̄
µ2

)−ε
G0

3,qg (s1̄2)

+2
[
G0

3,qg ⊗F0
3,gg

]
(s1̄2)− Sq→gΓ̄(2)

gq,1δ2

+
[
A0

3,qg ⊗ G3,qq
]

(s1̄2) +
[
Γ(1)
qq,1 ⊗ G

0
3,qg

]
−
[
Γ(1)
gg,1 ⊗ G

0
3,qg

]
+1

2Sq→g
[
Γ(1)
qq,1 ⊗ Γ(1)

gq,1

]
− 1

2Sq→g
[
Γ(1)
gg,1 ⊗ Γ(1)

gq,1

]
,

Ĵ (2)
2,q→g

(
1̄q→g, 2̄g

)
= −Ĝ1

3,qg (s1̄2̄)− b0,F
ε

(
s1̄2̄
µ2

)−ε
G0

3,qg (s1̄2)−
[
G0

3,qg ⊗ Γ̂(1)
gg,1

]
−1

2Sq→g
[
Γ(1)
gq,1 ⊗ Γ̂(1)

gg,1

]
− Sq→g ˆ̄Γ(2)

gq,1δ2,

J̃ (2)
2,q→g

(
1̄q→g, 2̄g

)
= −G̃0

4,qg (s1̄2̄)− G̃1
3,qg (s1̄2̄) +

[
G0

3,qg ⊗ Γ(1)
qq,1

]
+ 1

2Sq→g
[
Γ(1)
qq,1 ⊗ Γ(1)

gq,1

]
+Sq→g ˜̄Γ(2)

gq,1δ2 − Sg→q
[
G0

3,qq ⊗ Γ(1)
qg,2

]
. (C.14)

C.5.3 Initial-initial: quark-antiquark

J (2)
2,q→g

(
1̄q→g, 2̄q̄′

)
= −E0

4,q̄′q (s1̄2̄)− E0
4,q′q (s1̄2̄)− E1

3,q′q (s1̄2̄)− b0
ε

(
s1̄2̄
µ2

)−ε
E0

3,q′q (s1̄2̄)

+2
[
D0

3,gq ⊗ E0
3,q′q

]
(s1̄2̄) +

[
Γ(1)
qq,1 ⊗ E

0
3,q′q

]
−
[
Γ(1)
gg,1 ⊗ E

0
3,q′q

]
+1

2Sq→g
[
Γ(1)
qq,1 ⊗ Γ(1)

gq,1

]
− 1

2Sq→g
[
Γ(1)
gg,1 ⊗ Γ(1)

gq,1

]
− Sq→gΓ̄(2)

gq,1δ2,

Ĵ (2)
2,q→g

(
1̄q→g, 2̄q̄′

)
= −Ê1

3,q′q (s1̄2̄)− b0,F
ε

(
s1̄2̄
µ2

)−ε
E0

3,q′q (s1̄2̄)−
[
Γ̂(1)
gg,1 ⊗ E

0
3,q′q

]
−1

2Sq→g
[
Γ(1)
gq,1 ⊗ Γ̂(1)

gg,1

]
− Sq→g ˆ̄Γgq,1δ2,

J̃ (2)
2,q→g

(
1̄q→g, 2̄q̄′

)
= −Ẽ0

4,q′q (s1̄2̄)− Ẽ1
3,q′q (s1̄2̄) +

[
Γ(1)
qq,1 ⊗ E

0
3,q′q

]
+1

2Sq→g
[
Γ(1)
qq,1 ⊗ Γ(1)

gq,1

]
+ Sq→g

˜̄Γ(2)
gq,1δ2. (C.15)
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C.6 Identity changing: q → q̄

C.6.1 Initial-initial

J̃ (2)
2,q→q̄

(
1̄q→q̄, 2̄q

)
= C0

4,qq′ (s1̄2̄) + ˜̄Γ(2)
qq̄,1δ2. (C.16)

C.7 Identity changing: q → q′

C.7.1 Initial-initial

J (2)
2,q→q′

(
1̄q→q′ , 2̄q̄

)
= B0

4,q′q (s1̄2̄) + Sq→g
[
Γ(1)
gq,1 ⊗A

0
3,gq

]
+ 1

2Sq→g
[
Γ(1)
gq,1 ⊗ Γ(1)

qg,1

]
− Γ̄(2)

qq̄′,1δ1.

(C.17)

C.8 Identity changing: gg → qq̄

C.8.1 Initial-initial

J (2)
2,gg→qq̄

(
1̄g→q, 2̄g→q̄

)
= A0

4,gg (s1̄2̄) + Sg→q
[
A0

3,qg ⊗ Γ(1)
qg,1

]
+Sg→q

[
A0

3,gq ⊗ Γ(1)
qg,2

]
+ Sg→qΓ(1)

qg,1Sg→qΓ
(1)
qg,2,

J̃ (2)
2,gg→qq̄

(
1̄g→q, 2̄g→q̄

)
= Ã0

4,gg (s1̄2̄) + 2Sg→q
[
A0

3,qg ⊗ Γ(1)
qg,1

]
+2Sg→q

[
A0

3,gq ⊗ Γ(1)
qg,2

]
+ 2Sg→qΓ(1)

qg,1Sg→qΓ
(1)
qg,2. (C.18)

C.9 Identity changing: qq̄′ → gg

C.9.1 Initial-initial

J (2)
2,qq̄′→gg

(
1̄q→g, 2̄q̄′→g

)
= H0

4,qq̄′ (s1̄2̄) + Sq→g
[
Γ(1)
gq,1 ⊗ G

0
3,gq

]
+ Sq→g

[
Γ(1)
gq,2 ⊗ G

0
3,qg

]
+Sq→gΓ(1)

gq,1Sq→gΓ
(1)
gq,2. (C.19)

C.10 Identity changing: q → g → q

C.10.1 Initial-final

J (2)
2,q→g→q

(
1̄q→g→q, 2g

)
= B0

4,q′ (s1̄2) + Sq→g
[
Γ(1)
gq,1 ⊗A

0
3,g

]
+
[
Γ(1)
gq,1 ⊗ Γ(1)

qg,1

]
− 2˜̄Γ(2)

qq,1δ2.

(C.20)
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