
International Journal of Computer Vision
https://doi.org/10.1007/s11263-022-01676-8

A RealismMetric for Generated LiDAR Point Clouds

Larissa T. Triess1,2 · Christoph B. Rist1 · David Peter1,3 · J. Marius Zöllner2,4

Received: 13 February 2022 / Accepted: 28 July 2022
© The Author(s) 2022

Abstract
A considerable amount of research is concerned with the generation of realistic sensor data. LiDAR point clouds are generated
by complex simulations or learned generativemodels. The generated data is usually exploited to enable or improve downstream
perception algorithms. Two major questions arise from these procedures: First, how to evaluate the realism of the generated
data? Second, does more realistic data also lead to better perception performance? This paper addresses both questions and
presents a novel metric to quantify the realism of LiDAR point clouds. Relevant features are learned from real-world and
synthetic point clouds by training on a proxy classification task. In a series of experiments, we demonstrate the application
of our metric to determine the realism of generated LiDAR data and compare the realism estimation of our metric to the
performance of a segmentation model. We confirm that our metric provides an indication for the downstream segmentation
performance.

Keywords Metric · Point cloud · LiDAR · Realism · Adversarial learning · Local features · Semantic segmentation

1 Introduction

Simulations and generative models, such as Generative
Adversarial Networks (GANs), are often used to synthesize
realistic training data samples to improve the performance
of perception networks (Park et al., 2019; Xu et al., 2021;
Löhdefink & Fingscheidt, 2022; Li et al., 2022). Assessing
the realism of such synthesized samples is a crucial part
of the process. This is usually done by experts, a cumber-
some and time consuming approach. Though a lot of work

Communicated by Juergen Gall.

B Larissa T. Triess
larissa.triess@mercedes-benz.com

Christoph B. Rist
christoph_bernd.rist@mercedes-benz.com

David Peter
david.peter@bosch.com

J. Marius Zöllner
zoellner@fzi.de

1 Mercedes-Benz AG, Stuttgart, Germany

2 Karlsruhe Institute of Technology, Karlsruhe, Germany

3 Robert-Bosch GmbH, Stuttgart, Germany

4 Research Center for Information Technology, Karlsruhe,
Germany

has been conducted to determine the quality of generated
images (Goodfellow et al., 2014; Salimans et al., 2016; Theis
et al., 2016; Heusel et al., 2017; Lehmann&Romano, 2006),
little work is published about how to quantify the realism of
point clouds (Shu et al., 2019; Triess et al., 2021b). Visual
inspection of such data is expensive and not reliable given
that the interpretation of 3D point data is rather unnatural for
humans. Because of their subjective nature, it is difficult to
compare generative approaches with a qualitative measure.
This work closes the gap and introduces a quantitative eval-
uation for LiDAR point clouds.

In recent years, a large amount of evaluation measures
for GANs emerged (Borji, 2019). Many of them are image-
specific and cannot be applied to point clouds. Existing work
on generating realistic LiDAR point clouds mostly relies on
qualitativemeasures to evaluate the generation quality. Alter-
natively, some works apply annotation transfer (Sallab et al.,
2019) or use theEarthMover’sDistance as an evaluation cri-
terion (Caccia et al., 2019). However, these methods require
either annotations associated with the data or a matching
target, i.e.Ground Truth, for the generated sample. Both are
often not feasible when working with large-scale data gen-
eration or transfer learning setups.

One main application of data generation is to train down-
stream perception models, i.e.segmentation or detection
models that make use of the generated data. Here it is crucial

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-022-01676-8&domain=pdf
http://orcid.org/0000-0003-0037-8460
http://orcid.org/0000-0003-4578-1616
http://orcid.org/0000-0001-7950-9915
http://orcid.org/0000-0001-6190-7202

International Journal of Computer Vision

to reduce the domain gap between generated data and target
data on which the trained perception model is applied (Triess
et al., 2021a). Therefore, the performance of the trained per-
ception model itself can be used as an indication for the
realism of the data. However, using this as a proper metric
is impractical since it requires to re-train the target network
on multiple versions of the data to evaluate their realism. A
solution is a metric that can determine the realism of the data
already while training the generative model.

To address this need, our previous work (Triess et al.,
2021b) proposes a reliable metric that gives a quantita-
tive estimate about the realism of generated LiDAR data.
Fig. 1 shows the concept of the metric as a distance measure
in high-dimensional feature space. The metric is trained to
learn relevant features via a proxy classification task.To avoid
learning global scene context, we use hierarchical feature set
learning to confine features locally in space. To discourage
the network from encoding dataset-specific information, we
use an adversarial learning technique which enables robust
quantification of unseen data distributions. In this work, we
extend our previous approach (Triess et al., 2021b) with eval-
uations on the influence of data realism on segmentation
performance and add additional ablations of the adversarial
training. In summary, our contributions are:

• We present a learning-based quantitative metric to mea-
sure the realism of LiDAR point clouds.

• We use an adversarial learning technique to suppress
irrelevant features, such that the metric can be applied
to unseen data.

• In experiments on generated LiDAR data, we analyze
the relationship between data realism and downstream
perception performance. We show that our metric is a
good indicator for the resulting perception performance.

2 RelatedWork

First, this section discusses GAN evaluation measures and
their applicability to generated LiDAR data. Second, we give
a brief overview on metric learning.

2.1 GAN EvaluationMeasures

A considerable amount of literature deals with how to eval-
uate generative models and proposes various evaluation
measures. Themost important ones are summarized in exten-
sive survey papers (Lucic et al., 2018; Xu et al., 2018; Borji,
2019). They can be divided into two major categories: qual-
itative and quantitative measures.

Fig. 1 Proposed approach: The realism measure has a tripartite under-
standing of the 3D-world (middle). The left and right image show the
color-codedmetric scores for query points on two example scenes. Both
scenes are from the real-world dataset KITTI (Real) and are augmented
with dynamic objects from the simulatedCARLAdataset (Syn). The left
image shows inserted cars from CARLA (left) next to real KITTI cars
(right). The right image demonstrates the metric results for a synthetic
bicycle-and-person object in a KITTI scene. Additionally, the terrain in
the background is distorted with noise, which is detected as Misc

2.1.1 Qualitative Evaluation

Qualitative evaluation (Goodfellow et al., 2014; Huang et al.,
2017; Zhang et al., 2017; Srivastava et al., 2017; Lin et al.,
2018; Chen et al., 2016; Mathieu et al., 2016) uses visual
inspection of a small collection of examples by humans and is
therefore of subjective nature. It is a simple way to get an ini-
tial impression of the performance of a generative model but
cannot be performed in an automated fashion. In other previ-
ous work, we use theMean Opinion Score (MOS) testing to
verify the realism of generated LiDAR point clouds (Triess
et al., 2019). It was previously introduced in (Ledig et al.,
2017a) to provide a qualitative measure for realism in RGB
images. In contrast to (Ledig et al., 2017a), where untrained
people were used to determine the realism, (Triess et al.,
2019) requires LiDAR experts for the testing process to
assure a high enough sensor domain familiarity of the test per-
sons. This makes the process evenmore time-consuming and
expensive. Furthermore, the subjective nature of qualitative
measures in general makes it difficult to compare perfor-
mances across different works, even when a large inspection
group, such as Mechanical Turk, is used. Therefore, quanti-
tative metrics are crucial.

2.1.2 Quantitative Evaluation

Quantitative evaluation is performed over a large collec-
tion of examples, often in an automated fashion. Table 1 cat-
egorizes a number of quantitative GAN measures into six
categories according to their properties.
Feature-based (Salimans et al., 2016; Gurumurthy et al.,
2017; Heusel et al., 2017; Che et al., 2017; Zhou et al., 2018;
Shu et al., 2019): Feature-based metrics measure the realism
of the data by computing a distance in high-dimensional fea-
ture spaces. The Inception Score (IS) (Salimans et al., 2016)
and the Fréchet Inception Distance (FID) (Heusel et al.,
2017) are the two most popular metrics and extract their fea-

123

International Journal of Computer Vision

Table 1 GAN evaluation measures: This table categorizes GAN evaluation measures and states their most important pros and cons according to
our application

Category Metric Examples ⊕ �
Feature-based IS (Salimans et al., 2016), Modi-

fied IS (Gurumurthy et al., 2017),
Mode Score (Che et al., 2017), AM
Score (Zhou et al., 2018), FID (Heusel
et al., 2017), FPD (Shu et al., 2019)

used in many papers with
pre-trained models available

based on features from
non-LiDAR datasets
(i.e.ImageNet (Deng et al.,
2009) and ShapeNet (Chang
et al., 2015))

Distribution-based Average Log-Likelihood (Goodfellow
et al., 2014; Theis et al., 2016),
Coverage (Tolstikhin et al., 2017),
MMD (Gretton et al., 2012; Achlioptas
et al., 2018), BPT (Arora et al., 2018),
NDB (Richardson & Weiss, 2018)

independent of data modal-
ity, capture sample diversity
and mode collapse

manual checkpoint selec-
tion, no absolute measure,
(additional visual inspec-
tion)

Classification Wasserstein Critic (Arjovsky
et al., 2017), Classification Per-
formance (Radford et al., 2016; Isola
et al., 2017), BoundaryDistortion (San-
turkar et al., 2018), C2ST (Lehmann
& Romano, 2006), AAD (Yang et al.,
2017)

independent of data modal-
ity

freshly trained discrimina-
tors for each test on held-out
data, no absolute measure

Output Comparison IRP (Wang et al., 2016), Reconstruction
Error (Xiang & Li, 2017)

independent of data modal-
ity, per-sample score

high run-time because of
nearest neighbor matching

Model Comparison GAM (Im et al., 2016), TWRSK (Ols-
son et al., 2018), NRDS (Zhang et al.,
2018)

compare different GAN
models against each other

labor intensive, high com-
plexity

Precision, Recall, F1 Score simple and fast to compute only relative performance of
discriminator to generator

Low-Level Statistics SSIM (Wang et al., 2004), PSNR,
sharpness, contrast, mean power spec-
trum

simple and fast to compute specific for camera images,
no higher-level information

tures from the ImageNet dataset (Deng et al., 2009). This
makes them exclusively applicable to camera image data.
The Fréchet Point Cloud Distance (FPD) (Shu et al., 2019)
is applicable to single-object point clouds, as it is based on
features from the PointNet dataset (Charles et al., 2017). In
contrast to our method, these measures require labels on the
target domain to train the feature extractor, cannot handle
variable sized point clouds, and do not provide local scores.
Further, it is only possible to compare a sample to one par-
ticular distribution and therefore makes it difficult to obtain
a reliable measure on unseen data.
Distribution-based (Goodfellow et al., 2014; Theis et al.,
2016; Tolstikhin et al., 2017; Gretton et al., 2012; Achlioptas
et al., 2018; Arora et al., 2018; Richardson & Weiss, 2018):
Most distribution-basedmeasures are independent of the data
modality and thus can be used to evaluate GANs operating on
point clouds. They successfully capture the sample diversity
and mode collapse of the model, but cannot determine the
realism of a single sample. Most approaches are labor inten-
sive as they require manual checkpoint selection and several
runs over the test data.
Classification (Arjovsky et al., 2017; Radford et al., 2016;
Isola et al., 2017; Santurkar et al., 2018;Lehmann&Romano,

2006; Yang et al., 2017): Another common approach is to use
classification networks to assess the quality of GAN outputs.
Two-Sample Test (C2ST), for example, assesseswhether two
samples are drawn from the same distribution. This requires
freshly trained discriminators for each test on a held-out sub-
set of the data.
Output comparison (Wang et al., 2016; Xiang & Li, 2017):
Among others, computing reconstruction errors is one com-
monmethod to assess generated data. For point clouds, EMD
and Chamfer’s Distance (CD) are often used, as they can
operate in a permutation-invariant fashion. These metrics
also serve as a basis for some distribution-based measures,
such as coverage or Minimum Matching Distance (MMD)
(Achlioptas et al., 2018). Caccia et al. (2019) use EMD and
CD directly as a measure of reconstruction quality on entire
scenes captured with a LiDAR scanner. However, this is
only applicable to paired translation GANs or supervised
approaches, because it requires a known target to measure
the reconstruction error.
Model comparison (Im et al., 2016; Olsson et al., 2018;
Zhang et al., 2018): There exist two types of model compari-
son techniques. The first includes simple metrics that capture
the performance of the discriminator relative to the current

123

International Journal of Computer Vision

state of the generator. The other type focuses on the eval-
uation of sample diversity and comparison between several
GAN architectures. However, thesemeasures are labor inten-
sive and of high complexity as they often require several
network combinations and trainings.
Low-level statistics (Khrulkov et al., 2018; Wang et al.,
2004): Computing low-level statistics of the underlying
data is easy and fast. However, statistics like Structural
Similarity Index Measure (SSIM), Peak Signal-to-Noise
Ratio (PSNR), sharpness, or contrast are specific for RGB
images and not capable to capture higher-level information.
This work aims at providing a practical quantitative met-
ric to determine the realism of individual generated samples
via learned features. Therefore, we consider our proposed
method as a combination of the following categories: feature-
based, distribution-based, and output comparison.

2.2 Metric Learning

The goal of deep metric learning is to learn a feature embed-
ding, such that similar data samples are projected close to
each other while dissimilar data samples are projected far
away from each other in the high-dimensional feature space.
Common methods use siamese networks trained with con-
trastive losses to distinguish between similar and dissimilar
pairs of samples (Chicco, 2021). Thereupon, triplet loss
architectures train multiple parallel networks with shared
weights to achieve the feature embedding (Hoffer & Ailon,
2015; Dong & Shen, 2018). This work uses an adversarial
training technique to push features in a similar or dissimilar
embedding.

3 Method

3.1 Objective and Properties

The aim of this work is to provide a method to estimate the
level of realism for arbitrary LiDAR point clouds. We design
the metric to learn relevant realism features directly from
distributions of real-world data. The output of the metric can
then be interpreted as a distance measure between the input
and the learned distribution in a high dimensional space.

Based on the discussed aspects of existing point cloud
and GAN measures, we expect a useful LiDAR point cloud
metric to be:
Quantitative: The realism score is a quantitative measure that
determines the distance of the input sample to the inter-
nal representation of the learned realistic distribution. The
score SReal has well defined lower and upper bounds that
reach from 0 (unrealistic) to 1 (realistic).
Universal: The metric has to be applicable to any LiDAR
input and thereforemust be independent fromany application

or task. Thismeans no explicit ground truth information, such
as class labels or bounding boxes, is required.
Transferable: The metric must give a reliable and robust
prediction for all inputs, independent of whether the data
distribution of the input sample is known by the metric or
not. This makes the metric transferable to new and unseen
data.
Local: The metric should be able to compute spatially local
realism scores for smaller regionswithin a point cloud. These
scores can then be combined with additional information,
such as motion, semantics, or distance to provide a detailed
analysis of the data. The metric is also expected to focus on
identifying the realism of the point cloud properties while
ignoring global scene properties as much as possible to
reduce domain biases.
Flexible: Point clouds are usually sets of un-ordered points
with varying size. Therefore, it is crucial to have a processing
that is permutation-invariant and independent of the number
of points to process.
Simple: Easy applicability and a fast computation time allows
the metric to run in parallel to the training of a neural net-
work for LiDAR data generation. This enables monitoring
the realism of the generated sample during the training of the
network.

We implement our metric in such a way that the described
properties are fulfilled. To differentiate the metric from a
GAN discriminator, we emphasize that a discriminator is
not transferable to unseen data, since it recognizes only one
specific data distribution to be realistic.

3.2 Architecture

Figure 2 shows the architecture of our approach. The fol-
lowing describes the components and presents how each part
is designed to contribute towards achieving the desired met-
ric properties. The underlying idea of the metric design is
to compute a distance measure between different data dis-
tributions of realistic and unrealistic LiDAR point cloud
compositions. The network learns features indicating realism
from data distributions by using a proxy classification task.
Specifically, the network is trained to classify point clouds
from different datasets into three categories: Real, Syn,Misc.
The premise is the possibility to divide the probability space
of LiDAR point clouds into those that derive from real-world
data (Real), those that derive from simulations (Syn), and all
the others (Misc), e.g.distorted or randomized data. Refer to
Fig. 1 for an impression. By acquiring the prior informa-
tion about the tripartite data distribution, the metric does not
require any target information or labels for inference.

The features are obtained with hierarchical feature set
learning, explained in Sect. 3.2.1. Section 3.2.2 outlines our
adversarial learning technique.

123

International Journal of Computer Vision

Fig. 2 Architecture The feature extractor FθF uses hierarchical feature
set learning from PointNet++ (Qi et al., 2017) to encode information
about each of the Q query points and their K nearest neighbors. The
neighborhood features z are then passed to the classifier CθC which
outputs probability scores pC for each category (Real, Syn, Misc).
In training, z is fed to the adversaries AθA , which output probability
scores pA for each dataset of their respective category. For the classifier

and all three adversaries a multi-class cross-entropy loss is minimized.
For C to perform as good as possible while A should perform as bad
as possible, the gradient is inverted between the adversarial input and
the feature extractor (Beutel et al., 2017). λ is a factor that regulates the
influence of the adversarial loss, weighting the ratio of accuracy versus
fairness. In our experiments we use a factor of λ = 0.3

3.2.1 Feature Extractor

The blue parts of Fig. 2 visualize the PointNet++ (Qi et al.,
2017) concept of the feature extractor FθF . It has two abstrac-
tion levels, sampling Q1 = 2048 and Q2 = 256 query
points with K1 = 20 and K2 = 10 nearest neighbors
(KNN), respectively. Keeping the number of neighbors and
abstraction levels low limits the network to only encode
information about local LiDAR-specific statistics instead
of global scenery information. On the other hand, the high
amount of query points helps to cover many different regions
within the point cloud and guarantees the local aspect of
our method. In contrast to PointNet++, we use KNN search
instead of radius search to find the neighboring points. Point-
Net++ was proposed for point clouds from the ShapeNet
dataset (Chang et al., 2015), which have uniformly sampled
points on object surfaces. In LiDAR point clouds, points
are not uniformly distributed and with increasing distance
to the sensor, also the distance between neighboring points
increase. Therefore, we found KNN search more practical to
obtainmeaningful neighborhoods in LiDAR scans compared
to radius search.

In each abstraction level, we use a 3-layer MLP with filter
sizes of [64, 64, 128] and [128, 128, 256], respectively. This
results in the neighborhood features z = F(x, θF) of size
[Q, UF] with UF = 256 features for each of the Q = 256
query points. The features z are then fed to a densely con-
nected classifier CθC (yellow block). It consists of a hidden
layer with 128 units, to which 50% dropout is applied during
training, and the output layer with UC units.

The classifier output is a probability vector pC,q =
softmax(yC) ∈ [0, 1]UC per query point q. The vector has
UC = 3 entries for each of the categories Real, Syn and
Misc. The component pReal

C,q quantifies the degree of realism

in each local region q. The scores S = 1
Q

∑
q pC,q for the

entire scene are given by the mean over all query positions.
Here, SReal is a measure for the degree of realism of the
entire point cloud. A score of 0 indicates low realism while
1 indicates high realism.

123

International Journal of Computer Vision

3.2.2 Adversarial Training

To obtain a transferablemetric network, ourmetric leverages
a concept often used to design fair network architectures or
domain losses (Beutel et al., 2017; Raff & Sylvester, 2018).
The idea is to force the feature extractor to encode only infor-
mation into the latent representation z that is relevant for the
realism estimation. This means, we actively discourage the
feature extractor from encoding information that is specific
to the distribution of a single dataset. In other words—using
fair networks terminology (Beutel et al., 2017)—we treat
the concrete dataset name as a sensitive attribute. With this
procedure we can improve the generalization ability towards
unknown data.

To achieve this behavior, we add a second output path
for adversarial learning that consists of one adversary AθA

for each category (see orange parts in Fig. 2). Each of the
adversaries predicts classification probabilities for all the
datasets in their respective category. To simplify the follow-
ing explanation, we assume there is only one adversary. The
architecture of the adversary is identical to the one of the clas-
sifier, except for the number of units in the output layer UA,
which depends on the number of training datasets for the
respective category (U Real

A = 2, U Syn
A = 2, U Misc

A = 3). Fol-
lowing the designs proposed in (Beutel et al., 2017; Raff &
Sylvester, 2018), we train all network components by min-
imizing the losses for both heads, LC = L (

yC , ŷC
)
and

LA = L (
yA, ŷA

)
, but reversing the gradient in the path

between the adversary input and the feature extractor. The
goal is for C to predict the category yC and for A to pre-
dict the dataset yA as good as possible, but for F to make it
hard for A to predict yA. Training with the reversed gradi-
ent results in F encoding as little information as possible for
predicting yA. The training objective is formulated as

min
θF ,θC ,θA

L
(

C
(
F(x; θF); θC

)
, ŷC

)

+ L
(

A
(
Jλ[F(x; θF)]; θA

)
, ŷA

) (1)

with θ being the trainable variables and Jλ a special function

Jλ[F] = F but ∇ Jλ[F] = −λ · ∇F (2)

such that the forward pass is an identity function while the
gradient is inverted in the backward pass while training. The
factor λ determines the ratio of accuracy and fairness.

In the applications of the related literature (Beutel et al.,
2017; Raff & Sylvester, 2018), the sensitive attribute and the
requested attribute are often correlated but have no direct
coupling. In our case, this would mean that different data
samples from the same dataset could belong to multiple cat-
egories. But this is not the case, instead samples from one
dataset always belong to the same category. Therefore, our

sensitive attribute, the dataset, always directly determines
the requested attribute, the category. A single adversary
would now suppress all information of the sensitive attribute,
thus also suppresses important information to obtain the
requested attribute which then leads to unwanted decline
in classifier performance. Therefore, a separate adversary
for each category is needed, such that only the sensitive
information regarding the dataset is suppressed, while keep-
ing the requested information about the category intact.
The adversaries A : {AReal, ASyn, AMisc} have the trainable
variables θA : {θReal

A , θ
Syn
A , θMisc

A }. Each adversary outputs
estimates for only the datasets of their respective category.
This forces the feature extractor to encode only common
features within one category, while not removing important
features from other categories. The loss is now defined as
LA = LAReal + LASyn + LAMisc .

4 Experimental Setup

4.1 Datasets

Table 2 shows the datasets used for this work.We use two dif-
ferent groups of datasets, one that is used to train and evaluate
the metric while the other group is only used for evaluation.
With the strict separation of training and evaluation datasets,
additionally to the training and test splits, we demonstrate
that our method is a useful measure on unknown data dis-
tributions. In both cases alike, the datasets stem from one of
three categories: Real, Syn, Misc.

Within the Real category, publicly available real-world
datasets are used for training (KITTI, nuScenes) and evalua-
tion (PandaSet). ForSyn, we use theCARLAsimulatorwhere
we implement the sensor specifications of a Velodyne HDL-
64 sensor to create ray-traced range measurements. GeoSet
is the second dataset in this category. Here, simple geometric
objects, such as spheres and cubes are randomly scattered on
a ground plane in three dimensional space and ray-traced in
a scan pattern. Additionally, we augment the synthetic data
with little noise at training time, such that they are not trivially
distinguishable from the other categories. For evaluation, we
use the GTAV-LiDAR dataset (Hurl et al., 2019), which con-
tains simulated LiDAR samples from the video game Grand
Theft Auto V (GTA V). It has a large detailed world with
realistic graphics, which provides a diverse data collection
environment.

Finally,we add a third category,Misc, to allow the network
to represent meaningless data distributions, as they often
occur during GAN trainings or sensor failures. Therefore,
Misc contains randomized data that is generated at training
time. Misc 1 and Misc 2 are generated by linearly increas-
ing the depth over the rows or columns of a virtual LiDAR
scanner, respectively. Misc 3 is a simple Gaussian noise with

123

International Journal of Computer Vision

Table 2 Datasets: The table lists
the datasets for each category

Dataset Samples Train. Eval.

Real KITTI (Geiger et al., 2013) 18,329 � �
nuScenes (Caesar et al., 2020) 28,130 � �
PandaSet (Scale, 2020) – × �

Syn CARLA (Dosovitskiy et al., 2017) 106,503 � �
GeoSet 18,200 � �
GTAV-LiDAR (Hurl et al., 2019) – × �

Misc Misc 1,2,3 ∞ � �
Misc 4 – × �

The two rightmost columns showwhether the dataset is used to train or evaluate themetric model. The number
of samples used for testing is 1000 for all datasets. The number of training samples is listed in the middle
column

varying standard deviations. Misc 4 is only used for evalua-
tion and is created by setting patches of varying height and
width of the LiDAR depth projection to the same distance.
Varying degrees ofGaussian noise are added to the Euclidean
distances of Misc {1, 2, 4}.

In addition to the training data listed in the tables, we use
1000 samples from a different split of each dataset to obtain
our evaluation results. No annotations or additional informa-
tion are required to train or apply the metric, all operations
are based on the xyz coordinates of the point clouds.

4.2 Up-samplingmodels

Weuse the taskof up-sampling todemonstrate the application
of our metric. Up-sampling is a type of domain adaptation,
where the source domain is the low resolution data and the
target domain is the high resolution data. In contrast to more
complex adaptations, such as simulation-to-real or sensor-
to-sensor setups, we can focus on evaluating the actual data
realism instead of additional domain gaps introduced by
scene content. However, this is still a complex task, since
the model must understand the scene in order to synthesize
realistic high-resolution LiDAR outputs. This makes it an
ideal testing candidate for our realism metric.

In Sect. 6 we compare the realism of generated sam-
ples from five different up-sampling methods to the target
high-resolution. The generation process is based on cylin-
drical depth projections of the LiDAR point clouds, as
proposed in (Triess et al., 2019). We compare two traditional
methods, i.e.nearest neighbor and bilinear interpolation, and
three learning-based methods. The generator of all three
learning-based methods is adapted from the SRGAN archi-
tecture (Ledig et al., 2017a). One version is trained with
an L1-loss, another with L2-loss, and the GAN uses an
adversarial loss. The GAN discriminator is also adapted
from (Ledig et al., 2017a). We conduct the experiments for

4× up-sampling in the vertical dimension. Implementation
and training details can be found in the appendix.

4.3 Baselines

As baselines for our metric, we report the reconstruction
errors of the up-sampled data. These errors can serve as
an indication of the generation quality, but are usually not
suitable as a metric for synthesized data, since they require
a target sample. In our case, this target is the original high-
resolution sample fromwhichwe generate the low-resolution
sample as input to the up-sampling network. We compute
the Chamfer’s Distance (CD),MeanAbsolute Error (MAE),
andMean Squared Error (MSE) between the predicted point
cloud P p and the target Pt . For CD, the point clouds are
considered as un-ordered sets P = {p}, such that

dCD(P p, Pt) = 1

|P p|
∑

p p∈P p

min
pt ∈Pt

‖p p − pt‖2

+ 1

|Pt |
∑

pt ∈Pt

min
p p∈P p

‖pt − p p‖2
(3)

while for MAE = ‖pt
i j − p p

i j‖1 and MSE = ‖pt
i j − p p

i j‖2,
the point clouds are arranged as projected images P = {pi j }
with the indices i and j for the respective row and column of
the projection. Typical GAN evaluation measures for point
cloud generation are Coverage (Tolstikhin et al., 2017) and
MMD (Gretton et al., 2012). Both are based on finding the
best match between the generated and the target point cloud.
Wecan assume that the bestmatch is always the original high-
resolution image of the same scene, then the metrics simplify
to Cov ≈ 1.0 andMMD ≈ dCD due to our paired translation.
Therefore, we do not report these metrics additionally to the
reconstruction errors in the evaluation section.

123

International Journal of Computer Vision

4.4 Semantic Segmentation

The key application for our metric is to evaluate the genera-
tion capabilities of generativemodels to improvedownstream
perception. This enables checkpoint selection or early stop-
ping of GAN trainings under the assumption that better data
leads to better perception models. We investiagate this in our
application experiments.Using the up-samplingmodels from
Sect. 4.2, we transform data from the source (low-resolution)
to the target (high-resolution) domain. This step generates
pseudo-datasets of different quality for each method. We
then use these pseudo-datasets to train semantic segmenta-
tion models which are finally evaluated on the target domain.
It is expected that if the metric ranks the realism of a gener-
ated dataset higher than another one, training with this data
also leads to better segmentation performance on the target
domain. This is because the data is— per metric— more
realistic, i.e.the domain gap is smaller (Triess et al., 2021a).

As a segmentation model, we use SqueezeSegV2 (Wu
et al., 2019) and RangeNet21 (Milioto et al., 2019). Instead
of the original 19 classes, we combine some of them and only
predict 9 classes. Details on the architecture and training can
be found in the appendix.

5 Metric Evaluation

5.1 Balance between Accuracy and Fairness

First, the metric has to be calibrated by choosing the cor-
rect factor λ of the adversarial loss during training. This is an
important propertywhich controls the ratio between accuracy
and fairness. A well chosen factor will maximize the differ-
ence between a high classifier accuracy and a low adversary
accuracy.

Figure 3 shows the classifier accuracy in black and the
adversary accuracy in brown (weighted sum over the three
category adversaries, shown as dashed lines). With increas-
ing λ, the adversarial accuracy decreases slowly, while
the classification accuracy suddenly drops. This happens
because the classifier gradients are overruled by the reversed
gradients of the adversary, hindering it from train properly.
Interestingly, the adversarial part of the Real category is sig-
nificantly more influenced by λ than those of the other two.
One reason might be that the Real datasets in themselves are
already very diverse, especially compared to the Syn or Misc
datasets. The number of different sceneries is higher, but the
most variance is caused by more diverse appearance of the
same object types (e.g.pedestrians) and the additional sensor
noise, which is not present in the Syn datasets. This makes it
hard for the model to extract only realism relevant features in
form of common information from the Real datasets while
not removing any other relevant information. Thus, themodel

Fig. 3 Accuracy versus Fairness: Accuracy of classifier and adversaries
over the loss factor λ. At small λ, the classification accuracy is high
which means good performance. However, adversary accuracy is also
quite high (at least for Real) which means no fairness in this part. With
increasing λ the network gets fairer while maintaining its high level of
classification accuracy. At a certain point the network becomes unstable
and deteriorates into chance level performance in the classifier

Fig. 4 Metric results: Shown is the metric output S for Real, Syn, and
Misc on different datasets. The lower part shows the results for the test
split of the known datasets, while the upper part depicts one unknown
dataset from each category. The color of the dataset name indicates the
respective category

requires more pressure in form of higher λ to accomplish this
challenging task for the Real category, compared to Syn and
Misc, where it is easier to extract common information while
not removing any other relevant information.

We use a factor of λ = 0.3 for all further experiments
in this paper (indicated by the gray vertical line). Here, the
classifier has a good performance (93%) while the adversary
operates slightly above chance level (50%).

123

International Journal of Computer Vision

(a) (b) (c)

Fig. 5 Qualitative performance on unknown data: The figure shows the
metric results on three unknown datasets. a shows the PandaSet dataset
as an example for Real. b shows the GTAV dataset for Syn. The overall
highReal scores seem to be caused by regions that contain cars. c shows
an example for the Misc 4 dataset

5.2 Overall Dataset Results

We run our metric network on the evaluation datasets, as well
as on the test split of the training datasets. Figure 4 shows
the mean of the metric scores S for each of the three cat-
egories. The known datasets (lower part) clearly achieve
well-separated scores and predict their respective category,
e.g.CARLA is classified with a high Syn score.

We obtain notable results on the unknown datasets (upper
part). Qualitative example frames are depicted in Fig. 5. The
Real dataset PandaSet behaves similar to the two knownReal
datasets, KITTI and nuScenes. This shows that the metric
focused to encode realism relevant features from KITTI and
nuScenes, such that PandaSet is easily categorized as such
as well. The randomly generated Misc 4 dataset is correctly
located within the Misc category, however with higher devi-
ations in the scores, leading to Misc scores around 70% and
Real scores around 20%. The deviations are caused by the
high variance that was used to generate this dataset, where
some regions have slightly higher Real or Syn scores.

The Syn dataset GTAV has a slightly different behavior.
Here, SSyn is around 60%, while the score for Real is around
35% and the deviation from those mean values is quite large.
The reason for these high deviations and therefore lower
Syn scores is a systematic behavior of the metric caused
by the data distribution. Figure 5b shows that the high Real
scores mainly stem from regions containing vehicles. GTAV
has more detailed car models than CARLA which therefore
appear almost like real vehicles in the point cloud. This exam-
ple clearly demonstrates the benefit of the locality aspect of
our metric which enables such detailed investigations.

5.3 Adversary Ablation

The proposed approach uses the adversarial loss to embed
features for Real, Syn, and Misc while at the same time omit
dataset-specific information as far as possible. To demon-
strate the feature encoding behavior, we train additional

(a) (b)

(c) (d)

Fig. 6 Learned feature embedding: Shown are the t-SNE plots for the
feature embedding z of four versions of the adversary configuration for
the otherwise identical metric network. In a themodel is trainedwithout
an adversary. b shows the features when a single adversary is used for
training. c visualizes the features of our previous method (Triess et al.,
2021b) that only used an adversary for the Real category. d depicts our
approach, where one adversary per category is trained

metric networks with varying adversary configurations and
visualize the learned features on the validation data.

Figure 6 shows plots of the t-SNE of the neighborhood
features z. t-SNE is a dimensionality reduction method that
tries to map data from a high dimension (z vector) to a low
dimension (2D image) space while minimising information
loss. Close points in the image have similar representations
in z. Each metric category is represented by a different color,
while the individual datasets are of different shades of this
color. The darkest colors belong to the unknown datasets
that were never seen by the metric network at training time,
i.e.PandaSet, GTAV,Misc 4.We include them for demonstra-
tion purposes regarding the transferability to unseen data.

The two extreme cases of the configuration form Fig. 6a
and b. Figure 6a represents the metric as a simple classifier
without an adversary, where each shade of each color forms

123

International Journal of Computer Vision

Fig. 7 Metric scores for up-sampling methods: The vertical axis lists
five methods to perform 4× LiDAR scan up-sampling and the high-
resolution target data (“KITTI”). The left plot shows the reconstructions
errors of different baseline measures. The middle plot shows the three
parts of our realism measure. The right plot shows the semantic seg-

mentation results on the original KITTI dataset of a segmentationmodel
trained with the data generated from the respective row. The methods
are ordered from top to bottom by increasing human visual judgment
ratings

their own clusters with little overlap to others. This means
the features of each dataset are distinct and make it hard for
the metric to estimate a reasonable score for unseen datasets.
Figure 6b, on the other hand, uses one common adversary
which leads to decreased classifier accuracy since features
from all sources are forced into a common representation.
This can be observed by the mixed colors with no clusters,
not even between categories.

A useful metric requires a mix of the two versions above,
where features of one category are similar and features from
different categories are dissimilar. Therefore, we propose to
use per-category adversaries. In our previous work (Triess
et al., 2021b) the adversary was only applied for Real, as
depicted in Fig. 6c. In this work we use one adversary for
each category, as represented by Fig. 6d. In both cases the
green colors of the Real datasets are clearly mixed, while
at the same time being sufficiently distinguishable from the
blue or gray clusters. However, our per-category approach
(Fig. 6d) also shows mixed features among the blue and gray
points, whereas our previous approach shows more distinct
clusters. This is especially visible forMisc, where Fig. 6c has
one cluster for each shade but our method better combines
them.

Further, the feature visualization shows that the unknown
dataset PandaSet is fully integrated into the Real cluster for
our method, as opposed to when using no adversary. The
clusters of the unknown GTAV dataset mostly overlap with
Syn, but also partially with Real. This aligns with the metric
results that we saw previously for GTAV, where parts of the
data containing vehicles appear quite realistic.

We conduct the adversary ablation only qualitatively,
because it is not possible to compare the quantitative scores
of the different versions. A metric trained as in Fig. 6b could
have a different allocation of scores in range [0, 1] than a
metric as in Fig. 6d.

6 Metric Application

In this sectionwedemonstrate howour realismmeasure ranks
different datasets generated by neural networks. We then
compare these results to our baseline evaluation measures
(introduced in Sect. 4.3), and analyse the resulting perfor-
mance of a segmentation network.

Figure 7 is divided into three parts horizontally. The left-
most plot shows the baseline metrics, the middle shows the
results of our metric network, the rightmost plot shows the
segmentation performance. The vertical axis on the left lists
five different versions of KITTI data, generated as explained
in Sect. 4.2. For the displayed segmentation results, different
versions of the same model were trained with each of the
datasets and then evaluated on the original KITTI data.

The realism score for the original KITTI is displayed for
reference and has reconstruction errors of zero. The meth-
ods are ranked from top to bottom by increasing realism as
approximately perceived by humans.1 In general, the base-
line metrics show a tendency but no clear correlation to the
degree of realism and struggle to produce an unambiguous
ordering of themethods.Our realism score, on the other hand,
sorts the up-sampling methods according to human visual
judgment. These results align with the ones in (Triess et al.,
2019), which shows that a low reconstruction error does not
necessarily imply high realism in the generated outputs. This
is the main reason for the emergence of perceptual losses in
recent years (Johnson et al., 2016; Ledig et al., 2017b).

The upper row of Fig. 8 shows an example scene for all up-
sampling versions with their obtained scores. The L1-CNN
produces an almost perfect version of the original high-
resolution data, only with some noise at object boundaries.

1 It is not clear how to rank the nearest neighbor interpolation here,
since its appearance is completely different to the others. Therefore we
simply placed it according to its metric score.

123

International Journal of Computer Vision

Fig. 8 Qualitative up-sampling and segmentation results: The first row
shows the metric results on an up-sampled KITTI scene. The original
scan is shown in column “KITTI”. The colors are soft interpolations
of Real , Syn , and Misc . The second row shows the color-coded
depth projection of the point cloud. The third row shows the relative
error between the generated sample and the original high resolution
sample from column “KITTI”. A pixel is green if the error is 0%
and pink if the error is higher than 10%, all values in between are

linearly interpolated. The fourth and sixth row show the segmentation
results of a model trained on the respective up-sampled data. A legend
of the semantic colors is provided in Table 3. The ground truth semantic
labels are shown in the leftmost column. For better comparison, the fifth
column shows correctly classified pixels in green and wrong classi-
fications in pink . The visualized sample is from the validation split
and was neither used to train the metric, nor the segmentation network

Table 3 Semantic segmentation performance: The table lists the evaluation results of the DarkNet21 model for point-wise semantic segmentation

For each row, the model is trained on the respective dataset which corresponds to a high-resolution KITTI variation generated from low-resolution
data. The evaluation results are all reported on the validation split of the original KITTI data. All numbers in the table are given in %. Best results
are shown in bold, second best in italic

Bilinear interpolation works very well on large surfaces, but
produced single noise points especially in regions where the
LiDAR usually receives no return, e.g.windows. The L2-
CNN can reconstruct the outlines of the scene, but suffers
from high noise throughout the entire point cloud. Similarly,

the up-samplingGANsuffers fromhigh noise, but often is not
able to reconstruct the outlines of the scene and forms random
point clusters instead of clear objects. The nearest neighbor
interpolation causes vertically stretchedobjects,whichworks

123

International Journal of Computer Vision

fine for walls, poles, and other vertical objects, but fails for
the ground.

These differences also cause different behavior in down-
stream perception in the target domain when the generated
data is used for training. The rightmost plot in Fig. 7 shows
the overall results, while Table 3 shows class-wise results.
Additionally, the bottom row of Fig. 8 visualizes segmented
example point clouds produced by the models trained with
the respective data. Both segmentation models show simi-
lar trends for the order of the up-sampling methods as the
realism metric. The slightly higher Real score for L1-CNN
than for the original KITTI data can also be seen in the seg-
mentation score of the SqueezeSegV2 model, but is neither
significant nor does it behave in the sameway forDarkNet21.
Also the SqueezeSegV2 behavior on the nearest neighbor up-
sampling is not equal to those of DarkNet21 and themetric. It
canbe assumed that twoeffects lead to this different behavior:
First, as mentioned in footnote 1, it is not clear how exactly
the nearest neighbor interpolation should be judged in terms
of realism. Second, SqueezeSegV2 exhibits almost no vari-
ance on its performance scores. The combination of these
two effects could cause the difference in behavior, but it is
not quite clear how and therefore needs further investigation
which is left for future work.

The class-wise results in Table 3 show that L2-CNN and
GAN achieve quite good results for dynamic objects. At the
same time, it is very hard to tell which of the point clusters
in the 3D visualization of Fig. 8 belong to these objects. This
raises the question why training with this highly distorted
data achieves such good performance in the target domain.
The question can be answered by looking at the projected
LiDAR scan. Here it becomes visible that even regions that
suffer from high noise can still be approximately detected by
their edge outlines in the projection. The third row of Fig. 8
shows the point-wise relative error between the generated
and the target point cloud with the error being clipped to a
maximum of 10%. Even for the appearing noisy L2-CNN
version, relative errors are quite low and therefore outlines
are clearly visible in the depth projection (second row). We
find that this is an indication that the segmentation model is
not influenced by local noise perturbations, but rather learns
a more generalized appearance of the object shapes.

7 Discussion

Our experiments show a correlation between measured
training data realism and final perception performance. Qual-
itatively however, the segmentation performance seems to be
less affected by reduced point cloud realism than expected by
judging from the 3D images. We believe that this is caused
by the selected architectures of the up-sampling and segmen-
tation models. The segmentation networks operate on the 2D

projections of the point clouds which is similar to the pro-
jection space used for up-sampling. Even though objects are
blurred and unrecognizable when the GAN up-sampling is
displayed as raw 3D data, objects shapes are still detectable
on the 2D projections.Wemake two considerations from this
observation:

First, visual judgment is highly dependent on the chosen
data representation and their visualization. This is an impor-
tant reason to use such a quantitative metric as ours on a large
amount of data. Second, we believe that our metric might be
more reliable to estimate the performance of downstream
tasks operating on 3D space.

Amajor concept to keep in mind is the difference between
domain gap and realism. If the task to solve is to train a
method for KITTI-to-nuScenes adaptation, then both the tar-
get and the source domain are Real. Our metric can be used
to rule out any unrealistic data compositions that form in
the transition between those two datasets, e.g.while train-
ing a domain adaptation method. However, if the method is
just outputting an identity function, the realism would be at
maximum, while the domain gap still causes bad perception
performance in the target domain. Therefore, tasks are only
in parts dependent on the realism of the data and domain gaps
have to be measured differently.

8 Conclusion

This paper presented a novel metric to quantify the degree
of realism of local regions in LiDAR point clouds. Through
adversarial learning, we obtain a feature encoding that is able
to adequately capture data realism more generally instead
of focusing on dataset-specific characteristic. In extensive
experiments, we demonstrated the reliability and applica-
bility of our metric on unseen data. The predictions of our
method correlate well with visual judgment, unlike recon-
struction errors serving only as a proxy for realism. In
addition, we investigated the influence of data realism on
a downstream perception task.

Future work includes to design a generative model that
uses synthetic data, e.g.CARLA, as input to generate realis-
tic real-world data, e.g.KITTI.Ourmetric is used in this setup
to find the optimal point where the generated data actually
improves the downstream perception performance of a seg-
mentation or object detection model.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-

123

International Journal of Computer Vision

Table 4 Network architecture: Detailed network architecture and input
format definition. The ID of each row is used to reference the output of
the row. ↑ indicates that the layer directly above is an input. N denotes
the number of LiDARmeasurements. Q j are the number of query points

at abstraction level j . K j are the number of nearest neighbors to search
at abstraction level j . U are the number of output units of the classifier
and the adversaries

ID Inputs Operation Output shape Description

1 LiDAR x , y, z [N × 3] Position of each point relative to
sensor origin

Feature extractor: abstraction module 1

2 ↑, Q1 Farthest point sampling [2048] Indices of Q1 query points

3 1, ↑ Group [2048 × 3] Grouped sampled points

4 1, 2, K1 Nearest neighbor search [2048 × 20] Indices of the K1 nearest neigbors
per query

5 1, 2, ↑ Group [2048 × 20 × 3] Grouped neighborhoods

6 ↑ Neighborhood
normalization

[2048 × 20 × 3] Translation normalization towards
query point

7 ↑ (Conv+LeakyReLU) ×2 [2048 × 20 × 64] Kernel size 1 × 1, stride 1

8 ↑ Conv+LeakyReLU [2048 × 20 × 128] Kernel size 1 × 1, stride 1

9 ↑ ReduceMax [2048 × 128] Maximum over neighborhood
features

Feature extractor: abstraction module 2

10 3, Q2 Farthest point sampling [256] Indices of Q2 query points

11 3, 10, K2 Nearest neighbor search [256 × 10] Indices of the K2 nearest neighbors
per query

12 3, 10, ↑ Group [256 × 10 × 3] Grouped neighborhoods

13 ↑ Neighborhood
normalization

[256 × 10 × 3] Translation normalization towards
query point

14 9, 11 Group [256 × 10 × 128] Grouped features

15 13, ↑ Concat features [256 × 10 × 131] Grouped features with xyz

16 ↑ (Conv+LeakyReLU) ×2 [256 × 10 × 128] Kernel size 1 × 1, stride 1

17 ↑ Conv+LeakyReLU [256 × 10 × 256] Kernel size 1 × 1, stride 1

18 ↑ ReduceMax [256 × 256] Maximum over neighborhood
features → latent
representation z

Classifier/adversary

19 ↑ Dense+LeakyReLU [256 × 128]
20 ↑ Dropout [256 × 128] Dropout ratio 50%

21 ↑ Dense [256 × UC,A] Output logits vector yC,A

22 ↑ Softmax [256 × UC,A] Output probability vector pC,A

cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix AMetric Implementation Details

Table 4 lists all layers, inputs, and operations of our Deep
Neural Network (DNN) architecture. We use TensorFlow to

implement online data processing, neural network weight
optimization, and network inference. The implementation
is oriented on the original PointNet++ implementation (Qi
et al., 2017).2 The Adam optimizer is used for optimiza-
tion. We use an initial learning rate of 1e−3 with exponential
warm-up and decay.

The classifier outputs the scores for each of the UC = 3
categories, namely Real, Syn, Misc. The adversary for Real
has U Real

A = 2 output channels, for KITTI and nuScenes.

The Syn adversary outputs U Syn
A = 2 scores for CARLA and

GeoSet. For the Misc category, the respective adversary has

2 PointNet++ code https://github.com/charlesq34/pointnet2.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/charlesq34/pointnet2

International Journal of Computer Vision

Table 5 SRGAN Generator Architecture: Detailed network architecture and input format definition of the SRGAN generator (Ledig et al., 2017a)

ID Inputs Operation Output shape Description

Input features from LiDAR scan

1 LiDAR x , y, z [N × 3] Position of each point relative
to sensor origin

2 ↑ Projection (x, y, z) → (r , ϕ, θ) [H , W , 1] Cylindrical depth projection r
with θ over H and ϕ over W

Residual blocks

3 ↑ Conv+ParametricReLU [H , W , 64] Kernel size 9 × 9, stride 1

4 ↑ Conv+BN+ParametricReLU [H , W , 64] Kernel size 3 × 3, stride 1

5 ↑ Conv+BN [H , W , 64] Kernel size 3 × 3, stride 1

6 ↑, 3 Add [H , W , 64] Element-wise addition

7 ↑ Repeat steps (4-6) [H , W , 64] ×16 repetition of residual
blocks

8 ↑ Conv+BN [H , W , 64] Kernel size 3 × 3, stride 1

9 ↑, 3 Add [H , W , 64] Element-wise addition

Super-resolution blocks

10 ↑ Conv [H , W , 256] Kernel size 3 × 3, stride 1

11 ↑ SubpixelShuffle [2 · H , W , 128] Reshape by moving values
from the channel dimension
to the spatial dimension

12 ↑ ParametricReLU [2 · H , W , 128]
13 ↑ Repeat steps (10-12) [fup · H , W , 128] × log2 fup repetition with fup

being the desired up-sampling
factor, i.e. fup = {2, 4, 8}

14 ↑ Conv [fup · H , W , 1] Kernel size 9 × 9, stride 1

The ID of each row is used to reference the output of the row. ↑ indicates that the layer directly above is an input. N denotes the number of
measured LiDAR points. H denotes the number of layers in the LiDAR sensor and W are the number of layer pulses fired per 360◦ revolution.
The cylindrical depth projection is either retrieved directly from the raw image of the sensor or with a back-projection by computing (r , ϕ, θ) from
(x, y, z). Missing measurements are set to a constant distance in the dense projection and are masked in the loss computation

Table 6 SRGAN discriminator architecture: Detailed network architecture and input format definition of the SRGAN discriminator (Ledig et al.,
2017a)

ID Inputs Operation Output shape Description

1 LiDAR rgt or rhr [fup · H , W , 1] High-resolution cylindrical depth projection

Conv blocks

2 ↑ Conv+LeakyReLU [fup · H , W , 64] Kernel size 3 × 3, stride 1

3 ↑ Conv+BN+LeakyReLU [fup
2 H , 1

4 W , 64] Kernel size 5 × 5, strides 2 × 4

4 ↑ Conv+BN+LeakyReLU [fup
2 H , 1

4 W , 128] Kernel size 3 × 3, stride 1

5 ↑ Conv+BN+LeakyReLU [fup
4 H , 1

8 W , 128] Kernel size 3 × 3, stride 2

6 ↑ Conv+BN+LeakyReLU [fup
4 H , 1

8 W , 256] Kernel size 3 × 3, stride 1

7 ↑ Conv+BN+LeakyReLU [fup
4 H , 1

16 W , 256] Kernel size 3 × 3, strides 1 × 2

8 ↑ Conv+BN+LeakyReLU [fup
4 H , 1

16 W , 512] Kernel size 3 × 3, stride 1

9 ↑ Conv+BN+LeakyReLU [fup
8 H , 1

32 W , 512] Kernel size 3 × 3, stride 2

Reduction

10 ↑ Flatten [fup
2 · H · W]

11 ↑ Dense+LeakyReLU [1024]
12 ↑ Dense [1]
The input to the network is either the ground truth rgt or the prediction from the generator rhr

123

International Journal of Computer Vision

Table 7 Class mapping: This table shows the detailed class label mapping of the original dataset label ids to our custom mapping used for the
segmentation experiments

Learned Classes KITTI nuScenes CARLA

Unlabeled (0) Unlabeled (0) outlier (1)
on-rails (16, 256)
other-vehicle (20, 259)
other-structure (52)
other-object (99)

Noise (0) animal (1)
personal-mobility (5)
stroller (7) wheelchair (8)
barrier (9) debris (10)
pushable-pullable (11)
trafficcone (12)
bicycle-rack (13)
ambulance (19)
police (20) trailer (22)
other (29)
ego-vehicle (31)

Unlabeled (0) other (3)

Person (1) Person (30, 254)
bicyclist (31, 253)
motorcyclist (32, 255)

Adult (2) child (3)
construction-worker (4)
police-officer (6)

Pedestrian (4) rider (13)

Two-wheeler (2) Bicycle (11)
motorcycle (15)

Bicycle (14)
motorcycle (21)

Two-wheeler (14)

Large-vehicle (3) Bus (13, 257) truck (18,
258)

Bus (15, 16) construction
vehicle (18) truck (23)

–

Vehicle (4) Car (10, 252) Car (17) Car (10)

Road (5) Road (40) parking (44)
other-ground (49)
lane-marking (60)

Driveable-surface (24)
flat-other (25)

Road-line (6) road (7)

Sidewalk (6) Sidewalk (48) Sidewalk (26) Sidewalk (8)

Terrain (7) Terrain (72) Terrain (27) Terrain (15)

Construction (8) Building (50) fence (51)
pole (80) traffic-sign (81)

Manmade (28) Building (1) fence (2)
pole (5) wall (11)
traffic-sign (12)

Vegetation (9) Vegetation (70) trunk (71) Vegetation (30) Vegetation (9)

U Misc
A = 3 outputs, for Misc 1,2,3. Implementation-wise,

all adversaries have the full seven output channels for all
datasets. The category split is implemented as a class weight-
ing when computing the loss from the adversary output, such
that the loss becomes zero if the input does not origin from
within the respective category. We found this the easiest and
most stable way to implement the desired behavior in Ten-
sorFlow graph mode.

Appendix B Up-SamplingModels

This section gives additional details on the up-sampling
experiments for metric verification of Sec. 4.4 in the
main paper. The up-sampling process is based on cylin-
drical depth projections of the LiDAR point clouds. Only
the vertical resolution of the LiDAR images is enhanced.
The bilinear interpolation is a traditional approach for
which we directly used the resize method from TensorFlow
(tf.image.resize(images, size, method=
ResizeMethod.BILINEAR)). For all other experiments,
we used the generator from the SRGAN architecture (Ledig

et al., 2017a) and for the GAN experiments, also the dis-
criminator architecture. After being processed by the super-
resolution networks, the generated point clouds are converted
back into lists of points and are fed to the metric network for
realism judgement.

Table 5 lists all layers, inputs, and operations of the
SRGAN generator architecture. In theL{1,2}-CNN trainings,
a weightedLα loss is minimized. The objective is formulated
as

min
θG

Lα = min
θG

1

α|γ |
∑

(i, j)∈γ

∣
∣
∣r

gt
i, j − rhri, j

∣
∣
∣

with the set of measured points γ , and rgt being the high-
resolution Ground Truth target and rhr the prediction

rhr = GθG

(
r lr

)

from the low-resolution input r lr.
Table 6 lists all layers, inputs, and operations of the

SRGANdiscriminator architecture.Here, an adversarial loss,

123

International Journal of Computer Vision

defined as

min
θG

max
θD

{
log

[
DθD

(
rgt

)] + log
[
1 − DθD

(
GθG

(
r lr

))]}

is minimized. The Adam optimizer is used for optimization
with an initial learning rate of 1e−3.

Appendix C Segmentation

For both segmentation models, DarkNet21 and Squeeze-
SegV2, we use the original PyTorch implementation of
Milioto et al. (Milioto et al., 2019)3. For our experiments,
we modified the class labels to have the same classes for
all used datasets. Table 7 shows the label mapping from the
original dataset to our custom label set for all three datasets.

Appendix D Additional Results

Additionally to Fig. 4, Table 8 provides class-wise metric
results for the datasets with semantic labels.

Table 8 Class-wise metric results: Shown are the class-wise averages
of the metric output S for Real/Misc/Syn

KITTI nuScenes CARLA

Person .98/.00/.02 .75/.00/.25 .14/.00/.86

Two-wheeler .96/.00/.04 .63/.00/.37 .05/.00/.95

Large-vehicle –/ –/ – .68/.00/.31 –/ –/ –

Vehicle .92/.00/.08 .81/.00/.19 .07/.00/.93

Road .91/.00/.09 .85/.00/.15 .02/.00/.98

Sidewalk .88/.00/.12 .85/.00/.14 .08/.00/.92

Terrain .93/.03/.05 .77/.04/.19 .36/.00/.64

Construction .62/.00/.38 .76/.01/.22 .06/.00/.94

Vegetation .87/.00/.13 .82/.07/.11 .05/.00/.95

Total .80/.00/.20 .85/.02/.13 .16/.00/.84

In line “total”, also scores with unknown semantic labels are included

References

Achlioptas, P., Diamanti, O., Mitliagkas, I. & Guibas, L. (2018). Learn-
ing representations and generative models for 3D point clouds. In
Proceedings of the international conference on learning represen-
tations (ICLR) workshops.

Arjovsky, M., Chintala, S. & Bottou, L. (2017). Wasserstein GAN.
Arora, S., Risteski, A. & Zhang, Y. (2018). Do GANs learn the

distribution? Some theory and empirics. In Proceedings of the
international conference on learning representations (ICLR).

3 Code: https://github.com/PRBonn/lidar-bonnetal.

Beutel, A., Chen, J., Zhao, Z. & Chi, E. H. (2017). Data Decisions
and Theoretical Implications when Adversarially Learning Fair
Representations. In Workshop on fairness, accountability, and
transparency in machine learning.

Borji, A. (2019). Pros and cons of GAN evaluation measures. In Com-
puter vision and image understanding (CVIU), (pp. 41–65).

Caccia, L., van Hoof, H., Courville, A. & Pineau, J. (2019). Deep gen-
erative modeling of LiDAR Data. In Proceedings of the IEEE
international conference on intelligent robots and systems (IROS),
(pp. 5034–5040).

Caesar,H., Bankiti, V., Lang,A.H.,Vora, S., Liong,V. E.,Xu,Q.,Krish-
nan, A., Pan, Y., Baldan, G. & Beijbom, O. (2020). nuScenes:
A multimodal dataset for autonomous driving. In Proceedings
of IEEE conference on computer vision and pattern recognition
(CVPR), (pp. 11618–11628).

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li,
Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L. & Yu,
F.(2015). ShapeNet: An information-rich 3D model repository.

Charles, R. Q., Su, H., Kaichun, M. & Guibas, L.J. (2017). PointNet:
Deep learning on point sets for 3D classification and segmentation.
InProceedings of IEEE conference on computer vision and pattern
recognition (CVPR), (pp. 77–85).

Che, T., Li, Y., Jacob, A.P., Bengio, Y. & Li, W. (2017). Mode reg-
ularized generative adversarial networks. In Proceedings of the
international conference on learning representations (ICLR).

Chen,X., Duan,Y., Houthooft, R., Schulman, J., Sutskever, I.&Abbeel,
P. (2016). InfoGAN: interpretable representation learning by infor-
mation maximizing generative adversarial nets. In Advances in
neural information processing systems (NIPS).

Chicco, D. (2021). Siamese neural networks: an overview. In Artificial
neural networks, (pp. 73–94).

Deng, J., Dong,W., Socher, R., Li, L.J., Li, K.&Fei-Fei, L. (2009). Ima-
geNet: A large-scale hierarchical image database. In Proceedings
of IEEE conference on computer vision and pattern recognition
(CVPR), (pp. 248–255).

Dong, X. & Shen, J. (2018). Triplet loss in siamese network for object
tracking. In Proceedings of the European conference on computer
vision (ECCV), (pp. 472–488).

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A. & Koltun, V. (2017).
CARLA: An open urban driving simulator. In Proceedings of the
1st annual conference on robot learning, (pp. 1–16).

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets
Robotics: The KITTI Dataset. International Journal of Robotics
Research (IJRR), 32(11), 1231–1237.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,Warde-Farley, D.,
Ozair, S., Courville, A. & Bengio, Y. (2014). Generative adversar-
ial nets. In Advances in neural information processing systems
(NIPS).

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B. & Smola,
A. (2012). A kernel two-sample test. Journal of Machine Learning
Research (JMLR), (pp. 723–773).

Gurumurthy, S., Sarvadevabhatla, R. K. & Babu, R. V. (2017). DeLi-
GAN: Generative adversarial networks for diverse and limited
data. In Proceedings of IEEE conference on computer vision and
pattern recognition (CVPR), (pp. 4941–4949).

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter,
S.(2017). GANs trained by a two time-scale update rule converge
to a local nash equilibrium. In Advances in neural information
processing systems (NIPS), (pp. 6629–6640).

Hoffer, E. & Ailon, N. (2015). Deep metric learning using triplet
network. In Similarity-based pattern recognition (SIMBAD), (pp.
84–92).

Huang, X., Li, Y., Poursaeed, O., Hopcroft, J. & Belongie, S. (2017).
Stacked generative adversarial networks. In Proceedings IEEE
conference on computer vision and pattern recognition (CVPR),
(pp. 1866–1875).

123

https://github.com/PRBonn/lidar-bonnetal

International Journal of Computer Vision

Hurl, B., Czarnecki, K. & Waslander, S.L. (2019). Precise Synthetic
Image and LiDAR (PreSIL) Dataset for autonomous vehicle per-
ception.

Im, D.J., Kim, C.D., Jiang, H. & Memisevic, R. (2016). Generating
images with recurrent adversarial networks.

Isola, P., Zhu, J. Y., Zhou, T. & Efros, A. A. (2017). Image-to-image
translation with conditional adversarial networks. In Proceedings
of IEEE conference on computer vision and pattern recognition
(CVPR).

Johnson, J., Alahi, A. & Fei-Fei, L. (2016). Perceptual losses for real-
time style transfer and super-resolution. In Proceedings of the
European conference on computer vision (ECCV).

Khrulkov, V. & Oseledets, I. V. (2018). Geometry score: A method for
comparing generative adversarial networks. In Proceedings of the
international conference on machine learning (ICML).

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta,
A., Aitken, A., Tejani, A., Totz, J., Wang, Z. & Shi, W. (2017).
Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of IEEE conference on com-
puter vision and pattern recognition (CVPR), (pp. 105–114).

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta,
A., Aitken, A., Tejani, A., Totz, J., Wang, Z. & Shi, W. (2017).
Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of IEEE conference on com-
puter vision and pattern recognition (CVPR), (pp. 105–114).

Lehmann, E. L., & Romano, J. P. (2006). Testing statistical hypotheses.
Springer.

Li, D., Ling, H., Kim, S. W., Kreis, K., Barriuso, A., Fidler, S. & Tor-
ralba, A. (2022). BigDatasetGAN: Synthesizing ImageNet with
pixel-wise annotations. In Proceedings of IEEE conference on
computer vision and pattern recognition (CVPR).

Lin, Z., Khetan, A., Fanti, G. & Oh, S. (2018). PacGAN: The power
of two samples in generative adversarial networks. In Advances in
neural information processing systems (NIPS), (pp. 324–335).

Löhdefink, J. & Fingscheidt, T. (2022). Improving performance of
semantic segmentation CycleGANs by noise injection into the
latent segmentation space.

Lucic, M., Kurach, K., Michalski, M., Gelly, S. & Bousquet, O. (2018).
Are GANs created equal? A large-scale study. InAdvances in Neu-
ral Information Processing Systems (NIPS), (pp. 698–707).

Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P. &
LeCun, Y. (2016). Disentangling factors of variation in deep
representation using adversarial training. In Advances in Neural
information processing systems (NIPS), (pp. 5047–5055).

Milioto, A., Vizzo, I., Behley, J. & Stachniss, C. (2019). RangeNet++:
Fast and accurate LiDAR semantic segmentation. In Proceedings
IEEE international conference on intelligent robots and systems
(IROS).

Olsson, C., Bhupatiraju, S., Brown, T., Odena, A. & Goodfellow, I.
(2018). Skill rating for generative models.

Park, T., Liu, M., Wang, T. & Zhu, J. (2019). Semantic image synthe-
sis with spatially-adaptive normalization. In Proceedings of IEEE
conference on computer vision and pattern recognition (CVPR).

Qi, C. R., Yi, L., Su, H. & Guibas, L. J. (2017). PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In
Advances in neural information processing systems (NIPS).

Radford, A., Metz, L. & Chintala, S. (2016). Unsupervised repre-
sentation learning with deep convolutional generative adversarial
networks.

Raff, E.&Sylvester, J. (2018). Gradient reversal against discrimination:
A fair neural network learning approach. In Proceedings of IEEE
international conference on data science and advanced analytics
(DSAA), (pp. 189–198).

Richardson, E. &Weiss, Y. (2018). On GANs and GMMs. In Advances
in neural information processing systems (NIPS), (pp. 5852–
5863).

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A.,
Chen, X. & Chen, X. (2016). Improved techniques for training
GANs. In Advances in neural information processing systems
(NIPS), (pp. 2234–2242).

Sallab, A. E., Sobh, I., Zahran, M. & Essam, N. (2019). LiDAR Sen-
sor modeling and Data augmentation with GANs for Autonomous
driving. InProceedings of the international conference on machine
learning (ICML) workshops.

Santurkar, S., Schmidt, L. & Madry, A. (2018). A classification-based
study of covariate shift in GAN distributions. In Proceedings of
the international conference on machine learning (ICML), (pp.
4480–4489).

Scale AI: PandaSet (2020), https://pandaset.org
Shu, D., Park, S. W. & Kwon, J. (2019). 3D Point cloud generative

adversarial network based on tree structured graph convolutions.
In Proceedings of the IEEE international conference on computer
vision (ICCV), (pp. 3858–3867).

Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U. & Sutton,
C. (2017). VEEGAN: Reducing mode collapse in GANs using
implicit variational learning. In Advances in neural information
processing systems (NIPS)

Theis, L., van den Oord, A. & Bethge, M. (2016). A note on the eval-
uation of generative models. In Proceedings of the international
conference on learning representations (ICLR).

Tolstikhin, I. O., Gelly, S., Bousquet, O., Simon-Gabriel, C. J. &
Schölkopf, B. (2017). AdaGAN: Boosting generative models. In
Advances in neural information processing systems (NIPS), (pp.
5424–5433).

Triess, L. T., Dreissig, M., Rist, C. B. & Zöllner, J. M. (2021). A survey
on deep domain adaptation for LiDAR perception. In Proceedings
of IEEE intelligent vehicles symposium (IV) workshops.

Triess, L. T., Peter, D., Baur, S. A., & Zöllner, J. M. (2021). Quan-
tifying point cloud realism through adversarially learned latent
representations. In Proceedings of the German conference on pat-
tern recognition (GCPR).

Triess, L. T., Peter, D., Rist, C. B., Enzweiler, M. & Zöllner, J. M.
(2019). CNN-based synthesis of realistic high-resolution LiDAR
data. In Proceedings of IEEE intelligent vehicles symposium (IV),
(pp. 1512–1519)

Wang, Y., Zhang, L. & van de Weijer, J. (2016). Ensembles of gen-
erative adversarial networks. In Advances in neural information
processing systems (NIPS) workshops.

Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image qual-
ity assessment: from error visibility to structural similarity. IEEE
Transaction on Image Processing (TIP), 13(4), 600–612.

Wu, B., Zhou, X., Zhao, S., Yue, X. & Keutzer, K. (2019). Squeeze-
SegV2: Improved model structure and unsupervised domain adap-
tation for road-object segmentation from a LiDAR point cloud.
In Proceedings of IEEE international conference on robotics and
automation (ICRA).

Xiang, S. & Li, H. (2017). On the effects of batch and weight normal-
ization in generative adversarial networks.

Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F. & Weinberger,
K.Q. (2018). An empirical study on evaluation metrics of genera-
tive adversarial networks.

Xu, Y., He, F., Du, B., Zhang, L. & Tao, D. (2021). Self-ensembling
GAN for cross-domain semantic segmentation.

Yang, J., Kannan, A., Batra, D. & Parikh, D. (2017). LR-GAN: Layered
recursive generative adversarial networks for image generation. In
Proceedings of the international conference on learning represen-
tations (ICLR).

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X. & Metaxas,
D. (2017). StackGAN: Text to photo-realistic image synthesis with
stacked generative adversarial networks. In Proceedings of the
IEEE international conference on computer vision (ICCV), (pp.
5908–5916).

123

https://pandaset.org

International Journal of Computer Vision

Zhang, Z., Song, Y.&Qi, H. (2018). Decoupled learning for conditional
adversarial networks. In Proceedings of the IEEE winter confer-
ence on applications of computer vision (WACV), (pp. 700–708).

Zhou, Z., Cai, H., Rong, S., Song, Y., Ren, K., Zhang, W., Wang, J.
& Yu, Y. (2018). Activation maximization generative adversarial
nets. In Proceedings of the international conference on learning
representations (ICLR).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A Realism Metric for Generated LiDAR Point Clouds
	Abstract
	1 Introduction
	2 Related Work
	2.1 GAN Evaluation Measures
	2.1.1 Qualitative Evaluation
	2.1.2 Quantitative Evaluation

	2.2 Metric Learning

	3 Method
	3.1 Objective and Properties
	3.2 Architecture
	3.2.1 Feature Extractor
	3.2.2 Adversarial Training

	4 Experimental Setup
	4.1 Datasets
	4.2 Up-sampling models
	4.3 Baselines
	4.4 Semantic Segmentation

	5 Metric Evaluation
	5.1 Balance between Accuracy and Fairness
	5.2 Overall Dataset Results
	5.3 Adversary Ablation

	6 Metric Application
	7 Discussion
	8 Conclusion
	Appendix A Metric Implementation Details
	Appendix B Up-Sampling Models
	Appendix C Segmentation
	Appendix D Additional Results
	References

