
One-shot active learning for globally optimal battery electrolyte conductivity  
 
Fuzhan Rahmanian1,2, Monika Vogler1,2 ,Christian Wölke3, Peng Yan3, Martin Winter3,4, Isidora Cekic-

Laskovic3, Helge S. Stein1,2,* 

1Helmholtz Institute Ulm, Applied Electrochemistry, Helmholtzstr. 11, 89081 Ulm, Germany 

2Karlsruhe Institute of Technology, Institute of Physical Chemistry, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany 

3Helmholtz-Institute Münster (IEK-12), Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany 

4MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149 Münster, Germany. 

4Helmholtz-Institute Münster (IEK-12), Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany 

Address correspondence to: helge.stein@kit.edu 

Abstract 

Non-aqueous aprotic battery electrolytes, among other requirements, need to perform well over a wide 
range of temperatures in practical applications. Herein we present a one-shot active learning study to 

find all conductivity optima, confidence bounds, and relating trends in the temperature range from 30 

°C to 60 °C. This optimization is enabled by a high-throughput formulation and characterization setup 

guided by one-shot active learning utilizing robust and heavily regularized polynomial regression. Whilst 

there is an initially good agreement for intermediate and low temperatures, there is a need for the active 

learning step to globally improve the model. Optimized electrolyte formulations likely correspond to the 

highest physically possible conductivities within this system when compared to literature data. A 

thorough error propagation analysis yields a fidelity assessment of conductivity measurements and 
electrolyte formulation. 

 

Introduction 

High-conductivity electrolytes in secondary batteries are of paramount importance for ensuring high 
performance and reliability of each battery cell chemistry1. In specialty applications such as aerospace 

or stationary storage2 in remote locations, bespoke electrolytes are however necessary. High or low 

temperatures make the electrolyte a limiting performance factor3,4 e.g. in electric vehicles which suffer 

from relatively narrow optimal temperature windows of 15 °C to 35 °C1,2. Many studies2,3,5 have thus 

been conducted to evaluate lithium-ion battery (LIB) electrolytes at low temperatures in respect to their 

conductivity, however to date there, is no comprehensive study that identifies optimal formulations and 

conductivity trends thereof at any practically reasonable temperature. 

We therefore present a one-shot active learning study to find the optimally conducting electrolyte 

formulation at temperatures ranging between -30 °C and 60 °C. Active learning uses machine learned 

“black-box” models to predict maxima and uncertainties to iteratively discover global maxima and 
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reduce the model uncertainty. Typically these models are trained in small (down to single sample) 

batches starting from scratch such that an acquisition function taking the model uncertainty into account 

is necessary6,7. Through the availability of an already very broadly covering dataset of lithium 

hexafluorophosphate (LiPF6) in ethylene carbonate (EC), ethyl methyl carbonate (EMC) and propylene 
carbonate (PC) totaling 80 electrolyte formulations at 10 temperatures as described by Flores et al.8  

we chose to perform one-shot active learning in a fully exploitative7 mode. This approach has been 

shown to increase the so-called “enhancement factor” by Rohr et al.7 by up to a factor of 10 given the 

right model and initial training dataset choice. This enhancement factor determines the increase in 

probability of finding a good material or process. There are however other research modes7 not explored 

in this study since the focus is on the pure conductivity optimization of battery electrolytes. However, a 

recent study by Flores et al.8 focused on the “understanding driven” research mode. Their symbolic 

regression approach8 works well for high temperatures but fails for highly concentrated liquid 
electrolytes at low temperatures, indicating a change in the physicochemical behavior. This study is 

enabled through a comprehensive dataset that generated machine learned suggestions that were 

proven by the experimentalists. Organizationally, this study is the human-in-the-loop version of the fully 

autonomous active learning study presented by Rahmanian et al.9.  

Methods 

An initial dataset of 80 electrolyte formulations was considered using an automated formulation and 

characterization setup10. Each electrolyte formulation contains EC, propylene carbonate PC, e EMC in 

a solvent/co-solvent mixture and LiPF6 as the conducting salt. Formulations were characterized 
between -30 °C and 60 °C, at increments of 10 °C as described by Krishnamoorthy et al10. Performed 

conductivity measurements were repeated 5 to 7 times. Uncertainties for the experimental values are 

expressed by the min/max spread of the measured values. For each datapoint, the electrolyte 

formulation, conductivity and measurement temperature were recorded. Across all formulations the 

ratio of (𝐸𝐶	 + 	𝑃𝐶) ∶ 	𝐸𝑀𝐶 was fixed either at 3:7 or 1:1 by weight and the concentration of LiPF6 was 

selected between 0.2 and 2.1 mol/kg. For model training and one-shot active learning, the mass ratios 

of PC and LiPF6 were normalized and referenced as 𝑟!" =	
!"

(!"	%	&")
 and 𝑟()!*! =	

()!*!
(!"	%	&")

. The (EC + 

PC) : EMC ratio was not considered during model training.   

Model training and one-shot active learning 

The dataset size poses the challenge of finding well performing models that are simple and 

interpretable11. We therefore settle on polynomial regression12 for our purely exploitative active learning 

study. Contrary to Flores et al.8 we do not consider inter temperature trends in model training. The basic 

setup is a strongly regularized polynomial regressor aiming to avoid multicollinearity13,14, which is 

measured by variance inflation factors15–18. The polynomial regressor12, ridge regularization19, and 

hyperparameter tuning are performed using the scikit-learn library20–22. From the fitted polynomial model 

a fine subsampling is performed across 10+ formulation ratios at a fixed grid spacing of 1 ratio-%. From 

this fine subsampling, the top one percentile for each temperature was reported to the experimentalists 
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resulting in a total of 100 formulation suggestions. A subset of 24 formulations was chosen by the 

experimentalists covering all suggestions for -30°C, 20°C and 60°C. Subsequent to the formulation and 

conductivity measurements of the new formulations, the model was retrained on the entire dataset. For 

hyperparameter tuning (details see S5) we performed a Bayesian search20,23 with a threefold cross 
validation. The best parameters are then fed to the surrogate model. This search uses ridge regularized 

polynomial models to favor low polynomial degrees. To assess the model uncertainty for both aleatoric 

and epistemic uncertainty after the learning shot (and the possible necessity for a second learning shot) 

we build a pipeline applying the model agonistic prediction interval estimator (MAPIE)24. This estimator 

uses jackknife plus25 to estimate the uncertainty26 of the model for a 95% prediction interval. A summary 

of this study’s workflow can be seen in Figure1. Summarizing there are three stages in this pipeline: 1) 

model training, 2) formulation suggestion and measurement, 3) retraining and refinement of the model 

and uncertainty quantification. 

 
 

 
Figure 1: Schematic diagram of this study’s pipeline consisting of initial model training, suggesting formulation to 

experimentalists for measurement of requested formulations and retraining the model by one-shot active learning 

with uncertainty quantification 

 

Results and Discussion 
 
Pre-shot model training 
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This study uses the same dataset underlying the study presented by Flores et al.8 using the formulation 

and characterization setup reported by Krishnamoorthy et al10. The herein presented one shot active 

learning approach is model free, meaning that we do not utilize any physics or chemistry knowledge 

except correct pose of the input (formulation) and output (conductivity) and a compartmentalization of 
the problem by temperature.  

The global trends of electrolyte conductivity, captured by our model, are shown in Figure 2, which 

illustrates the conductivity (σ) over 𝑟()!*! and 𝑟!" at -30°C, -10°C, 30°C, and 50°C (additional 

temperatures see S2). For all considered temperatures the 𝑅, score is ≈0.73 - 0.80, which indicates a 

good fit. However, the degree of the polynomial used for the fit is higher for the high temperatures 

compared to low temperatures. The orange datapoints indicate the train set formulations. Overall 

conductivity is strongly correltaed with temperature as expected from Debye-Hückel-Onsager (DHO) 

theory27,28. Consequently, we observe low conductivity for 𝑟()!*! >0.8 or <0.1. In general, we observe 

the maximum conductivity shifting towards higher conducting salt concentrations at higher temperatures 

as it was studied by Landesfeind et al.30,27,28. The lowest overall measured conductivity is 1.94	𝑚𝑆𝑐𝑚-. 

at-30 °C showing a generally less pronounced dependence on 𝑟!"than on 𝑟()!*!. This observation 

correlates with the concentration-conductivity relationship that is primarily dependent on conducting salt 

concentration30. 

Going from low to high temperatures, the system seems to allow for higher 𝑟!" 	 and 𝑟()!*!
31,32 while 

yielding a high conductivity which is in good agreement with established theory. The model also seems 

to prefer little presence of PC at low temperatures for higher conductivity. Our finding is in line with Ding 

et al.33 who reported that from low to high temperatures, electrolyte formulation first enriches in EC34 

then in PC which results in higher dielectric constant and consequently higher conductivity30,35. A narrow 

global optimum at high temperatures at relatively high 	𝑟!" 	 of ≈0.3 , however lower conducting salt 

concentrations at 30°C and 50 °C can be observed. All but the -10°C optima exist near unsampled 

formulations. Based on the prediction of the trained model, 10 samples with highest predicted 

conductivity for each temperature were selected and reported to the experimentalists. The requested 

and considered formulations can be found in the https://github.com/BIG-

MAP/electrolyte_optimization_one_shot_active_learning. 
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Figure 2: Trends in electrolyte conductivity at a) -30°C, b) -10°C, c) 30°C, d) 50°C. Orange data points represent 

the experimentally measured conductivity (σ) at the respective 𝑟!" 	 and 𝑟#$!%!. There is an overall incremental trend 

for higher 𝑟#$!%! from -30°C to -10°C and a narrow optimum in electrolyte conductivity at higher 𝑟!" 	 and lower 𝑟#$!%!  

at an unsampled formulation for high temperatures. 
 
One-shot predictions and measurements 
 

Utilizing the above polynomial models’ results, shown in Figure 2, a total of 100 electrolyte formulation 

(1 percentile) in an intentionally full exploitation mode were selected andsuggested to the 

experimentalists by only communicating the formulation and the respective temperature, however not 
the predicted conductivity. The experimentalists randomly selected 24 temperature optima from the 

suggested ones. These selected formulations correspond to temperatures of -30 °C, 20 °C and 60 °C. 

Figure 3 compares the predicted and experimentally measured conductivity for the 24 selected 

formulations. There is a small deviation between the requested and actually measured formulations due 

to slight imperfections in the formulation process hence Figure 3 shows the conductivity prediction at 

the actually formulated composition. Inaccuracies occurring during the solid and liquid dispensing 

processes are technical in nature and are negligible given the fidelity assessment below. The error bar 

illustrates the conductivity error by reporting the maximum and minimum values among the repeated 
measurements.  
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The measured conductivities for the requested formulations are added as prior knowledge and the 

model is retrained. The regularization coefficient and polynomial degree are tuned subsequently using 

a Bayesian search optimization (See S5) and model uncertainty was incorporated using jackknife plus 

strategy (See S4). 

 
Figure 3: Comparison between measured and predicted conductivity values at a) -30°C, b) -10°C, c) 30°C, d) 50°C 
sorted by the predicted value at the respective temperature. Orange points represent the mean values of measured 

conductivities with error bars relating to the min/max from repeated measurements. The high accuracy for low 

temperature predictions is best observed in the sorted predictions in a) where the lowest 8 predictions were the 
formulations predicted to be best at 60 °C, the intermediate 8 predictions were the optima for 20 °C and the top 8 

are the actual -30 °C optima. Overall this suggests that there exists no globally optimal electrolyte and performance 

can vary by up to a factor of 2. Predictions for high temperatures are inaccurate suggesting a poor fit model. 

 

Post-shot model refinement 
After one-shot active learning and the Bayesian hyperparameter tuning (described in the methods 

section), models are significantly improved. The predicted trends for low temperatures changed only 

marginally whereas the improvements for temperatures of 30°C and 50°C are significant as shown in 

Figure 4 (additional temperatures in S3). Together with the low temperature trends there is now a 

coherent trend observed suggesting higher 𝑟!" 	 and 𝑟()!*! at higher temperatures for the temperature 

refined optimal conductivity29,33. This highlights the significance of active learning in model refinement 

as we only added an additional 30% of data points to the dataset whilst qualitatively improving the 

model. Comparing these results to the symbolic regression model by Flores et al8. reveals significant 

differences in the mass ratios required for maximum conductivity. 
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The drastic improvement of the model becomes even more obvious upon plotting the temperature 

maxima with the spread of the top percentile as displayed in Figure 5. Before the learning shot, the 

optima followed no physically meaningful or interpretable trend whereas after adding the extra data the 

very fine trends in optima towards higher 𝑟()!*!  and slightly more 𝑟!" 	 become obvious. Uncertainty 

quantification was performed using the jackknife plus strategy resulting in an average 95 % prediction 

uncertainty interval of 3 ⋅ 10-/ mS/cm (See S4). However, the incorporation of the model agnostic 

prediction technique allows the measurement of aleatoric and epistemic uncertainty at any point. 

Comparing the results for electrolyte conductivity found by our one-shot active learning approach to 
literature such as Ding et al.28 at 60 °C, and -30 °C suggests that the herein reported maxima 

corresponds to the global physical maximum conductivity in this system which is ≈12 mS/cm and 1.9 

mS/cm. In another study, Landesfeind et. al.29 indicate global maxima of 4.7 mS/cm, 7.6 mS/cm and 

9.25 mS/cm at -10 °C, 20 °C, and 30 °C, respectively. Their results are compatible with our findings. 

 
Figure 4: Trends in electrolyte conductivity after one shot active learning for optimizing the regressor at higher 
temperatures and understanding the underlying physicochemical properties of optimal electrolyte formulations. The 

selected formulations which were suggested from the previous model and used for conductivity determination, 

were added to the training set as an additional prior knowledge. Model parameters tuning and uncertainty 
measurement were implemented at this stage of active learning (See S4). Optimized conductivity trend for the a) 

30 °C, and b) 50 °C. Trends for additional temperatures can be seen in the S3. 
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Figure 5: Trends of maximum conductivity a) before and b) after one-shot active learning and model optimization. 

Before introduction of the additional 24 electrolyte formulations, the trends are neither physically nor qualitatively 

interpretable. Each point corresponds to the mean conductivity value of the top percentile kernel. The amount 

required for other electrolyte solvents can be calculated as explained in the method section. The error bars 

represent the spread of 𝑟#$!%! and 𝑟!" within the top percentile and not the uncertainty. Overall, higher 𝑟#$!%! is 

needed at higher temperatures to reach the optima, with a minutely higher 𝑟!" from 20°C onward.  

 
Interactions and method fidelity 
Through the availability of a machine learning model that accurately and precisely predicts the trends 

in conductivity for all temperatures, an assessment of confounding inputs and method fidelity can be 

pursued. The model has two inputs: 𝑟!" and 𝑟()!*!, and through the polynomial nature an analytical 

derivation is facile. The post-shot regularized polynomial equation for deriving conductivity (𝜎) from 

hyperparameter tuning is: 

𝜎	 = 	 𝑐0 + 𝑐.𝑟!" + 𝑐,𝑟()!*! + 𝑐/𝑟!"
, + 𝑐+𝑟!"𝑟()!*&+𝑐1𝑟()!*!

, +𝑐2𝑟!"/ +𝑐3𝑟!", 𝑟()!*!+𝑐4𝑟!"𝑟()!*!
, +𝑐5𝑟()!*!

/   (eq.1) 

 

i.e. a polynomial of degree 3 with the individual parameters shown in Table 1. Some coefficients change 

drastically with temperature whilst others barely change. Upon careful comparison to eq.1, one can see 

that those coefficients corresponding to a conducting salt-ratio-only term, scale almost exponentially 

whilst all others, i.e. solvent-ratio-only and solvent-conducting salt-ratio terms scale sigmoidal with 

temperature (See S6.b). These interaction coefficients allow for further research into the relationship 
governing the solvation shell properties upon electrolyte solvent variation36. 
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Table 1: Polynomial coefficients incorporating ridge regularization after one-shot active learning for 

T= -30 °C to 60 °C 
 
A long lasting debate of how precise the electrolyte formulation needs to be can be answered using this 

model. An error propagation estimation can be done when the gradient of a function and the uncertainty 

of the underlying input is known. From the herein reported measurements, we know the uncertainty of 

the conductivity and we can easily calculate the gradient of the conductivity w.r.t. the formulation. Here, 

we take the median uncertainty of the conductivity measurements (𝛥𝜎678= 3.5272×10-+ mS/cm) and 

divide them by the largest gradient of conductivity w.r.t. to formulation (both uni- and bivariate) at every 

temperature (Figure 6) to obtain a conservative estimate of the maximally allowed formulation error 

(eq.2) that would be on the same order like the measurement noise. Unsurprisingly one can have larger 

errors in solvent-to-co-solvent ratios as in conducting salt-to-solvent ratios. Interesting however is that 

an error of about 10% in the solvents is acceptable for most temperatures. Dosing of the conducting 

salt should however be as precise as possible as at high temperatures the error should not exceed 
1.5%.  

Figure 6: a) The maximum norm of predicted conductivity gradient b) the maximum formulation error calculated 

by eq.2 with the median 𝛥𝜎&'(	of ~ 3.5272.10)* mS/cm with respect to uni- and bivariate combination of 𝑟#$!%! 

and 𝑟!" between -30 °C and 60 °C.  
 

(eq.2) 
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Conclusion 
This study shows the utility of active learning to improve model accuracy and precision on complex data 

with few examples. The pre-shot model significantly underfit the data such that obtained trends did not 

follow a physically meaningful trend. After one-shot active learning, the discovered model produced 
smooth cross temperature optima even though it was not trained with inter temperature data. Obtained 

trends in the optima suggest that for low temperatures, the conducting salt concentration should be 

minimized whilst for higher temperatures the salt concentration should be increased. These findings are 

in good agreement with the DHO theory due to the activation energy being on the same order of 

magnitude as the temperature activation. We find that a globally optimally conducting electrolyte does 

not exist as those optimal at low temperatures perform poorly at high temperatures. Those electrolytes 

optimized for near room temperature show ≈20% less conductivity at low and about half the conductivity 

at high temperatures compared to the range optimized formulations. Through the availability of an easily 
derivable model, we can discuss electrolyte solvent-conducting salt interactions and find mostly 

sigmoidal or exponential temperature trends hinting at two different mechanisms. The derivable model 

also allows an elucidation of maximally allowed formulation errors which lie at ≈10% for solvents and 

1.5% for conducting salts at most temperatures. Through the conservative choice of a low degree 

polynomial model due to scarce data availability we were able to obtain optima and interpretable 

insights translatable to existing physicochemical laws such as the DHO theory. 
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