
Citation: Winkler, M.; Rhein, F.;

Nirschl, H.; Gleiss, M. Real-Time

Modeling of Volume and Form

Dependent Nanoparticle

Fractionation in Tubular Centrifuges.

Nanomaterials 2022, 12, 3161.

https://doi.org/10.3390/

nano12183161

Academic Editor: Pawel Pohl

Received: 20 July 2022

Accepted: 6 September 2022

Published: 12 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Real-Time Modeling of Volume and Form Dependent
Nanoparticle Fractionation in Tubular Centrifuges
Marvin Winkler, Frank Rhein, Hermann Nirschl and Marco Gleiss*

Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe, Germany
* Correspondence: marco.gleiss@kit.edu; Tel.: +49-721-608-42426

Abstract: A dynamic process model for the simulation of nanoparticle fractionation in tubular cen-
trifuges is presented. Established state-of-the-art methods are further developed to incorporate
multi-dimensional particle properties (traits). The separation outcome is quantified based on a
discrete distribution of particle volume, elongation and flatness. The simulation algorithm solves a
mass balance between interconnected compartments which represent the separation zone. Grade
efficiencies are calculated by a short-cut model involving material functions and higher dimensional
particle trait distributions. For the one dimensional classification of fumed silica nanoparticles, the
numerical solution is validated experimentally. A creation and characterization of a virtual particle
system provides an additional three dimensional input dataset. Following a three dimensional
fractionation case study, the tubular centrifuge model underlines the fact that a precise fractiona-
tion according to particle form is extremely difficult. In light of this, the paper discusses particle
elongation and flatness as impacting traits during fractionation in tubular centrifuges. Furthermore,
communications on separation performance and outcome are possible and facilitated by the three
dimensional visualization of grade efficiency data. Future research in nanoparticle characterization
will further enhance the models use in real-time separation process simulation.

Keywords: solid–liquid separation; fractionation; tubular centrifuges; dynamic modeling; real-time
simulation; multi-dimensional particle properties

1. Introduction

Processing and purification of nanoscale products is becoming increasingly important
in modern industry and science. One of the main reasons lies in the fact that nowa-
days, the connection between specific nanoparticle (NP) traits and general improvements
of key product properties are well known [1–8]. Unit-operations regarding bottom-up
synthesis [9–11] as well as top down formulation procedures [12–14] are therefore tai-
lored towards high yields of narrowly distributed and beneficial particle sizes, shapes
or material compositions. In many cases the use of additional separation steps to sort
nanoparticles and remove impurities are mandatory [15,16]. In light of this, the demand for
a multi-dimensional separation- and grade efficiency quantification in particle technology is
increasing [17,18]. This means that several geometric and material parameters of a particle
collective have to be evaluated simultaneously [19–21]. Following this goal, initial affords
expand traditional schemes such as one dimensional (1D) particle size distributions (PSD)
to e.g., two dimensional (2D) property distributions [22,23]. To clarify the notation used
in this paper, the concept of particle trait distribution (PTD) is introduced. Traditional
PSDs are identical to 1D-PTD because only one feature is highlighted. The consideration
of multiple particle properties lead to higher dimensional PTDs, e.g., a three dimensional
(3D) PTD.

In the field of solid–liquid separation, tubular bowl centrifuges are capable of process-
ing nanosuspensions on a bench-scale with high throughput rates. Due to high centrifugal
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forces the apparatus can address challenging fractionation tasks of ultrafine particles and
biological products [24–29]. The evaluation of the apparatus performance is based on the
physical properties of a fine (centrate) and coarse fraction (sediment). Monitored process
information usually include the solids mass fraction and a grade efficiency according to one
major separation criterion (e.g., particle size). In an effort to include an additional criterion,
Winkler et al. [30] studied the simultaneous fractionation according to particle size and
solids density of mixed nanosuspensions experimentally. Moreover, the authors established
a real-time monitoring methodology to evaluate the fine fraction composition [31]. The lat-
ter is necessary because tubular bowl centrifuges operate semi-continuously. The reason for
this is that the accumulated sediment affects the separation result at longer process times.
The experimental studies listed in this paragraph show that tubular bowl centrifuges can
be successfully used for the fractionation of submicron- and nanosuspensions. However,
they also underline that a large number of experiments, online monitoring and laboratory
analyses are necessary to reliably characterize influencing variables.

To help understand the physical behavior within the centrifuge and gather vital process
knowledge efficiently, mathematical modeling is important. Build upon the idea of flow-
sheet simulation [32,33], recent efforts established numerical models for time-dependent
separation efficiency and sediment build-up computations in solid bowl centrifuges. These
so called dynamic short-cut models describe complex physical conditions during the sepa-
ration process on the basis of empirical equations and model assumptions. In contrast to a
macroscopic process-chain consideration, these meso-scale models incorporate apparatus
geometries and specific material functions to characterize the nanosuspension behavior.
The well-documented methods of Gleiss et al. and Menesklou et al. [34–39] serve as the
basis for a novel tubular centrifuge model (TCM) developed in this work. Regardless of the
type and implementation of the process model, they share the same advantages. They can
be used in combination with experimental data to optimize individual unit operations by
identifying advantageous process parameters. Moreover, they reduce experimental efforts
and assist in the design of experiments. Lastly, compared to simulations based on Com-
putational Fluid Dynamics (CFD) and the Discrete Element Method (DEM), the dynamic
process models demand a low investment in computational power. Consequently, this
leads to a possible application in model predictive control strategies that demand real-time
process simulation speeds [40].

One commonality of the highlighted studies is the exclusive focus on particle size as
the major classification characteristic. In other words, solids were assumed to be perfect
spheres, resulting in 1D grade efficiency curves. Revisiting the novel concept of multi-
dimensional separation- and grade efficiency quantification stresses the point that existing
short-cut models for tubular bowl centrifuges should be expanded to address e.g., form
dependent fractionation. The presented study aims to merge the concept of form dependent
sedimentation and multi-dimensional trait distributions with the short-cut modeling of
NP fractionation in tubular bowl centrifuges. The adapted simulation tool is able to
process both 1D and higher dimensional PTDs as a model input. Incorporating material
functions and operating parameters, the spatial and time-dependent separation of NPs
during centrifugation is computed.

This article is organized as follows: Section 2 outlines the theoretical background on
form dependent NP sedimentation in tubular bowl centrifuges. Additionally, mathematical
formulations of 3D joint distribution density functions and their application as PTDs
are described. In Section 3, vital information on the TCM implementation, its working
assumptions and parameters are presented. In a first simulation case, a 1D classification
setup is used to validate the TCM functionality and output (Section 4.2) with experimental
data. Here, commercially available fumed silicon dioxide (SiO2) NPs serve as a real-world
particle system (RPS). The novel approach of 3D separation efficiency modeling is tested
with the help of virtually generated SiO2 particles, further abbreviated as virtual particle
system (VPS). Their creation and statistical evaluation according to particle form and
volume is described in Section 3.4. The VPS and its 3D-PTD serves as new input for a
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second TCM simulation case. Material parameters and functions from the 1D case are
reused. Based on the model output for 3D grade efficiencies, the new TCM approach is
discussed thoroughly in Section 4.

2. Theory
2.1. Characterization of Particle Shape Based on Inertia Ellipsoids

The most frequently used isotropic quantity to describe a solid particle of arbitrary
shape is the so called equivalent diameter,

d =
3

√
6
π

VP, (1)

of a sphere with identical volume VP. While it provides no morphological information,
it can easily convey the particle mass if an affiliated solid density ρp is given. The par-
ticles morphology, however, can differ greatly in its degree of complexity. Both smooth,
convex shapes such as spheres, plates, cuboids and ellipsoids as well as more complex
aggregated structures and rough surfaces are possible. An extensive overview of different
form parameters found in the literature is listed in [41]. Barrett et al. [42] mentions the
three independent parameters form, roundness and surface texture one may consider for
describing particle shape. Here, particle form is the easiest to express and measure since
almost any given form parameter is estimated based on the longest xL, intermediate xI and
shortest xS axis length. As shown in Zingg’s diagram [43], the two independent axis ratios
of elongation,

e = xI/xL (2)

and flatness
f = xS/xI, (3)

can express and visualize shape on a macroscopic level but exclude information on round-
ness and surface texture. Recent studies expanded this classification system and described
a more detailed strategy to index non-spherical particles based on their elongation and
flatness [44] differentiating between compact, bladed, elongated and flat objects.

In the scope of this work, the model strategy involves a simplification of any complex
particle morphology based on a surrounding convex hull, hereby named Legendre′s ellip-
soid. Rooted in the field of mechanics, it is also referred to as the inertia ellipsoid of a given
compact body sharing the same moments of inertia and center of mass [45,46]. Figure 1
shows a 2D view of three complex 3D particle aggregates. Following the introduced clas-
sification criteria by Barrett et al. [42], their surface may be considered smooth, however,
their overall structure is irregular and concave. The schematic also illustrates all associated
inertia ellipsoids whose calculation is described in Section 3. From left to right, the first
particle is elongated, the second represented by an oblate ellipsoid, and the one on the right
is very compact. Throughout this paper, these scalene hulls and their axis lengths xL, xI
and xS represent the global form of any given particle.

Figure 1. Image of three different three dimensional (3D) aggregates and their corresponding inertia
ellipsoid illustrated as a transparent hull. Elongation e and flatness f values for each ellipsoid are
displayed below each body.

2.2. Form Dependent Particle Settling in a Centrifugal Field

Along the radial axis of rotation, a smooth particle in creeping motion within a
liquid medium inside a centrifuge experiences mass and frictional forces. Assuming
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uncharged particles in an infinitely diluted suspension with no particle-particle interactions
and negligible particle diffusion, the state of force equilibrium between drag, buoyancy,
and centrifugal force yields (

dr
dt

)
= u0 =

√
VP rω2 ∆ ρ

cD A 1
2 ρl

. (4)

Equation (4) provides an expression for the terminal settling velocity u0 of a single
particle with volume Vp. Here, r defines the distance from the axis of rotation, ω is the
constant angular velocity inside a stationary liquid pond and t stands for the elapsed time.
Equation (4) describes the particle velocity as a function of the density difference between
fluid and solid ∆ρ = ρp− ρl and the area A projected by the particles surface in the direction
of radial flow. Lastly, the drag coefficient cD is a dimensionless parameter which quantifies
the solids hydrodynamic drag. Regarding the assumptions made to introduce Equation (4),
the influencing factors of this parameter include the particle Reynolds Number,

Rep =
ρl d u0

ηl
, (5)

geometric shape and orientation. Here, d is introduced as the equivalent diameter of a
volume-equivalent sphere and ηl the dynamic viscosity of the fluid. Due to the small
length-scales of colloids, a creeping motion with low Reynolds numbers

(
Rep � 1

)
can be

expected. In this regime, Stokes [47] found an analytical solution for spherical bodies with
the definition cD,S = 24/Rep for the drag coefficient, using Equation (1) and the projection
area A = π

4 d2. Substituting these expressions in Equation (4) leads to the well-known
expression of the Stokes settling velocity

u0,S =
d2 ∆ρ r ω2

18ηl
, (6)

for a spherical particle. In terms of particle shape, Equation (6) describes sedimentation
in one dimension. The consideration of multiple geometric particle properties by drag
correlations in several ranges of Reynolds numbers is extensively studied and discussed in
the literature [41,48–53]. A recently published article by Trunk et al. [41] compiles multiple
drag correlations for non-spherical particles and provides additional information on the
drag correlation approximation for Reynolds numbers outside the Stokes regime. In the
context of this work the mathematical formulation of the corrected drag coefficient,

c∗D = f
(

Rep, kS
)
= cD,S kS, (7)

is defined as the product of cD,S and the so called Stokes drag correction factor kS in
accordance with the definition used by Ganser et al. [49]. This simplification is only
valid in the Stokes regime but applicable for this work, since the presented model is
restricted to NP sedimentation. With the identical transformation strategy that was used for
Equation (6), Equations (4) and (7) yield a approximation for the terminal settling velocity
of non-spherical particles:

u0(kS) =
d2 ∆ρ r ω2

kS 18ηl
. (8)

Besides Stokes’ settling theory, analytical solutions for kS were obtained for spheroids [54]
and other axisymmetric particle shapes [55,56]. The equations listed use synonyms of
the form descriptors xL, xI and xS introduced in Section 2.1. Building upon this well
documented knowledge, recent studies of Bagheri et al. [53] dealt with the prediction of the
translational friction coefficient in gaseous and liquid media for a wide range of sub-critical
Reynolds Numbers (Rep < 3× 105). The authors claim, that shape descriptors defining kS
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should be easy to measure and not dependent on the complex determination of e.g., spheric-
ity in 3D scenarios. Consequently, they are defined by form- rather than roundness- or
surface texture parameters which suits the purpose of this study. The presented definition
of the drag correction factor

kS,B =
1
2

((
f e1.3

)α
+
(

f e1.3
)−α

)
(9)

is merely a function of the particles elongation and flatness. The exponent α is set to 1/3

following the assumption that particles tend to settle with neither a preferred orientation
but rather with a random rotation in the Stokes regime [53]. Migration due to Brownian
motion is common for NPs [57,58] which explains this assumption. Hence, Equation (9)
is applicable when approximating the NP settling velocity in tubular bowl centrifuges.
Following the model theory, the drag correction factor for strongly elongated and flat
particles is high. Substituting kS,B in Equation (8) with α = 1/3 yields

u0,B =
d2 ∆ρ

6 ηl

(
( f e1.3)

1/3
+ ( f e1.3)

−1/3
) r ω2 = s0,B r ω2, (10)

for the sedimentation rate of arbitrary shaped, randomly oriented particles in creeping
motion. Its diameter d and density define the mass of an equivalent spherical body while its
shape induced deceleration is approximated by a scalene inertia ellipsoid with elongation
e and flatness f . Additionally, Equation (10) introduces the sedimentation coefficient
s0,B as a particle trait dependent scalar with unit s−1. Consequently, this parameter is
dependent on the physical properties of both the solid and the surrounding fluid as well as
the particle shape.

The presented expressions for the sedimentation coefficient are valid for highly diluted
suspensions which have low technical relevance. Both density and viscosity of the sus-
pension increase with increasing solids volume fraction. In addition, a solvent backflow is
generated by the moving particles [59]. At high dilution, these hydrodynamic interactions
induce a first order dependence of particle friction on the solids volume fraction φ [60,61].
As a consequence an expression for the apparent sedimentation coefficient,

sB = s0,B (1 + w φ)−1, (11)

may be defined, where w is the hindered settling coefficient. For hard spheres, empirical
observations are reported in the literature describing the influence of concentration on
the settling behavior of mono- and polydisperse suspensions [62–64]. In the case of non-
isometric particles shapes, only few experimental studies are reported in the literature.
There are studies that have investigated the settling behavior of variously shaped macro-
molecules or colloidal platelets. Again a linear relationship between the concentration
and the normalized sedimentation velocity was found for low solid volume fractions [65].
Particularly noteworthy is the increase in particle resistance due to the decreasing sphericity
and the resulting increased backflow of the solvent. Such results emphasize that the
influence of concentration may not be neglected neither in experimental studies, nor in any
model approach of colloidal particle sedimentation.

2.3. Joint Particle Trait Distributions

In particle technology, probability density distributions or PTD in general are used
both for the characterization of a particulate product as well as for the quantification
of a separation experiment outcome. In most cases, a PSD is derived either from the
indirect analysis of a physical property such as the attenuation or scattering of light [66,67],
by sieving, or by direct image processing [68,69]. Here, the equivalent particle diameter d
is commonly used as a random variable Z = {d1, d2, ..., dM}, representing the arithmetic
mean of each discrete particle size class in a predefined sample space. The distribution
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weighting is defined by the subscript r. The probability P of a particle occurrence in interval
[d1, d2] is defined by:

P(d1 ≤ Z ≤ d2) =

d2∫
d1

qr(d)dd, (12)

for Z being a continuous random variable. In probability theory, qr(d) : R→ R is defined

as a probability density function of Z which has to satisfy qr(d) ≥ 0 and
∞∫
−∞

qr(d) dd = 1.

However, a dynamic process model for separation based on arbitrary shaped particles
and their respective inertia ellipsoids calls for at least two random variables. Let Y be a
second discrete random variable that takes on values {e1, e2, ..., eL} and X be a third discrete
random variable that takes on values { f1, f2, ..., fK} representing the form parameters
elongation and flatness. Then, the joint probability density function of the continuous
random vector (Z, Y, X) is qr( f , e, d) : R3 → R. The situation is analogous to the 1D case
where the probability to meet a particle in a given interval,

P( f1 ≤ X ≤ f2, e1 ≤ Y ≤ e2, d1 ≤ Z ≤ d2) =

f2∫
f1

e2∫
e1

d2∫
d1

qr( f , e, d) d f de dd, (13)

is equal to the volume of an infinitesimal cuboid of length d f , width de and height dd times
the probability density at ( f , e, d). Again, qr( f , e, d) ≥ 0 and

∞∫
−∞

∞∫
−∞

∞∫
−∞

qr( f , e, d) d f de dd = 1 (14)

must hold [70,71]. This means that for a particle trait distribution to be normalized neither
the area nor the volume under a curve or plane must equal unity, but rather the sum of a
four dimensional hyperspace. In Section 4, this is of interest for visualizing a particle trait
distribution with three defining geometric variables.

Equations (12) and (13) can be formulated analogously as discrete distributions with
sums of individual property classes, which are better suited for applications in separation
technology. This is because numeric calculations involving PTDs are usually formulated in a
discrete manner. In addition, experimentally determined distributions are given in discrete
values, which result in an adequate histogram. In the scope of this work, volume weighted
distributions are used for both particle trait distribution visualization and calculations in
the presented dynamic process model for tubular bowl centrifuges.

One major difficulty associated with 3D distributions is the fact that their repre-
sentations are often convoluted and lack clarity. To overcome these challenges in data
visualization, marginalization is an adequate tool to reduce the dimensional complexity
and potentially enhance the readability of higher dimensional data. In the following,
the mathematical computation needed for the marginalization of 3D data to 2D and 1D
datasets is shown. Referring to strategies used throughout this study we define:

q3( f , e) =
dmax∫

dmin

q3( f , e, d) dd, (15)
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as the marginalized volume weighted distribution density by integration over the equiva-
lent particle diameter d. Analogously, performing a two step integration over elongation e
and flatness f , a marginalized distribution density,

q3(d) =

fmax∫
fmin

emax∫
emin

q3( f , e, d) d f de, (16)

in one dimension can be derived. The method of marginalization is used in Section 4 for
discussion and data visualization purposes.

3. Materials and Methods

This section introduces the tubular bowl centrifuge used in both experimental and nu-
merical investigations. Furthermore, the dynamic simulation tool is thoroughly described
and all necessary balance equations and model assumptions regarding the time dependent
NP separation are given. It builds upon the work of Gleiss [72] and published work of his
research group at the IMVM in Karlsruhe. Lastly, physical information on two SiO2 NP
suspensions are given. These particle systems are used to validate the 1D model output
and help to understand the challenges in 3D and multi-dimensional separation setups.

3.1. Tubular Centrifuge Design Equations

This section deals with the mathematical description of the tubular centrifuge de-
sign equations used to model the separation process regarding single particles in motion.
Figure 2 depicts a schematic cross section of a tubular centrifuge rotor. Typically, in most
commercially available devices, the rotor is mounted in a suspended position and accel-
erated to a desired angular velocity ω. The second important operating parameter is the
volume flow that forces the suspension through the vessels bottom inlet. During operation,
the centrifugal force forms a liquid pond, the height of which is set by the rotor weir at
the outlet. Additionally, a gaseous core centered around the rotor axis is present. The ex-
emplified trajectory in Figure 2 of particles with different sizes visualizes the apparatus
general classification use. Coarser fractions accumulate at the rotor wall whereas smaller
particles are transported beyond the overflow weir and enter the centrifuge downstream.
Depending on the initial feed concentration, this build-up sediment can quickly reduce the
available liquid cross section and diminish the separation efficiency over time.

Figure 2. Schematic cross section of a tubular centrifuge rotor highlighting the geometry and spatial
discretization with j = {1, 2, . . . , J} cylindrical compartments of equal volume.

Abstracted in two dimensions, the particles settling path in the fluid reservoir is set by
its radial and axial velocity. The ratio of these two velocities is decisive for the separation
efficiency approximation. By assuming plug flow inside any compartment with length Lj
in the liquid pond, the particles residence time,

tv,j =
V
V̇f

=
π
(

r2
b,j − r2

w

)
Lj

V̇f
, (17)
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is altered by the liquid throughput V̇f and the surface area A = π
(

r2
b,j − r2

w

)
of the liquid

layer. The weir rw and boundary rb,j radius as well as the total length of the settling zone L
are set by the accumulated sediment height and the rotor geometry.

Equating the particles residence and settling time by combining Equations (10), (11)
and (17) yields an expression for a critical settling position,

rc,j = rb,j ·

exp

−sB ·ω2 ·
π
(

r2
b,j − r2

w

)
Lj

V̇f

, (18)

for each individual particle fraction. All material and fluid characteristics influencing the
particles sedimentation are comprised in the introduced model for sB. This derivation is
similar to that in publications of Gleiss et al. [35,36], who defined a grade efficiency:

Tj(sB) =
Asep

A
=

r2
b,j − r2

c,j

r2
b,j − r2

w
, (19)

assuming a homogeneous distribution of each particle fraction along the radial axis. Here,
Asep is the area of the annular gap in which particles with an associated s-value will reach
the rotor wall at the end of their residence time and are thus separated. As in Gleiss et al. [34]
and Menesklou et al. [38], a compartment grade efficiency,

Tj(sB) = Tj(d, e, f ) =
r2

b,j

r2
b,j − r2

w
·

1−

exp

−sB ·ω2 ·
π
(

r2
b,j − r2

w

)
Lj

V̇f

2, (20)

is defined by inserting Equation (18) in (19). This expression for the grade efficiency gives an
approximation for the separation probability as a function of the sedimentation coefficient,
operating parameters and geometric boundaries. Additionally, this leads to a multivariate
grade efficiency formulation centered at the three particle traits equivalent diameter d
elongation e and flatness f that define sB. The consideration of two additional dimensions
requires modifications to the discretization strategy used in the transient model and balance
equations described in the next section.

3.2. Mathematical Model and Discretization

Building on the physical processes described in Section 3.1, Figure 3 highlights the
spatial discretization of the separation zone in J compartments of equal volume. These
sections are coupled by mass balances involving both suspended solids in the suspension
zone (I) and deposited material in the sediment zone (II). Consequently, both particle
sedimentation and sediment build-up are calculated locally with a desired spatial resolution.
By using a finite amount of compartments, the temporal change in sediment height and
particle residence time are approximated with low numerical effort [35].
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End

tn = tN
res. 

≤ 

10-6

··· ···

1 2 J-1 J3 j mj,sep
·

mj
·mj-1

·

qj-1(f,e,d) qj(f,e,d)

min
· mout

·

qin(f,e,d) qout(f,e,d)

VII,j VI,j
Start

Set 
discretization

Import 
PTD

Solve
mass balance

in J compartments

Set 
(1) geometry

(2) fluid params.
(3) solid params.

yes

no
yes

no

a)

b)

Update
sediment 
boundary 

Zone II:
Sediment

Zone I:
Suspension

Figure 3. Spatial discretization of the separation zone in j = {1, 2, . . . , J} compartments with illustra-
tion of incoming and outgoing flows (a); Flow chart of the simulation algorithm (b).

One resulting advantage is that this strategy allows real-time modeling of the transient
separation process. Referring to the illustration of compartment j in Figure 3, the mass
balance equation of the suspension zone,

dmI,j

dt
= ṁI,j−1 − ṁI,j − ṁj,sep, (21)

describes the temporal mass change. Assuming a constant particle density, their mass can
be substituted by the product of sedimentation zone volume VI,j and solids volume fraction
φI,j resulting in the expression:

d(φI,j VI,j)

dt
= V̇f φI,j−1(1− Ej,sep(t))− V̇f φI,j . (22)

Here, the ratio of separated to incoming particle mass is introduced as the local
separation efficiency Ej,sep(t). Analogously, the change in sediment volume VII,j over time,

d(φII,j VII,j)

dt
= Ej,sep(t) · V̇f · φI,j−1, (23)

is equal to the mass flow rate of the solids which do not migrate to the next compartment
and are thus separated. For the calculation of Ej,sep(t) is calculated from V̇f, ω and sB as
shown in Equation (20).

The general, discrete formulation of the separation efficiency,

Ej,sep = ṁj,sep
(
ṁI,j−1

)−1
=

K

∑
k=0

L

∑
l=0

M

∑
m=0

(
Tj( fk, el , dm) q3,j( fk, el , dm)

)
, (24)

will now be further explained based on the introduced distribution theory in Section 2.3.
Given any particle collective, a discrete, mass weighted formulation of Equation (12) yields:

mj(dm) = q3,j(dm)∆d
M

∑
m=0

mj(dm), (25)

for the mass fraction mj(dm) of a particle with diameter dm in a class with uniform interval
width ∆d. M is the number of discrete diameter classes. Consequently, both distribution
density q3,j(dm) and compartment grade efficiency Tj(dm) (Equation (20)) are vectors with
size (1×M). When incorporating two additional dimensions, the mass fraction,

mj( fk, el , dm) = q3,j( fk, el , dm)∆ f ∆e ∆d
K

∑
k=0

L

∑
l=0

M

∑
m=0

mj( fk, el , dm), (26)
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includes q3,j( fk, el , dm) and Tj( fk, el , dm) as 3D arrays of shape (K× L×M). Both in the
traditional 1D case and in the extended 3D consideration, Ej,sep is calculated from a numer-
ical integration of the product of the separation efficiency and the distribution density as
shown in Equation (24). The departing PTD is linked to the one in the prior compartment
(j− 1) or in case of j = 1 to the initialized feed distribution q3,in as shown in Equation (27).

q3,j( fk, el , dm) = q3,j−1( fk, el , dm)

(
1− Tj( fk, el , dm)

)(
1− Ej,sep

) (27)

Consequently, Equations (22) and (23) form a linear system of equations solved by
the algorithm depicted in Figure 3b. For its implementation, the python3 programming
language is used. The list of mandatory repositories include the numpy [73] package and
function fsolve [74,75] from the scipy package. At the start of a simulation run, the compart-
ment count J, the initial PDT, solid and liquid parameters as well as the rotor geometry
is set. The introduced system of balance equations is solved implicitly for a user defined
time step size ∆t and total simulation time tN . A solution is found for each tn if the relative
residual error between two consecutive iterates is at most 10−6. Due to the progressive
reduction of the volume VI,j, the boundary radii rb,j increase and the local grade efficiencies
must be recalculated for each time step. The first salient model output is the centrates
solids volume fraction expressed as φout(tn). With the known feed concentration φin an
expression for the global separation efficiency,

Eg(tn) = 1− φout(tn)

φin
, (28)

is set. The second model output calculation centers around the global grade efficiency,

Tg(dm, tn) = 1−
Eg(tn) q3,out(dm, tn)

q3,in(dm)
and (1D) (29)

T̃g( fk, el , dm, tn) = 1−
Ẽg(tn) q̃3,out( fk, el , dm, tn)

q̃3,in( fk, el , dm)
(3D), (30)

for one up to three dimensions following the fundamental grade efficiency descriptions
found in the mechanical process engineering literature [76]. With Equations (28)–(30) each
time step provides information on the actual separated mass per particle trait class based
on the outgoing, mass weighted density distribution q3,out.

Regarding transparency and the discussion of model caveats in later sections, the fol-
lowing list of assumptions and model simplifications is noted:

(1) The flow pattern inside the centrifuge is plug flow. solid–liquid or solid-solid in-
teractions are modeled solely in one direction by the hindered settling coefficient
(Equation (11));

(2) Particles are small compared to the rotor length and weir perimeter. Fluid transport is
therefore not influenced by the dispersed NPs;

(3) A pronounced radial dispersion within the liquid layer is assumed. In each compart-
ment the incoming particle fractions are back-mixed ideally;

(4) Any formed sediment is incompressible and maintains a constant porosity(
dφII,j

dt = 0
)

simplifying the implicit solution of Equations (22) and (23) and reducing
the computational effort;

(5) The gas-liquid interface has no influence on the separation process;
(6) The suspension is stabilized and particles retain their geometric shape and material

density. Hence, no breakage or agglomeration takes place resulting in an immutable
PTD both in the 1D and 3D case.

One note concerning the code structure and its execution is that both classification
and form dependent fractionation can be addressed. Inside the computational domain,
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multiple TCM cases with different initial boundary conditions, inputs and discretization
parameters can be set up. If the input PTD is a 1D-array holding discretization variable
d, a classification is calculated and the assumption e = f = 1 for each particle class holds.
The second considered setup is that the input PTD represents a tensor. Here, d, e and
f define the volume and form properties of the respective particle classes. All relevant
cases presented for this paper and their parameters, inputs and outputs are described
in Section 4.

3.3. Experimental Setup and Model Particle System Characterization

The experimental setup includes a Z11-type tubular centrifuge designed by Carl
Padberg Zentrifugenbau GmbH (CEPA, Lahr, Germany). All geometric boundaries used
in the simulation tool are listed in Table 1 and predefined by the apparatus rotor itself.
An eccentric screw conveyor (NETZSCH Pumpen und Systeme GmbH, Waldkraiburg,
Germany) is able to transport a suspension with low pulsation and constant flow rate to
the rotor inlet. For further information regarding the process layout for NP separation,
the reader is referred to a preliminary study [31] which incorporated a similar setup.

Table 1. Overview of the centrifuge geometry, fluid and particle system properties.

Parameter Symbol Value SI unit

weir radius rw 0.0073 m
wall radius rb(tn=0) 0.0215 m
rotor length L 0.175 m

angular velocity ω 40,000 s−1

flow rate V̇f 5× 10−6 m3s−1

solids density ρp 2200.0 kg m3

mean particle size d50 64.39 nm
solids volume

fraction φin 3.0× 10−4 −

liquid density ρl 998.207 kg m3

liquid viscosity ηl 1.0027× 10−3 kg m−1 s−1

To test and validate the adapted process model for 1D-PTDs, a non-spherical particle
system is used in this study. The trade name Aerodisp® W7512 S specifies a hydrophilic,
fumed silicon dioxide (SiO2) suspension manufactured by Evonik Industries AG (Hanau,
Germany). The product is synthesized in a flame hydrolysis process forming primary
particles which then collide and partially attach to each other. This aggregation step is
followed by an agglomeration of the non-spherical aggregates due to weak inter-particular
interactions. Some examples showing the branched structure of the individual aggregates
can be found here [29,77,78]. The SiO2 particles are well dispersed in demineralized water
resulting in 30 nm ≤ d ≤ 130 nm for the expected equivalent aggregate diameter. To ensure
this dispersion state, the suspension is sonified (Ultrasound processor UP400St, Hielscher
Ultrasonics, Teltow, Germany) prior to any classification experiment. The volume weighted,
1D-PTD was measured in a CPS 24,000 disk centrifuge (CPS Instruments Inc., Prairieville,
LA, USA). The measuring principle of this analytical disk centrifuge (ADC) is based on
an extinction screening at the outer edge of a rotating disk. A laser with wavelength
470 nm traverses through the transparent disk and sample at a small area before hitting
the detector. Large particles reach this position earlier, successively followed by smaller
particles. The advantage of the ADC measurement is that a density gradient in the disc
effectively separates multiple size fractions, thereby reducing inter-particular forces by
dilution and stabilizing the sedimentation during analysis. Using predefined procedures
for each material, the raw extinction signal is translated into a 1D-PTD by combining
Equation (6) and Mie scattering theory. Hence, only the equivalent diameter d and its
distribution q3,in(d) is measurable. This inevitably reduces the aggregates characterization
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to 1D. Nevertheless, referring to Figure 3 and Equation (25), the measured 1D-PTD of the
RPS serves as an input for the 1D-TCM.

In order to assess the influence of particle concentration on the sedimentation behavior,
the multisample analytical centrifuge (AC) LUMiSizer (LUM GmbH, Berlin, Germany) was
utilized. The SiO2 suspension with a defined solids volume fraction was filled into a small
cuvette and inserted onto a rotating platform. Their filling volume was 0.4 ml, spinning
with a rotational speed of 4000 min−1 at a constant temperature of δ = 10 °C. Lowering
δ in the measurement chamber helps to reduce particle diffusion. During sedimentation
analysis a light source emits parallel rays of light [79] with the same wavelength as the
ADC (λ = 470 nm). While the rotation forms a meniscus in the perimeter of the cuvette,
the AC measures an extinction profile along its entire height. Logging a new curve every
30 s provides a progression of sedimentation over time. The raw AC data can be used
to calculate an apparent sedimentation coefficient distribution g∗(sext) either by a spatial
or temporal differentiation of these extinction profiles [80,81]. In this study, the method
published by Schuck et al. was used to derive g∗(sext) by means of least-squares boundary
modeling (LSBM) [82]. The described procedure was first translated to a python code
which automated extinction data input, pre-processing and g∗(sext) calculation. Note
that the procedure neglects diffusion effects and involves an extinction weighting of the
sedimentation coefficient. Unlike sB introduced in Section 2.2, the extinction weighted
distribution g∗(sext) can not be used directly for the TCM model but is sufficient for an
empirical approximation of the sedimentation hindrance coefficient w in Equation (11).

3.4. Virtual Particle System Creation and Characterization

This section describes the workflow used to create a virtual SiO2 particle system (VPS)
and compute an affiliated 3D-PTD. The entire method is structured in three sub-modules
depicted in Figure 4.

Figure 4. Schematic overview of the pipeline used to compute three dimensional (3D) particle trait
distributions (PTDs) based on virtual silicon dioxide (SiO2) aggregates.

The first module (M1) tackled the computer simulation of particle aggregation. From a
general point of view, the formation of SiO2 aggregates during flame synthesis can be
described by different kinetic growth models [83,84]. For the presented study, a custom
diffusion-limited-aggregation (DLA) algorithm was used.

The computation starts with a seed particle in the center of a cubic grid. A second par-
ticle is released in the domain and moves step-wise to one of 26 possible lattice coordinates.
If the randomized path intersects the initial seed perimeter, a collision is recorded. For a
randomized total primary particle count, this process is repeated until a final 3D structure
is build. Particles that wander outside the boundary are deleted and respawn [85,86].
A unique feature of the presented algorithm is that three individual spawn locations are
defined. Usually, a particle trajectory starts at the surface of a sphere that surrounds the
seed particle (option 1). Two additional options restrict the particles entry positions to the
spheres equatorial circumference (option 2) and both polar regions (option 3). In each new
run, the algorithm randomly chooses one option. This additional degree of randomization
ensures that each particle has a unique structure with a lesser occurrence of compact aggre-
gates. A more detailed and visual description of the custom DLA algorithm is provided as
Supplementary Material of this manuscript. The setup was used to construct a collection of
P = 3771 aggregates for the VPS. Visual examples for some of the generated particles in
the collection are shown in Figure 5.



Nanomaterials 2022, 12, 3161 13 of 28

x

y

z

x

z

y

Figure 5. Two dimensional (2D) image of eleven unique nanoparticles (NPs) of the virtual particle
system (VPS) created by the custom diffusion-limited-aggregation (DLA) algorithm (M1). Two
different projections are shown to visualize differences is nanocluster form.

The second module (M2) conducts a volumetric analysis of multiple 3D objects at once.
Its functionality is inspired by quantitative computer tomography (CT) measurements of
particles on the micro- and nanoscale [87]. In particle technology, nano- and micro-CT
measurements are reconstructed into 3D images of a representative sample in a defined
environment. Subsequently, particles in 2D image slices are segmented and counted.
Each observed particle can be labeled with, for example, a vector of geometric properties.
Detailed information on the state-of-the-art execution of CT-measurements and image
processing workflows can be found here [88].

To recreate this methodology for the VPS, the open source content creation suite
Blender [89] and its build-in Python application programming interface (API) was used
to place roughly 100 particles out of the whole collection in a rectangular volume with a
base area of 3.3 µm3. Thereby, care was taken that the individual particles did not overlap.
At the end of this preparation procedure, 37 samples were exported in the Standard Triangle
Language (STL) format and imported separately into the image processing software Fiji [90].
Afterwards, a plugin called SciView [91] created image stacks of each individual sample.
An image resolution of 600×600 pixels results in a voxel size of 5.5 nm. At this point it
should be mentioned that the technically feasible spatial resolutions in nano-CT are gener-
ally lower than the one applied in this module. To give an example, Ditscherlein et al. [88]
reported applicable voxel sizes of 16 nm and 64 nm depending on the nano-CT measure-
ment type. The applied spatial resolution in this study ensures an accurate recording
and quantitative analysis of the nanocluster form. Processing the resulting binary image
stacks in the 3D Objects Counter-plugin [92] created an indexed voxel representation of
every virtual sample. The obtained object maps were then analyzed by the well-known
mathematical morphology analysis plugin MorphoLibJ [93]. Of particular interest is the
automated determination of the 3D inertia ellipsoid and voxel volume. This volume in
combination with a predefined solids density provides an approximation of the mass of
each individual particle in the collection. As stated in Section 2, both particle volume and
the form of a convex hull defined by the inertia ellipsoid are needed for sedimentation
coefficient calculations. Therefore, the transverse and polar radii were used to calculate the
particles elongation and flatness. Finally, the discrete particle information for VP, f , e and d
were compiled in a list with P = 3771 entries.

The last module (M3) performs a statistical particle trait analysis based on a given input
list of discrete information and outputs a user defined PTD. In accordance to Section 2.3
a 3D-PTD in discrete notation is a tensor of size (K× L×M). Each of the three variables
e, f and d have user defined limits and discretize one dimension. During computation,
an algorithm sorts each particle n with respect to their trait combination { f , e, d}n into a
matching bin. Afterwards, the relative particle mass m( fk, el , dm) in each class is calculated
by adding up all particle volumes and multiply the sum class-wise with a predefined
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solids density ρp. In the final step, Equation (26) is used to compute the volume weighted
3D-PTD. This routine was applied to the VPS trait database output of M2 resulting in a
multi-dimensional density distribution q̃3,in( fk, el , dm) which served as one input for the
3D-TCM model.

The assignment of discrete property vectors based on high fidelity image analysis
is a common practice in material science. For example, methods such as transmission
(TEM) [94,95] or scanning electron microscopy (SEM) [96,97] are able to statistically char-
acterize complex particle systems on a broad size range. In case of 3D image processing,
Ditscherlein et al. [98] introduced an open access archive for particle-discrete CT. One major
advantage of module M3 in the presented workflow is that it can process such database
entries independently of the measurement methodology used. This means that, in future
research, real-world particle data can be easily translated into a 3D-PTD and implemented
into a 3D-TCM.

Modeling the fractionation of NPs is not the only application for particles emerging
from the presented workflow. As an additional advantage, the universal data structures of
the discrete particles leads to possible applications in other research areas. One example is
the permeability investigation of porous media, which is largely determined by the spatial
structure of the capillaries [99]. Similarly, numerical simulations on the performance of
lithium ion batteries by Chauhan et al. can be highlighted in this regard. In their work,
the authors generate idealized microstructures which mimic the spatial distribution of key
materials such as carbon black and active materials in the cathode [100]. Here, the presented
workflow of this study could offer an alternative to generate discrete 3D particles with
variable microstructures. Consequently, the volumetric and statistical analysis (M2, M3)
would add an additional factor to the performance simulation of lithium ion batteries:
distributed particle features in more than one dimension.

4. Results

The presented results are divided into two parts. First, the experimental determination
of the hindered settling coefficient is presented. Afterwards, a 1D- and 3D-TCM case
output is shown. In the 1D setup, a 1D-PTD with 500 discrete bins for d serves as a density
distribution input measured by an ADC. In the 3D case, a PTD with a total of 27,000 bins
is utilized. For its construction, the VPS trait database provides all required information.
Note that for reference and clarity all model outputs of the 3D case are marked with an
accented tilde (e.g., T̃).

4.1. Hindered Settling Evaluation of Aerodisp® W7512 S

Following the steps described in Section 3.3, the RPS suspension was diluted with
demineralized water and analyzed in the AC. Raw extinction data import and processing
via LSBM leads to an apparent, extinction weighted sedimentation coefficient distribution.
The advantage of this method is that the sedimentation does not need to be significantly
advanced in order to derive a solution for g∗(sext), resulting in less time required per
measurement. The evaluation set-point is chosen so that all particles are in motion, jet no
complete separation of larger fractions takes place. By numerical integration of g∗(sext),
the cumulative sum G∗(sext) was determined and plotted with its standard deviation in
Figure 6a. Each curve is based on four analyzed samples and the mean value is plotted.
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Figure 6. Cumulative sum distribution G∗(sext) derived by least-squares boundary modeling (LSBM)
code based on analytical centrifuge (AC) extinction profiles (a). Reciprocal ext. weighted sedimen-
tation coefficient s−1

25,ext, s−1
50,ext and s−1

75,ext plotted against φ of the analyzed silicon dioxide (SiO2)
suspension; dotted, dashed and dash-dotted lines indicate a linear least squares fit (Equation (31))
with an associated coefficient of determination R2 (b). Note that the lines indicate the connection
between the data extracted from (a) and plotted in (b).

As described in Section 2.2, sB is a function of the sedimentation coefficient s0,B in
infinite dilution, the solids volume fraction and the hindrance coefficient. In a subse-
quent step, the characteristic of the abscissa at G∗(s25,ext) = 0.25, G∗(s50,ext) = 0.5 and
G∗(s75,ext) = 0.75 were determined and plotted reciprocally against the solids volume
fraction in Figure 6b. In other words, the intersections between each of the horizontal lines
and the G∗(sext) cumulative sum distribution in Figure 6a lead to the 18 plotted datapoints
shown in Figure 6b. Assuming the linear dependence,

1
sext

=
w

s0,ext
φ +

1
s0,ext

, (31)

after rearranging Equation (11), a least squares fit yields w and s0,ext as functional param-
eters [101,102]. A parallel evaluation for all three distribution reference points leads to a
mean hindered settling coefficient of w = 32.44± 9.40 for the SiO2 suspension. The un-
certainties in w can be explained by error propagation. The averaging of four individual
measurements from the LSBM leads to noticeable slope deviations marked as gray areas be-
neath the linear fit curves in Figure 6b. Nevertheless, the AC analysis provides a correction
for the sedimentation conditions based on inter-particle interactions, which are enhanced
with an increased solids volume fraction. Therefore it is used in both the 1D- and 3D-TCM
for sedimentation hindrance modeling.

4.2. TCM Results for 1D Classification

This part illustrates a 1D classification experiment of the RPS used to validate the
1D-TCM. Utilizing the experimental setup and parameters highlighted in Section 3.3
and Table 1, the analyzed 1D-PTDs of both feed suspension and centrate are shown in
Figure 7a. Additionally, ADC measurements yield an experimental value for the global
separation efficiency Eg used to calculate a 1D graph of Tg (Equations (28)–(30)). In general,
experimentally determined values are shown as points whereas the 1D-TCM simulation
output is marked as solid lines. The separation experiment was performed twice and
both ADC and gravimetric analysis were performed in triplicate to derive the mean and
standard deviation for φin, φout and Tg. Results for both q3,out and grade efficiency are in
good agreement with comparable classification scenarios found in the literature [27].
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Continuing with the validation procedure, identical boundary conditions and the
acquired 1D-PTD input q3,in(d) supply a working 1D-TCM case as proposed schematically
in Figure 3. The total simulation time tN is limited to 360 s to match the suspension
sampling time in the experimental study. Following a preliminary evaluation procedure
described in Appendix A.1, the spatial discretization is set to J = 20 compartments and the
simulation timestep is set to ∆t = 0.5 s.
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Figure 7. (a) Volume weighted density distribution of feed and centrate suspension (left ordinate)
and global grade efficiency (right ordinate) at tN = 360 s. Markers indicate experimental data
acquired by analytical disk centrifuge (ADC) measurements, solid lines mark the tubular centrifuge
model (TCM) case output. (b) Global separation efficiency versus time calculated by the TCM model.
Experimentally acquired reference with two independent methods drawn with horizontal dashed
and dotted lines, gray areas highlight the standard deviation of both measurements.

Figure 7b highlights the history of Eg (solid line) as well as the experimental reference
acquired by differential weighing (DW) and ADC measurements. The initial model output
indicates a separation efficiency of one since the rotor is pre-filled with demineralized
water. After 30 seconds, the suspension and sediment zone gradually populate with solid
material due to particle entrance and deposition. After roughly one minute, the process
runs practically stationary with almost no change in Eg. This is explained by the low feed
concentration of the SiO2 suspension resulting in no significant sediment buildup and effect
on sedimentation behavior. Likewise, the influence of sedimentation hindrance is barely
noticeable since measured uncertainties in w result in a 0.48% fluctuation of the simulated
mean cut size dT,50. This conclusion surfaced after a sensitivity analysis in which w was
adjusted multiple times within the scope of its standard deviation. This is in accordance
to experimental results conducted by Spelter et al. [29] describing a negligible effect of
sedimentation hindrance for φin ≤ 0.5 v% for the identical particle system. In summary,
numerical simulation results and experimental data are in a very good agreement. Most
discernible deviations can be explained by a very low concentration of NPs at the beginning
(d ≥ 150 nm) and at the end (d ≤ 35 nm) of a 1D-PTD analysis with the ADC. Overall, these
findings underline the validity of the current results in case of the 1D-TCM model. Chances
made to the initial dynamic process model introduced by Gleiss [72] did not affect the
congruence of experiment and simulation.

The presented TCM model version is tailored to flexible, multi-dimensional PTD
inputs and short simulation times. This means that if long-term experiments are to be
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simulated, model accuracy could be worse. The importance of sediment build-up consid-
eration has already been proven experimentally by several authors [29,103]. Therefore,
Gleiss et al. [37] and Menesklou et al. [39] implemented an adequate method building upon
empirical measurements for the consolidation mechanism in decanter centrifuges. For now,
the need for long-term model accuracy is secondary to the successful implementation of
3D-PTD into the TCM model. Future research, however, needs to incorporate polydisperse,
multi-component sediment build up and consolidation with adequate material functions.
Nonetheless, in the presented work, a high model accuracy was achieved for the numerical
simulation of 1D classification in tubular centrifuges.

4.3. Visualization of 3D-PTDs

The pipeline output presented in Section 3.4 is best described as a 3D array that holds
the PTD information. Unlike 1D-PTDs usually found in particle technology, their graphical
visualization is more challenging. Figure 8a shows the computed PTD of the VPS. Here,
discretization settings with K = L = M = 30 nets 27,000 individual trait classes. Data
presentation resembles a cloud where each individual bin is color in accordance to a certain
probability density q̃3( f , e, d). High values (yellow color) indicate that particles in this
trait class are more likely to be found during a quantitative sample analysis of the whole
collection. Empty bins are rendered as transparent volumes. The color-map on the left
indicates the volume weighed density distribution. An advantage of this visualization
method is a fast identification of elongated, flat or bladed NP populations. In the given
example, both compact particles with e.g., f = e ≥ 0.9 and elongated aggregates with
e ≤ 0.3 and f ≥ 0.8 are present in the sample and can be detected with the naked
eye. A severe disadvantage poses the noticeable cluttering of density distribution data.
Unless the 3D plot is viewed from multiple angles, parts of the distribution are obscured.
At the same time, the interior data are not visible at all. As described in Section 2.3, one
possible solution is distribution marginalization. As an example, Figure 8c shows the
2D-PTD obtained by Equation (15). In this graphical representation of the VPS, one can
identify the presence of both elongated and more compact aggregates in the range of
30 nm ≤ d ≤ 120 nm. Hence, in combination with the other two marginalization options
q̃3,in( f , d) and q̃3,in(e, d), the discussion of discrete, higher dimension probability data
is simplified.
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Figure 8. (a) Three dimensional (3D) particle trait distribution (PTD) q̃3,in( f , e, d) of virtual silicon
dioxide (SiO2) particle system: discretization over the three distinct traits d, e and f; (b–d) Marginal-
ized distributions q̃3,in visualized in a two dimensional (2D) grid.

Another point to address is the distribution resolution or in parameter expression,
the total discrete class count. One negative aspect of a high PTD resolution is linked to an
elevated computational effort in the 3D-TCM (see Figure A2). However, a low resolution
with a total class size below 100 inevitably leads to higher discretization errors, since
detailed particle trait information is lost. A preliminary study justifying the discretization
settings used for the 3D-TCM case is given in Appendix A.2.

4.4. TCM Results for 3D Fractionation

This section covers the 3D-TCM case output for the VPS. The simulation domain is
identical to the presented 1D process simulations. This means that all boundary settings
mentioned in Section 4.2 stay fixed. The simulation time is set to 360 s, the total com-
partment count is J = 20 and the time step size equals 0.5 s. Additionally, the empirical
hindered settling coefficient (see Section 4.1) is reapplied. The 3D-TCM output results are
outlined in two figures: The presentation in Figure 9 is identical to the one in Figure 8, since
both T̃g( f , e, d, t = 360) and q̃3,out( f , e, d) share the same data structure and array shape.
The 3D grade efficiency illustration, acquired by Equation (30), implies the same negative
aspects regarding readability on 2D prints. Nevertheless, it can be seen that particle classes
with larger values for d tend to be separated more effectively in the centrifuge. This is
indicated by a more saturated coloration of the individual classes. Since the equivalent
diameter reflects the particles volume (Equation (1)) which dominantly impacts particle
sedimentation rates according to Equation (4), this observation is expected. The same trend
can be noticed in Figure 9b. Here, the grade efficiency,

T̃g(el , dm, 360 s) = 1−
Ẽg(360 s) q̃3,out(el , dm, 360 s)

q̃3,in(el , dm)
, (32)

is calculated from the marginalized PTD of the feed and centrate suspension, isolating the
traits elongation and particle volume. A marginalization to 2D draws attention to the fact
that SiO2 grade efficiencies are slightly larger for more elongated particles (e→ 0). For a
guide to the eye, classes that hold a value of 0.475 ≤ T̃g(el , dm, 360 s) ≤ 0.525 are marked
with a single black dot.
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Figure 9. (a) Three dimensional (3D) grade efficiency T̃g( f , e, d) of virtual silicon dioxide (SiO2)
particle system after separation: discretization over the three distinct traits d, e and f; (b) Marginalized
data over particle traits e and d.

Revisiting the presented form analysis (Section 3.4) of all 3D aggregates which popu-
late the VPS can explain these observations. Figure 10 shows kS,B-values in dependence of
elongation and flatness calculated with Equation (9). Additionally, for each individual par-
ticle, P = 3771 black dots are plotted. Their position is set according to their e and f values
which were recorded by the volumetric analysis of M2. Looking at the spatial distribution of
all dots, only a small minority of the particles generated by the custom DLA algorithm can
be associated with kS,B-values greater than 1.2. Consequently, the sedimentation coefficient
(Equation (10)) for a majority of the particles is similar to that of a sphere with equal volume.
As a result, the overall impact of particle form on the model output is almost negligible.
Despite this fact, it should be positively emphasized that the separation of several different
form fractions can be identified with this method. To give an example, one could imagine a
particle collective of small, compact and larger rod-like particles. Due to their differences
in elongation, their fractions are easily identified in a 3D-PTD. Referring to the presented
output of any 3D-TCM model, their separation efficiency can be calculated and visualized
intuitively with the presented methodology. In summary, it can be said that the integration
of Equation (10) into the TCM mass balance calculation is functional. Both volume and
particle form, represented by a surrounding inertia ellipsoid with elongation e and flatness
f , is considered in the calculation of the sedimentation coefficient. The simulation-tool is
able to visualize the outcome of a tubular centrifuge separation experiment in more than
just one dimension even for small deviations in particle form.
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Figure 10. Heatmap of drag correction factor kS,B for ellipsoids versus their elongation and flatness
based on Equation (9) found in [53].
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Closing the gap between the 3D-TCM and a traditional separation process outcome,
the marginalized 1D-PTD and the associated grade efficiency curve is shown in Figure 11.
A bar-plot is used to view the 30 classes which discretize the equivalent diameter. Blue
bars and their height reference the inlet PTD whereas red bars show the product of Ẽg and
the marginalized outlet PTD. One important question to address is whether the global
grade efficiency in the 3D case is comparable to the preceding RPS classification experiment.
This should be the case since both the RPS and VPS share the same solid density and a
similar equivalent diameter range. To compare both conducted TCM cases, the 1D global
grade efficiencies Tg and T̃g are added as line plots to Figure 11. As expected, the data
are congruent with a slight deviation for higher particle volumes. This outcome can be
explained by the presence of elongated particles with d ≥ 80 nm in the collection. For a
visual reference, attention is drawn to the upper left quadrant of q̃3,in(d) in Figure 8b and
again to Figure 10. According to the fundamentals of form dependent NP settling, these
discrete classes have trait combinations which lead a lower value for sB.
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Figure 11. Volume weighted density distribution of virtual particle system (VPS) feed- and centrate
suspension (left ordinate) and global grade efficiency (right ordinate). Distribution data are acquired
by a marginalization of three dimensional (3D) tubular centrifuge model (TCM) output. Dimensional
reduction applied for comparison between Tg and T̃g.

Hence, during iterative short-cut computation of Tj(sB), these mass fractions are
separated less effectively. In the 1D setup, however, discrete sedimentation rates are higher
due to the strict limitation of kS,B = 1. As a result, the mean cut size is shifted slightly
towards smaller particles. Since the VPS is considered a unique particle system, there
are no comparable experimental or model results present in the literature. Hence, only
the plausibility of the results are validated in this study. A detailed validation of 3D
grade efficiencies will demand precise and adapted methodologies regarding the multi-
dimensional analysis of NP properties used in future research. In light of this, the presented
work establishes an adaptable routine for the creation and detailed trait analysis of NP
collectives. Consequently, the proposed workflow and working adjustments made to
the TCM facilitate these future efforts to conduct an experimental validation in multi-
dimensional fractionation.

The results imply that the novel simulation routine is capable of addressing the
NP form fractionation in tubular bowl centrifuges at a fixed set of boundary condition.
However, the added benefit of the adapted multi-dimensional TCM does not end here.
Model parameters such as fluid viscosity, angular velocity and volumetric flow rate can be
varied with little effort resulting in an updated separation result. A completely automated
adjustment of these boundary conditions is also conceivable and can be implemented by
only a few changes in the program code. This is an important prerequisite for the efficient
performance of parameter studies that can quantify the influence of individual process
parameters. Since the novel model also calculates and displays 3D separation efficiency
data (see Figure 9), optimization with respect to one or more particle features is possible.
Lastly, the feed material can be easily modified, either based on real-world or computer-
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generated particles derived from simulated (see Section 3.4 and Figure 4) or real-world
discrete particle databases [98].

5. Conclusions

Traditionally, the separation efficiency in tubular bowl centrifuges is evaluated as a
function of particle size, represented by the radius of a volume equivalent sphere. However,
current research draws attention to advantageous product properties linked to, for example,
the form distribution of a particle collective. Therefore, this work develops a simulation tool
for fractionation modeling of multi-dimensional NP systems in tubular bowl centrifuges.
To facilitate the numerical calculation of both one- and multi-dimensional grade efficien-
cies, an existing model by Gleiss [72] is modified. In its core, the dynamic model solves
mass balance equations for a finite number of compartments that spatially discretize the
sedimentation zone and define the solids residence time.

Investigations first addressed the 1D classification of a real-world SiO2 nanosuspen-
sion. In a direct comparison, numerical simulations predicted the separation outcome with
very high accuracy. In both the 1D-TCM and reference measurements for the achievable
grade efficiency only the equivalent diameter was considered a particle trait.

For a second simulation case, 3771 virtual SiO2 aggregates were created by a custom
DLA algorithm and characterized individually by direct image analysis. Their form and
volume is discretized by three variables: elongation, flatness and equivalent diameter.
By means of an automated statistical trait analysis, a volume weighted PTD of the particle
system is calculated which served as the new TCM model input in a 3D fractionation setup.
Here, form-dependent settling was implemented by empirical correlations found in the
literature. Numerical simulations confirm that particle form has a much smaller influence
on their sedimentation rate compared to particle volume. The presented discussion implies
that the separation result per particle trait class is only influenced by a more pronounced
elongation or flatness (e << 1, f << 1). With regard to the precise adjustment of the
product properties through, for example, modifications to the form distribution, a major
challenge in multi-dimensional fractionation emerges. The majority of these separation
tasks are extremely difficult in a singular centrifugal field of a tubular bowl centrifuge.
This is because similarities in the sedimentation rate occur frequently even for a broad
range of non-spherical particles. Future approaches could include the addition of a second
force field, whose parameters show a stronger correlation regarding the NPs elongation
and flatness. Adjustments of the tube centrifuge geometry are also conceivable, which
can be studied and optimized with the presented dynamic simulation tool focusing on the
apparatus performance in multi-dimensional fractionation.

Nevertheless, added value by the presented TCM emerges from a facilitated commu-
nication on multi-dimensional grade efficiencies for tubular bowl centrifugation processes.
Moreover, the proposed algorithm that computes 3D-PTDs is applicable to any discrete
dataset of particle traits which represent physical properties of nanosuspensions. This in-
cludes statistical data acquired from, e.g., micro-CT and TEM image analysis. Consequently,
the workflow enables a fast and flexible numerical assessment of separation processes for a
variety of different nanosuspensions. Furthermore, advancements in multi-dimensional
characterization of particulate products in separation technology will assist with future
model validation attempts. Lastly, real-time computation speeds of the 3D-TCM highlight
its potential use in model predictive control scenarios. The novelty here comes with the
simultaneous consideration of two or more separation criteria in process optimization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12183161/s1, Figure S1: Schematic illustration of a 2D DLA
algorithm. Steps and principles of aggregate formation are showcased in 2D but are easily transferable
to the 3D setup used in this work; Figure S2. Visualization of different 3D spawn regions for the
custom DLA algorithm: a) equatorial, b) sphere, c) polar; Table S1. Parameters used in the custom
DLA algorithm.
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Appendix A. TCM Parameter Selection

Appendix A.1. Spatial Discretization

The total compartment count J defines the spatial discretization of the separation zone.
Therefore, the total number of equations solved by the TCM algorithm (Figure 3) is greater
for higher resolutions. This has a negative effect on the overall computation time required.
In an effort to choose an optimal value for J, the classification reference experiment was
used. In Figure A1a gray pentagonal markers show reference values for Tg,ADC acquired
by ADC measurements of feed and centrate samples after separation. The plotted lines
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indicate the simulated 1D-TCM output for the global grade efficiency Tg,TCM for different
values of J. All other parameters were kept constant.
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Figure A1. (a) Global grade efficiency for the RPS classification with boundary conditions listed in
Table 1; markers show the ADC reference measurement and solid lines show the 1D-TCM output for
different spatial discretization settings; (b) RSS calculated with Equation (A1) for different spatial
discretization settings; the dashed line indicates the setpoint used for all simulations shown in the
main manuscript.

Further on, the residual sum of squares,

RSS =
M

∑
m=1

(
Tg,TCM(dm)− Tg,ADC(dm)

)2, (A1)

between TCM data and ADC reference data was calculated. Higher values indicate an
overall greater deviation between the two datasets. Plotted over the compartment count in
Figure A1b, the RSS value provides a numerical output for the simulation accuracy over a
broad range of spatial discretization options. The data suggests that a good compromise
between computational effort and accuracy can be achieved when J is set to 20. Each TCM
model output shown in the main manuscript are based on this spatial resolution setup.

Appendix A.2. Temporal Discretization

One of the most predominant advantages of tubular centrifuge flow-sheet simulation
using short-cut models to describe particle separation is a reduced computational effort.
However, the resolution of PTD discretization plays an important role when aiming at real-
time simulation speeds. In 1D, the total class count is usually dictated by the measurement
methodology and data post processing. In this work, the ADC measurement produces a
1D-PSD q3,in with 500 bins. By adding two additional particle traits the same bin size is
extended by the power of three which leads to an increase in computation time. To quantify
this elevation, the total simulation time for different total class counts is recorded and
analyzed. The results are highlighted in Figure A2.
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Figure A2. Simulation time factor in dependence of the total distribution class count for different time
step sizes. Unity indicates a real-time measurement. Values greater than one factorize the simulation
speed increase.

All simulations were performed on a personal computer with an Intel® Core™ i5-
7400 CPU (Santa Clara, CA, USA) running at 3.0 GHz with 15.9 GB of RAM. This also
includes all the results shown in Section 4. Data points shown in Figure A2 are mean
values of multiple simulation runs under different system loads of the processor and
memory. Consequently, a small standard deviation in the simulation time factor can be
seen. The results indicate that for class sizes below 104 the TCM model can preemptively
calculate one separation experiment at least 100 times faster. This is true even for the
smallest observed simulation time step size of ∆t = 0.2. For a higher number of trait classes,
the simulation is slowed down significantly. The above mentioned arithmetic operation of
repeated tensor multiplications and summations (Equations (20) and (24)) can be identified
as the main bottleneck. However, the TCM code optimizes these operations uing numpy-
arrays as the main data structure for n-dimensional arrays and build-in functions of the
numpy package as well. With this in mind, a total class count of 2.7× 103 is chosen for the
3D case. This input setting offers a high resolution in the presented 3D-PTD and global
grade efficiencies for an appropriate communication of the separation experiment outcome
with a reasonable degree of discretization error.
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