
RESEARCH PAPER

CORRESPONDING AUTHOR:

Lars Griem

Institute for Applied Materials
(IAM-MMS), Karlsruhe Institute
of Technology (KIT), Straße
am Forum 7, 76131 Karlsruhe,
Germany

lars.griem@kit.edu

KEYWORDS:
FAIR principles; workflows;
research data management;
electronic lab notebook;
inputprocess-output model

TO CITE THIS ARTICLE:
Griem, L, Zschumme, P,
Laqua, M, Brandt, N,
Schoof, E, Altschuh, P and
Selzer, M. 2022. KadiStudio:
FAIR Modelling of Scientific
Research Processes. Data
Science Journal, 21: 16,
pp. 1–17. DOI: https://doi.
org/10.5334/dsj-2022-016

KadiStudio: FAIR Modelling
of Scientific Research
Processes

LARS GRIEM

PHILIPP ZSCHUMME

MATTHIEU LAQUA

NICO BRANDT

EPHRAIM SCHOOF

PATRICK ALTSCHUH

MICHAEL SELZER

*Author affiliations can be found in the back matter of this article

ABSTRACT
FAIR handling of scientific data plays a significant role in current efforts towards a
more sustainable research culture and serves as a prerequisite for the fourth scientific
paradigm, that is, data-driven research. To enforce the FAIR principles by ensuring the
reproducibility of scientific data and tracking their provenance comprehensibly, the
FAIR modelling of research processes in form of automatable workflows is necessary.
By providing reusable procedures containing expert knowledge, such workflows
contribute decisively to the quality and the acceleration of scientific research. In
this work, the requirements for a system to be capable of modelling FAIR workflows
are defined and a generic concept for modelling research processes as workflows
is developed. For this, research processes are iteratively divided into impartible
subprocesses at different detail levels using the input-process-output model. The
concrete software implementation of the identified, universally applicable concept
is finally presented in form of the workflow editor KadiStudio of the Karlsruhe Data
Infrastructure for Materials Science (Kadi4Mat).

mailto:ars.griem@kit.edu
https://doi.org/10.5334/dsj-2022-016
https://doi.org/10.5334/dsj-2022-016
https://orcid.org/0000-0002-8093-6356
https://orcid.org/0000-0002-4821-5719
https://orcid.org/0000-0003-2978-3160
https://orcid.org/0000-0002-3860-1376
https://orcid.org/0000-0001-6821-7263
https://orcid.org/0000-0003-1373-492X
https://orcid.org/0000-0002-9756-646X

2Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

1 INTRODUCTION
Through technological advances in instrumentation and computational performance, the
amount of data produced in engineering sciences, and especially materials science, has
increased significantly over the past decades. This development paves the way for a new
scientific paradigm, commonly known as data science (Hey et al. 2009), that focuses on the
systematic analysis of data to generate new knowledge or insight. It allows to accelerate the
innovation of new materials and can thus be seen as a driving force for future developments.
Prerequisite for this paradigm is the availability, completeness, and reproducibility of the
research data to be examined.

Establishing the paradigm thus requires an extensive data sharing concept that enables
structured storage and management of research data according to the FAIR – Findable,
Accessible, Interoperable, and Reusable – principles (Draxl & Scheffler 2020; Wilkinson et al.
2016). A sophisticated infrastructure in form of a repository in which data can be recorded
and administered as well as analysed, transformed, and visualised is therefore beneficial.
Moreover, a system capable of modelling scientific processes and data flows as automatable
and configurable workflows is necessary. It not only ensures the datas’ reproducibility and
tracks their provenance comprehensibly but also allows to generate new knowledge and
insight by processing the stored data. In this way, workflows contribute decisively to the quality
assurance and acceleration of scientific research. As for scientific data, workflows need to be
formulated in a FAIR manner in order to be accessible and usable for a broad scientific audience
as well as for data science approaches. Implementing a system capable of FAIR modelling of
research processes as such workflows requires two contradictory conditions to be met. Firstly,
as scientific research exhibits heterogeneous tools and procedures, the proposed workflow
system must be kept generic and easily extensible. Secondly, it must be simple and intuitive
in use to minimise the effort required to formulate workflows and thus increase acceptance
among researchers (Pizzi et al. 2016).

Infrastructures which integrate the creation, exchange and execution of workflows are, to
date, already realised in various implementations, such as Jupyter Notebooks (Kluyver et al.
2016), Galaxy (Afgan et al. 2018), Fireworks (Jain et al. 2015) and AiiDA (Pizzi et al. 2016). The
aforementioned infrastructures as well as all other implementations known to us, however,
do not satisfy the named conditions of simple usability, generic extensibility and FAIR process
modelling. Jupyter Notebooks for example, enables the modelling of scientific processes, but
its focus lies on computer-aided scientists. Hence, programming experience is required on part
of the user to formulate workflows, which in our experience, is a hindrance for many scientists.
Galaxy, on the other hand, allows researchers without programming knowledge to formulate
workflows. However, these are limited to the field of life sciences and thus do not represent a
generic solution for FAIR process modelling. Fireworks is also limited to a specific domain that is
simulations and the management of computer resources. A generic, domain-independent use
that also includes manual work steps is therefore not possible. AiiDA presents a generic solution for
formulating workflows in form of scripts. Nevertheless, as the focus is on computational science,
it is not possible to implement manual steps into workflows, thus excluding scientists working
in analogue from the target group. Additionally, programming experience is again required.
Consequently, to our knowledge, there is no system that offers a generic, domain independent
approach to formulate workflows in a FAIR manner, which targets not only computer-based
working scientists with an affinity for programming but also analogue working researchers
with little programming expertise. In this paper we therefore introduce a possible solution for
FAIR modelling of scientific processes that takes these requirements into account and present
its concrete implementation in form of the workflow editor KadiStudio. For this, a concept is
first developed that allows to abstract scientific processes according to a uniform schema that
serves as the basis for FAIR modelling. Subsequently the technical implementation of the openly
accessible software KadiStudio (Kadi4Mat Team & Contributors 2022e) (available under https://
doi.org/10.5281/zenodo.6810891) is presented in detail, with reference to this concept.

2 CONCEPT
The development of a generic system for modelling research processes requires the
identification of a common structure that can be imposed on any process. For this purpose,

https://doi.org/10.5281/zenodo.6810891
https://doi.org/10.5281/zenodo.6810891

3Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

we iteratively disassemble scientific processes into atomistic descriptions at different levels
of detail. The term atomistic description here refers to the subdivision of a process into
impartible parts. This description allows to identify generic elements within processes that
can be reused in other use-cases. Basis for the disassembly is the Input Process Output
(IPO) model presented in Figure 1, which is known from systems analysis (Goel 2010; Zelle
2004).

This model describes processes as the combination of input, process and output. Accordingly, a
process commences with the collection and preparation of the data to be investigated through
specified inputs. The subsequent processing of the collected data is then performed according
to a defined process. The results obtained in this process are finally available for further use via
defined outputs.

The most extensive atomistic process description is at project level and includes the complete
process as shown in Figure 2. This is to be understood in the sense that a research project
can only be described by the entire process. Describing the experimental investigation of a
sample, for instance, requires the entire experiment to be modelled; no further subdivision is
possible.

To describe the process at the less complex work package level, the IPO model is imposed
onto it. This model divides the research process into three sequential work packages that
correspond to the different elements of the IPO-model. These packages are pre-processing,
main-processing, and finally post-processing. Applied to the aforementioned experimental
investigation of a sample, the pre-processing corresponds to the preparation of the experiment,
the main-processing to the actual experiment and the post-processing to the final analysis

Figure 1 Schematic
description of the IPO concept.
Through defined inputs a
process is parameterised and
subsequently executed. The
generated results are available
via defined outputs.

Figure 2 Abstraction of a
research process at different
levels of detail. Each grey
box with gears models a
work step while the white
boxes represent their
parameterisation. APR refers
to the description of tasks
as data acquisition, data
processing, and data routing.
Iteratively structuring a
research process according
to the IPO model ultimately
defines it via multiple generic
tools.

4Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

of the obtained data or the interpretation of the results. Each of these work packages can
consist of an arbitrary number of work steps. The pre-processing of an experiment, for instance,
could include the grinding and polishing of a material sample as well as the calibration of the
microscope. Abstracting the process into the work packages pre-, main- and post-processing
already enables the identification of elements that might be reusable in other use-cases.
The pre-processing of the experiment in form of the microscope calibration and the sample
preparation can for example be reused for similar investigations. This level of detail however
is not sufficient to be used as a basis for a generic workflow modelling system. Instead, a
more in-depth description of the individual work packages is required. For this purpose, the
IPO model is applied to each coherent task within the identified work packages. A coherent
task refers to the logically separable work steps within a work package. The pre-processing
of the aforementioned experimental investigation of a sample could for instance contain the
tasks sample grinding and microscope calibration. Structuring these tasks according to the
IPO model results in a process description at task level, which we refer to as APR structure,
that is schematically illustrated in Figure 2. It describes the data flow within and between the
individual steps of a task through data Acquisition, data Processing and data Routing. In this
abstraction, the data acquisition contains all work steps that collect and prepare the necessary
data for the corresponding task and then forwards them to data processing. Within data
processing, these inputs are processed to generate new data. The data thus obtained in form
of results or intermediate results are finally forwarded in the data routing. The routing of results
can be realised to any desired destination such as a file or the data acquisition of a subsequent
task. The work packages Pre-, Main- and Post-processing can consist of any number of such
APR processes as indicated in Figure 2, and can hence be understood as the concatenation of
these elements.

Accordingly, the APR model mainly serves to describe the data flow within each task. This
allows for the comprehensible traceability of the data flow within them, promoting a better
understanding of the process. Moreover, the identified APR structures can be reused and
applied to different use-cases. However, as the APR processes consist of a defined combination
of multiple individual work steps, they are too use case specific to be used as a generic workflow
modelling structure. Consequently, the IPO model is again applied to each work step within the
APR processes. This results in an atomistic description of the research process at tool level. The
individual work steps of each APR processes are now defined as generic and reusable tools
with specific inputs and outputs as well as a process. In the considered sample preparation
example, these could be the work steps grinding, polishing, and etching. Since this structuring
corresponds to the original definition of the IPO model, it is here also referred to as IPO. The
actual data generation of the research project takes place within this abstraction step. The data
is generated in the process step and then forwarded through the output. This allows the origin
of the generated data to be precisely determined and to be provided with the corresponding
metadata and dependencies, thus enabling its FAIR storage. The generic descriptions of the
work steps can now be used and rearranged to form any desired workflow making a further
abstraction of the process unreasonable at this point.

Summarising, the applied method illustrated schematically in Figure 3 can be applied to
reduce the complexity of arbitrary research processes up to the atomistic descriptions of the
individual work steps, that is tools. Consequently, the inverse use of this concept enables the
implementation of a generic system for modelling research processes. This modelling is thus
based on the general description of the used tools according to the IPO model. Subsequently
adding information through connections describing the data flow and the parameterisation of
the used tools as described by the APR model, enables the further specification of the process.
The concatenation of multiple APR processes finally allows to model the pre-, main- and post-
processing, which in sum ultimately represent the complete research process. Similar concepts
that use atomistic tool descriptions according to the IPO model which are linked together to
form a workflow are used in many well-known workflow management systems. CWL (Crusoe et
al. 2022), snakemake (Mölder et al. 2021) and nextflow (Di Tommaso et al. 2017), for example,
implement it in a script-based system, while programmes such as KNIME (Berthold et al. 2009)
or Orange (Demšar et al. 2013) realise it within in a graphical interface. This widespread use of
similar concepts in established systems illustrates the suitability of the found concept for the
formulation of workflows.

5Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

The concrete implementation of the described concept into a generic workflow system for
the FAIR formulation of research processes, incorporated into the research data infrastructure
Kadi4Mat, will be presented in the following.

3 IMPLEMENTATION
The Karlsruhe Data Infrastructure for Materials Science – Kadi4Mat – (Kadi4Mat Team &
Contributors 2022b) offers its users multiple functionalities, illustrated in Figure 4. They can
be summarised as a Community Repository and as an Electronic Lab Notebook (ELN). While
the community repository provides an extensive data sharing and managing infrastructure,
the ELN allows for the logging of conducted research, the visualisation, transformation and
analysis of stored data, and the generation of reproducible workflows. These workflows serve
to model recurring processes in the work of researchers in form of digital twins that allow to
process data stored within the repository and to guarantee the reproducibility of said data.
The digital twins thus not only facilitate the day to day work of researchers by automation,
but also allow to make process knowledge accessible and repurposable for a wider scientific
community indicating the importance of their FAIR formulation.

Aiming to provide a user friendly software solution that incorporates the FAIR modelling of
research processes, a workflow editor, which is based on an open source node editor library
for the Qt GUI framework (Dmitry 2017), has been created and integrated within the ELN
functionality of Kadi4Mat. Basis for this workflow system was the process structuring
concept presented in the previous section. Within the framework of Kadi4Mat two versions
of this editor exist, which both use the same JSON-based data format to describe workflows,
ensuring their interoperability. On the one hand a desktop-based, standalone software version
called KadiStudio exists, which can be used without an internet connection or running web

Figure 3 Reducing the process
complexity by iteratively
applying the IPO model to the
identified processes. On each
abstraction level, the process
can be atomistically described.
The tool level description
presents a generically usable
approach for modelling
arbitrary research processes.

Figure 4 Conceptual overview
of Kadi4Mat. Currently
two software modules are
available: (1) KadiWeb, a
web-based virtual research
environment incorporating
ELN functionalities and
repositories and (2) KadiStudio,
a desktop-based software
version which allows for the
formulation and execution of
workflows. Further modules
such as a machine learning
implementation referred to
as KadiAI and a desktop-
based repository called
KadiFS are subject of current
developments.

6Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

server, and on the other hand, a web-based version that is integrated into KadiWeb. KadiWeb
(available under https://kadi.iam-cms.kit.edu/) refers to the generally accessible web version
of Kadi4Mat, which incorporates both the community repository and the ELN functionalities
including its built-in data handling tools. In Figure 4 the structure of Kadi4Mat is illustrated
schematically. Apart from the described components – KadiWeb and KadiStudio – additional
modules are currently being developed, including a machine learning tool set called KadiAI
and a filesystem integration for the repository referred to as KadiFS. Generally, Kadi4Mat can
be understood as an overarching concept, that encompasses various modules, which in sum,
create a generic research data infrastructure, extensible to all kinds of research disciplines in
the future.

To illustrate how the workflow system implemented into the infrastructure of Kadi4Mat enables
FAIR modelling of research processes, the term FAIR will first be defined in more detail. FAIR was
introduced by Wilkinson et al. (2016) and is the acronym for Findable, Accessible, Interoperable,
and Reusable. These principles impose the following requirements on the storage of scientific
data:

•	 Findable: Data must be provided with descriptive metadata that can be searched
specifically by humans and machines alike.

•	 Accessible: Stored data must be accessible, possibly with appropriate authentication or
authorisation.

•	 Interoperable: Data must be formulated in a broadly applicable language and thus be
interoperable with applications and workflows.

•	 Reusable: Data should be reusable. For this, metadata and data need to be rich in
information and associated with a detailed provenance.

When applying these principles to scientific processes, however, their definitions have to
be partially adjusted. While the wording of Findable and Accessible can be adopted, the
elements Interoperable and Reusable need to be adapted. The principle Interoperable must
additionally imply that various generally accepted data formats can be used in a modelled
workflow. When necessary, an existing workflow must be adaptable accordingly. Moreover,
according to the interpretation of the Reusable principle described in (Draxl &Scheffler
2020), a workflow must, on the one hand enable the reliable reproduction of results and,
on the other hand, be fully or partially repurposable for different use cases. The conditions
Findable and Accessible are already fulfilled in the case of the workflow system presented
here through the direct integration in Kadi4Mat. This allows workflows to be stored in
the community repository and thus to be shared with the scientific community. As for
ordinary research data, the workflows stored in Kadi4Mat can be equipped with descriptive
metadata, that can be selectively searched. Consequently, these principles need not to be
specifically considered in the implementation of the actual workflow system. The technical
implementation of the workflow editor presented hereafter, therefore, concentrates
on the interoperability and reusability of the modelled workflows. Additionally, the
requirements of the editor to be generic and simple in use (Pizzi et al. 2016) are taken into
consideration.

4 RESULTS
The scheme described in Chapter 2 for the abstraction of scientific processes, defines
individual functions or tools described according to the IPO model as the basic building blocks
of a process. These basic building blocks are implemented in KadiStudio in the form of various
nodes.

In both workflow editors — standalone and web-based version —, these nodes can be added
and connected to model a process within a graphical user interface (GUI) using an intuitive
point-and-click mechanism as shown in Figure 5.

https://kadi.iam-cms.kit.edu/

7Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

Each of the insertable nodes represents a certain process, modelled according to the IPO
model and can be differentiated between (1) tool nodes, which serve to integrate various
programs or functions, (2) environment nodes, which are used in combination with tool
nodes, and finally (3) built-in nodes, which allow to influence the execution of the workflow
and add interactive options as well as variables to the editor. These node types are presented
in Figure 6.

In accordance with the IPO model, each node describes a specific process that contains
both inputs and outputs represented by the input and output ports respectively. The input
ports are located on the left-hand side of the node and the output ports on the right-hand
side. Depending on their task, the ports can be divided into parameterisation, dependency,
environment, and stdin/stdout ports. Stdin and stdout ports refer to the standard input and
standard output streams of the underlying program, respectively. Parameterisation ports are
used to pass arguments and options necessary to execute the node, such as string or boolean
values. The execution order of the nodes, including control mechanisms such as if-conditions
and for-loops, can be defined using the dependency ports. Environment ports are used to set
a prefix to a tool node to execute it in a specific environment, such as a secure shell (SSH),
that enables the remote execution of tools. Piping the output of a node into another node can
further be realised using stdin and stdout ports. The provision of nodes that have these defined

Figure 5 Overview of the
available workflow editors,
showing the GUI of the
desktop (top) and the web-
based version (bottom).
Workflows can be modelled
by adding and connecting
nodes using a point-and-click
interface.

Figure 6 Available node
types. Built-in nodes are grey,
environment nodes green and
tool nodes blue.

8Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

inputs and outputs is the basis of workflow modelling in KadiStudio. This is in accordance to
the identified structure illustrated in Figure 3. Connecting and parameterising the nodes using
the named ports allows to add the data flow according to the APR model to the workflow as
described in Chapter 2. This puts the added nodes into defined relations and allows the user
to see at first glance which inputs a process uses and to which process its output is forwarded.
This structures the data flow in a comprehensible manner.

When executing a workflow, the added nodes and their connections are processed and
translated into command line interface (CLI) commands. Hence, the workflow editor can be
understood as a graphical programming language with simple usability due to its intuitive
character, also allowing inexperienced users to model their workflows. The use of this modelling
mechanism will be presented in the following examples.

4.1 PARAMETERISATION AND USE OF NODES

As mentioned in the previous section, tool nodes represent CLI commands, structured according
to the IPO model, thus possessing defined inputs and outputs. To parameterise the underlying
CLI command, the node’s input ports are used. A simple example of such a parameterisation
is presented in Figure 7.

The added tool node represents the ‘echo’ CLI command. Adding a source node of type string
and connecting it to the tool node allows for the parameterisation of the echo command. In
the presented example, ‘Hello World!’ is passed to the tool node, resulting in the command
shown in Figure 7(b). To pipe a node’s output into another node, the stdout and stdin ports
are used. Adding a File Output node to the workflow example of Figure 7 and connecting it
to the tool node as shown in Figure 8(a) activates this piping functionality. As can be seen in
the resulting command shown in Figure 8(b), the standard output is forwarded to the second
node.

Moreover, the parameterisation of the tool node in Figure 8 is realised using a UserInput: Text
node that prompts the user for an input when executed. In addition, the dependency ports
have also been connected in this example. Defining the dependencies of the workflow nodes
supports the process engine in determining the execution order of the added nodes. In the
shown example, this implies that the File Output node is not executed until the echo node has
been called and executed successfully. In general, when modelling a workflow, it is strongly
recommended that the dependency ports are connected, as undefined dependencies may
result in a wrong execution order, possibly rendering the workflow inoperable.

Figure 8 also vividly illustrates the workflow modelling concept implemented in KadiStudio. The
used tools are defined by certain inputs, outputs and a process thus complying with the IPO
model. Depending on their purpose they can be assigned to the elements of the APR model.
Specifically, the data acquisition consists of the UserInput: Text node that prompts the user for
an input, which is forwarded to the data processing in form of the echo node by connecting

Figure 7 Overview of the
node parameterisation. The
parameterisation of an echo
node using a string source
node is shown in (a). this is
equivalent to the command
shown in (b).

9Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

the ports. After processing this input in the echo node, the result is forwarded to the next node
in the subsequent data routing. In this case, the received input is routed into a file using the
File Output node. This demonstrates the idea of structuring the work steps of each task in the
APR model according to their purpose in the present data flow. In the previous examples, the
nodes were parameterised using different built-in nodes. On the one hand with source nodes,
that provide the computational values string, boolean, integer, and float, which are set when
the workflow is created and remain constant for each execution. On the other hand, by using
user input nodes, that allow to formulate more generic workflows by granting the possibility to
interactively redefine certain parameters during the workflow execution. These nodes pause
the execution of the workflow and prompt the user for an input via a dialogue box before
continuing the execution, as shown in Figure 9.

Through the use of such user interactions the user is given control over the workflow execution
allowing to adapt to different use cases. Workflows are therefore not just predefined scripts
that can be applied under certain circumstances, but can be seen as generic tools adaptable
to the current use case during execution. The interactively definable parameters are manifold
and include not only the query of basic computational values but also the selection of files

Figure 8 Visualisation of the
workflow modelling concept
implemented in KadiStudio.
Multiple tools are connected
according to the APR model
forming a simple workflow.
Connecting the stdout port
to the stdin port as shown in
(a) pipes the standard output
stream of the tool node into
the standard input stream
of the File Output node that
finally routes them into a file.
This demonstrates structuring
the tools of a task depending
on their purpose in the data
flow. This has the same effect
as the command shown in (b).

Figure 9 Usage of UserInput
nodes. During the execution,
the user is prompted for an
input, such as to select an
image area, as shown in this
example. The selected area
can then be used in further
investigations.

10Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

and, for example, the cropping of images to a section to be examined, as depicted in Figure 9.
Using this prompting mechanism also allows to model manual worksteps in KadiStudio. This
is realised by requesting the user to conduct a workstep with certain inputs and querying the
results obtained as shown in Figure 10. To ensure the reproducibility of the results obtained in
workflows that use such user interactions, the interactively defined user inputs are saved within
a log file. When uploading the results to a repository such as Kadi4Mat, the logged user inputs
can be used as metadata for the generated data.

Apart from the interactive nodes, KadiStudio offers various other built-in nodes such as Variable,
Loop or ifBranch that allow to manipulate the workflow execution and facilitate the formulation
of generic research workflows. The provision of these built-in nodes in the workflow system
KadiStudio thus not only guarantees the reproducibility of any manual or digital research
process, but also allows for the repurposability of the workflows.

4.2 ADDING NEW NODES

To guarantee the interoperability of modelled workflows and to model the heterogeneous tool
landscape present in scientific research, the repertoire of nodes available in KadiStudio must
be easily extendable. In this way, custom functionalities and data conversion nodes can be
incorporated into the workflow editor, enabling formulation of arbitrary workflows and their
application to different file formats for instance. The interface for integrating new tools was
therefore kept as simple as possible. Prerequisites for a new node to be added to the editor are
only that the underlying CLI-command is (1) executable and (2) provides the --xmlhelp option.
The --xmlhelp option returns a machine-readable description of the command, that is needed
by the workflow editor to create the visual representation of the command within the editor.
In case the desired tool does not provide this option, it can be added retroactively, for example,
with a wrapper script using the xmlhelpy Python library (Kadi4Mat Team & Contributors 2022d).
Listing 1 of appendix A shows an abbreviated, exemplary implementation of such a Python
wrapper for the echo command. The XML output generated by this wrapper is shown in
Figure 11.

The structure of an xmlhelp output always follows the same pattern. After the declaration
as an XML document, a root element of type program or env follows, which indicates a tool
or an environment node respectively and is provided with the name, description and version
attributes. Within this element, a param element is specified for each possible parameter
of the command, which must contain the name, description and type attributes in order to

Figure 10 Integrating manual
work steps by giving the user
all necessary parameters and
asking them to select the
generated results.

Figure 11 XML output of
the wrapper script shown in
Listing 1 of appendix A, that
is printed when using the

--xmlhelp option. The root
element program specifies the
command as a regular tool.
Each of the param elements
represents a configurable
option of the wrapped
command.

11Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

be rendered within the editor. Additionally, further attributes such as a default value can be
defined. The definition of these params specifies the inputs of the final node and thus serves to
represent the underlying process with respect to the IPO model. The tool node derived from the
xmlhelp above is shown in Figure 12.

The wrapper script shown in Listing 1 of appendix A is part of the workflow-nodes library
(Kadi4Mat Team & Contributors 2022c), that already contains various Python-based nodes
covering basic as well as some more specialized functions. The tool thus fulfills both prerequisites:
(1) executable, (2) --xmlhelp option and can be added to the editor’s tool list using its GUI as
shown in Figure 13. In the dialogue every executable within the PATH environment variable is
listed. Selecting a tool will permanently add it to the usable tools of the editor.

The provision of the described interface for adding new nodes to KadiStudio enables not only
the formulation of arbitrary workflows but also allows for the simple adaptation of existing
workflows to different file formats. This contributes to the generic character of KadiStudio and
ensures the interoperability of the workflows modelled in it.

4.3 LINK BETWEEN KADISTUDIO AND A REPOSITORY

As already mentioned, workflows created in KadiStudio can be stored directly in Kadi4Mat and
provided with metadata. This permits the findable and accessible storage of workflows. Since
the FAIR idea however does not only apply to workflows but to all scientific data, KadiStudio
aims to provide FAIR documentation of the data created during a workflow. For this purpose, a
link between the workflow editor and an arbitrary repository can be established. As a reference,
this link has already been implemented for the repository of Kadi4Mat in form of tool nodes

Figure 12 Created echo node.
Echo node derived from the
XML output shown in Figure
11. Each param is represented
by an input port. Tool node
specific ports such as env are
added automatically.

Figure 13 Dialogue for
registering tools in the editor
of KadiStudio. All executables
in the PATH are listed.
Commands can be queried
and the default search path
can be extended by the user.

12Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

collected in the kadi-apy library (Kadi4Mat Team & Contributors 2022a). These nodes access
the repository and its functionalities via the application programming interface (API) provided
by Kadi4Mat, which offers a set of defined functions and interfaces to interact with KadiWeb.
Registering a repository to KadiStudio is realised using a graphical user interface as shown in
Figure 14. In case of Kadi4Mat this requires its host address as well as a personal access token
(PAT).

Linking the local editor with the Kadi4Mat repository opens up various possibilities. Workflows
saved in the repository can be loaded directly into the local editor to be edited. In addition, data
stored in the repository can be loaded and processed within workflows and the corresponding
results can be uploaded automatically to Kadi4Mat and provided with descriptive metadata.
Establishing a link to a repository such as Kadi4Mat thus allows to holistically model research
processes and the data used therein in a comprehensible manner. In summary, KadiStudio’s
access to the data allows to map the entire scientific work from the raw or source data,
through its analysis and use up to the structured storage within the repository. Structuring
the generated data in Kadi4Mat and defining their interrelationships further enables their
provenance tracking. In this way KadiStudio provides the possibility for FAIR handling of data
generated during a workflow.

5 TECHNICAL ASPECTS
The technical details of the workflow editor, its architecture and related software components
are presented in the following. The focus of these developments was again on the objective
of creating a generic and intuitive software system, that allows for the FAIR formulation of
research processes.

5.1 XMLHELPY

The generic character of the workflow editor is partly implemented by supporting the simple
extension of the available tools. To incorporate a new tool, it must provide the --xmlhelp option,
that returns a machine-readable description of the tool. Adding this option to existing tools
can be realised using the xmlhelpy library. Xmlhelpy is a Python library available on PyPI. It
is based on the open source framework Click (The Pallets Projects 2014), and extends it with
custom classes and functions. As other related libraries for argument parsing, xmlhelpy allows
to conveniently specify a program’s command line arguments and takes care of parsing and
validating them. It then automatically adds the --xmlhelp option to the program allowing to
obtain its specification in a machine-readable format.

5.2 ARCHITECTURE FOR WORKFLOW EXECUTION

Figure 15 gives an overview of the workflow system’s architecture. As mentioned in the
previous sections, two versions of the workflow editor exist, which both use the same JSON-
based file format to load and save workflows. For execution, the workflow files are managed
by the process manager, a software component dedicated to providing a unified interface
for workflow execution. The process manager does not read or analyse the workflow files by
itself but only acts as a thin layer of abstraction for the GUI components using its interface.

Figure 14 Dialogue for
registering Kadi4Mat instances.
Registered instances can be
accessed during a workflow to
use the functionalities of the
repository and to exchange
data.

13Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

Instead, it passes the workflow files on to a suitable process engine and instructs it with the
execution. This way, the process engine implementations can be exchanged easily, enabling the
flexible adaptation of the workflow system to changing requirements, thus strengthening the
generic character of the Kadi4Mat workflow system. For this, a variety of process engines with
specific characteristics suitable for a certain use case—remote execution, parallel execution,
distributed execution, or running on large computer clusters/high performance computers—or
workflow file format can be registered in the process manager. It is therefore conceivable to
integrate other programs for workflow execution, such as Fireworks (Jain et al. 2015), in form of
a specialised process engine. As a reference implementation, a fully functional process engine
is provided (Zschumme, Schoof, et al. 2022), which follows a sequential execution approach.
A detailed description of this process-engine implementation and of the process-manager is
given in the following sections.

5.3 PROCESS ENGINE

The term process engine refers to a software component dedicated to running workflows and
performing all tasks formulated in the workflow. As shown in Figure 15, the general concept
takes into account that several different implementations might be available to flexibly adapt
the execution to different technical emphases or capabilities.

Since each process engine implementation is free in how it executes the workflow, there is
a wide field of possibilities, ranging from executing the workflow locally to delegating the
execution to another application or computer to just printing a workflow description in a format
like common workflow language (CWL) (Crusoe et al. 2021) or workflow description language
(WDL) (Frazer et al. 2012). Prototype implementations of process engines running Kadi4Mat
workflows with Fireworks (Jain et al. 2015) and CWL (Crusoe et al. 2021) have already been
implemented. These promising approaches are to be continued in the future and could expand
the current possibilities.

At the moment there is one fully functional process engine implementation (Zschumme, Schoof,
et al. 2022), which is a CLI-based application written in C++, published under the Apache-2.0
license. It serves as a reference implementation and allows local execution of workflows
created with any of the workflow editors presented in Chapter 3. Its schematic functioning is
outlined in the following.

When instructed to execute a workflow, the process engine first reads the workflow file and
parses its JSON-structured content. During this step the process engine creates an internal
in-memory representation of the workflow based on the unsorted lists of node descriptions
and connections contained in the workflow file. An important aspect of this analysis is the
determination of the execution order. For this, the data connections in the workflow as well as

Figure 15 Architecture of the
workflow system. Based on
Figure 3 (Brandt et al. 2021)
(CC BY 4.0). The process
manager orchestrates and
monitors the execution of
workflows by delegating it to
a suitable process engine and
tracking its status.

14Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

the explicit dependency connections are considered. The dependency connections also help
with identifying conditional execution paths implied by If Branch or For Loop nodes for example.

After determining the correct order of execution, the implemented process engine executes
each node of the workflow sequentially. This sequential and separate execution requires
the nodes to provide its own execution function, which can be called as soon as the process
engine decides to run the corresponding node. In order to manage the workflow execution,
the implemented process engine uses a number of control files that are stored in an execution
folder unique to every execution. Within these files, information about the progress of the
execution, log files, and other necessary information is stored. This central storage of all
relevant information eases debugging and ensures the reproducibility of the obtained results.
When all nodes have been processed successfully, the execution is completed.

5.4 PROCESS MANAGER

The process manager is a CLI-based application written in C++ published under the Apache-2.0
license (Zschumme, Steinhülb & Brandt 2022). As shown in Figure 15, it provides an interface
for the GUI components to run workflows and to monitor and interact with already existing
execution instances. It further administers the different process engines, which can be
configured in a JSON-based configuration file that contains information on how to use the
interface of each engine. When executing a workflow, the user can select an engine suitable for
the current use-case from this list of available engines. In case the user omits this choice, the
process manager instructs the default process engine with the workflow execution.

Once a workflow is started, the process manager will interact with the responsible process
engine to obtain the status and log of the execution or to provide user input. For this, the
process manager assigns a unique identifier to each execution instance and creates an
execution folder which is used exclusively during this particular execution. The process engine
is then free to use this provided, empty folder for storage. This eliminates the risk of overwriting
important data from previous executions, which is why the execution folder is used as the base
path for all executed programs by the current process engine implementation (Zschumme,
Schoof, et al. 2022). Depending on the internals of the workflow, however, different save paths
can be used as well.

6 CONCLUSION
In this paper, a concept for the FAIR formulation of research processes was presented and
its concrete implementation in form of the workflow system KadiStudio introduced. The
implemented software allows for the FAIR modelling of scientific research processes in form
of automatable and reproducible workflows. Basis for this was the identification of a generic
structure in research processes that can be used for their modelling. For this purpose, the
input-process-output model was iteractively applied to research processes until a structure
emerged, that enables the bottom-up modelling of any process. The found structure abstracts
processes as the concatenation of various functions or programs that are defined by certain
inputs, a process, and outputs. The interconnection and parameterisation of these programs
subsequently allows to model the data flow within the research process comprehensibly.
Stringing all work steps of a workflow together through the said connections finally models
the complete workflow. Using this method, arbitrary workflows can be created. The atomistic
process description on different levels further permits the identification of reusable elements
in workflows. Thus, using workflows research results can not only be made reproducible, but
the used methods can also be applied for other purposes. This reuse of certain procedures
additionally minimises the susceptibility to errors in scientific workflows and thereby guarantees
the quality assurance of scientific data.

In KadiStudio the identified process structure is implemented by providing different nodes,
each of which represents a certain function or program. By adding and connecting them in a
graphical user interface using an intuitive point-and-click mechanism, research processes can
be modelled. To guarantee the FAIR formulation of workflows in KadiStudio, certain design
choices have been made and specific functionalities have been included. The aspects findable
and accessible are ensured by directly integrating KadiStudio into Kadi4Mat, thus allowing the

15Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

structured storage and management of workflows within its repository. This also applies to the
scientific data generated in workflows, which can be automatically provided with descriptive
metadata and stored in Kadi4Mat in a FAIR manner. The interoperability of workflows is further
guaranteed by giving the user the possibility to add and adapt nodes in KadiStudio. In this
way adaptions necessary to process different file formats can be easily implemented into
existing workflows. Through the simple extension of the available tools the heterogeneous
tool landscape present in science can additionally be represented in KadiStudio. Hence, the
workflow editor can be used in any scientific domain to model the occurring processes.
This also incorporates manually performed worksteps, which can be integrated through the
provided user interaction nodes and prompts. These interactive elements additionally enable
the formulation of generic workflows that can be applied to different use cases therefore
ensuring the repurposablility of modelled workflows. Logging all inputs provided during the
execution of a workflow finally realises the reproducibility of a workflow execution as well as of
all data generated within it.

Summarising, KadiStudio offers an easily adaptable and intuitively usable solution to
holistically model arbitrary research processes and the data generated therein in a FAIR
manner. The implemented system is simple in use and can be flexibly adapted to any
scientific domain, therefore also satisfying the requirements to a workflow system
formulated by (Pizzi et al. 2016). KadiStudio thus makes a decisive contribution to promoting
FAIR handling of data and scientific processes and therefore to the realisation of the fourth
scientific paradigm.

APPENDIX A

import subp roces s
import sy s

from xmlhelpy import argument
from xmlhelpy import opt ion

Decora t ion with @command d e �n e s the node type as ’ t o o l ’ .
Using @environment would s e t the node type to environment .
@command(v e r s i o n= " 0 . 1 . 0 ")
@argument and @option add new po r t s to the t o o l node ,
which se r ve to pa ramete r i s e the unde r l y i ng func ion .
@argument (" message " , d e s c r i p t i o n= " Message to be echoed ")
@option (

" no− newl ine " ,
char= " n " ,
i s _ � a g=True ,
d e s c r i p t i o n= "Do not output the t r a i l i n g newl ine " ,

)
The echo func t i on i s executed when the node i s c a l l e d .
de f echo (message , no_newline) :

" " " Wrapper node f o r echo (GNU c o r e u t i l s) . " " "
cmd = [" echo "]

i f no_newline :
cmd . append ("− n ")

cmd . append (message)
sy s . e x i t (subp roces s . run (cmd) . r e tu rncode)

ACKNOWLEDGEMENTS
This work is partly funded by the German Research Foundation (DFG) under Project ID
390874152 (POLiS Cluster of Excellence), by the German Federal Ministry of Education and
Research (BMBF) in the project FB2 TheoDat (project number 03XP0435D), by the Ministry of
Science, Research and Art Baden-Württemberg (MWK-BW) in the project MoMaF–Science Data
Center, with funds from the state digitization strategy digital@bw (project number 57), by the
Helmholtz association in the project INNOPOOL MDMC (program No. 43.35.01) and also funded
by the BMBF and MWK-BW as part of the Excellence Strategy of the German Federal and State
Governments in the project Kadi4X. We would also like to acknowledge the German Federal
Ministry of Education and Research (BMBF) for its financial support within the project AQuaBP,
under the grant number 03XP0315B. Some ideas presented in this paper are enhanced by the
fruitful discussions in different working groups of the project NFDI4Ing.

Listing 1 Echo node example.

16Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

AUTHOR AFFILIATIONS
Lars Griem orcid.org/0000-0002-8093-6356
Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7,
76131 Karlsruhe, Germany

Philipp Zschumme orcid.org/0000-0002-4821-5719
Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7,
76131 Karlsruhe, Germany

Matthieu Laqua orcid.org/0000-0003-2978-3160
Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7,
76131 Karlsruhe, Germany

Nico Brandt orcid.org/0000-0002-3860-1376
Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7,
76131 Karlsruhe, Germany

Ephraim Schoof orcid.org/0000-0001-6821-7263
Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm,
Germany

Patrick Altschuh orcid.org/0000-0003-1373-492X
Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7,
76131 Karlsruhe, Germany; Institute for Digital Materials Science (IDM), Karlsruhe University of Applied
Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany

Michael Selzer orcid.org/0000-0002-9756-646X
Institute for Applied Materials (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7,
76131 Karlsruhe, Germany; Institute for Digital Materials Science (IDM), Karlsruhe University of Applied
Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany

COMPETING INTERESTS
The authors have no competing interests to declare.

REFERENCES
Afgan, E, et al. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical

analyses: 2018 update. Nucleic acids research, 46(W1): W537–W544. DOI: https://doi.org/10.1093/

nar/gky379

Berthold, MR, et al. 2009. KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD

explorations Newsletter, 11(1): 26–31. DOI: https://doi.org/10.1145/1656274.1656280

Brandt, N, et al. 2021. Kadi4Mat: A Research Data Infrastructure for Materials Science. Data Science

Journal 20.1. DOI: https://doi.org/10.5334/dsj-2021-008

Crusoe, MR, et al. 2021. Methods included: standardizing computational reuse and portability with the

common workflow language. arXiv preprint arXiv, 2105.07028. DOI: https://doi.org/10.1145/3486897

Crusoe, MR, et al. May 2022. Methods Included: Standardizing Computational Reuse and Portability

with the Common Workflow Language. Commun. ACM, 65(6): 54–63. DOI: https://doi.

org/10.1145/3486897

Demšar, J, et al. 2013. Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research, 14:

2349–2353.

Di Tommaso, P, et al. 2017. Nextflow enables reproducible computational workflows. Nature

biotechnology, 35(4): 316–319. DOI: https://doi.org/10.1038/nbt.3820

Dmitry, PEA. 2017. Qt5 Node Editor. https://github.com/paceholder/nodeeditor.

Draxl, C and Scheffler, M. 2020. Big data-driven materials science and its FAIR data infrastructure.

Handbook of Materials Modeling: Methods: Theory and Modeling, 49–73. DOI: https://doi.

org/10.1007/978-3-319-44677-6_104

Frazer, S, et al. 2012. Workflow Description Language – Specification and Implementations. https://

libraries.io/github/openwdl/wdl.

Goel, A. 2010. Computer fundamentals. Pearson Education India.

Hey, AJ, Tansley, S, Tolle, KM, et al. 2009. The fourth paradigm: data-intensive scientific discovery. Vol. 1.

WA: Microsoft research Redmond.

Jain, A, et al. 2015. FireWorks: A dynamic workflow system designed for high-throughput applications.

Concurrency and Computation: Practice and Experience, 27(17): 5037–5059. DOI: https://doi.

org/10.1002/cpe.3505

Kadi4Mat Team and Contributors. June 2022a. IAM-CMS/kadi-apy: Kadi4Mat API Library. Version 0.23.0.

DOI: https://doi.org/10.5281/zenodo.6623518

https://orcid.org/0000-0002-8093-6356
https://orcid.org/0000-0002-8093-6356
https://orcid.org/0000-0002-4821-5719
https://orcid.org/0000-0002-4821-5719
https://orcid.org/0000-0003-2978-3160
https://orcid.org/0000-0003-2978-3160
https://orcid.org/0000-0002-3860-1376
https://orcid.org/0000-0002-3860-1376
https://orcid.org/0000-0001-6821-7263
https://orcid.org/0000-0001-6821-7263
https://orcid.org/0000-0003-1373-492X
https://orcid.org/0000-0003-1373-492X
https://orcid.org/0000-0002-9756-646X
https://orcid.org/0000-0002-9756-646X
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.5334/dsj-2021-008
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1038/nbt.3820
https://github.com/paceholder/nodeeditor
https://doi.org/10.1007/978-3-319-44677-6_104
https://doi.org/10.1007/978-3-319-44677-6_104
https://libraries.io/github/openwdl/wdl
https://libraries.io/github/openwdl/wdl
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.5281/zenodo.6623518

17Griem et al.
Data Science Journal
DOI: 10.5334/dsj-2022-016

TO CITE THIS ARTICLE:
Griem, L, Zschumme, P,
Laqua, M, Brandt, N,
Schoof, E, Altschuh, P and
Selzer, M. 2022. KadiStudio:
FAIR Modelling of Scientific
Research Processes. Data
Science Journal, 21: 16,
pp. 1–17. DOI: https://doi.
org/10.5334/dsj-2022-016

Submitted: 08 July 2022
Accepted: 06 September 2022
Published: 23 September 2022

COPYRIGHT:
© 2022 The Author(s). This is an
open-access article distributed
under the terms of the Creative
Commons Attribution 4.0
International License (CC-BY
4.0), which permits unrestricted
use, distribution, and
reproduction in any medium,
provided the original author
and source are credited. See
http://creativecommons.org/
licenses/by/4.0/.

Data Science Journal is a peer-
reviewed open access journal
published by Ubiquity Press.

Kadi4Mat Team and Contributors. June 2022b. IAM-CMS/kadi: Kadi4Mat. Version 0.25.1. DOI: https://doi.

org/10.5281/zenodo.6623521

Kadi4Mat Team and Contributors. July 2022c. IAM-CMS/workflow-nodes. Version 0.15.0. DOI: https://doi.

org/10.5281/zenodo.6806747

Kadi4Mat Team and Contributors. February 2022d. IAM-CMS/xmlhelpy. Version 0.9.2. DOI: https://doi.

org/10.5281/zenodo.5971732

Kadi4Mat Team and Contributors. July 2022e. kadistudio: 0.1.0.alpha1. Version 0.1.0.alpha1. DOI: https://

doi.org/10.5281/zenodo.6810891

Kluyver, T, et al. 2016. Jupyter Notebooks? A publishing format for reproducible computational

workflows. In: Loizides, F and Scmidt, B (eds.), Positioning and Power in Academic Publishing: Players,

Agents and Agendas. IOS Press. pp. 87–90. DOI: https://doi.org/10.3233/978-1-61499-649-1-87

Mölder, F, et al. 2021. Sustainable data analysis with Snakemake. F1000 Research, 10. DOI: https://doi.

org/10.12688/f1000research.29032.1

Pizzi, G, et al. 2016. AiiDA: automated interactive infrastructure and database for computational

science. Computational Materials Science, 111: 218–230. DOI: https://doi.org/10.1016/j.

commatsci.2015.09.013

The Pallets Projects. 2014. Click – The Pallets Projects. https://palletsprojects.com/p/click/.

Wilkinson, MD, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship.

Scientific data, 3(1): 1–9. DOI: https://doi.org/10.1038/sdata.2016.18

Zelle, JM. 2004. Python programming: an introduction to computer science. Franklin, Beedle & Associates,

Inc.

Zschumme, P, Schoof, E, et al. July 2022. IAM-CMS/process-engine. Version 0.5.0. DOI: https://doi.

org/10.5281/zenodo.6806707

Zschumme, P, Steinhülb, J and Brandt, N. February 2022. IAM-CMS/process-manager. Version 0.2.0. DOI:

https://doi.org/10.5281/zenodo.5972885

https://doi.org/10.5334/dsj-2022-016
https://doi.org/10.5334/dsj-2022-016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.6623521
https://doi.org/10.5281/zenodo.6623521
https://doi.org/10.5281/zenodo.6806747
https://doi.org/10.5281/zenodo.6806747
https://doi.org/10.5281/zenodo.5971732
https://doi.org/10.5281/zenodo.5971732
https://doi.org/10.5281/zenodo.6810891
https://doi.org/10.5281/zenodo.6810891
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1016/j.commatsci.2015.09.013
https://palletsprojects.com/p/click/
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.5281/zenodo.6806707
https://doi.org/10.5281/zenodo.6806707
https://doi.org/10.5281/zenodo.5972885

