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ABSTRACT
FAIR handling of scientific data plays a significant role in current efforts towards a 
more sustainable research culture and serves as a prerequisite for the fourth scientific 
paradigm, that is, data-driven research. To enforce the FAIR principles by ensuring the 
reproducibility of scientific data and tracking their provenance comprehensibly, the 
FAIR modelling of research processes in form of automatable workflows is necessary. 
By providing reusable procedures containing expert knowledge, such workflows 
contribute decisively to the quality and the acceleration of scientific research. In 
this work, the requirements for a system to be capable of modelling FAIR workflows 
are defined and a generic concept for modelling research processes as workflows 
is developed. For this, research processes are iteratively divided into impartible 
subprocesses at different detail levels using the input-process-output model. The 
concrete software implementation of the identified, universally applicable concept 
is finally presented in form of the workflow editor KadiStudio of the Karlsruhe Data 
Infrastructure for Materials Science (Kadi4Mat).
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1 INTRODUCTION
Through technological advances in instrumentation and computational performance, the 
amount of data produced in engineering sciences, and especially materials science, has 
increased significantly over the past decades. This development paves the way for a new 
scientific paradigm, commonly known as data science (Hey et al. 2009), that focuses on the 
systematic analysis of data to generate new knowledge or insight. It allows to accelerate the 
innovation of new materials and can thus be seen as a driving force for future developments. 
Prerequisite for this paradigm is the availability, completeness, and reproducibility of the 
research data to be examined.

Establishing the paradigm thus requires an extensive data sharing concept that enables 
structured storage and management of research data according to the FAIR – Findable, 
Accessible, Interoperable, and Reusable – principles (Draxl & Scheffler 2020; Wilkinson et al. 
2016). A sophisticated infrastructure in form of a repository in which data can be recorded 
and administered as well as analysed, transformed, and visualised is therefore beneficial. 
Moreover, a system capable of modelling scientific processes and data flows as automatable 
and configurable workflows is necessary. It not only ensures the datas’ reproducibility and 
tracks their provenance comprehensibly but also allows to generate new knowledge and 
insight by processing the stored data. In this way, workflows contribute decisively to the quality 
assurance and acceleration of scientific research. As for scientific data, workflows need to be 
formulated in a FAIR manner in order to be accessible and usable for a broad scientific audience 
as well as for data science approaches. Implementing a system capable of FAIR modelling of 
research processes as such workflows requires two contradictory conditions to be met. Firstly, 
as scientific research exhibits heterogeneous tools and procedures, the proposed workflow 
system must be kept generic and easily extensible. Secondly, it must be simple and intuitive 
in use to minimise the effort required to formulate workflows and thus increase acceptance 
among researchers (Pizzi et al. 2016).

Infrastructures which integrate the creation, exchange and execution of workflows are, to 
date, already realised in various implementations, such as Jupyter Notebooks (Kluyver et al. 
2016), Galaxy (Afgan et al. 2018), Fireworks (Jain et al. 2015) and AiiDA (Pizzi et al. 2016). The 
aforementioned infrastructures as well as all other implementations known to us, however, 
do not satisfy the named conditions of simple usability, generic extensibility and FAIR process 
modelling. Jupyter Notebooks for example, enables the modelling of scientific processes, but 
its focus lies on computer-aided scientists. Hence, programming experience is required on part 
of the user to formulate workflows, which in our experience, is a hindrance for many scientists. 
Galaxy, on the other hand, allows researchers without programming knowledge to formulate 
workflows. However, these are limited to the field of life sciences and thus do not represent a 
generic solution for FAIR process modelling. Fireworks is also limited to a specific domain that is 
simulations and the management of computer resources. A generic, domain-independent use 
that also includes manual work steps is therefore not possible. AiiDA presents a generic solution for 
formulating workflows in form of scripts. Nevertheless, as the focus is on computational science, 
it is not possible to implement manual steps into workflows, thus excluding scientists working 
in analogue from the target group. Additionally, programming experience is again required. 
Consequently, to our knowledge, there is no system that offers a generic, domain independent 
approach to formulate workflows in a FAIR manner, which targets not only computer-based 
working scientists with an affinity for programming but also analogue working researchers 
with little programming expertise. In this paper we therefore introduce a possible solution for 
FAIR modelling of scientific processes that takes these requirements into account and present 
its concrete implementation in form of the workflow editor KadiStudio. For this, a concept is 
first developed that allows to abstract scientific processes according to a uniform schema that 
serves as the basis for FAIR modelling. Subsequently the technical implementation of the openly 
accessible software KadiStudio (Kadi4Mat Team & Contributors 2022e) (available under https://
doi.org/10.5281/zenodo.6810891) is presented in detail, with reference to this concept.

2 CONCEPT
The development of a generic system for modelling research processes requires the 
identification of a common structure that can be imposed on any process. For this purpose, 

https://doi.org/10.5281/zenodo.6810891
https://doi.org/10.5281/zenodo.6810891
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we iteratively disassemble scientific processes into atomistic descriptions at different levels 
of detail. The term atomistic description here refers to the subdivision of a process into 
impartible parts. This description allows to identify generic elements within processes that  
can be reused in other use-cases. Basis for the disassembly is the Input Process Output  
(IPO) model presented in Figure 1, which is known from systems analysis (Goel 2010; Zelle 
2004).

This model describes processes as the combination of input, process and output. Accordingly, a 
process commences with the collection and preparation of the data to be investigated through 
specified inputs. The subsequent processing of the collected data is then performed according 
to a defined process. The results obtained in this process are finally available for further use via 
defined outputs.

The most extensive atomistic process description is at project level and includes the complete 
process as shown in Figure 2. This is to be understood in the sense that a research project 
can only be described by the entire process. Describing the experimental investigation of a 
sample, for instance, requires the entire experiment to be modelled; no further subdivision is  
possible.

To describe the process at the less complex work package level, the IPO model is imposed 
onto it. This model divides the research process into three sequential work packages that 
correspond to the different elements of the IPO-model. These packages are pre-processing, 
main-processing, and finally post-processing. Applied to the aforementioned experimental 
investigation of a sample, the pre-processing corresponds to the preparation of the experiment, 
the main-processing to the actual experiment and the post-processing to the final analysis 

Figure 1 Schematic 
description of the IPO concept. 
Through defined inputs a 
process is parameterised and 
subsequently executed. The 
generated results are available 
via defined outputs.

Figure 2 Abstraction of a 
research process at different 
levels of detail. Each grey 
box with gears models a 
work step while the white 
boxes represent their 
parameterisation. APR refers 
to the description of tasks 
as data acquisition, data 
processing, and data routing. 
Iteratively structuring a 
research process according 
to the IPO model ultimately 
defines it via multiple generic 
tools.
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of the obtained data or the interpretation of the results. Each of these work packages can 
consist of an arbitrary number of work steps. The pre-processing of an experiment, for instance, 
could include the grinding and polishing of a material sample as well as the calibration of the 
microscope. Abstracting the process into the work packages pre-, main- and post-processing 
already enables the identification of elements that might be reusable in other use-cases. 
The pre-processing of the experiment in form of the microscope calibration and the sample 
preparation can for example be reused for similar investigations. This level of detail however 
is not sufficient to be used as a basis for a generic workflow modelling system. Instead, a 
more in-depth description of the individual work packages is required. For this purpose, the 
IPO model is applied to each coherent task within the identified work packages. A coherent 
task refers to the logically separable work steps within a work package. The pre-processing 
of the aforementioned experimental investigation of a sample could for instance contain the 
tasks sample grinding and microscope calibration. Structuring these tasks according to the 
IPO model results in a process description at task level, which we refer to as APR structure, 
that is schematically illustrated in Figure 2. It describes the data flow within and between the 
individual steps of a task through data Acquisition, data Processing and data Routing. In this 
abstraction, the data acquisition contains all work steps that collect and prepare the necessary 
data for the corresponding task and then forwards them to data processing. Within data 
processing, these inputs are processed to generate new data. The data thus obtained in form 
of results or intermediate results are finally forwarded in the data routing. The routing of results 
can be realised to any desired destination such as a file or the data acquisition of a subsequent 
task. The work packages Pre-, Main- and Post-processing can consist of any number of such 
APR processes as indicated in Figure 2, and can hence be understood as the concatenation of 
these elements.

Accordingly, the APR model mainly serves to describe the data flow within each task. This 
allows for the comprehensible traceability of the data flow within them, promoting a better 
understanding of the process. Moreover, the identified APR structures can be reused and 
applied to different use-cases. However, as the APR processes consist of a defined combination 
of multiple individual work steps, they are too use case specific to be used as a generic workflow 
modelling structure. Consequently, the IPO model is again applied to each work step within the 
APR processes. This results in an atomistic description of the research process at tool level. The 
individual work steps of each APR processes are now defined as generic and reusable tools 
with specific inputs and outputs as well as a process. In the considered sample preparation 
example, these could be the work steps grinding, polishing, and etching. Since this structuring 
corresponds to the original definition of the IPO model, it is here also referred to as IPO. The 
actual data generation of the research project takes place within this abstraction step. The data 
is generated in the process step and then forwarded through the output. This allows the origin 
of the generated data to be precisely determined and to be provided with the corresponding 
metadata and dependencies, thus enabling its FAIR storage. The generic descriptions of the 
work steps can now be used and rearranged to form any desired workflow making a further 
abstraction of the process unreasonable at this point.

Summarising, the applied method illustrated schematically in Figure 3 can be applied to 
reduce the complexity of arbitrary research processes up to the atomistic descriptions of the 
individual work steps, that is tools. Consequently, the inverse use of this concept enables the 
implementation of a generic system for modelling research processes. This modelling is thus 
based on the general description of the used tools according to the IPO model. Subsequently 
adding information through connections describing the data flow and the parameterisation of 
the used tools as described by the APR model, enables the further specification of the process. 
The concatenation of multiple APR processes finally allows to model the pre-, main- and post-
processing, which in sum ultimately represent the complete research process. Similar concepts 
that use atomistic tool descriptions according to the IPO model which are linked together to 
form a workflow are used in many well-known workflow management systems. CWL (Crusoe et 
al. 2022), snakemake (Mölder et al. 2021) and nextflow (Di Tommaso et al. 2017), for example, 
implement it in a script-based system, while programmes such as KNIME (Berthold et al. 2009) 
or Orange (Demšar et al. 2013) realise it within in a graphical interface. This widespread use of 
similar concepts in established systems illustrates the suitability of the found concept for the 
formulation of workflows.
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The concrete implementation of the described concept into a generic workflow system for 
the FAIR formulation of research processes, incorporated into the research data infrastructure 
Kadi4Mat, will be presented in the following.

3 IMPLEMENTATION
The Karlsruhe Data Infrastructure for Materials Science – Kadi4Mat – (Kadi4Mat Team & 
Contributors 2022b) offers its users multiple functionalities, illustrated in Figure 4. They can 
be summarised as a Community Repository and as an Electronic Lab Notebook (ELN). While 
the community repository provides an extensive data sharing and managing infrastructure, 
the ELN allows for the logging of conducted research, the visualisation, transformation and 
analysis of stored data, and the generation of reproducible workflows. These workflows serve 
to model recurring processes in the work of researchers in form of digital twins that allow to 
process data stored within the repository and to guarantee the reproducibility of said data. 
The digital twins thus not only facilitate the day to day work of researchers by automation, 
but also allow to make process knowledge accessible and repurposable for a wider scientific 
community indicating the importance of their FAIR formulation.

Aiming to provide a user friendly software solution that incorporates the FAIR modelling of 
research processes, a workflow editor, which is based on an open source node editor library 
for the Qt GUI framework (Dmitry 2017), has been created and integrated within the ELN 
functionality of Kadi4Mat. Basis for this workflow system was the process structuring 
concept presented in the previous section. Within the framework of Kadi4Mat two versions 
of this editor exist, which both use the same JSON-based data format to describe workflows, 
ensuring their interoperability. On the one hand a desktop-based, standalone software version 
called KadiStudio exists, which can be used without an internet connection or running web 

Figure 3 Reducing the process 
complexity by iteratively 
applying the IPO model to the 
identified processes. On each 
abstraction level, the process 
can be atomistically described. 
The tool level description 
presents a generically usable 
approach for modelling 
arbitrary research processes.

Figure 4 Conceptual overview 
of Kadi4Mat. Currently 
two software modules are 
available: (1) KadiWeb, a 
web-based virtual research 
environment incorporating 
ELN functionalities and 
repositories and (2) KadiStudio, 
a desktop-based software 
version which allows for the 
formulation and execution of 
workflows. Further modules 
such as a machine learning 
implementation referred to 
as KadiAI and a desktop-
based repository called 
KadiFS are subject of current 
developments.
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server, and on the other hand, a web-based version that is integrated into KadiWeb. KadiWeb 
(available under https://kadi.iam-cms.kit.edu/) refers to the generally accessible web version 
of Kadi4Mat, which incorporates both the community repository and the ELN functionalities 
including its built-in data handling tools. In Figure 4 the structure of Kadi4Mat is illustrated 
schematically. Apart from the described components – KadiWeb and KadiStudio – additional 
modules are currently being developed, including a machine learning tool set called KadiAI 
and a filesystem integration for the repository referred to as KadiFS. Generally, Kadi4Mat can 
be understood as an overarching concept, that encompasses various modules, which in sum, 
create a generic research data infrastructure, extensible to all kinds of research disciplines in 
the future.

To illustrate how the workflow system implemented into the infrastructure of Kadi4Mat enables 
FAIR modelling of research processes, the term FAIR will first be defined in more detail. FAIR was 
introduced by Wilkinson et al. (2016) and is the acronym for Findable, Accessible, Interoperable, 
and Reusable. These principles impose the following requirements on the storage of scientific 
data:

•	 Findable: Data must be provided with descriptive metadata that can be searched 
specifically by humans and machines alike.

•	 Accessible: Stored data must be accessible, possibly with appropriate authentication or 
authorisation.

•	 Interoperable: Data must be formulated in a broadly applicable language and thus be 
interoperable with applications and workflows.

•	 Reusable: Data should be reusable. For this, metadata and data need to be rich in 
information and associated with a detailed provenance.

When applying these principles to scientific processes, however, their definitions have to 
be partially adjusted. While the wording of Findable and Accessible can be adopted, the 
elements Interoperable and Reusable need to be adapted. The principle Interoperable must 
additionally imply that various generally accepted data formats can be used in a modelled 
workflow. When necessary, an existing workflow must be adaptable accordingly. Moreover, 
according to the interpretation of the Reusable principle described in (Draxl &Scheffler 
2020), a workflow must, on the one hand enable the reliable reproduction of results and, 
on the other hand, be fully or partially repurposable for different use cases. The conditions 
Findable and Accessible are already fulfilled in the case of the workflow system presented 
here through the direct integration in Kadi4Mat. This allows workflows to be stored in 
the community repository and thus to be shared with the scientific community. As for 
ordinary research data, the workflows stored in Kadi4Mat can be equipped with descriptive 
metadata, that can be selectively searched. Consequently, these principles need not to be 
specifically considered in the implementation of the actual workflow system. The technical 
implementation of the workflow editor presented hereafter, therefore, concentrates 
on the interoperability and reusability of the modelled workflows. Additionally, the 
requirements of the editor to be generic and simple in use (Pizzi et al. 2016) are taken into  
consideration.

4 RESULTS
The scheme described in Chapter 2 for the abstraction of scientific processes, defines 
individual functions or tools described according to the IPO model as the basic building blocks 
of a process. These basic building blocks are implemented in KadiStudio in the form of various 
nodes.

In both workflow editors — standalone and web-based version —, these nodes can be added 
and connected to model a process within a graphical user interface (GUI) using an intuitive 
point-and-click mechanism as shown in Figure 5.

https://kadi.iam-cms.kit.edu/
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Each of the insertable nodes represents a certain process, modelled according to the IPO 
model and can be differentiated between (1) tool nodes, which serve to integrate various 
programs or functions, (2) environment nodes, which are used in combination with tool 
nodes, and finally (3) built-in nodes, which allow to influence the execution of the workflow 
and add interactive options as well as variables to the editor. These node types are presented 
in Figure 6.

In accordance with the IPO model, each node describes a specific process that contains 
both inputs and outputs represented by the input and output ports respectively. The input 
ports are located on the left-hand side of the node and the output ports on the right-hand 
side. Depending on their task, the ports can be divided into parameterisation, dependency, 
environment, and stdin/stdout ports. Stdin and stdout ports refer to the standard input and 
standard output streams of the underlying program, respectively. Parameterisation ports are 
used to pass arguments and options necessary to execute the node, such as string or boolean 
values. The execution order of the nodes, including control mechanisms such as if-conditions 
and for-loops, can be defined using the dependency ports. Environment ports are used to set 
a prefix to a tool node to execute it in a specific environment, such as a secure shell (SSH), 
that enables the remote execution of tools. Piping the output of a node into another node can 
further be realised using stdin and stdout ports. The provision of nodes that have these defined 

Figure 5 Overview of the 
available workflow editors, 
showing the GUI of the 
desktop (top) and the web-
based version (bottom). 
Workflows can be modelled 
by adding and connecting 
nodes using a point-and-click 
interface.

Figure 6 Available node 
types. Built-in nodes are grey, 
environment nodes green and 
tool nodes blue.
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inputs and outputs is the basis of workflow modelling in KadiStudio. This is in accordance to 
the identified structure illustrated in Figure 3. Connecting and parameterising the nodes using 
the named ports allows to add the data flow according to the APR model to the workflow as 
described in Chapter 2. This puts the added nodes into defined relations and allows the user 
to see at first glance which inputs a process uses and to which process its output is forwarded. 
This structures the data flow in a comprehensible manner.

When executing a workflow, the added nodes and their connections are processed and 
translated into command line interface (CLI) commands. Hence, the workflow editor can be 
understood as a graphical programming language with simple usability due to its intuitive 
character, also allowing inexperienced users to model their workflows. The use of this modelling 
mechanism will be presented in the following examples.

4.1 PARAMETERISATION AND USE OF NODES

As mentioned in the previous section, tool nodes represent CLI commands, structured according 
to the IPO model, thus possessing defined inputs and outputs. To parameterise the underlying 
CLI command, the node’s input ports are used. A simple example of such a parameterisation 
is presented in Figure 7.

The added tool node represents the ‘echo’ CLI command. Adding a source node of type string 
and connecting it to the tool node allows for the parameterisation of the echo command. In 
the presented example, ‘Hello World!’ is passed to the tool node, resulting in the command 
shown in Figure 7(b). To pipe a node’s output into another node, the stdout and stdin ports 
are used. Adding a File Output node to the workflow example of Figure 7 and connecting it 
to the tool node as shown in Figure 8(a) activates this piping functionality. As can be seen in 
the resulting command shown in Figure 8(b), the standard output is forwarded to the second 
node.

Moreover, the parameterisation of the tool node in Figure 8 is realised using a UserInput: Text 
node that prompts the user for an input when executed. In addition, the dependency ports 
have also been connected in this example. Defining the dependencies of the workflow nodes 
supports the process engine in determining the execution order of the added nodes. In the 
shown example, this implies that the File Output node is not executed until the echo node has 
been called and executed successfully. In general, when modelling a workflow, it is strongly 
recommended that the dependency ports are connected, as undefined dependencies may 
result in a wrong execution order, possibly rendering the workflow inoperable.

Figure 8 also vividly illustrates the workflow modelling concept implemented in KadiStudio. The 
used tools are defined by certain inputs, outputs and a process thus complying with the IPO 
model. Depending on their purpose they can be assigned to the elements of the APR model. 
Specifically, the data acquisition consists of the UserInput: Text node that prompts the user for 
an input, which is forwarded to the data processing in form of the echo node by connecting 

Figure 7 Overview of the 
node parameterisation. The 
parameterisation of an echo 
node using a string source 
node is shown in (a). this is 
equivalent to the command 
shown in (b).
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the ports. After processing this input in the echo node, the result is forwarded to the next node 
in the subsequent data routing. In this case, the received input is routed into a file using the 
File Output node. This demonstrates the idea of structuring the work steps of each task in the 
APR model according to their purpose in the present data flow. In the previous examples, the 
nodes were parameterised using different built-in nodes. On the one hand with source nodes, 
that provide the computational values string, boolean, integer, and float, which are set when 
the workflow is created and remain constant for each execution. On the other hand, by using 
user input nodes, that allow to formulate more generic workflows by granting the possibility to 
interactively redefine certain parameters during the workflow execution. These nodes pause 
the execution of the workflow and prompt the user for an input via a dialogue box before 
continuing the execution, as shown in Figure 9.

Through the use of such user interactions the user is given control over the workflow execution 
allowing to adapt to different use cases. Workflows are therefore not just predefined scripts 
that can be applied under certain circumstances, but can be seen as generic tools adaptable 
to the current use case during execution. The interactively definable parameters are manifold 
and include not only the query of basic computational values but also the selection of files 

Figure 8 Visualisation of the 
workflow modelling concept 
implemented in KadiStudio. 
Multiple tools are connected 
according to the APR model 
forming a simple workflow. 
Connecting the stdout port 
to the stdin port as shown in 
(a) pipes the standard output 
stream of the tool node into 
the standard input stream 
of the File Output node that 
finally routes them into a file. 
This demonstrates structuring 
the tools of a task depending 
on their purpose in the data 
flow. This has the same effect 
as the command shown in (b).

Figure 9 Usage of UserInput 
nodes. During the execution, 
the user is prompted for an 
input, such as to select an 
image area, as shown in this 
example. The selected area 
can then be used in further 
investigations.
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and, for example, the cropping of images to a section to be examined, as depicted in Figure 9. 
Using this prompting mechanism also allows to model manual worksteps in KadiStudio. This 
is realised by requesting the user to conduct a workstep with certain inputs and querying the 
results obtained as shown in Figure 10. To ensure the reproducibility of the results obtained in 
workflows that use such user interactions, the interactively defined user inputs are saved within 
a log file. When uploading the results to a repository such as Kadi4Mat, the logged user inputs 
can be used as metadata for the generated data.

Apart from the interactive nodes, KadiStudio offers various other built-in nodes such as Variable, 
Loop or ifBranch that allow to manipulate the workflow execution and facilitate the formulation 
of generic research workflows. The provision of these built-in nodes in the workflow system 
KadiStudio thus not only guarantees the reproducibility of any manual or digital research 
process, but also allows for the repurposability of the workflows.

4.2 ADDING NEW NODES

To guarantee the interoperability of modelled workflows and to model the heterogeneous tool 
landscape present in scientific research, the repertoire of nodes available in KadiStudio must 
be easily extendable. In this way, custom functionalities and data conversion nodes can be 
incorporated into the workflow editor, enabling formulation of arbitrary workflows and their 
application to different file formats for instance. The interface for integrating new tools was 
therefore kept as simple as possible. Prerequisites for a new node to be added to the editor are 
only that the underlying CLI-command is (1) executable and (2) provides the --xmlhelp option. 
The --xmlhelp option returns a machine-readable description of the command, that is needed 
by the workflow editor to create the visual representation of the command within the editor. 
In case the desired tool does not provide this option, it can be added retroactively, for example, 
with a wrapper script using the xmlhelpy Python library (Kadi4Mat Team & Contributors 2022d). 
Listing 1 of appendix A shows an abbreviated, exemplary implementation of such a Python 
wrapper for the echo command. The XML output generated by this wrapper is shown in 
Figure 11.

The structure of an xmlhelp output always follows the same pattern. After the declaration 
as an XML document, a root element of type program or env follows, which indicates a tool 
or an environment node respectively and is provided with the name, description and version 
attributes. Within this element, a param element is specified for each possible parameter 
of the command, which must contain the name, description and type attributes in order to 

Figure 10 Integrating manual 
work steps by giving the user 
all necessary parameters and 
asking them to select the 
generated results.

Figure 11 XML output of 
the wrapper script shown in 
Listing 1 of appendix A, that 
is printed when using the 

--xmlhelp option. The root 
element program specifies the 
command as a regular tool. 
Each of the param elements 
represents a configurable 
option of the wrapped 
command.
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be rendered within the editor. Additionally, further attributes such as a default value can be 
defined. The definition of these params specifies the inputs of the final node and thus serves to 
represent the underlying process with respect to the IPO model. The tool node derived from the 
xmlhelp above is shown in Figure 12.

The wrapper script shown in Listing 1 of appendix A is part of the workflow-nodes library 
(Kadi4Mat Team & Contributors 2022c), that already contains various Python-based nodes 
covering basic as well as some more specialized functions. The tool thus fulfills both prerequisites: 
(1) executable, (2) --xmlhelp option and can be added to the editor’s tool list using its GUI as 
shown in Figure 13. In the dialogue every executable within the PATH environment variable is 
listed. Selecting a tool will permanently add it to the usable tools of the editor.

The provision of the described interface for adding new nodes to KadiStudio enables not only 
the formulation of arbitrary workflows but also allows for the simple adaptation of existing 
workflows to different file formats. This contributes to the generic character of KadiStudio and 
ensures the interoperability of the workflows modelled in it.

4.3 LINK BETWEEN KADISTUDIO AND A REPOSITORY

As already mentioned, workflows created in KadiStudio can be stored directly in Kadi4Mat and 
provided with metadata. This permits the findable and accessible storage of workflows. Since 
the FAIR idea however does not only apply to workflows but to all scientific data, KadiStudio 
aims to provide FAIR documentation of the data created during a workflow. For this purpose, a 
link between the workflow editor and an arbitrary repository can be established. As a reference, 
this link has already been implemented for the repository of Kadi4Mat in form of tool nodes 

Figure 12 Created echo node. 
Echo node derived from the 
XML output shown in Figure 
11. Each param is represented 
by an input port. Tool node 
specific ports such as env are 
added automatically.

Figure 13 Dialogue for 
registering tools in the editor 
of KadiStudio. All executables 
in the PATH are listed. 
Commands can be queried 
and the default search path 
can be extended by the user.
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collected in the kadi-apy library (Kadi4Mat Team & Contributors 2022a). These nodes access 
the repository and its functionalities via the application programming interface (API) provided 
by Kadi4Mat, which offers a set of defined functions and interfaces to interact with KadiWeb. 
Registering a repository to KadiStudio is realised using a graphical user interface as shown in 
Figure 14. In case of Kadi4Mat this requires its host address as well as a personal access token 
(PAT).

Linking the local editor with the Kadi4Mat repository opens up various possibilities. Workflows 
saved in the repository can be loaded directly into the local editor to be edited. In addition, data 
stored in the repository can be loaded and processed within workflows and the corresponding 
results can be uploaded automatically to Kadi4Mat and provided with descriptive metadata. 
Establishing a link to a repository such as Kadi4Mat thus allows to holistically model research 
processes and the data used therein in a comprehensible manner. In summary, KadiStudio’s 
access to the data allows to map the entire scientific work from the raw or source data, 
through its analysis and use up to the structured storage within the repository. Structuring 
the generated data in Kadi4Mat and defining their interrelationships further enables their 
provenance tracking. In this way KadiStudio provides the possibility for FAIR handling of data 
generated during a workflow.

5 TECHNICAL ASPECTS
The technical details of the workflow editor, its architecture and related software components 
are presented in the following. The focus of these developments was again on the objective 
of creating a generic and intuitive software system, that allows for the FAIR formulation of 
research processes.

5.1 XMLHELPY

The generic character of the workflow editor is partly implemented by supporting the simple 
extension of the available tools. To incorporate a new tool, it must provide the --xmlhelp option, 
that returns a machine-readable description of the tool. Adding this option to existing tools 
can be realised using the xmlhelpy library. Xmlhelpy is a Python library available on PyPI. It 
is based on the open source framework Click (The Pallets Projects 2014), and extends it with 
custom classes and functions. As other related libraries for argument parsing, xmlhelpy allows 
to conveniently specify a program’s command line arguments and takes care of parsing and 
validating them. It then automatically adds the --xmlhelp option to the program allowing to 
obtain its specification in a machine-readable format.

5.2 ARCHITECTURE FOR WORKFLOW EXECUTION

Figure 15 gives an overview of the workflow system’s architecture. As mentioned in the 
previous sections, two versions of the workflow editor exist, which both use the same JSON-
based file format to load and save workflows. For execution, the workflow files are managed 
by the process manager, a software component dedicated to providing a unified interface 
for workflow execution. The process manager does not read or analyse the workflow files by 
itself but only acts as a thin layer of abstraction for the GUI components using its interface. 

Figure 14 Dialogue for 
registering Kadi4Mat instances. 
Registered instances can be 
accessed during a workflow to 
use the functionalities of the 
repository and to exchange 
data.
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Instead, it passes the workflow files on to a suitable process engine and instructs it with the 
execution. This way, the process engine implementations can be exchanged easily, enabling the 
flexible adaptation of the workflow system to changing requirements, thus strengthening the 
generic character of the Kadi4Mat workflow system. For this, a variety of process engines with 
specific characteristics suitable for a certain use case—remote execution, parallel execution, 
distributed execution, or running on large computer clusters/high performance computers—or 
workflow file format can be registered in the process manager. It is therefore conceivable to 
integrate other programs for workflow execution, such as Fireworks (Jain et al. 2015), in form of 
a specialised process engine. As a reference implementation, a fully functional process engine 
is provided (Zschumme, Schoof, et al. 2022), which follows a sequential execution approach. 
A detailed description of this process-engine implementation and of the process-manager is 
given in the following sections.

5.3 PROCESS ENGINE

The term process engine refers to a software component dedicated to running workflows and 
performing all tasks formulated in the workflow. As shown in Figure 15, the general concept 
takes into account that several different implementations might be available to flexibly adapt 
the execution to different technical emphases or capabilities.

Since each process engine implementation is free in how it executes the workflow, there is 
a wide field of possibilities, ranging from executing the workflow locally to delegating the 
execution to another application or computer to just printing a workflow description in a format 
like common workflow language (CWL) (Crusoe et al. 2021) or workflow description language 
(WDL) (Frazer et al. 2012). Prototype implementations of process engines running Kadi4Mat 
workflows with Fireworks (Jain et al. 2015) and CWL (Crusoe et al. 2021) have already been 
implemented. These promising approaches are to be continued in the future and could expand 
the current possibilities.

At the moment there is one fully functional process engine implementation (Zschumme, Schoof, 
et al. 2022), which is a CLI-based application written in C++, published under the Apache-2.0 
license. It serves as a reference implementation and allows local execution of workflows 
created with any of the workflow editors presented in Chapter 3. Its schematic functioning is 
outlined in the following.

When instructed to execute a workflow, the process engine first reads the workflow file and 
parses its JSON-structured content. During this step the process engine creates an internal 
in-memory representation of the workflow based on the unsorted lists of node descriptions 
and connections contained in the workflow file. An important aspect of this analysis is the 
determination of the execution order. For this, the data connections in the workflow as well as 

Figure 15 Architecture of the 
workflow system. Based on 
Figure 3 (Brandt et al. 2021) 
(CC BY 4.0). The process 
manager orchestrates and 
monitors the execution of 
workflows by delegating it to 
a suitable process engine and 
tracking its status.
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the explicit dependency connections are considered. The dependency connections also help 
with identifying conditional execution paths implied by If Branch or For Loop nodes for example.

After determining the correct order of execution, the implemented process engine executes 
each node of the workflow sequentially. This sequential and separate execution requires 
the nodes to provide its own execution function, which can be called as soon as the process 
engine decides to run the corresponding node. In order to manage the workflow execution, 
the implemented process engine uses a number of control files that are stored in an execution 
folder unique to every execution. Within these files, information about the progress of the 
execution, log files, and other necessary information is stored. This central storage of all 
relevant information eases debugging and ensures the reproducibility of the obtained results. 
When all nodes have been processed successfully, the execution is completed.

5.4 PROCESS MANAGER

The process manager is a CLI-based application written in C++ published under the Apache-2.0 
license (Zschumme, Steinhülb & Brandt 2022). As shown in Figure 15, it provides an interface 
for the GUI components to run workflows and to monitor and interact with already existing 
execution instances. It further administers the different process engines, which can be 
configured in a JSON-based configuration file that contains information on how to use the 
interface of each engine. When executing a workflow, the user can select an engine suitable for 
the current use-case from this list of available engines. In case the user omits this choice, the 
process manager instructs the default process engine with the workflow execution.

Once a workflow is started, the process manager will interact with the responsible process 
engine to obtain the status and log of the execution or to provide user input. For this, the 
process manager assigns a unique identifier to each execution instance and creates an 
execution folder which is used exclusively during this particular execution. The process engine 
is then free to use this provided, empty folder for storage. This eliminates the risk of overwriting 
important data from previous executions, which is why the execution folder is used as the base 
path for all executed programs by the current process engine implementation (Zschumme, 
Schoof, et al. 2022). Depending on the internals of the workflow, however, different save paths 
can be used as well.

6 CONCLUSION
In this paper, a concept for the FAIR formulation of research processes was presented and 
its concrete implementation in form of the workflow system KadiStudio introduced. The 
implemented software allows for the FAIR modelling of scientific research processes in form 
of automatable and reproducible workflows. Basis for this was the identification of a generic 
structure in research processes that can be used for their modelling. For this purpose, the 
input-process-output model was iteractively applied to research processes until a structure 
emerged, that enables the bottom-up modelling of any process. The found structure abstracts 
processes as the concatenation of various functions or programs that are defined by certain 
inputs, a process, and outputs. The interconnection and parameterisation of these programs 
subsequently allows to model the data flow within the research process comprehensibly. 
Stringing all work steps of a workflow together through the said connections finally models 
the complete workflow. Using this method, arbitrary workflows can be created. The atomistic 
process description on different levels further permits the identification of reusable elements 
in workflows. Thus, using workflows research results can not only be made reproducible, but 
the used methods can also be applied for other purposes. This reuse of certain procedures 
additionally minimises the susceptibility to errors in scientific workflows and thereby guarantees 
the quality assurance of scientific data.

In KadiStudio the identified process structure is implemented by providing different nodes, 
each of which represents a certain function or program. By adding and connecting them in a 
graphical user interface using an intuitive point-and-click mechanism, research processes can 
be modelled. To guarantee the FAIR formulation of workflows in KadiStudio, certain design 
choices have been made and specific functionalities have been included. The aspects findable 
and accessible are ensured by directly integrating KadiStudio into Kadi4Mat, thus allowing the 
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structured storage and management of workflows within its repository. This also applies to the 
scientific data generated in workflows, which can be automatically provided with descriptive 
metadata and stored in Kadi4Mat in a FAIR manner. The interoperability of workflows is further 
guaranteed by giving the user the possibility to add and adapt nodes in KadiStudio. In this 
way adaptions necessary to process different file formats can be easily implemented into 
existing workflows. Through the simple extension of the available tools the heterogeneous 
tool landscape present in science can additionally be represented in KadiStudio. Hence, the 
workflow editor can be used in any scientific domain to model the occurring processes. 
This also incorporates manually performed worksteps, which can be integrated through the 
provided user interaction nodes and prompts. These interactive elements additionally enable 
the formulation of generic workflows that can be applied to different use cases therefore 
ensuring the repurposablility of modelled workflows. Logging all inputs provided during the 
execution of a workflow finally realises the reproducibility of a workflow execution as well as of 
all data generated within it.

Summarising, KadiStudio offers an easily adaptable and intuitively usable solution to 
holistically model arbitrary research processes and the data generated therein in a FAIR 
manner. The implemented system is simple in use and can be flexibly adapted to any 
scientific domain, therefore also satisfying the requirements to a workflow system 
formulated by (Pizzi et al. 2016). KadiStudio thus makes a decisive contribution to promoting 
FAIR handling of data and scientific processes and therefore to the realisation of the fourth 
scientific paradigm.

APPENDIX A

import subp roces s
import sy s

from xmlhelpy import argument
from xmlhelpy import opt ion

# Decora t ion with @command d e �n e s the node type as ’ t o o l ’ .
# Using @environment would s e t the node type to environment .
@command( v e r s i o n= " 0 . 1 . 0 " )
# @argument and @option add new po r t s to the t o o l node ,
# which se r ve to pa ramete r i s e the unde r l y i ng func ion .
@argument ( " message " , d e s c r i p t i o n= " Message to be echoed " )
@option (

" no− newl ine " ,
char= " n " ,
i s _ � a g=True ,
d e s c r i p t i o n= "Do not output the t r a i l i n g newl ine " ,

)
# The echo func t i on i s executed when the node i s c a l l e d .
de f echo ( message , no_newline ) :

" " " Wrapper node f o r echo (GNU c o r e u t i l s ) . " " "
cmd = [ " echo " ]

i f no_newline :
cmd . append ( "− n " )

cmd . append ( message )
sy s . e x i t ( subp roces s . run (cmd ) . r e tu rncode )
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