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Abstract
Software correctness is a central goal for software development. One way to improve
correctness is using strong and descriptive types, that express correctness properties as
types, and verifying their compatibility with the programs by using type systems. In
particular Refinement Types demonstrated, that even with a verification system that is
restricted to a decidable logic, intricate properties can be expressed in a lightweight and
gradual way and verified automatically.

However existing approaches for adapting Refinement Types from functional to imper-
ative languages showed that the presence of mutable data and references entails compro-
mising on at least one of the core features of Refinement Types, which are the automated,
decidable verification and minimal, approachable specification.

This thesis presents a Refinement Type system with minimal compromises by taking
advantage of Rust’s restriction to unique mutable references.

To this end, we augment a flow-sensitive Refinement Type system with a varying typ-
ing context that facilitates type updates and tracks reference destinations. We define
a notion of subtyping on this context and argue for the soundness of our typing rules.
Furthermore we implement a prototype verifier for an extended version of our type sys-
tem as a plugin to the Rust compiler and evaluate its efficacy on a selection of examples,
demonstrating automatic verification and minimal, approachable specification.

Our work provides insights into the unique advantages that Rust’s ownership system
provides for a Refinement Type system. Additionallywe analyse a large dataset of existing
Rust code to gauge how relevant language features are used in practice.
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Zusammenfassung
Die Korrektheit von Software ist ein zentrales Ziel der Softwareentwicklung. Eine Mög-
lichkeit die Korrektheit zu verbessern, ist das Verwenden starker und deskriptiver Typen,
die Korrektheitseigenschaften als Typen kodieren, und die Kompatibilität mit dem Pro-
gramm mit Hilfe von Typsystemen verifizieren. Insbesondere Refinement Types haben
gezeigt, dass selbst mit einem Verifikationssystem, das auf eine entscheidbare Logik be-
schränkt ist, komplizierte Eigenschaften leicht ausgedrückt und automatisch verifiziert
werden können.

Bestehende Ansätze zur Anpassung von Refinement Types von funktionalen an impe-
rative Sprachen haben jedoch gezeigt, dass die Existenz von veränderbaren Daten und
Referenzen Kompromisse bei mindestens einer der Kerneigenschaften von Refinement
Types mit sich bringt, nämlich der automatisierten, entscheidbaren Verifikation und ei-
ner minimalen, leicht verständlichen Spezifikation.

In dieser Arbeit wird ein Refinement-Type-System mit geringfügigen Kompromissen
vorgestellt, indem Rusts Beschränkung auf unique mutable Referenzen ausgenutzt wird.

Zu diesem Zweck erweitern wir ein flusssensitives Refinement-Typsystem um einen
variierenden Typisierungskontext, der Typaktualisierungen ermöglicht und Referenzen
rückverfolgt. Dafür wird der Begriff der Subtypisierung auf diesem Kontext definiert
und die Korrektheit der Typregeln begründet. Darüber hinaus wurde Prototyp ein Typ-
Checkers als Rust-Compiler Plugin entwickelt, der mit Hilfe einer erweiterten Version des
vorgestellten Typsystems, zur Evaluation der Effektivität des Ansatzes anhand einer Aus-
wahl von Beispielen verwendet wird, welche die automatische Verifikation, den geringen
Spezifikationsaufwand und die leichte Zugänglichkeit demonstrieren.

Unsere Arbeit bietet Erkenntnisse in die ungewöhnlichen Vorteile, die das Rust-Owner-
ship-System für ein Refinement-Typsystem bietet. Zusätzlich wird ein großer Datensaty
von bestehendem Rust-Code analysiert, um festzustellen, wie relevante Sprachmerkmale
in der Praxis verwendet werden.
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1. Introduction

With increasing amount and reliance on software, ensuring the correctness of programs
is a vital concern for the future of software development. Although research in this area
has made good progress, most approaches are not accessible enough for general adoption
by the developers. Especially in light of a predicted shortage of developers[6], it is not
sufficient to require developers to undergo year-long training in specialized and complex
verification methods to ensure the correctness of their software. It is therefore crucial to
integrate with their existing tooling and workflows to ensure the future high quality of
software.

One avenue for improving accessability for functional verification is extending the ex-
pressiveness of the type system to cover more of the correctness properties. Using type
systems for correctness was traditionally prevalent in purely functional languages where
evolving states are often represented by evolving types, offering approachable and grad-
ual adoption of verification methods. Tracing evolving states in the type system would be
especially useful for languages with mutability, since substantial parts of the behaviour
of the program is expressed as mutation of state. In particular Rust seems like a promis-
ing target language, because mutability is already tracked precisely and thus promising
functional verification for relatively minimal effort on the programmer’s part.

The goal of the thesis is to show that Refinement Types can be idiomatically adapted
to languages with unique mutable references. The type system presented in this thesis
enables gradual adoption of lightweight verification methods in mutable languages.

The type system is sound and effective in the identified use-cases. A feasibility study on
minimal examples of challenging use cases shows how useful the proposed verification
system is.

Specifying or verifying complete Rust modules or the entire Rust language is not the
goal of the thesis. In particular unsafe Rust will not be taken into account in specification
nor implementation. Implementing Liquid Type inference is also not a goal of the thesis.

The accompanying implementation extends the Rust compiler, enables automatic pars-
ing of the refinement type language and automated type checking of a subset of Rust, as
well as limited inference, some error reporting and a simple counter example generation
system.

The main contributions of this thesis are:

1. Automatic empirical analysis of the usage of mutability and unsafe in Rust using
syntactic information

2. Extension to the Rust type system to allow for refinement type specifications

3. Description and implementation of a type checker for the introduced type system

1



1. Introduction

4. Evaluation of the type system on minimal benchmarks

The empirical analysis uses a parser framework to extract relevant syntactic structures
from open-source Rust code. To cover mutability, we will extend a path-sensitive Re-
finement Type system with variable typing context to allow types to change, just like
values. Mutable References will be handled by a restricted subset of the refinement lan-
guage called reference predicates. The implementation extends the Rust compiler Rustc
with our refinement type system and dispatches subtyping requests to the SMT solver Z3.
The evaluation uses Rust code examples in an unaltered syntax.

The thesis is structured as follows: Chapter 2 will give an overview of the foundation
the thesis builds upon. Thereafter, in chapter 3 an empirical analysis of unsafe andmuta-
bility uses is performed to gain an understanding of how Rust is used. Chapter 4 defines
the subset of Rust that will be the basis for the type system. Next chapter 5 explains
the actual type system and type checking, as well as justifying its correctness, followed
by chapter 6, which will provide additional information about how the type system was
implemented. The implementation will then be tested on minimal benchmarks in chap-
ter 7. Chapter 8 reports on related work and alternative approaches. Finally chapter 9
concludes the thesis and gives an overview over possible future work.
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2. Foundations
We start by giving a basic overview over the fundamental concepts that are relevant for
our work. The semantics of our subset of Rust are discussed in chapter 4.

2.1. Refinement Types
The type system that this thesis will adapt, is based on the Refinement Type system de-
scribed by Vazou et al. [32] and Rondon et al. [25]. The central idea of Refinement Types
is adding predicates to a language’s type: For example, a type i32 might be refined with
the predicate 𝑣 > 0. The refined type is written as {𝑣 : i32 | 𝑣 > 0} and represent the set
of inhabitants that have the specified base type, but also satisfy the predicate.

The notion of refinements is embedded into the base language using subtyping: A re-
fined type 𝜏 is a subtype of 𝜏′ if 𝜏 ’s predicate implies the predicate of 𝜏′ (in the current
typing context Γ). This matches the general maxime of behavioural subtyping: A value of
type 𝜏 can be used a place that expect 𝜏′, because the predicate of 𝜏′ is also satisfied for 𝜏 .
The following rules shows how subtyping is handled by Liquid types [25, p. 6]1. LT-Sub
allows a value 𝑒 to be typed with the type 𝜏2 if 𝑒 has type 𝜏1 and the subtyping relation
Γ ⊢ 𝜏1 ⪯ 𝜏2 is satisfied – for instance by ⪯-Base.

LT-Sub
Γ ⊢ 𝑒 : 𝜏1 Γ ⊢ 𝜏1 ⪯ 𝜏2 Γ ⊢ 𝜏2

Γ ⊢ 𝑒 : 𝜏2
⪯-Base

SMT-Valid(JΓK ∧ J𝑒1K → J𝑒2K)
Γ ⊢ {𝑣 : 𝑏 | 𝑒1} ⪯ {𝑣 : 𝑏 | 𝑒2}

The subtyping rule ⪯-Base requires that in the current context Γ, the predicate of the
subtypemust imply the predicate of the supertype, meaning a value of type 𝜏1 may be used
in a place requiring 𝜏2, since 𝜏2 was shown to satisfy all properties of 𝜏1. JΓK encodes the
predicates in Γ as an SMT formula by substituting 𝑣 in the type predicates by the program
variable’s name. For example, we can show, that in the context Γ = (𝑦 : {𝑣 : i32 | 𝑣 >
10}, 𝑥 : {𝑣 : i32 | 𝑣 > 𝑦}), 𝑥 can be typed as {𝑣 : i32 | 𝑣 > 0}:

LT-Sub

LT-VaR
Γ(𝑥) = 𝜏1
Γ ⊢ 𝑥 : 𝜏1

⪯-Base
SMT-Valid(𝑦 > 10 ∧ 𝑣 > 0 → 𝑣 > 𝑦)

Γ ⊢ {𝑣 : i32 | 𝑣 > 10} ⪯ {𝑣 : i32 | 𝑣 > 𝑦} . . .

Γ ⊢ 𝑥 : {𝑣 : i32 | 𝑣 > 0}

Liquid types also has a mechanism for enabling path sensitivity: When encountering
an if expression, the related path condition is added to the context:
1Names were adapted to better match our notation

3



2. Foundations

LT-If
Γ ⊢ 𝑒 : bool Γ; 𝑒 ⊢ 𝑒𝑡 : 𝜏 Γ;¬𝑒 ⊢ 𝑒𝑒 : 𝜏 Γ ⊢ 𝜏

Γ ⊢ if 𝑒 then 𝑒𝑡 else 𝑒𝑒 : 𝜏

Note, that 𝑒𝑡 and 𝑒𝑒 need to have the same type, but can use the path condition to
create a value of that type. As an example Rondon et al. use the max function. It is
implemented as fn max(x, y) { if x > y { x } else { y }} and given the return
type {𝑣 : i32 | 𝑥 ≤ 𝑣 ∧ 𝑦 ≤ 𝑣}. To show that the then-case has the required return type,
we must show, that 𝑥 > 𝑦 ⊢ 𝑥 : {𝑣 : i32 | 𝑥 ≤ 𝑣 ∧ 𝑦 ≤ 𝑣}, which the following proof tree
shows:

LT-If
LT-Sub

⪯-Base
SMT-Valid(𝑥 > 𝑦 ∧ (𝑣 = 𝑥 ) → (𝑥 ≤ 𝑣 ∧ 𝑦 ≤ 𝑣) )
{𝑣 : i32 | 𝑣 = 𝑥 } ⪯ {𝑣 : i32 | 𝑥 ≤ 𝑣 ∧ 𝑦 ≤ 𝑣}

LT-Var
★

Γ ⊢ 𝑥 : {𝑣 : i32 | 𝑣 = 𝑥 }
Γ;𝑥 > 𝑦 ⊢ 𝑥 : {𝑣 : i32 | 𝑥 ≤ 𝑣 ∧ 𝑦 ≤ 𝑣} . . .

Γ ⊢ if 𝑥 > 𝑦{𝑥 } else {𝑦} : {𝑣 : i32 | 𝑥 ≤ 𝑣 ∧ 𝑦 ≤ 𝑣}

Refinement Types can also be understood as dependent types, distinguished by the lim-
ited expressiveness of the type. Refinement types trade off expressiveness for automatic
type checking. Allowed formulae are chosen from a SMT decidable logic. For instance
Rondon et al. [25] choose the EUFA as the logic fragment, meaning a propositional logic
with the theories of equality, uninterpreted functions and linear arithmetic.

2.2. Rust
The Rust programming language [19] is a multi-paradigm systems programming lan-
guage, originally developed by Graydon Hoare at Mozilla Research. Even though Rust
is quite young, with the first stable release published in 2015, it has attracted interest in
a wide area of applications and organizations. It is used everywhere from Volvo building
embedded software for cars [9] toWestern Digital implementing a NVMe driver for Linux
in Rust [17] and of course the Rust compiler itself. It draws inspiration from functional
and imperative programming languages. The core forms a set of features usually found in
functional programming languages: Functions, closures, algebraic data types, type classes
(called traits in Rust) and pattern matching, immutability are all common place in Rust.
However, Rust is also influenced by C: Rust extends its ML base with optional mutability
of data and references and manual memory management. Many design decisions of Rust
can be explained by Rust’s ambitions to offer safe and clear ML-like abstractions without
compromising on performance compared to C. For example, Rust elected to use manual
memory management like C, which guarantees faster and predictable execution times
when compared to garbage collection. But crucially, Rust does not compromise on safety
to accomplish this: To this end, Rust incorporates the notion of affine types into its type
system (called ownership system in Rust). This additional type system is inspired by re-
search language Cyclone introduced by Grossman et al. [12] and guarantees the absence
of memory errors. Rust also offers a special language subset called unsafe Rust, which
deactivates the static ownership checking and places the responsibility of ensuring mem-
ory safety on the programmer, analogous to C. unsafe Rust is used to provide low-level

4



2.2. Rust

primitives that expose a safe interface that can be used in safe Rust. From here on out,
we will focus on safe Rust.

Among other things, the ownership system is used to handle memory management,
safe concurrency and simplifies reasoning about program behaviour. The next paragraph
will explain how the ownership system works.

AliasingXORMutabillity Theownership system is an implementation of affine types.
It uniquely associates each memory object with an owner. The owner of a Rust object is
the binding that is responsible for freeing the object. In the listing 1, first a is the owner
of the User object. An object may only be used once, at which point it is consumed and
ownership is transferred to its new binding. In the example greet(user) uses a which
transfers ownership to greet. At the end of greet, there is no new owner, as a result
the user object is freed.

struct User { name: String, age: u32 }

fn greet(user: User) -> String { // greet takes ownership for user
format!("Hi {}", user.name)

} // End of scope: Owned value user is dropped
...
let a = User { name: "Alice", age: 25 };
let result = greet(a); // Transfer ownership of user to greet
println!(a.name); // error: use of moved value `a`

Listing 1: Example demonstrating the Ownership System: greet(a) transfers ownership
of a to greet

On closer inspection, handing over the ownership of a to greet is not sensible: greet
just needs to read the value, but should not take ownership of a. For that purpose, Rust
offers a different kind of value transfer called references, which have similar execution
semantics to pointers. Because creating a reference does not transfer the ownership of
the pointee, is is called a borrow. Listing 2 rephrases greet to only take a borrow of
the user, instead of taking ownership. Because user is not owned by greet, it is not
permitted to extract user.name (of Type String), instead only borrows to the name are
allowed.

fn greet(user: &User) -> String { // greet borrows user
let name_ref : &String = &user.name; // borrow name from user
format!("Hi {}", name_ref)

} // End of scope: The borrows are dropped, but the user object is not
...
let a = User { name: "Alice", age: 25 };
let result = greet(&a); // Lend a to greet
println!(a.name); // No error

Listing 2: Example demonstrating borrowing: greet(&a) lends a to greet

5



2. Foundations

Borrowing, just like pointers, entail the risk of dangling pointers. Rust protects from
this risk, by tracking the lifetimes (i.e. the required duration, where a reference must be
valid) of objects. While interesting in its own right, it is not relevant for this thesis.

Mutable references can exacerbate the problem, which leads to the key insight of Rust:
Memory unsafety can arise from the mere presence of two references where at least one
is mutable. Thus, Rust ensures that for every variable at every point during the execution
that variable can either aliased or mutable, but never both at the same time. Listing 3
demonstrates that Rust will not accept a problem where aliased and mutable access is
possible at a time. To resolve the issue, the mutable reference should be borrows after the
call to greet.

fn age(user: &mut User) {
(*user).age = user.age + 1;

}
...
let a = User { name: "Alice", age: 25 };
let b = &a;
let c = &mut a;
// ↑↑↑↑↑↑ error:
// cannot borrow `a` as mutable because it is also borrowed as immutable
age(c);
let result = greet(&b); // Lend a to greet
println!(a.name);

Listing 3: Example demonstrating mutable borrowing: age(a) needs a mutable borrow
of user to increase the age, but a is borrows immutably, which is forbidden

In conclusion ownership makes both aliasing as well as mutability quite tame: If a
variable is aliased, it must be immutable and as a result, represents just a value (like in pure
functional languages). If a variable is mutable, it can not be aliased and as a result, any
effect of the mutation is well known and locally visible. Although the ownership system
was originally introduced to allow for safe, manual memory management, it turned out
to be useful for other problems as well: For example concurrency, hardware access and
automated reasoning all profit from the strong guarantees of safe Rust. The consequences
for the latter will be explained in the next subsection.

2.2.1. Insights into Rust as a Verification Target
Rust justifies a new approach to verification due to its unique set of design decisions that
profoundly influence the design of verification systems for it. The following paragraphs
will elaborate on this.

Opaque Generics Rust does not provide a way to check a generic parameter for its in-
stantiation. This means that we cannot extract any additional information from a generic
parameter T. A function from T to T can therefor only be the identity function. Wadler
[33] shows that it is possible to derive facts about the behaviour of such polymorphic
functions.

6
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In contrast, languages with instance-of-checks allow an implementation of a polymor-
phic function to distinguish between different instances of the generic parameter, pre-
cluding this extensive reasoning.
Explicit Mutable Access A consequence of the ownership rules is that a function can
only mutate (part of) the state that is passed to it as a parameter. There is no global state
and there is no implicit access to an object instance. Thus any intention of mutating state
must already be expressed in the function signature, which makes the specification of this
mutation quite natural.
Explicit Nullability Rust will ensure definite assignment, meaning variables can only
be accessed if they contain a value. For verification this means, that there is no need
to prove that a variable is defined. If nullability is desired, Rust offers normal sum type
Option<T> type with the variants None and Some(T). By handling the general case of
sum types, verification systems can get the handling of nullable data for free.
Minimal subtyping In contrast to object oriented languages, Rust has no user-extendable
notion of object subtyping. Rust does have a notion of subtyping for its permission sys-
tem, which serves the purpose of coercing mutable references &mut T to immutable ref-
erences & T etc. where needed. At the type level Rust also has a concept of subtyping for
traits. Because of the limited, well-known scope, these subtyping relations create no
ambiguity with a refinement type system.
What Rust does not solve Even though Rust simplifies reasoning about mutability
and aliasing of mutable data, Rust does not eliminate the need to reason about their in-
teraction. For example, listing 4 shows how cell’s value is influenced by changes to
another variable r. This does not mean that the ownership rule mutability XOR aliasing
are broken: Even though both cell and r are mutable, cell becomes inaccessible while
r is live. This form of aliasing is very restrictive: there may only be one owner and one
borrower alive at a time. Once the borrow is returned, a new reference may be created.
let mut cell = 2;
let r = &mut cell;
*r+= 1;
cell += 1;
assert_eq!(cell, 3);

Listing 4: Example of an apparent violation of ownership rules

Unfortunately Rust is also quite a big language with a lot of features and details to
keep in mind, which makes it easy to get distracted by complexity, that is accidental to
the problem at hand.

2.3. Rustc
Since the implementation interacts with Rustc, the reference implementation of a Rust
compiler, this section will summarize the relevant parts of Rustc mainly based on the
Rustc dev guide [23].

7



2. Foundations

At a high level, rustc is built with stages that incrementally lower the source code to
an executable binary. Rustc has multiple stages and associated data structures. Figure 2.1
shows the the main compiler stages of Rustc and the associated data structure.

Tokenizing
Parsing
Macro Expansion

Source Code

AST

HIR

THIR

MIR

Executable

Desugaring
Name Resolution

Type Checking

CFG Construction
ANF Normalization 

Code Generation
Linking Borrow Checking

Figure 2.1.: Diagram providing an overview of the Rustc Compiler Stages

The first data structure that is extracted from the source code is the AST (short for ab-
stract syntax tree), which is the result of parsing and expanding macros. Based on the
AST, the high-level intermediate representation (HIR for short) is created by resolving
the names and desugaring some language constructs. The HIR contains accurate source
labels, which map all nodes in the HIR to their source code locations. The HIR is then
used as the basis for type checking returning the typed high-level intermediate represen-
tation (THIR for short), which annotates every node with its type. THIR also lowers some
additional constructs like automatic dereferencing and overloading and more. In contrast
to the previous representations, ”[t]he THIR only represents bodies, i.e. the executable
code; this includes function bodies [..]. Consequently, the THIR has no representation for
items like structs or traits.” [29, p. 1] THIR will then be used to create the mid-level
IR by drastically simplifying the language: The tree structure with complex expression of
the THIR is turned in to a control-flow graph (short CFG) with basic blocks containing
simple (i.e. non-nested) expressions.

Finally Rustc uses external tools like llvm to generate executable files and link them.
An especially useful feature for this thesis is that Rustc offers an APIs for writing com-

piler plugins, which can access the intermediate languages of Rust at different stages
during the compilation and allows the plugin to emit warnings and errors. Plugins can
either wrap the Rustc compiler and hook into callback after each compiler stage or expose
a lint pass, that can be registered to be called on different AST items. Although the linting
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API is not guaranteed to be stable, some parts of Rust’s official tooling depends on it. In
particular, the popular Rust linter clippy uses the interface.
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3. Empirical Analysis of Use-Cases
Before designing a system for Rust, it makes sense to gain some understanding of how
Rust is used. For this purpose we will look at two key features of Rust that influence how
an approachable verification should look like. Firstly unsafe Rust, with a similar lack
of guarantees to C, would make verification and specification significantly harder. But
if the use of unsafe is limited, like intended by the language designers, it would allow
us to focus on the save part of Rust and leave the verification of unsafe Rust to more
complex verification systems. Secondly with mutability being the main difference to the
traditional domain of Refinement Types, estimating the need for covering this language
feature is sensible. The prevalence of mutability should also inform the acceptable level
of user effort.

Thus, the use-case analysis should answer the following questions about Rust code:

1. How rare are uses of unsafe?

2. How much effort is acceptable when specifying unsafe code?

3. How common are mutable variables and references in Rust?

4. How much effort is acceptable when specifying mutable variables and references in
Rust?

To check these assumptions an analysis of existing Rust code was performed1. As a
basis for the analysis, the Rust package registry crates.io was used. It contains the source
code for both Rust libraries as well as various applications written in Rust (e.g. ripgrep).

We analyzed all published Rust crates (Rust’s version packages) on February 2nd 2022
on crates.io with at least 10 versions2, which totals 11 882 crates, containing 228 263 files
with a combined code-base size of over 64 million lines of Rust code (without comments
and white space lines)3.

The analysis parses all rust files and searches for certain AST patterns, which are sub-
sequently extracted and saved. Thanks to using the tree-sitter parsing framework, the
analysis framework can easily be extended to other queries and languages.

3.1. Unsafe Rust
Firstly we will be answering the question of unsafe usage in Rust. There is already some
research on how unsafe is used in Rust. For example Astrauskas et al. [2] found that
1The source code is available at https://gitlab.com/csicar/crates-analysis/
2The limit of 10 versions is used to eliminate inactive and placeholder packages
3Calculated with cloc
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about 76% of crates did not use any unsafe. On top of that, unsafe signatures are only
exposed by 34.7% of crates that use unsafe.

”The majority of crates (76.4%) contain no unsafe features at all. Even in most crates
that do contain unsafe blocks or functions, only a small fraction of the code is unsafe: for
92.3% of all crates, the unsafe statement ratio is at most 10%, i.e., up to 10% of the codebase
consists of unsafe blocks and unsafe functions.” [2, p. 13] Our data seems to confirm this:
8 044 of the 11 882 crates (67.7%) did not use any unsafe.

Astrauskas et al. also found that ”however, with 21.3% of crates containing some unsafe
statements and – out of those crates – 24.6% having an unsafe statement ratio of at least
20%, we cannot claim that developers use unsafe Rust sparingly, i.e., they do not always
follow the first principle of the Rust hypothesis.” [2, p. 14]

Although true, when analyzing unsafety for our use case, it makes sense to further
distinguish between libraries and executables crates: Libraries are intended to be used
by other Rust programs: Usage of unsafe in libraries may not be as problematic as in
executables, because libraries are written once but used by many applications, justifying
higher verification effort.

In our analysis we found that expectedly crates.io contains significantly more libraries
than binaries4: About 81,7% of crates contained just a library, 10,3% contained just an
executable target and 10,3% contained both. We also found that libraries are much more
likely to use unsafe Rust.

Figure 3.1 gives an overview over how unsafe sections are distributed in the crates.
Each point represents a Rust crate with the x-coordinate representing the number of un-
safe section and the y-coordinate representing the ratio of unsafe LOC relative to the total
LOC in that crate. The plots for crates containing an executable look empty, but in fact
most points are clustered around zero unsafe uses. Also notice the different scales of the
x- and y-axis.

Figure 3.1.: Scatter plot of a point representing creates, relating the number of unsafe
occurrences to the number of unsafe LOC

Table 3.1 shows the totaled result of our analysis: The total number of unsafe uses in
an order of magnitude higher for binaries compared to libraries. The data in the table in-
cludes all crates except the outlier windows-0.32.0, which alone contains 233 608 uses
4Libraries and Executables are distinguished by checking if they contain bin or lib target or one of the

corresponding files according to the cargo naming convention.
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of unsafe. Nearly 2/3 of all other library uses of unsafe combined. Looking at the dis-
tribution of unsafe uses in Figure 3.2, we can see that this is an exception: Most other
libraries do not use that much unsafe statements. We can also see that even if an exe-
cutable crate uses unsafe, it uses few. Note the difference in x- and y-axis scaling: No
executable contains more than 63 occurrences on unsafe blocks, but more than 10% of
libraries contain more than 63 unsafe sections. On average, a library contains about 63
unsafe sections, while crates with binaries contain on average about 6 unsafe sections.

No. Crates Total No. of Unsafe Sections Total Unsafe LOC
Crate contains
Library 9 707 382 997 2 166 213
Both 1 224 7 720 51 004
Binary 951 940 5 873

Table 3.1.: Number of Unsafe Uses by Crate Category

100 101 102 103 104 105

No. Unsafe Occurences

65%

70%

75%

80%

85%

90%

95%

100%

No
. C

ra
te

s w
ith

 a
 m

ax
. n

 O
cc

ur
en

ce
s

Crate Type
Binary
Both
Library

100 101 102 103 104 105 106

Unsafe LOC

65%

70%

75%

80%

85%

90%

95%

100%

No
. C

ra
te

s w
ith

 a
 m

ax
. n

 u
ns

af
e 

LO
C

Crate Type
Binary
Both
Library

Figure 3.2.: Cumulative, Logarithmic Histogram of the Amount of unsafe Uses in each
Category

3.2. Mutability
Finally we will analyse how common mutable variables and references are used in Rust.
The frequency of usage will inform the acceptable level of specification effort.

To analyse the dataset for usage patterns, we search the dataset for certain syntactical
structures to infer mutability information about the following AST items:

• Local Variable Definitions can be tracked with high confidence. They occur in
function bodies and take the form: let mut a = <expr>

• Parameters are considered mutable if either the owned value or the reference is
mutable. They take the syntactic form: mut a: i32 or b: &mut i32

13
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• Function Definitions are considered immutable, if all parameters considered im-
mutable. They take the syntactic form: fn f(mut a: i32, b: &mut i32) {
... }

• Arguments are parts of a function call and can be arbitrary expression, whichmakes
the tracking hard. We consider arguments mutable if are syntactically passed as a
mutable reference (for example &mut i) and immutable if they are passed as im-
mutable references or literals.

• FunctionCalls are considered immutable, if all arguments are considered immutable.

A total of around 52 million of these items were found in the dataset.
Figure 3.3 shows the ratio of mutable to immutable items. For each syntactical category,

the percentages are relative to the total number of occurrences in the dataset. The grey
bar represents data points that cound not be determined to be mutable nor immutable.

71.54 28.46
Total No. of Variable Definitions [%]

Immutable
Mutable

80.00 10.94 9.05
Total No. of Parameters [%]

89.58 6.16 4.27
Total No. of Function Definitions [%]

37.79 1.16 61.05
Total No. of Function Calls [%]

8.15 2.84 89.01
Total No. of Arguments [%]

Figure 3.3.: Ratio of Immutable to Mutable Items of Different AST Nodes.

As expected there are some areas, where the syntactic analysis is not sufficient. Namely
the analysis of function calls and arguments, which is mainly caused by the uncertainty
of mutability of complex arguments. Luckily the data from function definitions and pa-
rameters can complete the picture: About 80% of parameters are immutable and between
about 10 and 20% of parameters are mutable. And less than 10% of functions have mutable
parameters at all. When it comes to local variables, Rust users are more liberal in their
use of mutability: About 30% of local variables are defined mutable.

For verification this means that the use of mutability is wide spread. Especially local
variables are often mutable and therefore a verification system should try to minimize the
effort for the user. Mutable parameters are less common, but still need to be accounted
for in verification.
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3.3. Conclusions
For this thesis the following conclusion can be drawn:

• Even though uses of unsafe are not rare, it is acceptable to ignore them in favour
of a simpler type system.

• Mutable variables are used very often and should therefore have very little associ-
ated specification effort.

• Mutable parameters are used less frequently justifying a higher specification effort,
but their specification must still be possible.
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4. The MiniCorten Language

Rust’s main disadvantage as a target language it its size: There is a lot of syntax and se-
mantics that would need to be accounted. A lot of it even incidental to the verification.
To reduce the complexity and amount of work that needs to be done, we will focus on a
subset of Rust described in this section. The goal is to remove as much incidental com-
plexity as possible without compromising to the central topic of research: How to extend
Refinement Types to mutability under the presence of Rust’s ownership model.

4.1. Syntax
This subsection will introduce the syntax of MiniCorten1, a language modelled after a
simplified version of Rust, with the addition of refinement types. To simplify the formal
definitions and proofs, the language is restricted to A-Normal Form (short ANF), as de-
scribed by Sabry and Felleisen[27]. ANF normalizes the syntactic structure by requiring
that arguments of expressions must be variables. Nested expression are translated into
variable declaration for each subexpression. Note that the implementation (for the most
part) does not have this restriction.

There are two namespaces for identifiers: 𝑥 ∈ PVar for variables of program variables
and 𝛼 ∈ LVar for variable in the refinement predicates. The syntax is defined by Backus-
Naur Form grammar in fig. 4.1.

Most constructs are quite standard, themain difference being the addition of refinement
types that consist of a logic variable 𝛼 , a base type 𝑏 (from the target language) and a
predicate 𝜑 . Intuitively this means that the value inhabiting that type satisfied the 𝜑 in
𝛼 represents the value. The statement relax_ctx!{...} allows the user (or a future
inference system) to relax the restrictions in the current typing context (as long as they
do not conflict with the actual context). The details will be explained in chapter 5.

4.2. Semantics
The semantics are loosely based on Jung’s MiniRust [13], but greatly reduce the complex-
ity by removing stack frames, pointer among other things. However, we of course added
refinement types to the language, which do not influence the execution semantics.

In terms of the formal description, the rules are similar to Pierce’s [24, p. 166f] ”Ref-
erence” language. The main difference is that in Rust, every piece of data has a unique,
known owner. This fact makes the concept of locations redundant. Instead we treat
1Corten is named after a alloy of steel, named COR-TEN, that forms an unusually stable and strong form

of rust when oxidized (a ”refined” rust, if you will).
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ref(𝑥) as a value itself where 𝑥 is the owner. The following definitions show the new
execution rules.

Definition 4.2.1 (Execution-State). The execution state is a function from program vari-
ables to values: 𝜎 : PVar → Value.

Definition 4.2.2 (Evaluation of Expressions: J𝑒K𝜎). Evaluation of an expression 𝑒 in a
state 𝜎 is mostly standard. J∗𝑥K𝜎 dereferences 𝑥 by reading the target from 𝑥 ’s value and
&mut 𝑥 introduces a reference to 𝑥 . The subtype introduction 𝑒 as 𝜏 has no effect on
the evaluation of 𝑒 .

J𝑣K𝜎 = 𝑣J𝑥K𝜎 = 𝜎 (𝑥)J𝑥1 + 𝑥2K𝜎 = J𝑥1K𝜎 + J𝑥2K𝜎J∗𝑥K𝜎 = 𝜎 (𝑦) if 𝜎 (𝑥) = ref(𝑦)J&mut 𝑥K𝜎 = ref(𝑥)J𝑒 as 𝜏K𝜎 = J𝑒K𝜎

Definition 4.2.3 (Declaration Environment: Σ). The environment of function declarations
is constant and globally known. It is defined as a partial function Σ : Fn-Name → Fn-Decl.
A function declaration fn(𝑎𝑖) {𝑠; 𝑟 } contains the function parameters𝑎𝑖 , the function body
𝑠 and the local variable 𝑟 , that contains the return value.

Definition 4.2.4 (Small-Step Semantics of MiniCorten: ⟨𝑠 | 𝜎⟩ { ⟨𝑠′ | 𝜎′⟩). The execution
semantics of MiniCorten are described by the small step semantic ⟨𝑠 | 𝜎⟩ { ⟨𝑠′ | 𝜎′⟩
denoting that the execution of statement 𝑠 in 𝜎 reduces to the execution of 𝑠′ in 𝜎′. The
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small-step semantic for MiniCorten consist of:

SS-Assign
★

⟨𝑥 = 𝑒 | 𝜎⟩ { ⟨unit | 𝜎 [𝑥 ↦→ J𝑒K𝜎]⟩
SS-Assign-Ref

𝜎 (𝑥) = &𝑦

⟨∗𝑥 = 𝑒 | 𝜎⟩ { ⟨unit | 𝜎 [𝑦 ↦→ J𝑒K𝜎]⟩
SS-Decl

★

⟨let 𝑥 = 𝑒 | 𝜎⟩ { ⟨unit | 𝜎 [𝑥 ↦→ J𝑒K𝜎]⟩
SS-Seq-InneR

⟨𝑒1 | 𝜎⟩ { ⟨𝑒′1 | 𝜎′⟩
⟨𝑒1; 𝑒2 | 𝜎⟩ { ⟨𝑒′1; 𝑒2 | 𝜎′⟩

SS-Seq-N
★

⟨unit; 𝑒2 | 𝜎⟩ { ⟨𝑒2 | 𝜎′⟩

SS-IF-T
J𝑥K𝜎 = true

⟨if 𝑥 {𝑠𝑡 } else {𝑠𝑒} | 𝜎⟩ { ⟨𝑠𝑡 | 𝜎⟩
SS-IF-F

J𝑥K𝜎 = false
⟨if 𝑥 {𝑠𝑡 } else {𝑠𝑒} | 𝜎⟩ { ⟨𝑠𝑒 | 𝜎⟩

SS-While
★

⟨while 𝑒𝑐 { 𝑠𝑏} | 𝜎⟩ { ⟨if 𝑒𝑐{𝑠𝑏 ; while 𝑒𝑐{𝑠𝑏}} else {unit} | 𝜎⟩

SS-Relax
★

⟨relax_ctx!{ ... } | 𝜎⟩ { ⟨unit | 𝜎⟩

SS-Call
Σ(𝑓 ) = fn(𝑎𝑖) → (𝑠, 𝑟 ) 𝑙 local vars in 𝑠 𝑙′ fresh names for 𝑙 wrt. 𝜎

⟨let 𝑥 = 𝑓 (𝑥𝑖) | 𝜎⟩ { ⟨𝑠 [𝑙 ⊲ 𝑙′] [𝑎𝑖 ⊲ 𝑥𝑖]; let 𝑥 = 𝑟 [𝑙 ⊲ 𝑙′] | 𝜎⟩

The rule SS-Call executes functions by inlining them after renaming the local variable
to fresh names and replacing the parameter variables by the argument variables. Rule
SS-Relax states, has relaxing the context no effect at runtime.
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𝑝𝑟𝑜𝑔𝑟𝑎𝑚 F 𝑓 𝑢𝑛𝑐_𝑑𝑒𝑐𝑙 * function declarations
𝑓 𝑢𝑛𝑐_𝑑𝑒𝑐𝑙 F 𝑥 𝑓 ( 𝑝𝑎𝑟𝑎𝑚 * ) -> 𝜏 { 𝑠 }
𝑝𝑎𝑟𝑎𝑚 F 𝑥 : 𝜏
𝑠 F statement

| 𝑒 expression
| 𝑠1; 𝑠2 sequence
| let mut? 𝑥 = 𝑒 declaration
| 𝑥 = 𝑒 assignment
| let 𝑥𝑣 = 𝑥 𝑓 (𝑥1, , 𝑥𝑛) function call
| while (𝑥) { 𝑠 } while loop
| if 𝑥 { 𝑠𝑡 } else { 𝑠𝑒 } if statement
| relax_ctx!{ 𝜑* ; (𝑥 : 𝜏)* } context relaxation

𝑒 F expression
| 𝑥 variable reference
| 𝑙𝑖𝑡 constant
| 𝑒 ⊙ 𝑒 binary operation
| * 𝑥 dereference
| & 𝑥 immutable reference
| &mut 𝑥 mutable reference
| 𝑒 as 𝜏 type relaxation

𝜏 F type
| ty!{ 𝛼 : 𝑏 | 𝜑 } refinement type

𝜑 F pred
| 𝑟𝑒 𝑓 _𝑝𝑟𝑒𝑑 predicate for a reference type
| 𝑣𝑎𝑙𝑢𝑒_𝑝𝑟𝑒𝑑 predicate for a value type

𝑟𝑒 𝑓 _𝑝𝑟𝑒𝑑 F mutable reference predicate
| 𝛼 = & 𝑥1 || ... || 𝛼 = &𝑥𝑛 proper reference constraint
| 𝛼1 = 𝛼2 reference predicate delegation

𝑣𝑎𝑙𝑢𝑒_𝑝𝑟𝑒𝑑 F 𝛼 variable
| 𝑣 literal
| 𝑣𝑎𝑙𝑢𝑒_𝑝𝑟𝑒𝑑 ⊙ 𝑣𝑎𝑙𝑢𝑒_𝑝𝑟𝑒𝑑 binary op
| ! 𝑣𝑎𝑙𝑢𝑒_𝑝𝑟𝑒𝑑 negation

𝑏 F base_ty
| i32 integer
| unit unit type
| bool boolean
| & 𝑏 immutable reference
| &mut 𝑏 mutable reference

𝑣 F lit
| 0,1,...,n integer
| true boolean true
| false boolean false
| () unit value

⊙ F binary operation
| ∧ | ∨ | ≥ | + | ==

Figure 4.1.: Syntax of MiniCorten expressed in Backus-Naur Form
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5. The Refinement Type System
Based on the description of the base language in chapter 4, we will define a describe the
proposed refinement type system ”Corten”. Before describing the typing rules itself in
section 5.2, the next section will give an overview over the features of the type system,
which will also help in understanding why certain design decisions were taken. Sec-
tion 5.3 will then justify, why the typing rules are sensible, followed by section 5.4 which
describes how the type system could be extended.

5.1. Features
The type system surfaces in two ways in the language, which can be directly embedded
in Rust using two macros. Firstly the macro ty! can be used in place of a Rust type
and adds a predicate to the Rust type that any inhabitant of that type must satisfy. For
example, the type ty!{ v : i32 | v >= 0} stipulates that a value of Rust type i32 is
positive. The second macro relax_ctx!{ ... } is used for relaxing the context, which
will be explained in the subsection 5.1.6. To make the examples more readable, we will
take the liberty to use parts from the implementation CortenC if the formal language is
not elaborate enough.

5.1.1. Decidable, Conservative Subtyping
Having a decidable subtyping system is essential for making it feasible in practice: A de-
veloper expects type checking to be automatic and part of compilation without additional
effort. There is no need for user interaction, if the SMT solver can automatically verify
the program. The refinement predicates are translated into assertions of satisfiability of
formulae in predicate logic with the theories of linear arithmetic and equality. Thus, an
SMT solver can be used to decide if the formula is satisfiable.

5.1.2. Path Sensitivity
First of all, the type system retains the basic features of the refinement type system we
build upon.

In particular that it is path sensitive, meaning that the type system is aware of necessary
guards that need to be passed for a statement to be evaluated. For example listing 5 shows
a function computing the maximum of its inputs. The return type requires, that the result
must be at least as big as both inputs1. In the then branch, 𝑎 is only a maximum of 𝑎 and
1Corten can also prove the characteristic property of the maximum function. The simpler specification is

used for brevity.
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𝑏, because the condition 𝑎 > 𝑏 implies it. Corten will symbolically evaluate the condition
and store it in its typing context.

fn max(a : ty!{ av: i32 }, b: ty!{ bv: i32 })
-> ty!{ v: i32 | v >= av && v >= bv} {
if a > b {
a as ty!{ x : i32 | x >= av && x >= bv }

} else {
b

}
}

Listing 5: Function computing the maximum of its inputs; guaranteeing that the returned
value is larger than its inputs

Listing 5 obviously also demonstrates, that subtyping judgements, like a as ty!{ x
: i32 | x >= av && x >= bv }, can be introduced and checked.

Because inference is explicitly not the goal of the thesis, our type system is not able
to infer, that both branches of the if expression must have the same type as the return
type. By adding adding the type relaxation to one branch of the expression, we assist our
limited inference system in proving the program type correct.

It should be noted, that path sensitivity is not limited to the value of the expression, but
also applies to the mutable effects. Section 7.1 will expand on this example to demonstrate
this.

5.1.3. Mutable Values

As seen in section 3.2, mutable declarations are quite common in Rust. Therefore han-
dling them is essential for Corten. To explain the problems that mutable values can cause,
consider the problem seen in listing 6: Suppose the value given to i is known to be pos-
itive, which is expressed by the type {𝑣1 : 𝑖32 | 𝑣1 > 0}, then assigning a new value to
i may change the type. Notably, the new value’s type might depend on the old value,
which is the case here. Corten elected to treat predicates as immutable, meaning assign-
ing to a variable will not change the old predicates that was associated with the variable.
Therefore assigning a new value to a variable will give that variable a new type, but –
crucially – keep the logic variable in the typing context, which means that types of other
variables can still refer to it. In this case, the update i = i + 1 changes the type of
i to {𝑣2 : 𝑖32 | 𝑣2 = 𝑣1 − 1}. Logic variables that are no longer associated with a pro-
gram variable (like 𝑣1), are called unassociated variables. That means that the number of
predicates in the context increases with every new value assignment. In the example, the
typing context initially contains the predicate 𝑣1 > 0 and the association of {i ↦→ 𝑣1}.
After the assignment, the predicate 𝑣2 = 𝑣1−1 is added to the context and the association
is changed to {𝑖 ↦→ 𝑣2}, resulting in the context Γ′ = ({i ↦→ 𝑣2}, 𝑣1 > 0 ∧ 𝑣2 � 𝑣1 + −1).

There are other approaches for handling changing values in refinement types, which
will be described in 8.
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fn decr() -> ty!{ v: i32 | v >= 0 } {
let mut i = ...; // i : {𝑣1 : 𝑖32 | 𝑣1 > 0}
i = i - 1; // i : {𝑣2 : 𝑖32 | 𝑣2 == 𝑣1 − 1}
i

}

Listing 6: Example demonstrating why predicates and mutable values may cause prob-
lems

5.1.4. Mutable References

Besides the mutation of values, mutable references are also common in Rust, which is
underpinned by the analysis, which found more than 10% of parameters to be mutable.

Corten has twoways of dealing with assignment to mutable references: If the reference
destination is known, the destination’s type will be updated with the assigned values
type (i.e. strong update). If there are multiple possible reference destinations, Corten will
require the assigned value to satisfy the predicates of all possible destinations (i.e. weak
updates). This is a standard approach (e.g. Kloos et al. [15]), but more precise in Rust: The
set of possible destinations only grows, when it depends on the execution of an optional
control flow path. This means most of the time, strong updates are possible and weak
updates are only needed if the reference destination is actually dynamic (i.e. dependent
on the execution)

The problem with mutable references is the possibility of aliasing. Aliasing is problem-
atic, because it might create interdependencies between the types of different variables: If
one variable is changed, it might affect wether another variable is typed correctly. In list-
ing 7 the return value a is affected by changes done to a different variable b. Conservative
approximation requires that all possible effects must be tracked.

References are tracked by recognizing the fact that it is sufficient to let the reference’s
type solely constrain the reference target, while the value owner’s type constrains the
value. In the example, b = &mut a will have inferred type { r : &mut | r == & a
}, meaning any inhabitant of this type can at most refer to the variable a2. When a new
value is assigned to *b, the type system will look at the typing context to find out what
b might refer to. In this case a is the only possible target und we can therefore update its
type. I.e. in type system, *b = 0 will change the type of a to { s : i32 | s == 0 },
but the type of b stays the same (because it still refers to the same location). We call this
kind of assignment a strong assignment, as it can change the type.

This is sensible, because in Rust’s ownership system, amust be the unique owner of the
memory belonging to a, meaning no other value predicate can be affected by the change.

Note that the type can only be changed because we know exactly what b refers to.
If there is ambiguity about the destination of a reference, strong updates are no longer
possible.

To also support these use cases, Corten features supports for weak updates, which
can not change types, but allow assigning to ambiguous reference destinations. Listing 8

2It would also be possible to encode the path condition in the reference type, but this was decided against
for the stated goal of simplicity for the user. This why no new construct needs to be introduced
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fn client() -> ty!{ v: i32 | v == 4 } {
let a = 2; // a : {𝑣1 : 𝑖32 | 𝑣1 == 2}
let b = &mut a; // b : {𝑣2 : &𝑖32 | 𝑣2 == &𝑎}
*b = 0; // changes a's value and type
let c = &mut b; // c : {𝑣3 : &𝑖32 | 𝑣3 == &𝑏}
**c = 4; // changes a's value and type
a

}

Listing 7: Example demonstrating interdependencies between mutable references

demonstrates how ambiguity about the reference destination may emerge: Depending on
the if condition, res could refer to either y or z. Naturally, we can weaken the reference
type to ty!{ r1 : &mut i32 | r1 == &y || r1 == &z }, meaning res could refer
to either y or z. Because the destination is ambiguous, assigning to *res can not change
the type of y or z, which is the case if the type of the assigned value is at least as specific
as the types of all possible reference destinations.

fn weak_updates(x : ty!{ x1 : i32 }) -> ty!{ v : i32 | v > 2 * x1 + 10 } {
let mut y = x as ty!{ y1 : i32 | y1 >= x1 };
let mut z = x + 10 as ty!{ z1 : i32 | z1 >= x1 + 10 };
let mut res;
if x > 0 {
res = &mut y as ty!{ r : &mut i32 | r == &y || r == &z };

// branches of if need same type => weaken
} else {
res = &mut z as ty!{ r : &mut i32 | r == &y || r == &z };

}
*res = x + 11; // res could refer to b or c

// -> assigned value must satisfy both types
y + z

}

Listing 8: Example demonstrating weak updates

An intricacy about conservative reference tracking are functions that return references.
In Rust this is possible, if the reference was passed as an argument: The function signature
fn f(a : &mut T, b : &mut T) -> &mut Twould allow f to return either a reference
to a or b. For the callee knowing where the returned value points to, is important because
the type of dereferencing it depends on that knowledge. Consequently, for the return
type to be conservative, it must state every possible reference destination. Our approach
naturally can be naturally extended to covert this problem: If the callee does not specify
the target (i.e. the return type is {𝑣 : T | true}), then any assignment to it would need
to show, that it satisfies the predicate of all possible targets, which in this case would
be every target, so no assignment to the return type is possible. Conversely, if the callee
forgot a possible reference target in the return type, then type checking of the body would
fail, because the actual (supposedly weaker) type (e.g. {𝑟 : &mut T | 𝑟 � &𝑦}) does not
imply the required (supposedly stronger) type (e.g. {𝑟 : &mut T | 𝑟 � &𝑦 ∨ 𝑟 � &𝑧}).
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5.1.5. Modularity

For a verification system to be scalable, it needs to be able modularize a proof. Corten
can propagate type information across function calls and by taking advantage of Rust’s
ownership system, it can do so very accurately. Listing 9 shows, how an incrementing
function inc can be specified: inc signature stipulates that the function can be calledwith
a mutable reference to any i32whose reference target (given the logic variable name a1)
satisfies the predicate true and will update it to the value a2, which equals a1 + 1. Only
the signature of inc is considered for the type checking client.

Notice that all of the type information about y is preserved when inc(x) is called.
There are no further annotations needed to type check this program. This is possible,
because in safe Rust, any (externally observable) mutation done by a functionmust be part
of the function signature. Corten expands on this, by enabling the user specify exactly
how a referenced value is mutated.

fn inc(a: &mut ty!{ a1: i32 | true => a2 | a2 == a1 + 1 }) {
*a = *a + 1;

}
fn client(mut x: ty!{ xv: i32 | xv > 2 }) -> ty!{ v: i32 | v > 7 } {
let mut y = 2;
inc(&mut x); inc(&mut x);
inc(&mut y)
x + y

}

Listing 9: Example showing howCorten allows for accurate type checking in the presence
of function calls

5.1.6. Atomic Updates

Complex mutation patterns can result in complex interdependencies. We deem it neces-
sary to allow different types to refer to each other. The properties of arguments might
depend on each other, consequently their refinement types should be able to refer to each
other.

The listing 10 is extracted from the evaluation example 7.3. It requires establishing an
invariant, where i has the predicate ≥ 0 and sum has the predicate = 𝑖 · 𝑛.

Attempting to update one type at a time, will not yield the desired result. If i is updated
first, then it is not possible to establish sum’s type, because i’s type is no longer expressive
enough. If sum is updated first, we can establish its type, but once i is updated, it will refer
to a different logic variable for i than sum. If we tried to carry the information that the
two logic variables are the same in the type, it would no longer be an invariant, because
reassigning the value would invalidate it3.

3For this use-case, it might also be possible to relax a single variable at a time, by renaming the logic
variables to their old names after the subtyping relation is shown. This approach was not chosen,
because it may only cover some special cases.
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let sum = 0;
let i = 0;

relax_ctx!{
i: ty!{ iv : i32 | iv > 0 },
sum: ty!{ sv: i32 | 2 * sv == iv * (iv + 1) }

}

i = i + 1;
sum = sum + i;

Listing 10: Example Demonstrating Interdependence between Types

For this purpose, Corten provides a mechanism for the programmer to instruct Corten
to relax all variables at once named relax_ctx. The syntax is similar to the refinement
type syntax, but allows for multiple variables to be described at a time. The type system
will check all refinement types at once, resulting in the successful type checking of the
example.

5.2. Type System
The following section will introduce the type checking rules of Corten. We assume the
program has passed the Rust type checking rules, meaning (non-refined) type- and own-
ership-checking was successful.

Definition 5.2.1 (Typing Context Γ = (𝜇,Φ)). The typing context consist of an injective
function 𝜇 : PVar → LVar that is used for tracking the current logic variable associ-
ated with a program variables and a set of predicates Φ. It is used to constrain the logic
variables in the image of 𝜇 and holds the relevant varying context for the various type
checking rules. 𝜇 must contain a logic variable for every program variable and Φ can
contain additional logic variables not found in the image of 𝜇.

For Γ = (𝜇,Φ) we abbreviate (𝜇,Φ ∧ 𝜑) to Γ, 𝜑 for the addition of 𝜑 to the constraint
set, (𝜇 [𝑥 ↦→ 𝛼],Φ) to Γ [𝑥 ↦→ 𝛼] for the update of the mapping for program variable 𝑥 to
𝛼 and 𝜇 (𝑥) to Γ(𝑥) for accessing to the logic variable associated with 𝑥 .

We start with the rule for checking function declarations. Without loss of generality,
we assume arguments are ordered by their type: First immutable / owned arguments and
then mutable arguments.

Definition 5.2.2 (Function Declaration Type Checking). When handling mutable refer-
ences in parameters some subtleties need to be considered. To describe the referenced
value is normally done using the {𝛼 | 𝛼 � &𝑦} syntax. The question arises: If 𝛼 was
the logic variable for a parameter, what should be the analog for 𝑏? In contrast to local
variables, there is no variable representing the referenced value for parameters. Also for
an argument 𝑥𝑖 , the function could change both the referenced value (*i = 2) as well
as the reference target (i = &mut y). As seen in section 5.1.4, using the dereference
operator would come with a lot of complications. Instead we introduce 𝑎𝑟𝑔𝑖 , a special
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variable denoting the initial abstract value (i.e. stack location) that the mutable reference
of argument 𝑛 points to. For the 𝑗th parameter with the Rust type &mut i32 we would
generate pseudo location 𝑎𝑟𝑔 𝑗 .

Fn-Decl

𝜇𝑖𝑛𝑖𝑡 = {𝑥𝑖 ↦→ 𝛼𝑖, 𝑦 𝑗 ↦→ 𝛿 𝑗 , 𝑎𝑟𝑔 𝑗 ↦→ 𝛽 𝑗 } Φ𝑖𝑛𝑖𝑡 = 𝜑𝑖,𝜓 𝑗 , 𝛿 𝑗 � &𝑎𝑟𝑔 𝑗
(𝜇𝑖𝑛𝑖𝑡 ,Φ𝑖𝑛𝑖𝑡 ) ⊢ 𝑠 ⇒ Γ′

Γ′ ⊢ 𝑥𝑟 : 𝜏𝑟 Γ′ ⊢ 𝜏𝑟 ⪯ 𝜏 Γ′ ⪯
({
𝑎𝑟𝑔 𝑗 ↦→ 𝛾 𝑗 , 𝑥𝑖 ↦→ 𝛼𝑖

}
, 𝜒 𝑗 ∧ 𝜑𝑖

)
fn 𝑓 (𝑥𝑖 : {𝛼𝑖 : 𝑏𝑖 | 𝜑𝑖}, 𝑦 𝑗 : &mut {𝛽 𝑗 : 𝑏 𝑗 | 𝜓 𝑗 ⇒ 𝛾 𝑗 | 𝜒 𝑗 }) → 𝜏{𝑠;𝑥𝑟 }

The first two antecedents initialize the context, which contains the preconditions from
the function signature 𝜙𝑖 and 𝜓 𝑗 and the pseudo variables for the mutable arguments
𝑎𝑟𝑔 𝑗 , which are constrained to be the reference destinations for 𝑦 𝑗 . The next antecedent
stipulates that the execution of the body 𝑠 updates the context to Γ′. The last three terms
are concerned with ensuring, that the asserted postconditions for the return type as well
as the context update hold. The rules will be introduced in the following definitions.

Next, we introduce the rule for checking the subtype relation, which is introduced by
the function return type check or by the user / future inference system as part of an
expression.

Definition 5.2.3 (Sub-Typing Rule: Γ ⊢ 𝜏 ⪯ 𝜏′). A type 𝜏 is a subtype of 𝜏′ in the context Γ,
if the predicate of the supertype implies the predicate of the subtype, with the supertype’s
logic variable substituted for the subtype’s variable to the predicate so that they refer to
the same variable. The validity check performed in the decidable, propositional logic with
the theories of equality and linear arithmetic. Corten uses an SMT solver for deciding
these requests.

⪯-Ty
⊨ Φ ∧ 𝜑′[𝛽 ⊲ 𝛼] → 𝜑

Γ = (𝜇,Φ) ⊢ {𝛼 | 𝜑} ⪯ {𝛽 | 𝜑′}

Note that, Γ ⊢ 𝜏 ⪯ 𝜏′ can be rephrased in terms of Γ ⪯ Γ′ by introducing a fresh
variable with the predicates 𝜏 and 𝜏′. The rephrased form is equivalent, but rephrasing the
sub context rule in terms of sub-typing is in general not possible: Because all constraints
need to be satisfied at the same time when checking for sub-contexts, just checking each
variable at a time would be a weaker proposition.

Definition 5.2.4 (Sub-Context Rules: Γ ⪯ Γ′). In contrast to other refinement type sys-
tems, Corten allows types in the context to refer to one another. For example the type
specifications a : { 𝛼 : i32 | 𝛼 > 𝛽 }, b : { 𝛽 : i32 | 𝛽 != 𝛼 } are considered
well formed in Corten and result in the context Γ = ({a ↦→ 𝛼, b ↦→ 𝛽}, 𝛼 ≠ 𝛽 ∧ 𝛽 ≥ 𝛼). In
the example, the value 0 is a valid inhabitant of a’s type as long as b ≥ 1.

The rule ⪯-Ctx serves the purpose of allowing these interdependencies between pred-
icates while still providing an applicable concept of subtyping: As long as the set of pred-
icates in Γ′ imply the predicates for Γ, the sub-context relation is satisfied and Γ′ and Γ is
called the super-context and sub-context respectively. To be more precise, the rule needs
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to relate the predicates for each program variable with the opposing predicates for that
program variable. The substitutionΦ′[𝜇′(𝑥)⊲𝜇 (𝑥) | 𝑥 ∈ dom(𝜇)] forces the logic variable
associated with x in Γ′ to be substituted by the logic variable 𝜇 (𝑥) , which is associated
with 𝑥 in Γ′.

The domain restriction ensures that the sub-context does not contain additional pro-
gram variables, which would leave unconstrained variables in the antecedent.

⪯-Ctx
⊨ Φ → Φ′[𝜇′(𝑥) ⊲ 𝜇 (𝑥) | 𝑥 ∈ dom(𝜇′)] dom(𝜇′) ⊆ dom(𝜇)

(𝜇,Φ) ⪯ (𝜇′,Φ′)

Example 5.2.1 (Sub-Context Relations). To get a idea of how the sub-context relation works,
consider the following examples:

({𝑎 ↦→ 𝛼} , 𝛼 � 2) ⪯ ({𝑎 ↦→ 𝛽} , 𝛽 > 0)
({𝑎 ↦→ 𝛼} , 𝛼 > 0, 𝛽 � 4) ⪯ ({𝑎 ↦→ 𝛼} , 𝛼 � 5)

({𝑎 ↦→ 𝛾, 𝑏 ↦→ 𝛿} , 𝛾 � 0, 𝛿 ≥ 1) ⪯ ({𝑎 ↦→ 𝛼,𝑏 ↦→ 𝛽}, 𝛼 ≠ 𝛽 ∧ 𝛽 ≥ 𝛼)
({} , true) ⪯ Γ′ for all Γ′

Γ ⪯ ({} , false) for all Γ

Definition 5.2.5 (Fresh Variable Γ ⊢ 𝛼 fresh). Corten requires that new logic variables are
distinct from all others. The rule ensures that 𝛼 is a free variable in Γ = (𝜇,Φ):

Γ ⊢ 𝛼 fresh iff 𝛼 ∉ 𝐹𝑉 (Φ) ∪ img(𝜇)

Definition 5.2.6 (Expression Constraint 𝛼 ≃ J𝑒KΓ). An expression constraint is used to
restrict 𝛼 to (as close to) the value of expression 𝑒 . For instance, when typing the expres-
sion b + c, 𝛼 ≃ J𝑎 + 𝑏KΓ will generate the strongest type 𝛼 � 𝛽 + 𝛾 where 𝛼, 𝛽 are the
logic variable for a, b in Γ.

𝛼 ≃ J𝑣KΓ = 𝛼 � 𝑣
𝛼 ≃ J𝑥1 ⊙ 𝑥2KΓ = 𝛼 � (Γ(𝑥1) ⊙ Γ(𝑥2)) if ⊙ allowed

𝛼 ≃ J𝑥KΓ = 𝛼 � Γ(𝑥)
𝛼 ≃ J&𝑦KΓ = 𝛼 � &𝑦

𝛼 ≃ J𝑒KΓ = true otherwise

In some cases, it may not be possible to generate the strongest type in the predicate
logic. Take for instance the expression x * y, which is not admissible in EUFA. In these
cases, the expression will be conservatively approximated by the predicate true.
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Definition 5.2.7 (Expression Typing: Γ ⊢ 𝑒 : 𝜏).

Lit
Γ ⊢ 𝛼 fresh

Γ ⊢ 𝑣 : {𝛼 : 𝑏 | 𝛼 ≃ J𝑣KΓ} BinOp
Γ ⊢ 𝛼 fresh

Γ ⊢ 𝑥1 ⊙ 𝑥2 : {𝛼 : 𝑏 | 𝛼 ≃ J𝑥1 ⊙ 𝑥2KΓ}
VaR

Γ ⊢ 𝛼 fresh
Γ ⊢ 𝑥 : {𝛼 : 𝑏 | 𝛼 ≃ J𝑥KΓ} Ref

Γ ⊢ 𝛼 fresh
Γ ⊢ &𝑥 : {𝛼 : &𝑏 | 𝛼 ≃ J&𝑥KΓ}

VaR-DeRef
Γ ⊢ ∗𝑥 ∈ {𝑦} Γ ⊢ 𝑦 : 𝜏

Γ ⊢ ∗𝑥 : 𝜏
IntRo-Sub

Γ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 ⪯ 𝜏′

Γ ⊢ 𝑒 as 𝜏′ : 𝜏′

Becausewe assume that the base language type checking already accepted the program,
the expression typing rule become quite simple. The rules Lit, VaR, Add, Ref are solely
concerned with delegating to the expression constraint generation. VaR-DeRef stipulates
that dereferencing *x has type 𝜏 if the target of x is known and unique. IntRo-Sub allows
for a subtype to be introduced, which would mostly be used internally by an inference
system.

Definition 5.2.8 (Statement Type Checking Γ ⊢ 𝑠 ⇒ Γ′).

If
Γ, Γ(𝑥) � true ⊢ 𝑠𝑡 ⇒ Γ′ Γ, Γ(𝑥) � false ⊢ 𝑠𝑒 ⇒ Γ′

Γ ⊢ if 𝑥 then 𝑠𝑡 else 𝑠𝑒 ⇒ Γ′

While
Γ𝐼 , Γ𝐼 (𝑥) � true ⊢ 𝑠 ⇒ Γ′𝐼 Γ′𝐼 ⪯ Γ𝐼

Γ𝐼 ⊢ while 𝑥{𝑠} ⇒ Γ𝐼 , Γ𝐼 (𝑥) � false

Seq
Γ ⊢ 𝑠1 ⇒ Γ′ Γ′ ⊢ 𝑠2 ⇒ Γ′′

Γ ⊢ 𝑠1; 𝑠2 ⇒ Γ′′
Relax

Γ ⪯ Γ′

Γ ⊢ relax_ctx!{Γ′} ⇒ Γ′

Decl
Γ ⊢ 𝑒 : {𝛽 : 𝑏 | 𝜑}

Γ ⊢ let 𝑥 = 𝑒 ⇒ Γ [𝑥 ↦→ 𝛽], 𝜑
Assign

Γ ⊢ 𝑒 : {𝛽 : 𝑏 | 𝜑}
Γ ⊢ 𝑥 = 𝑒 ⇒ Γ [𝑥 ↦→ 𝛽], 𝜑

Assign-StRong
Γ(𝑧) = 𝛽 Γ ⊢ ∗𝑥 ∈ {𝑦} Γ ⊢ 𝛾 fresh

Γ ⊢ ∗𝑥 = 𝑧 ⇒ Γ [𝑦 ↦→ 𝛾], 𝛾 � 𝛽

Assign-WeaK

Γ ⊢ 𝑒 : 𝜏 Γ ⊢ ∗𝑥 ∈ {𝑦1, . . . , 𝑦𝑛}
Γ ⊢ 𝑦𝑖 : {𝛽𝑖 : 𝑏𝑖 | 𝜑𝑖} Γ ⊢ 𝜏 ⪯ {𝛽𝑖 : 𝑏𝑖 | 𝜑𝑖}

Γ ⊢ ∗𝑥 = 𝑒 ⇒ Γ

Fn-Call

(𝜇,Φ) ⪯ (𝜇,Φ ∧ (𝜑𝑖 ∧𝜓 𝑗 ) [𝛼𝑖 ⊲ 𝜇 (𝑥𝑖)] [𝛽 𝑗 ⊲ 𝜇 (𝑦 𝑗 )]
Σ ⊢ 𝑓 : fn(𝑢𝑖 : {𝛼𝑖 : 𝑏𝑖 | 𝜑𝑖}, 𝑣 𝑗 : {𝛽 𝑗 : 𝑏 𝑗 | 𝜓 𝑗 ⇒ 𝛽′𝑗 | 𝜓 ′

𝑗 }) → {𝛾 : 𝑏 | 𝜌}

(𝜇,Φ) ⊢ let 𝑟 = 𝑓 (𝑥𝑖,&mut 𝑦 𝑗 ) ⇒
(𝜇 [𝑦 𝑗 ↦→ 𝛽′𝑗 , 𝑟 ↦→ 𝛾],Φ ∧ (𝜑𝑖 ∧𝜓 𝑗 ∧𝜓𝑖 ∧ 𝜌) [𝛼𝑖 ⊲ 𝜇 (𝑥𝑖)])

The rule If models the path sensitivity for branches of the statement and requires that
both branches have the same return context, which forces the branches to express their
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effects using the same context. If an inference system was added to Corten, it would add
context relaxation statements to the end of the branches to automate the process.

The While implements a loop invariant rule: Type checking of a while loop requires
that the body invariant Γ𝐼 is preserved by the body, meaning the body end execution with
a context Γ′𝐼 that does not conflict with Γ𝐼 and ensures that the context after execution is
Γ𝐼 with the addition of the path condition.

Relax allows the user to introduce a sub-context constraint; Decl and Assign append
the context with the predicate of the value and update (or append for the declaration) the
logic variable association for the program variable 𝑥 .

For handling references, Corten offers the rules Assign-Strong and Assign-Weak with
the first implementing strong updates, changing the type of the reference target 𝑦, if it
can be shown that 𝑥 must refer to 𝑦. The second rule allows updates to the value only if
the type is not affected by it. This is ensured by demanding that the assigned type 𝜏 is at
least as specific as the type of every possible reference destination (in the current context
Γ).

Fn-Call handles function calls by requiring the current context to be a sub-context of
the function entry predicates 𝜑𝑖 for values and immutable references and 𝜓 𝑗 for mutable
references, where the logic variables of the parameters are substituted by argument’s
logic variables. The rule states that resulting context will be the starting context with
updated the association for the mutated arguments 𝑦 𝑗 and new association for 𝑟 and the
addition of the predicates the function ensures to be true after execution. Because these
predicates can use the variables from the immutable values, we also need to substitute
the logic variable.

For clarity, Fn-Call omits a renaming step done directly after extracting the function
signature from the declaration context Σ. It ensures that the logic variable names from
the function call signature do not conflict with the any variable in the current context by
renaming them if necessary. An an example take section 7.2: If the variables were not
renamed, the second call to fib(n2) would conflict with the first.

...
let x = 4;
let mut y = 5;

// Γ1 = ({𝑥 ↦→ 𝑣1, 𝑦 ↦→ 𝑣2} , 𝑣1 � 4 ∧ 𝑣2 � 5)
relax_ctx!{ /* Γ𝑖𝑛𝑖𝑡 */ } /*---------->*/

fn receiver(x, &mut y);

assume_ctx!{ /* Γ𝑟 */ } /*<-----------*/
...

fn receiver(
a: ty!{ a1:i32 | a1 > 0 },
b : &mut ty!{ b1 : i32 | true
=> b2 | b2 > b1 + a1 })

{
// Γ𝑖𝑛𝑖𝑡 = ({𝑎 ↦→ 𝑎1, 𝑏 ↦→ 𝑏1} , 𝑎1 > 0 ∧ 𝑡𝑟𝑢𝑒)
assume_ctx!{ /* Γ𝑖𝑛𝑖𝑡*/ }

...

// Γ𝑟 = ({𝑎 ↦→ 𝑎1, 𝑏 ↦→ 𝑏2} , 𝑎2 > 0 ∧ 𝑡𝑟𝑢𝑒)
relax_ctx! { /* Γ𝑟 */ }

}

Listing 11: Example Showing the Correspondence between Function Calls and Context
Assumptions

A different intuition for function calls handling in Corten may also gained by under-
standing calls in terms of assumptions assume_ctx! and assertions relax_ctx! that
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Corten replaces a function call with. Listing 11 shows how this might look like: The caller
abstracts the concrete call by requiring the current context Γ1 to satisfy the initial context
Γ𝑖𝑛𝑖𝑡 of the callee (modulo renaming). In turn, the callee assumes its initial context to be
satisfied and proceeds to modify it, with the end of the function requiring the function
body to satisfy the specified post context Γ𝑟 . Consequently, the caller can assume the
final context to be valid (with the addition of the old context of course). As a whole, this
creates an unbroken chain of assumes and requires and thusly a sensible design.

Definition 5.2.9 (Reference Destination Judgement Γ ⊢ ∗𝑥 ∈ {. . .}). To complete the type
system, two more judgements need to be defined. In the statement and expression typing
rules, it is necessary to gain some information about the reference target. The rule May-
Ref ensures that the set {𝑦1, . . . , 𝑦𝑛} contains all possible reference targets. The special
case {𝑦} implies, that 𝑥 must reference exactly 𝑦, because a reference without a target is
impossible.

May-Ref
𝜇 (𝑥) = 𝛼 (𝛽 � &𝑦1 ∨ · · · ∨ 𝛽 � &𝑦𝑛) ∈ Φ ⇓ 𝛼

(𝜇,Φ) ⊢ ∗𝑥 ∈ {𝑦1, . . . , 𝑦𝑛}

Φ ⇓ 𝛼 computes the set of equivalent values in Γ’s constraint set. The function satisfies
the three properties of equivalence classes: 𝛼 ∈ Φ ⇓ 𝛼 , 𝛼 ∈ Φ ⇓ 𝛽 ⇔ 𝛽 ∈ Φ ⇓ 𝛼 and
𝛼 ∈ Φ ⇓ 𝛽 ∧ 𝛽 ∈ Φ ⇓ 𝛾 =⇒ 𝛾 ∈ Φ ⇓ 𝛾 . This property holds because of the lim-
ited expressiveness of reference predicates, which can only directly specify equality with
another logic variable or a reference target constraint, which ends the chain. Reference
predicates can not be nested or further constrained by other predicates. The equivalence
set is constructed by iteratively computing the fixpoint 𝛽 ∈ Φ ⇓ 𝛼 ∧ (· · · ∧ 𝛽 � 𝛾 ∧ . . . ) =
Γ =⇒ 𝛾 ∈ Φ ⇓ 𝛼 . This is safe because each iteration monotonically appends to the set
and the set of formulae and variables is finite. Well-formedness requires that there to be
exactly one reference target constraint. Thus the reference constraint is unique and can
be inferred.

5.3. Soundness of the Type System
Next, we will to justify why Corten type system is safe.

We will write substitution as Φ[𝑥 ⊲ 𝑎] meaning 𝑥 is replaced by 𝑎 in Φ and 𝜇 [𝑥 ↦→ 𝛼]
for the function update meaning 𝜇 [𝑥 ↦→ 𝛼] (𝑥) = 𝛼 and 𝜇 (𝑦) everywhere else.

To reduce the verbosity of the notation, for 𝑥1 . . . 𝑥𝑛 ∈ dom(𝜇) we will abbreviate we
shortenΦ[𝜇 (𝑥1)⊲𝑔(𝑥1), . . . , 𝜇 (𝑥𝑛)⊲𝑔(𝑥𝑛)] toΦ[𝑓 (𝑥𝑖)⊲𝑔(𝑥𝑖) | 𝑥] andΦ[𝜇 (𝑥𝑖)⊲𝑔(𝑥𝑖) | 𝑥 ≠ 𝑦]
if 𝑥 ∈ {𝑥 | 𝑥 ∈ dom(𝜇), 𝑥 ≠ 𝑦}

Definition 5.3.1 (State Conformance). A state 𝜎 is conformant with respect to a typing
context Γ = (𝜇,Φ) (written as 𝜎 : Γ), iff:

Φ[𝜇 (𝑥) ⊲ J𝜎 (𝑥)K | 𝑥 ∈ dom(𝜇)] is satisfiable

I.e. a conformant type context does not contradict the execution state.
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The state conformance rule is quite different to a standard state conformance rule. It is
owed to the fact that firstly, the context contains formulae and secondly, the context may
contain free variables, which are not bound by any variable in 𝜎 . To get an idea of the
behaviour of this definition consider the following properties:

• If 𝜎 : (∅,Φ) then Φ is satisfiable

• If 𝜎 : (𝜇,Φ1 ∧ Φ2) then 𝜎 : (𝜇,Φ1) and 𝜎 : (𝜇,Φ1).

• If 𝜎 : (𝜇,Φ) and FV(Φ) ⊆ dom(𝜇), then ⊨ Φ[𝜇 (𝑥) ⊲ J𝜎 (𝑥)K | 𝑥 ∈ dom(𝜇)]

Especially interesting is the last one, which follows from the fact, by definition a Φ
without any free variables, will have all variables replaced by constants, making the entire
predicate constant. Because the definition of state conformance was satisfied for some𝑚
it does not depend on, Φ is also valid.

With the notion of conformance established, next we will introduce our definition of
safety. As usual for a small-step semantic, we will consider progress and preservation
based on Wright and Felleisen [34]. We will assume, that the base language (e.g. Rust)
satisfies the safety properties and show that relative to the base language Corten also
satisfies the type safety properties.

Definition 5.3.2 (Progress). If Γ ⊢ 𝑠1, 𝜎 : Γ ⇒ Γ2 and 𝑠1 ≠ unit, then there is a 𝑠2 and 𝜎2
with ⟨𝑠1 | 𝜎1⟩ { ⟨𝑠2 | 𝜎2⟩.

Definition 5.3.3 (Preservation). If Γ ⊢ 𝑠 ⇒ Γ2, 𝜎 : Γ and ⟨𝑠 | 𝜎⟩ { ⟨𝑠1 | 𝜎1⟩, then there is
a Γ1 with Γ1 ⊢ 𝑠1 ⇒ Γ2 and 𝜎2 : Γ2

Since Corten’s types do not influence the execution semantics of the program and con-
formance for the base types is assumed, progress not interesting.

In contrast, preservation requires us to show that conformance of 𝜎 to Corten’s (re-
fined) type context is preserved by execution. The proof sketch is structured as follows:
We start by showing in lemma 5.3.4, that the evaluation of expressions preserves state
conformance (although expressed slightly unusual way). Next lemma 5.3.5 we argue for
why reference tracking is conservative, followed by lemma 5.3.6 which demonstrates that
our notion of sub-contexts is in deed conservative. Using these arguments, lemma 5.3.7
will show, that preservation holds for the type system.

Lemma 5.3.4 (Conformance of Symbolic Execution). If 𝜎 : Γ, Γ ⊢ 𝛼 fresh then 𝜎 [𝑥 ↦→J𝑒K𝜎] : Γ [𝑥 ↦→ 𝛼], (𝛼 ≃ J𝑒KΓ)
Proof. Let Γ = (Φ, 𝜇). Given Φ[𝜇 (𝑥) ⊲ J𝜎 (𝑥)K | 𝑥] SAT show (Φ ∧ 𝛼 ≃ J𝑒KΓ) [𝜇 [𝑥 ↦→
𝛼] (𝑦) ⊲ J𝜎′(𝑦)K]. Let 𝜎′ = 𝜎 [𝑥 ⊲ J𝑒K𝜎]. As a model we select 𝑚′ = 𝑚[𝛽 ⊲ 𝜎 (𝑥)] where
𝜇 (𝑥) = 𝛽 and show that the proof obligation is satisfied for𝑚′.

Split the goal on the conjunction; if both sides are valid then the conjunction is valid
(for the same model).

• PaRt I Show 𝑚′ ⊨ Φ[𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]. In essence, we show that the
satisfiability of Φ is not changed by the addition of fresh variable 𝛼 . We start by
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splitting the substitution into the part of concerned with 𝑥 and a part that is not
(𝑥 ≠ 𝑦). We then introduce a useless substitution for 𝛼 that can not change the
formula because it does not contain 𝛼 (and the substitution on the left explicitly
excludes 𝑥 ). After some bookkeeping, we use the fact that substitution in expression
can be rephrased as a function update on the model𝑚 to arrive at our goal.

Φ[𝜇 (𝑦) ⊲ J𝜎 (𝑦)K | 𝑦]
= Φ[𝜇 (𝑦) ⊲ J𝜎 (𝑦)K | 𝑦 ≠ 𝑥] [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K]
= Φ[𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦 ≠ 𝑥] [𝛼 ⊲ J𝑒K𝜎] [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K]
= Φ[𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦 ≠ 𝑥] [𝜇 [𝑥 ↦→ 𝛼] (𝑥) ⊲ J𝜎′(𝑥)K] [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K]
= Φ[𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦] [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K]

𝑚 ⊨ Φ[𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦] [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K]
implies

𝑚[𝜇 (𝑥) ↦→ J𝜎 (𝑥)K]︸                  ︷︷                  ︸
=𝑚′

⊨ Φ[𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]

• PaRt II show𝑚′ ⊨ (𝛼 ≃ J𝑒KΓ) [𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦] In part two we need to
show that our symbolic execution does not conflict with 𝜎 . The problematic case is
handling of reassignments to a variable. In that case, the old logic variable becomes
unbound, forcing us to show that we can choose a appropriate model. A multitude
of case distinctions ensures none of these cases are missed.

Case distinction on 𝛼 ≃ J𝑒KΓ
– Case tRue show𝑚′ ⊨ true[. . . ]; trivial

– Case constRaint show:

𝑚′ ⊨ 𝛼 [𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]︸                                 ︷︷                                 ︸J𝜎 (𝑥)K=J𝑒K𝜎
� J𝑒KΓ [𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]

∗ Case Constant 𝑒 = 𝑣 trivial

∗ Case VaRiable 𝑒 = 𝑧

· Case 𝑒 = 𝑧 = 𝑥

Γ [𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]
= 𝜇 (𝑥) [𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]
= 𝜇 (𝑥) [𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦 ≠ 𝑥] [𝛼 ⊲ J𝜎′(𝑥)K]

𝛼 fresh
= 𝜇 (𝑥) def. 𝑚′

= J𝜎 (𝑥)K
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· Case 𝑒 = 𝑧 ≠ 𝑥

J𝑧KΓ [𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]
= 𝜇 (𝑧) [𝜇 [𝑥 ↦→ 𝛼] (𝑧) ⊲ J𝜎′(𝑧)K]

def. 𝑧
= 𝜇 (𝑧) [𝜇 (𝑧) ⊲ J𝜎′(𝑧)K]
= J𝜎 (𝑧)K = J𝑧K𝜎

∗ Case BinaRy OpeRation 𝑒 = 𝑥1 ⊙ 𝑥2

· Case 𝑥1 = 𝑥 , 𝑥2 ≠ 𝑥 (without loss of generality)

J𝑥 ⊙ 𝑥2K[𝜇 [𝑥 ↦→ 𝛼] (𝑦) ⊲ J𝜎′(𝑦)K | 𝑦]
= J𝑥 ⊙ 𝑥2KΓ [𝜇 (𝑥2) ⊲ J𝜎′(𝑥2)K] [𝜇 [𝑥 ↦→ 𝛼] (𝑥) ⊲ J𝜎′(𝑥)K]
= J𝜇 (𝑥) ⊙ 𝜇 (𝑥2)K[𝜇 (𝑥2) ⊲ J𝜎′(𝑥2)K] [𝛼 ⊲ J𝜎′(𝑥)K]
= J𝜇 (𝑥) ⊙ 𝜇 (𝑥2)K[𝜇 (𝑥2) ⊲ J𝜎 (𝑥2)K]
= J𝜎 (𝑥) ⊙ 𝜎 (𝑥2)K 𝑅𝑢𝑙𝑒=

𝐼𝑛𝑣 .
J𝑒K𝜎

· Case 𝑥1 ≠ 𝑥, 𝑥2 ≠ 𝑥 , Case 𝑥1 = 𝑥, 𝑥2 = 𝑥 and Case 𝑥1 ≠ 𝑥, 𝑥2 = 𝑥
analogous

□

The next lemma not only shows that predicate types can not have no existential bind-
ings, but also – crucially – that the typing assigned to mutable references is conservative,
in the sense that it covers all possible reference destinations.

Lemma 5.3.5 (Reference Predicates are Conservative). If 𝜎 : Γ and Γ ⊢ ∗𝑥 ∈ {𝑦1, . . . , 𝑦𝑛}
then J𝜎 (𝑥)K = &𝑦𝑖 for some 𝑖 ∈ 1, . . . , 𝑛

Proof Sketch. Rule inversion of theMay-Ref rule yields 𝜇 (𝑥) = 𝛼 (I) and Γ ⇓ 𝛼 ∋ {𝑦1, . . . , 𝑦𝑛}.
Let 𝜑𝛼 = (𝛼 � &𝑦1 ∨ · · · ∨ 𝛼 � &𝑦𝑛). By using the definition of the Γ ⇓ 𝛼 we can show
that 𝜑𝛼 [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K | 𝑥 ∈ dom(𝜇)] (II) is satisfiable, because 𝜑𝛼 is less restrictive than Φ
(being directly constructed from a subset of terms in a conjunction) andΦ already satisfies
the state conformance property.

Keep in mind that𝜑𝛼 has no free variables wrt. 𝜇 as it only refers to the logic variable 𝛼 ,
which by assumption (I) is not free and program variables𝑦𝑖 , which as – as far as the logic
is concerned – mere constants (III). The argument from the state conformance examples
also applies here: If we can show a formula to be independent from the rest and themodel,
then showing satisfiability for a model that 𝜑𝛼 does not depends on, yields validity (IV).
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Therefore, for some𝑚:

𝑚 ⊨ Φ[𝜇 (𝑧) ⊲ J𝜎 (𝑧)K | 𝑧 ∈ dom(𝜇)]
(II)
=⇒ 𝑚 ⊨ 𝜑𝛼 [𝜇 (𝑧) ⊲ J𝜎 (𝑧)K | 𝑧 ∈ dom(𝜇)]
=⇒ 𝑚 ⊨ 𝜑𝛼 [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K] [𝜇 (𝑧) ⊲ J𝜎 (𝑧)K | 𝑧 ∈ dom(𝜇) \ {𝑥}]
(III)
=⇒ 𝑚 ⊨ 𝜑𝛼 [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K]
=⇒ 𝑚 ⊨ (𝛼 � &𝑦1 ∨ · · · ∨ 𝛼 � &𝑦𝑛) [𝜇 (𝑥) ⊲ J𝜎 (𝑥)K]
(I)
=⇒ 𝑚 ⊨ (𝛼 � &𝑦1 ∨ · · · ∨ 𝛼 � &𝑦𝑛) [𝛼 ⊲ J𝜎 (𝑥)K]
(IV)
=⇒ ⊨ (J𝜎 (𝑥)K � &𝑦1 ∨ · · · ∨ J𝜎 (𝑥)K � &𝑦𝑛)
⇔ J𝜎 (𝑥)K � &𝑦𝑖 for some 𝑖 ∈ 1, . . . , 𝑛

□

Lemma 5.3.6 (Sub-Context Relation is Conservative). If Γ ⪯ Γ′ and 𝜎 : Γ then 𝜎 : Γ′

Proof. Given Γ ⪯ Γ′, 𝜎 : Γ show 𝜎 : Γ′. Let 𝑥 ∈ 𝜇 denote 𝑥 ∈ dom(𝜇) and 𝑣𝑥 denoteJ𝜎 (𝑥)K.
We need to show that for a given model of 𝜎 : Γ we can find a model, that satisfies

𝜎 : Γ′. We use the preconditions of the Sub-Ctx rule, which yields an implication relation
between the type contexts (5.1) and the fact that only some variables, namely dom(𝜇′) \
dom(𝜇), are fresh and therefore unconstrained by Γ and therefore these variables can be
chosen to suit our needs: The logic variables that become unbound in Γ′ relative to Γ are
instead constrained to the required value by the chosen context𝑚. Also recall that 𝜇 is
injective.

Rule inversion on Γ ⪯ Γ′ yields:

𝑚 ⊨ Φ′[𝜇′(𝑥) ⊲ 𝜇 (𝑥) | 𝑥 ∈ 𝜇] → Φ forall𝑚 (5.1)
dom(𝜇′) ⊆ dom(𝜇) (5.2)

𝜎 : Γ =⇒ 𝑚★ ⊨ Φ[𝜇 (𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇] for some𝑚★ (5.3)

dom(𝜇′) \ dom(𝜇) is fresh wrt. Γ

=⇒ 𝑚★[𝜇′(𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇′ \ 𝜇] ⊨ Φ[𝜇 (𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇] (5.4)
=⇒ 𝑚★[𝜇′(𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇′ \ 𝜇] [𝜇 (𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇] ⊨ Φ (5.5)

Let𝑚 =𝑚★[𝜇′(𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇′ \ 𝜇]

=⇒ 𝑚[𝜇 (𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇] ⊨ Φ (5.6)

eq. (5.1) for𝑚[𝜇 (𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇]

=⇒ 𝑚[𝜇 (𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇] ⊨ Φ′[𝜇′(𝑥) ⊲ 𝜇 (𝑥) | 𝑥 ∈ 𝜇] → Φ (5.7)
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Using eq. (5.6):

=⇒ 𝑚[𝜇 (𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇] ⊨ Φ′[𝜇′(𝑥) ⊲ 𝜇 (𝑥) | 𝑥 ∈ 𝜇] (5.8)
=⇒ 𝑚 ⊨ Φ′[𝜇′(𝑥) ⊲ 𝜇 (𝑥) | 𝑥 ∈ 𝜇] [𝜇 (𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇] (5.9)

Composition of the substitutions4: . . . [𝑎 ⊲ 𝑏] [𝑏 ⊲ 𝑐] to . . . [𝑎 ⊲ 𝑐]

=⇒ 𝑚 ⊨ Φ′[𝜇′(𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇] (5.10)
𝐷𝑒𝑓 .𝑚
=⇒ 𝑚★[𝜇′(𝑥) ↦→ 𝑣𝑥 | 𝑥 ∈ 𝜇′ \ 𝜇] ⊨ Φ′[𝜇′(𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇] (5.11)
=⇒ 𝑚★ ⊨ Φ′[𝜇′(𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇] [𝜇′(𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇′ \ 𝜇] (5.12)
=⇒ 𝑚★ ⊨ Φ′[𝜇′(𝑥) ⊲ 𝑣𝑥 | 𝑥 ∈ 𝜇′] (5.13)
⇔ 𝜎 : Γ′ (5.14)

□

Lemma 5.3.7 (Preservation of State Conformance). If Γ ⊢ 𝑠 ⇒ Γ2, 𝜎 : Γ and ⟨𝑠 | 𝜎⟩ {
⟨𝑠1 | 𝜎1⟩, then 𝜎1 : Γ1 and Γ1 ⊢ 𝑠1 ⇒ Γ2 for some Γ1

To ensure that the proof structure is correct, this proof as well as the type rules and
some other lemmata were also partially formalized in the theorem prover Lean[22]. Most
branches were also proven with Lean5.

Proof Sketch. Rule Induction over ⟨𝑠 | 𝜎⟩ { ⟨𝑠1 | 𝜎1⟩

• Case SS-Assign : Given 𝜎 : Γ, Γ ⊢ 𝑥 = 𝑒 ⇒ Γ2, Γ2 = Γ [𝑥 ↦→ 𝛼], 𝜑 show ∃Γ1, 𝜎 [𝑥 ↦→J𝑒K𝜎] : Γ1 ∧ Γ1 ⊢ unit ⇒ Γ2

Rule inversion over Γ ⊢ 𝑒 : {𝛼 : 𝑏 | 𝜑}:
– Caseswith Symbolic Execution (Lit , Add , VaR , Ref ): rule inversion yields

Γ ⊢ 𝛼 fresh and Γ2 = Γ [𝑥 ↦→ 𝛼], 𝛼 ≃ J𝑒KΓ
With Γ1 = Γ2, the goal is: 𝜎 [𝑥 ↦→ J𝑒K𝜎] : (Γ [𝑥 ↦→ 𝛼], 𝛼 ≃ J𝑒KΓ); lemma 5.3.4
implies the goal.

– Case VaR-DeRef 𝑒 = ∗𝑦: rule inversion yields Γ ⊢ ∗𝑦 : {𝑧}, Γ ⊢ 𝑧 : {𝛾 : 𝑏 | 𝜑𝛾 }
and Γ2 = Γ [𝑥 ↦→ 𝛾], 𝜑𝛾
Rule inversion over Γ ⊢ 𝑧 : {𝛾 : 𝑏 | 𝜑𝛾 } yields Γ ⊢ 𝛾 fresh.
Lemma 5.3.4 for 𝛾 implies 𝜎 [𝑥 ↦→ J𝑦K𝜎] : Γ [𝑥 ↦→ 𝛾], 𝛾 ≃ J𝑦KΓ.
Choose Γ1 = Γ2 which implies the goal

– Case IntRo-Sub gives Γ ⊢ 𝑒′ : 𝜏′ and Γ ⊢ 𝜏′ : 𝜏 as well as the induction
hypothesis for the inner expression 𝑒′.
The argument for why this should hold should be similar to the Sub-Context a
few cases further down.

5The Lean Code can be found here https://gitlab.com/csicar/liquidrust/-/tree/main/docs/
lean-proof
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5.3. Soundness of the Type System

• Case SS-Seq-InneR : Given: ⟨𝑠 | 𝜎⟩ { ⟨𝑠1 | 𝜎1⟩, Γ ⊢ 𝑠; 𝑟 ⇒ Γ2,
∀Γ2, Γ ⊢ 𝑠 ⇒ Γ2 ∧ 𝜎 : Γ → ∃Γ1, 𝜎1 : Γ1 ∧ Γ1 ⊢ 𝑠1 ⇒ Γ2
show ∃Γ1, 𝜎1 : Γ1 ∧ Γ1 ⊢ 𝑠1; 𝑟 ⇒ Γ2.

Rule inversion over Γ ⊢ 𝑠; 𝑟 ⇒ Γ2 yields Γ ⊢ 𝑠 ⇒ Γ1, Γ1 ⊢ 𝑟 ⇒ Γ2

The preconditions for the third induction hypothesis are satisfied for Γ1 and yields
∃Γ′1, 𝜎1 : Γ′1 ∧ Γ′1 ⊢ 𝑠1 ⇒ Γ1

State conformance 𝜎1 : Γ′1 follows directly from this.

For Γ′1 the preconditions for the Seq rule are satisfied.

• Case SS-Seq-N : Given: Γ ⊢ unit; 𝑠 ⇒ Γ2, 𝜎 : Γ show ∃Γ1, 𝜎 : Γ1 ∧ Γ ⊢ 𝑠 ⇒ Γ2.

Rule inversion over Γ ⊢ unit; 𝑠 ⇒ Γ2 yields Γ ⊢ 𝑠 ⇒ Γ2. Together with the second
induction hypothesis this implies the goal.

• Case SS-IF-T : Given J𝑥K𝜎 � true, Γ ⊢ if 𝑥{𝑠𝑡}else{𝑠𝑒} ⇒ Γ2, 𝜎 : Γ, show
∃Γ1, 𝜎 : Γ1 ∧ Γ1 ⊢ 𝑠𝑡 ⇒ Γ2

Rule inversion over Γ ⊢ .. ⇒ Γ2 yields Γ ⊢ 𝑠𝑡 ⇒ Γ2. With Γ1 = Γ the goal is
satisfied.

• Case SS-IF-F : analogous to Case SS-IF-T

• Case SS-Decl : analogous to Case SS-Assign

• Case SS-Assign-Ref Given 𝜎 (𝑥) = &𝑦, Γ ⊢ ∗𝑥 = 𝑧 ⇒ Γ2, 𝜎 : Γ, show ∃Γ1, 𝜎 [𝑦 ↦→J𝜎 (𝑧)K] : Γ1 ∧ Γ1 ⊢ unit ⇒ Γ2

Cases of Γ ⊢ ∗𝑥 = 𝑧 ⇒ Γ2:

– Case Assign-StRong gives: Γ(𝑧) = 𝛽 , Γ ⊢ ∗𝑥 ∈ {𝑦}, Γ ⊢ 𝛾 fresh.

Choose Γ2 = Γ1 = Γ [𝑦 ↦→ 𝛾], 𝛾 � 𝛽 . With Γ ⊢ 𝛼 fresh using lemma 5.3.5 yieldsJ𝜎 (𝑥)K = &𝑦. lemma 5.3.4 yields 𝜎 [𝑦 ↦→ J𝜎 (𝑧)K] : Γ [𝑦 ↦→ 𝛾], 𝛾 � 𝛽
– Case Assign-WeaK gives: Γ ⊢ 𝑧 : 𝜏 , Γ ⊢ ∗𝑥 ∈ {𝑦𝑖} Γ ⊢ 𝑦𝑖 : {𝛽𝑖 : 𝑏𝑖 | 𝜑𝑖}

Γ ⊢ 𝜏 ⪯
{
𝛽 𝑗 : 𝑏 𝑗 | 𝜑 𝑗

}
for 𝑗 ∈ [1, 𝑛].

Lemma 5.3.5 gives J𝜎 (𝑥)K = &𝑦𝑖 for some 𝑖 ∈ [1, 𝑛].
At this point it remains to be shown that the assigned type does not change con-
formance for the post state. We will show this in two steps: First we show that
the assigned value preserves conformance, but for a different context. Then we
will show that this context is a subcontext of Γ.

Using lemma 5.3.4 we get 𝜎 [𝑦 𝑗 ↦→ J𝑧K𝜎] : Γ [𝑦 𝑗 ↦→ 𝛽 𝑗 ], (𝛼 ≃ J𝑧KΓ) for all
𝑗 ∈ [1, 𝑛].
By assumption Γ ⊢ 𝜏 ⪯

{
𝛽 𝑗 : 𝑏 𝑗 | 𝜑 𝑗

}
for every 𝑗 ∈ [1, 𝑛]. Using lemma 5.3.6

we get 𝜎 [𝑦 𝑗 ↦→ J𝜎 (𝑧)K] : Γ. For Γ = Γ1 = Γ2 the proof obligation is satisfied.
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• Case SS-While Given Γ ⊢ while(𝑥){𝑠} → Γ2, 𝜎 : Γ show ∃Γ1, 𝜎 : Γ1 ∧ Γ1 ⊢
if(𝑥){while(𝑥){𝑠}}else{unit} ⇒ Γ2

Rule inversion over Γ ⊢ while(𝑥){𝑠} → Γ2 yields Γ ⪯ Γ′, Γ(𝑥) = 𝛼 , Γ ⊢ 𝑐 → Γ′

Thus Γ ⊢ while(𝑥){𝑠} ⇒ Γ. Which completes the precondition for
Γ ⊢ if(𝑥){while(𝑥){𝑠}}else{unit} ⇒ Γ2 and together with the second hypothe-
sis implies the goal.

• Case SS-Relax Given Γ ⊢ relax_ctx!{Γ′} ⇒ Γ2, 𝜎 : Γ show ∃Γ1, 𝜎 : Γ1 ∧ Γ1 ⊢
unit ⇒ Γ2.

Rule inversion over Γ ⊢ relax_ctx!{Γ′} ⇒ Γ2 yields Γ2 ⪯ Γ For Γ1 = Γ2 and
lemma 5.3.6 implies the goal.

• Case SS-Call function calls are executed by renaming and inlining and adding a
context relaxation at the start and end of the function pertaining to the entry and
exit context specifications. Definition 5.2.8 further justifies this.

□

5.4. Extensions
These are some ways to further improve the usability and expressiveness of the type sys-
tem. Even though these extensions are not part of the implementation, they were taken
into consideration when designing the type system. To show that the type system is capa-
ble of handling the additional challenges, we will shortly describe how these extensions
could to be added to the type system.

5.4.1. Records / structs

Firstly, a key part of realistic programs are data structures that comprise multiple basic
data types. In Rust these are called structs and work similar to records or product types
in functional languages.

Once again, we can take advantage of Rust ownership system: Any part of a struct
(even nested fields) can only belong to one variable. This means that the proposed system
for handling mutable references should seamlessly extend to structs: The variable map-
ping in Γ is generalized: 𝜇 : Path → LVar, which tracks the logic variable assignments
for each field of an owned struct. The relevant typing rules should work without major
changes.

Listing 12 shows how this could work in practice: When passing records as argument,
we employ the same technique that we used for references: For any reference target with-
out a direct name, we generate one: Referencing 𝑝.𝑥 in move_up will reference a newly
generated name associated with 𝑝.𝑥 . The predicates in the signature are immediately
desugared to their corresponding logic variable.
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struct Point { x: i32, y: i32 }
fn incr(i : &mut ty!{ i1 => i2 | i2 == i1 + 1 }) { .. }
fn move_up(p : &mut ty!{ p1 : Point => p2 | p2.x > p1.x && p1.y == p2.y }) {
// Γ𝑖𝑛𝑖𝑡 = ({𝑝.𝑥 ↦→ 𝑣1, 𝑝 .𝑦 ↦→ 𝑣2} , 𝑡𝑟𝑢𝑒)
...
// Γ𝑓 𝑖𝑛𝑎𝑙 ⪯ ({𝑝.𝑥 ↦→ 𝑣3, 𝑝 .𝑦 ↦→ 𝑣4} , 𝑣3 > 𝑣1 ∧ 𝑣4 � 𝑣2)

}

fn client() {
let p = Point {x:1, y:2}
// Γ1 = ({𝑝.𝑥 ↦→ 𝛼, 𝑝.𝑦 ↦→ 𝛽} , 𝛼 � 1 ∧ 𝛽 � 2)
incr(&mut p.x);
// Γ2 = ({𝑝.𝑥 ↦→ 𝑖2, 𝑝 .𝑦 ↦→ 𝛽} , 𝛼 � 1 ∧ 𝛽 � 2 ∧ 𝑖2 � 𝛼 + 1)
move_up(&mut p);
// Γ3 = ({𝑝.𝑥 ↦→ 𝑣3, 𝑝 .𝑦 ↦→ 𝑣4, . . . ∧ 𝑣3 > 𝑖2 ∧ 𝑣4 � 𝛽})

}

Listing 12: Example for how structs could be handled in Corten

5.4.2. Algebraic Data Types

With records added, the only thing missing for support of algebraic data types are sum
types. Sum types allow the programmer to express that an inhabitant of a typemay be one
variant of a set of multiple fixed options: For example the result of a fallible computation
in Rust may either be Ok(V) meaning a successful computation with the result V or a
failure Err(E)with a description of the error E. In Rust these sum types are called enums.

Sum types influence the type system in two key ways:
Firstly, the specification of its values. Suppose a programmer would like an authenti-

cation function signature to state that the function returns an Err(403) if the provided
password was incorrect. This requires the type language to assert that a specific variant
is expected as well as granting access to the variant’s fields.

Secondly, path sensitivity needs to be extended to cover match expressions (called case
is most functional programming languages), which allow the programmer to branch de-
pending on the variant of a value.

5.4.3. Inference

While the current implementation is able to type expressions without explicit type anno-
tations, solving a set of type constraints is not implemented. Rondon et al. [25] describe
a mechanism to infer complex refined types by combining known predicates from the
context. This approach should be adaptable to Corten to reduce the amount of needed
type annotations even further.6

6It turns out that exactly is what Lehmann et al. [18] did. See section 8.1 for details
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5.4.4. Predicate Generics
Vazou et al. [32] found that the expressiveness of refinement types can still be expanded
without leaving a decidable fragment by adding uninterpreted functions to the logic. In
the type system, these uninterpreted functions represent ”abstract predicates”. At the
definition site, abstract predicates can not be inspected and restricted, but the caller can
instantiate then with a concrete predicate.

5.4.5. Convenience Improvements
For practical use, it would make sense to relax the distinction between logic variables and
program variables for immutable variables. Because these variables can not change, there
is no need to introduce or replace their types. This also means that relaxing the predicate
for immutable variables is never necessary.

In some cases, the programmer might want to choose an invariant for a variable that
any assigned value has to satisfy. In terms of the type system, this would not be chal-
lenging: A set of variable’s invariants are added the context and after each update, a
subcontext relation between it and newly updated context are checked. If the subtyping
relation can not be shown, then the program does not type check.
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6. Implementation: CortenC
The type system described in the previous chapter was also implemented for Rust to test
the practical feasibility of our approach1. There are a few differences and details between
the type system described above and the implementation CortenC (short for Corten Type
Checker) that will be highlighted in this chapter.

In contrast to the MiniCorten and the described type system, CortenC uses actual Rust
as its target language. In addition to MiniCorten’s features, CortenC also covers expres-
sions with side-effects, non-ANF expressions, statements as well as basic inference. These
features do not change the expressiveness of the type system, but make it a lot more
amenable in practice.

Target Selection The architecture of the rustc compiler makes it possible to imple-
ment a refinement type system quite cleanly: Rustc’s plugin system allows CortenC to
access rustc’s intermediate representations and also emit diagnostics with source loca-
tions. Since the diagnostics from CortenC use the same interface as Rust’s diagnostics,
other tools like IDEs can handle them without any adaptation.

CortenC uses the HIR as its base language. It is a good candidate for extensions to the
type system, because it contains source labels, allowing accurate problem reporting to the
user. Secondly, in HIR all names are resolved meaning the types of expressions can be
queried for HIR nodes, which means the Rustc plugin can reuse a lot of work done in the
Rustc Compiler. Thirdly, non-executable segments of the program, like type declarations,
are represented in the HIR.

UsingMIR is also a sensible option: TheMIR is a drastically simplified representation of
just the executable segments of the program as a CFGwith non-nested expressions, which
would have reduced the implementation effort. Because of the simplicity, it would be
appealing to use the MIR as the basis for the implementation. An additional advantage of
MIR could be that ownership analysis is done on MIR, which would allow the refinement
type system to use that information. Surprisingly, we did not encounter any situation,
where ownership information is necessary for typing refined types.

Ultimately, it was decided against using theMIR for the following reasons: Firstly a con-
cern for the quality of diagnostics: The MIR code is quite distant from the user-provided
code. For example, when trying to explain a error when typing a while-loop, the im-
plementation may need to reconstruct the original source code structure from the CFG,
which could be inaccurate and error-prone. MIR construction only occurs after HIR con-
struction and rust type checking is completed. This means that just a single (unrelated)
type error may keep the refinement system from starting to produce any errors, which
can be quite annoying in practise, as can be seen by Rust borrow checking system, which
already displays this kind of behaviour. In addition, source locations may be less accurate
1The implementation can be found at https://gitlab.com/csicar/liquidrust
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or unavailable. Finally the MIR does not contain type declarations, which could make it
hard to extend the implementation for algebraic data type or predicate generics (see sec-
tion 5.4)

Language Embedding CortenC exposes a minimal interface to the programmer: The
interface consists of two macros: ty!{ ... } which allows the programmer to specify
a refined type for a rust base type and relax_ctx!{ ... } to allow the programmer
to relax the typing context (mostly used for introducing a loop-invariant).

Listing 13 shows how the ty! macros is defined: Most important are the first two
macro forms, which handle immutable types like ty!{ v : i32 | v > 0} and mutable
parameter types like ty!{ v1: i32 | v1 > 0 => v2 | v2 < 0}. There are additional
short forms of these macro calls, which where cut from the listing for brevity. Both macro
calls are translated into the type alias Refinement (MutRefinement respectively). For
the examples above, it would be Refinement<i32, "v", "v > 0"> and MutRefine-
ment<i32, "v1", "v1 > 0", "v2", "v2 > 0"> respectively. These type aliases
are quite useful for CortenC: They ensure that CortenC keeps compatibility with Rust.
I.e. a program with CortenC type annotations can be compiled in normal Rust without
problems and the type aliases also simplify the implementation of CortenC, because the
refined type can be extracted directly from the Rust type alias. Consequently, CortenC
does not need to perform name resolution, even for external function declarations.

Note that, because the ty! macro takes the place of a Rust type, normal IDE features,
like ”Goto Type Definition” still work on the base types without any adaptation.

The second macro relax_ctx! takes the place of a statement and expands into a
function call that contains the specified types as arguments. CortenC uses the arguments
to reconstruct the described context for the type system.

When CortenC reads the type aliases, the predicates are simple strings that need to
be parsed before CortenC can use them. Serendipitously, Rust’s tooling for procedural
macros can also help here: The Rust crates syn and quote allow the programmer to easily
parse and generate Rust source code. We use syn to parse the predicates, which not only
lets the user express the predicates in a familiar syntax, but alsomakes the implementation
of CortenC cleaner. Using Rustc’s parser for this purpose would probably be too involved.

Architecture CortenC follows the structure implied by the type system: All concepts
and type checking rules have a correspondence in CortenC: For instance RContext is the
representation of Γ, which only differs by the fact that predicates stay associated with
a logic variable (and potentially a program variable). The purpose is that in the future,
CortenC could create better error messages, by associating ”blame” to a type checking
failure: If the predicate of a logic variable is part of the reason why a subtyping check
fails, it would be useful to convey that information to the user.

CortenC registers a callback in Rustc to run after HIR construction. The callback calls
type_check_function for each function in the HIR, which either returns Result::Ok
indicating that the function type checks or Result::Err if type checking failed. In that
case, the callback will emit a diagnostic to rustc to inform the user about the refinement
type error. Listing 14 shows the core functions signatures involved in type checking2.
2Lifetimes were removed for clarity
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pub type Refinement<
T, // Rust type
const B: &'static str, // Logic Variable
const R: &'static str // Predicate

> = T;

pub type MutRefinement<
T, // Rust type
const B1: &'static str, // Logic Variable Before
const R1: &'static str, // Predicate Before
const B2: &'static str, // Logic Variable After
const R2: &'static str, // Predicate After

> = T;

#[macro_export]
macro_rules! ty {
($i:ident : $base_ty:ty | $pred:expr) => {

$crate::Refinement< $base_ty, {stringify! { $i }}, {stringify! { $pred }}>
};
($i:ident : $base_ty:ty | $pred:expr => $i2: ident | $pred2:expr) => {

$crate::MutRefinement< $base_ty,
{stringify! { $i }}, {stringify! { $pred }},

{stringify! { $i2 }}, {stringify! { $pred2 }}>
};
// -- snip --

}

Listing 13: Definition of CortenC’s macros

type_check_function corresponds to the Fn-Decl rule by constructing the initial con-
text and delegating checking of the body to type_expr. Since Rust expressions can con-
tain statements, type_expr will use transition_stmt to type check these statements
before returning the final type context. Both type_expr and transition_stmt carry a
collection of parameters that contain the Rust type checking data (The global type context
TyCtxt and the local type context TypeckResults), the refinement type context RCon-
text, a handle to the SMT solver SmtSolver and a way to generate fresh logic variable
names Fresh.

These function utilize require_is_sub_context (corresponding to Sub-Ctx ) and re-
quire_is_subtype_of (corresponding to Sub-Ty ) to dispatch the actual SMT solver re-
quests. These functions are also responsible for encoding the predicates and substituting
variable names where necessary. The following paragraph will give an example for how
these SMT solver requests look like.

Simple Example To better Consider the example program 15, which returns the incre-
ment of the argument. Rustc will call the CortenC callback with the item fn inc once
theHIR construction is completed. Next, the callback calls type_check_functionwhere
the initial context Γ = (𝑎 : {𝑛 | 𝑛 > 0}) is constructed and calls type_expr with the the
function body expression. Base the function body is a sequence transition_stmt is
called for all expect the last expression in the sequence. let b = 1 updates the context
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// Σ ⊢ fn 𝑓
fn type_check_function(
function: &hir::Item,
tcx: &TyCtxt,

) -> Result<RefinementType> { .. }

// Γ ⊢ 𝑠 ⇒ Γ′

fn transition_stmt(
stmts: &[hir::Stmt],
tcx: &TyCtxt,
ctx: &RContext,
local_ctx: &TypeckResults,
solver: &mut SmtSolver,
fresh: &mut Fresh,

) -> Result<RContext> { .. }

// Γ ⊢ 𝑒 ⇒ Γ′

fn type_expr(
expr: &Expr,
tcx: &TyCtxt,
ctx: &RContext,
local_ctx: &TypeckResults,
solver: &mut SmtSolver,
fresh: &mut Fresh,

) -> Result<(RefinementType, RContext)> { .. }

// Γ ⪯ Γ′

fn require_is_sub_context(
super_ctx: &RContext,
sub_ctx: &RContext,
tcx: &TyCtxt,
solver: &mut SmtSolver,

) -> anyhow::Result<()> { .. }

// Γ ⊢ 𝜏 ⪯ 𝜏 ′
fn require_is_subtype_of(

sub_ty: &RefinementType,
super_ty: &RefinementType,
ctx: &RContext, tcx: &TyCtxt,
solver: &mut SmtSolver,

) -> anyhow::Result<()> { .. }

Listing 14: Overview of the Central Functions CortenC is Built from

fn inc(a : ty!{ n : i32 | n > 0}) -> ty!{v : i32 | v > 1} {
let b = 1; a + b

}

Listing 15: Simple Example Program used for demonstrating the operation of CortenC

to Γ1 = (𝑎 : {𝑛 | 𝑛 > 0} , 𝑏 ↦→ {𝑣1 | 𝑣1 � 1}) (𝑣1 is a name generated by Fresh). Finally
type_expr types the expression a + b according to the typing rules described above
resulting in the type {𝑣2 : 𝑖32 | 𝑣2 � 𝑛 + 𝑣1}. This type is then returned as the overall
type of the body expression to type_check_function, which has the responsibility of
checking that in the context Γ1, the actual return type is a subtype of the specified type
in the signature. Thusly require_is_subtype_of is called with the two types and sub-
sequently dispatches the SMT shown in listing 16. Because the SMT call returned unsat,
the subtype relation is valid and the function type checking was successful.
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(declare-datatypes () ((Unit unit)))
; <Context>
; decl for <fud.rs>:79:73: 79:74 (#0) local b
(declare-const v_0 Int)

; decl for <fud.rs>:79:9: 79:10 (#0) local a
(declare-const n Int)

; predicate for v_0: local b ty!{ v_0 : i32 | v_0 == 1 }
(assert (= |v_0| 1))

; predicate for n: local a ty!{ n : i32 | n > 0 }
(assert (> |n| 0))

; </Context>

(declare-const v_1 Int)
(assert (= (+ |n| |v_0|) |v_1|))

(assert (not (> |v_1| 1)))

; checking: ty!{ v_1 : i32 | n + v_0 == _1 } <= ty!{ v : i32 | v > 1 }
(check-sat)
; done checking is_subtype_of! is sat: false

Listing 16: SMT Requests dispatched by CortenC for checking that the returned type
matches the specified type
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7. Evaluation

In this chapter will conduct an evaluation on CortenC to test its practicality. Most of
the example were defined at the start of writing the thesis and are accompanied by some
examples from other papers in the field as well as some benchmarks to show the extend
of what is possible in CortenC.

7.1. Maximum using Path Conditions
Thefirst example is based by Rondon et al. [25]. It demonstrates that the max function can
be implemented and fully verified using path sensitivity. The mathematical maximum is
defined as 𝑟 = max(𝑎, 𝑏) iff 𝑟 ≥ 𝑎 ∧ 𝑟 ≥ 𝑏 ∧ (𝑟 = 𝑎 ∨ 𝑟 = 𝑏). Listing 17 shows how this
can be expressed in CortenC.

fn max(a: ty!{ a: i32 }, b: ty!{ b: i32 })
-> ty!{ v: i32 | v >= a && v >= b && (v == a || v == b) } {
if a > b {

a as ty!{ x: i32 | x >= a && x >= b && (x == a || x == b) }
} else { b }

}

Listing 17: Example demonstrating a fully specified max function using Corten’s path
sensitivity

CortenC will automatically check the type specification matches the implementation,
which succeeds in this case. Of course an incorrect implementation will produce a type
judgement error. If, for example, the else branch returned a instead of b, the systemwould
return the error shown in listing 18. The exact program line where the error occurred
is also known by CortenC. To help the user, CortenC also extract the counter example
generated by the SMT solver and displays it to the user to help hin understand what
when wrong. It is a fortunate coincidence, that when generating counter examples Z3
will often leave out variables that are irrelevant to contradiction, which automatically
creates a kind of minimal working counter example.

Path sensitivity is not limited to the return value: Effects on the type context can also
be path sensitive as demonstrated by listing 19, which implements a clamping function.
The function clamp ensures that the reference passed to it will be at most max or stay
the same. The client function uses clamp and can use the facts from clamp’s mutation
specification when proving its own return type specification.

Note that when typing client, CortenC matches &mut x with a and thusly x with
s to correctly handle the effects of calling clamp. Because of this reason, function calls
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Subtyping judgement failed:
ty!{ _1 : i32 | true && _1 == a } is not a sub_ty of
ty!{ v : i32 | v >= a && v >= b && (v == a || v == b) }

in ctx RContext {
// formulas
// types
local a : ty!{ a : i32 | true }
local b : ty!{ b : i32 | true }

}
For example this assignment, satisfies the sub type, but not the super type:
{ _1 = 0, b = 1, a = 0 }

Listing 18: Example of an error message created by CortenC

require all arguments to be variables or reference to variables. This is not a restriction of
the type system, but a simplification for the implementation.

fn clamp(
a: &mut ty!{ a1: i32 | true => s | (s <= max) && (s == a1 || s == max) },
max: ty!{ max: i32 }

) -> ty!{ v: () } {
if *a > max {

*a = max as ty!{ r | (r <= max) && (r == a1 || r == max) }; ()
} else {};
()

}

fn client() -> ty!{ v : i32 | v == 42 } {
let mut x = 1337; let max = 42;
clamp(&mut x, max);
x

}

Listing 19: Example demonstrating optional mutation of an external location

7.2. Recursion: Fibonacci-Numbers

Thanks to Corten’s modular approach, handling recursive functions is straightforward in
CortenC. Listing 20 demonstrates this by implementing a function that returns the 𝑛th
fibonacci number 𝐹𝑛 and asserting that 10 · 𝐹𝑛 ≥ 𝑛2. Because 𝑛 is arbitrary, this proves1
that the Fibonacci sequence grows faster than 𝑛2

10 .

1The specification is not technically in linear arithmetic, but CortenC can allow some leeway, as long as
SMT-Solver are still able to solve it.
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fn fib(n: ty!{ nv: i32 | nv >= 0}) -> ty!{ v: i32 | 10 * v >= nv * nv } {
if n >= 2 {

let n1 = n - 1; let n2 = n - 2;
let f1 = fib(n1); let f2 = fib(n2);
(f1 + f2) as ty!{ r : i32 | 10 * r >= nv * nv }

} else { 1 }
}

Listing 20: Example demonstrating recursive function calls by proving a divergence prop-
erty of the fibonacci sequence

7.3. Loop Invariants: Proof of the Gauß Summation
Formula

The next example demonstrates that CortenC can also verify loop invariants. Listing 21
shows a function that calculates the sum

∑𝑁
𝑖=1 𝑖 by repeatedly increment a variable by 𝑖 .

Of course there exists a closed formula computing the same result: 𝑛·(𝑛+1)2 , which is given
as the specification. CortenC will therefore proof that the closed form returns the same
result as the iterative summation.

This example is quite challenging, because of interdependencies between i and sum in
the invariant as well as the old value of i and old values of sum in the loop body.

To proof that the invariant holds after each loop body execution, we need the exact
information that i was incremented by one and sum by i as well as the knowledge that
i and sum satisfied the predicates. Corten’s solution of treating predicates as immutable
while retaining unassociated predicates shows its practicability here.

The second challenge is establishing the loop invariant in the first place: Relaxing the
type of i from = 0 to ≤ 𝑛𝑣 is only valid, because we know relaxing the type of sum from
= 0 to 2 ∗ 𝑠𝑣 == 𝑖𝑣 ∗ (𝑖𝑣 + 1) is valid if 𝑖𝑣 = 0 and vice versa: To update the type of sum
first, we need the knowledge that 𝑖𝑣 = 0, but once we relax the type of i, i gets a new
logic variable, which is distinct from the logic variable used in the type of sum. Thus the
loop invariant is established atomically.

For this purpose, CortenC’s relax_ctx! macro is used, which the programmer (or an
inference system) can use to change the type of multiple variables at a time.

7.4. Complex Mutable References
Listing 22 shows that CortenC can correctly track mutation patterns across function
boundaries in a modular way. The swap function replaces the value of x with y and
vice versa. The specification states that for any values x1 and y1 at the reference target
of x and y, swap will update their values to satisfy the predicates x2 == y1 and y2 ==
x1. Notice that CortenC can use these facts in the client function: For *a to resolve to
the required type, we have to infer that b is a reference to j with is associated with logic
variable j1 and swap ensures that the value referenced by a now references the value of
j1. Therefore a must now refer to j, which is associated with logic variable j1.
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fn gauss(n: ty!{ nv : i32 | nv > 0 })
-> ty!{ v : i32 | 2 * v == nv * (nv + 1) } {
let mut i = 0;
let mut sum = 0;

// Loop Invariant:
relax_ctx!{

n |-> nv | nv > 0,
i |-> iv | iv <= nv,
sum |-> sv | 2 * sv == iv * (iv + 1)

}
while i < n {

i = (i + 1);
sum = (sum + i);

}
sum

}

Listing 21: Example loops with complex loop invariants and value updates affecting the
invariant

fn swap(
x: &mut ty!{ x1: i32 => x2 | x2 == y1 },
y: &mut ty!{ y1: i32 => y2 | y2 == x1 }

) -> ty!{ v: () } {
let tmp = *x;
*x = *y;
*y = tmp;
()

}

fn client(
mut i: ty!{ i1 : i32 },
mut j: ty!{ j1 : i32 }

) -> ty!{ v: i32 | v == j1-i1 } {
let mut a = &mut i;
let mut b = &mut j;
swap(a, b);
*a - *b

}

Listing 22: Example demonstrating modularity and ease of specification for complex mu-
tation patterns

7.5. Pseudo Vectors

The next example will demonstrate that CortenC would be able to specify and verify
the absence of index-out-of-bounds errors on vectors. To this end, listing 23 the type
alias IntVec is introduced, where its value represents the vector length. This example is
inspired by a example for the Flux paper by Lehmann et al. [18], where the authors specify
a Vec<T>with elements of type T and show, that the index is kept in bounds. Similarly, the
functions in listing 23 are part of the interface of vectors and ensure no index outside the
bounds is read or written to. The example also demonstrates that CortenC can also check
that mutable reference are in fact unchanged. For instance the function len and get take
the vector v as a mutable reference, but CortenC can still show that these functions do
not change the value and therefore all properties from before the function call carry over
to after the function call.

CortenC will automatically typecheck the program. If pop was called on a vector that
could not be shown to have sufficient length, CortenC would reject the program.
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7.6. Rephrasing built-ins in terms of Refinement Types
The following example demonstrates that Corten naturally extends to unusual edge cases
and still allows easy verification based on them. Rust has built-in functions for aborting
execution called panic and a function for conditionally aborting execution called assert.
Listing 24 shows a reimplementation of these functions with full refined type specifica-
tions. panic asserts that after a call to it, false is valid. This naturally follows from
inverting the path condition after exiting the loop. assert also uses the path condition
to assert the correctness of cond and uses panic for the else case. The return type of as-
sert can use the logic variable c from the input directly as the predicate that is satisfied
after the execution. The client just needs to make sure that the proof of c is stored in the
context by storing the value in the variable _witness: If the returned value is discarded,
it will not be stored in the context and therefore will not be available when proving the
return value specification.

7.7. Interoperability with Other Tools
Corten can only verify safe Rust, but as we discovered in chapter 3, unfortunately un-
safe Rust is used at times. For use-cases where the unsafe code exposes a safe interface,
CortenC could be used to verify the safe part and delegating the verification of the rest
to a more complex verification systems.

To facilitate this usage pattern, CortenC provides a builtin macro (shown in listing 25),
that will instruct CortenC to assume a predicate is true without checking it, named as-
sume_corten. CortenC will extract the path condition from the call and leave it up to
an external tool to show, that the unreachable! macro is in fact unreachable. For in-
stance, Prusti[3] is able to use such conditions to generate appropriate proof obligations
to ensure the statement is unreachable.
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type IntVec = i32;

fn new() -> ty!{v: IntVec | v == 0 } {
0

}

fn len(v : &mut ty!{ b: IntVec => a | a == b }) -> ty!{ r: i32 | r == b } {
*v

}

fn get(
v : &mut ty!{ b: IntVec | true => a | a == b },
index: ty!{i : i32 | 0 <= i && i < b}) -> ty!{ r: () } { ()

}

fn is_empty(v : &mut ty!{ v1 : i32 => v2 | v2 == v1 })
-> ty!{ e : bool | e == (v1 == 0) } {
let l = len(v); l == 0

}

fn push(v : &mut ty!{ v1 : i32 => v2 | v2 == v1 + 1 }) -> ty!{ r : () } {
*v = *v + 1; ()

}

fn pop(v : &mut ty!{ v1 : i32 | v1 > 0 => v2 | v2 == v1 - 1 }) -> ty!{ r : () } {
*v = *v - 1; ()

}

fn client() -> ty!{ r : i32 | r == 1 } {
let mut v = new(); let mut i = 1;
push(&mut v); push(&mut v); get(&mut v, i);
pop(&mut v); push(&mut v); pop(&mut v);
i = 0; get(&mut v, i);
len(&mut v)

}

Listing 23: Example demonstrating modularity and ease of specification for complex mu-
tation patterns
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fn panic() -> ty!{ v : () | false } {
while(true) { () }

}

fn assert(cond: ty!{ c : bool }) -> ty!{ v: () | c } {
if cond {

() as ty!{ v: () | c }
} else {

panic()
}

}

fn client(a : ty!{ av: i32 }) -> ty!{ v: i32 | v > 0 } {
let arg = a > 0;
let _witness = assert(arg);
a

}

Listing 24: Example showing how panic and assert can be naturally specified and ver-
ified in CortenC

macro_rules! corten_assume {
( $pred:expr ) => {

builtin_assume($pred, if(!$pred) { unreachable!(); } else {()});
};

}
pub fn builtin_assume(formula: bool, proof: ()) {}

fn client() { ... corten_assume!(a > 0); ... }

Listing 25: Macro provided by CortenC to offload verification to other tools
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Relevant papers originate from two lines of work: On one hand additions to refinement
types for mutability, asynchronous execution etc. and on the other verification frame-
works for Rust.

Refinement Types Refinement Types were originally developed for verification in
functional languages by Freeman and Pfenning [10], who define a subtyping relation for
ML types on a lattice of possible union and intersection of types and check them using
a system called tree automata. Xi and Pfenning [35] rephrase this notion subtype re-
finement as a restricted dependent type, where the constraints less expressive than the
base language, making automatic verification attainable. They show that type checking
is decidable (relative to a decidable domain), but inference is not.

Taking advantage of the advances in SMT solvers, Rondon et al. [25] devised a type
system that combines the ideas of refinement subtyping and restricted dependent types
with the novel inference system to create a path sensitive and decidable type inference
system.

Vazou et al. [32] extend the refinement language to allow for uninterpreted predicates
to be placed in the refinement predicate, which retain the decidability of type checking,
while at the same time offering significant benefits to expressiveness.

Refinement types are also used in other applications. For example Graf et al. [11] use
refinement types to check the exhaustiveness of pattern matching rules over complex
(G)ADT types in Haskell. To check the exhaustiveness of patterns in Liquid Rust with
ADTs may require similar approaches.

Refinement Types and Mutability Rondon et al. [26] extend Liquid Types to a re-
duced subset of C featuring mutable aliased pointers. Their type system CSolve extends
Refinement Types to enable verification of low-level program with pointer arithmetic.
Bakst and Jhala [5] present a type system based on Refinement Types named Alias Re-
finement Types, which combines alias types with Refinement Types. Both approaches
focus on a C-like target language that provides little guarantees, which is not conducive
to reasoning about aliasing, necessitating ad-hoc mechanisms to control aliasing.

Recognizing the fact, Sammler et al. [28] devise an ownership type system for C used
that is combined with a Refinement Types. Besides automatic verification, their type sys-
tem can also translate their proofs to Coq, following the approach of RustBelt. RefinedC
ownership model differs from Rust.

Kloos et al. [15] extended refinement types to mutable and asynchronous programs.
The paper explores how changes to possibly aliased memory cells can be tracked through-
out a OCaml program. For that purpose the types are extended by a set of requirements
on memory objects, which track distinctness and refined types of these memory cells. In
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contrast to OCaml, Rust offers extensive guarantees, which offers substantial advantages
in terms of simplicity to specification and verification of Rust programs.

Also Lanzinger [16] successfully adapted refinement types to Java, which allows the
user to check that property types described by java annotations hold true throughout the
program, although only for immutable data. Bachmeier [4] later extended the approach
to handle mutable data as well.

Rust verification Given Rust’s ownership system and predestined position as lan-
guage for writing future safety critical software, Rust has sparked interest in the software
verification field. There are several papers with a variety of approaches.

Ullrich [31] translates Rust’s MIR to the theorem prover / dependently typed language
Lean ([22]), forgoing automation, but offering a clean modelling and extensive coverage
of the Rust language.

A key observation made by Ullrich is that with Rust’s ownership system, mutable ref-
erences can be encoded as so called lenses[8]. Basically, mutable reference parameter are
translated in to a immutable initial value and a returned value representing the mutated
type. Lenses extend this encoding by allowing a caller to give a callee access to part of
a structure letting the Lens mechanism handle the reassembly of the structure from the
changed value. The insight of Ullrich is that Rust’s mutable references can naturally be
translated into a sequence of sequential, linear updates to a data structure. Corten’s syn-
tax for mutable refinement parameters is inspired by Ullrich’s encoding. Denis et al. [7]
also use a translation technique, but use Why3 as the target.

A different verification approach is taken by Astrauskas et al. [3] with Prusti, which
is a heavy-weight functional verification framework for Rust, that translates its proof
obligations into a separation logic based verification infrastructure named Viper.

There also exists a line of work that focuses on the generation of constrained Horn
clauses. For example Matsushita et al. [20] employ this technique for verification of
Rust. Particularity relevant for this thesis is the novel formalization for mutable refer-
ences used in the paper. The authors stipulate that lending of a variable should have a
contract between the lender and the borrower: The borrower requires some precondition
to be satisfied about the mutable reference and upon returning the borrow, the borrower
ensures that a postcondition is met. Matsushita et al. [21] further extend this like of work
to cover unsafe code.

Other tools also use (bounded) model checking techniques for verification, like Kani
[1] or Crust, described by Toman et al. [30].

8.1. Comparison to Flux
During the writing of the thesis, Lehmann et al. [18] published a preprint for a paper that
is especially relevant. Lehmann et al. describe a implementation of Liquid Types for Rust
called Flux, covering the same solution and problem space to Corten. For the purpose of
plurality in design and implementation of such a system, is was decided to only read the
paper after finishing the Corten type system.

Flux distinguished between three different kinds of references: Shared (immutable)
references, mutable weak (unique) references and strong references.
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#[lr::sig(fn(i32<@n>)
-> bool<0 < n>)]

fn is_pos(n: i32) -> bool {
if 0 < n { true } else { false }

}

#[lr::sig(fn(i32<@x>)
-> bool{v: x <= x && 0 <= v>)]

fn add(x: i32) -> i32 {
if x < 0 { -x } else { x }

}

fn is_pos(n: ty!{ n : i32})
-> ty!{ v: bool | v == 0 < n } {
if 0 < n { true as ... } else { false }

}

fn add(x: ty!{ x: i32})
-> ty!{ v: i32 | x <= x && 0 <= v } {
if x < 0 { -x as ... } else { x }

}

Listing 26: Example demonstrating the differences between Flux and Corten

To demonstrate the difference in the handling of strong updates, consider the signatures
of incrementing and decrementing functions of a datatype Nat. The functions are fully
specifications and ensure the invariant that a natural number is a positive.

fn increment(&strg v : Nat<n>) -> ()
ensures *self: Nat<n+1>;

fn decrement(&strg v : Nat<n>) -> ()
requires n > 0
ensures *self: Nat<n-1>;

fn increment(n: &mut ty!{
n1: Nat => n1 | n1 == n1+1 }

) -> ();

fn decrement(n: &mut ty!{
v1: Nat | v1 > 0 => v2 | v2 == v1-1 }
) -> ();

Listing 27: Comparison of specifying Type Changes Caused by a strong mutation. Flux
on the left; Corten on the right

Flux type system has the function body judgement Σ,Δ | 𝐾 ;𝑇 ⊢ 𝐹 , which ”checks if a
function body is well typed under a global environment Σ” [18, p. 11]

Δ in Flux is analogous to to Corten’s Φ. Both contain the constraints on refinement
variables and are initialized with the function preconditions. Flux’s 𝑇 maps locations to
types, and serves a similar purpose to 𝜇 in Corten: Keeping track of the current properties
that are known for a location. Corten’s type system does not associate constraints with
locations with specific predicate, like Flux does, because in the typing rules of Corten, the
origin of the constraint is irrelevant1.

Flux has a separate type syntax for references: &mut𝜏 that denotes that the referenced
location has type 𝜏 . Corten uses a similar syntax for specifying mutable references, but
in terms of the semantics delegates the type constraint to the referenced value and even
disallows reference types to constrain the referenced type. Because the reference location
can change during the program execution, constraining a reference can have many pos-
sible meanings and unintuitive consequences. Flux avoids this problem by restricting to
weak references, which can not change their type. Presumably for the same reasons, Flux
like Corten chose to forbid type specification on strong references, but their handling dif-
fers a bit: Even though strong reference destinations are specified with a similar syntax
ptr (𝑙) (equivalent to &𝑙 in Corten), Corten allows multiple possible destinations to be

1interestingly our implementation, like Flux, does have that distinction to improve error messages
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specified. In that case, the reference may only be update weakly. Importantly, Corten al-
lows the type to change, meaning a reference can be unambiguous and therefore strongly
updatable and later ambiguous in its target meaning only weakly updatable.

Function signatures are expressed quite similarly. Flux function signatures have the
form ∀ ¯𝑣 : 𝜎.fn (𝑟 ;𝑥 .𝑇𝑖) → 𝜌0.𝑇0. Consider the function decrease from listing 27. In Flux
the function signature would be encoded as:

∀𝑛 : int, 𝜌 : loc. fn (𝑛 > 0, 𝑥 .{𝜌 ↦→ nat𝜏 ⟨𝑛⟩, 𝑥 ↦→ prt(𝜌)} → 𝜌0.{𝜌0 ↦→ (), 𝜌 ↦→ nat𝜏 ⟨𝑛 − 1⟩})

The rule T-Def initializes the context to Δ = (𝑛 > 0, 𝑣 : loc, 𝑛 : int) , 𝐾 = (𝑥 ↦→
prt(𝜌), 𝜌 ↦→ nat𝜏 ⟨𝑛⟩) and the expected return value 𝑇0 = {𝜌0 ↦→ (), 𝜌 ↦→ nat𝜏 ⟨𝑛 − 1⟩}

Corten would generate an initial context Γ = (𝜇,Φ) with 𝜇 = {𝑛 ↦→ &𝑎𝑟𝑔0, 𝑎𝑟𝑔0 ↦→ 𝑣1},
Φ = {𝑣1 > 0} and expected return type {𝑣𝑟 : () | true} and end context 𝜇′ = {𝑎𝑟𝑔0 ↦→ 𝑣2},
Φ′ = {𝑣2 � 𝑣1 − 1, 𝑣1 > 0}.

What Corten calls a sub-context relation, is referred to as context inclusion in Flux.
Though Flux is significantly more conservative with its rules; only allowing permutations
(C-PeRm), removal (C-WeaKen) of predicates and subtyping of just individual types (C-
Sub) and only if they can be separated (C-FRame), meaning they do not depend on other
predicates. Flux should thusly only be able to show inclusion for a subset of what the
logic and theories allow. As an example consider the sets displayed in fig. 8.1, which are
described by the constraints super-context 𝑥 > 𝑦 − 1 ∧ 𝑥 > 𝑦 + 1, which allows 𝑥 to
vary from 𝑦 by at most 1. A sensible sub-context would be 𝑥 = 𝑦, which satisfies the
constraints, but there is no possible proof for this fact in Flux. Because Corten delegates
sub-context checking to SMT, handling these dependencies are no problem.

Figure 8.1.: Figure showing a value space, where inclusion can not be shown

The subtyping rules are quite similar. To the degree applicable, S-Exists is analogous
to ⪯-Ty.

Looking at the choice of target language, we can see another difference: Flux chose
𝜆Rust by Jung et al. [14] as a basis for the formalization, which expresses the semantics
in a continuation passing style over a language based on Rustc’s MIR, which provides
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a more direct correspondence to the actual Rust. On the other hand Corten based the
formalization on a language based on Rustc’s HIR and semantics expressed in a small-
spec semantic.

The corresponding implementations also use the MIR and HIR respectively. The ad-
vantages and disadvantages are discussed in chapter 6. Flux takes advantage of the MIR
to cover a greater variety of control-flow scenarios. Lehmann et al. also found that ”the
refinement annotations [..] do not appear in Rust’s MIR” [18, p. 17], which poses a chal-
lenge for the implementation.

Lastly Lehmann et al. evaluate Flux against Prusti proving properties like ”the absence
of index-overflow error in a suite of vector-manipulating programs.” [18, p. 2] Lehmann
et al. found that the liquid type inference system is powerful enough to infer necessary
invariants for this use case, partly because ”loop invariants express either simple inequal-
ities or tedious bookkeeping.” [18, p. 21] In these cases Prusti still required invariants
to be specified, which Lehmann et al. party attribute to the fact, for every unchanged
mutable reference, the invariant needs to state that the reference was not modified. By
using mut, but not strg references, Flux could avoid that problem. Even though Corten
does not share the the strong references mechanism with Flux, the argument still applies:
Corten would also not require additional invariants for the unchanging mutable refer-
ences. Because Corten does not support vectors (yet), a direct comparison is not possible,
but listing 23 approximates it.
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9. Conclusion & Future Work
The goal of this thesis is to show that Refinement Types can be idiomatically adapted to
languages with unique mutable references. The thesis has show that CortenC can type-
check Refinement Types in Rust, enforcing properties over mutable data and references
and that these types fit idiomatically into Rust, if an inference system was added to Cor-
tenC. The type system was sufficiently expressive for verifying complex properties about
mutable data, recursive functions and loop invariants. In addition, the thesis analyzed
the use of mutability in Rust and reaffirmed the limited prevalence of unsafe in Rust
code. For a subset of Rust (named MiniCorten), a formal description of the syntax and
small-step semantics was described. A syntax for Refinement Types for Rust was devised
and an accompanying type system was devised. The thesis also provides justification for
its soundness in the form of preservation (and progress) properties. Based in the formal
description, a proof-of-concept implementation shows that automatic type checking of
this type system is feasible and practical. The implementation also shows that using the
interface provided by Rustc is sensible and beneficial for user-friendliness.

The evaluations has shown that meaningful specifications can be automatically type
checked. As planned and suspected, the lack of an inference system, calls for some avoid-
able specification, otherwise the evaluation has demonstrated that the required specifica-
tion effort is limited. The breath of features implemented in the thesis is limited, mainly
because getting the foundations right took some experimenting, though the foundations
layed in the thesis are purposefully designed with these extensions in mind. Therefore
covering more language features should not be hard to achieve.

In terms of future work, there are two axis to work on: On one hand covering more
language features, like records or algebraic data types, would greatly improve the practi-
cality of CortenC. Of course the extensions outlined in chapter 4 are also prime candidates
for future improvements.

On the other hand expanding the expressiveness of the type system would also be
interesting: Introducing abstract predicates would allow a whole new set of properties to
be specified. In particular developing a model of concurrency patterns could be a great
application for them in Rust.

In terms of the analysis, it would also be interesting to correlate unsafe code blocks
with the frequency of changes using, for example the git history. If unsafe code changes
often, that probably means that this unsafe use is more problematic as it clearly needs
to change often.
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A. Additional Graphs from the
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Figure A.1.: Cumulative, Logarithmic Histogram of the Amount of unsafe Uses in each
Category
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