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Abstract: A hybrid model of generating cosmic ray showers based on neural networks is presented. We
show that the neural network learns the solution to the governing cascade equation in one dimension.
We then use the neural network to generate the energy spectra at every height slice. Pitfalls of training
to generate a single height slice is discussed, and we present a sequential model which can generate
the entire shower from an initial table. Errors associated with the model and the potential to generate
the full three dimensional distribution of the shower is discussed.
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1 Introduction

Cosmic rays are important messengers from the high energy universe. They are also one of

the most exciting platforms to study High Energy Physics. They provide us with a window

into high energy collisions, which is not possible by current accelerators (of the order

10
17𝑒𝑉). While they provide with extremely high energies, analysing physics using cosmic

rays is challenging because of their low intensity and can only be studied using Extensive Air

Shower (EAS) which they trigger in the atmosphere. The extensive air showers are a series

of cascaded interactions when cosmic rays interact with the earth’s atmosphere. Each high

energy interaction, triggers a chain reaction, and they produce secondary particle showers.

Analysis of such showers is a challenging task because of all the interactions possible in

the earth’s atmosphere such as, a variety of e/m interactions such as bremsstrahlung, pair

production, Compton, Moller, Bhabha processes as well as annihilation and ionization

losses. We would also have to simulate similar interactions for high energy muons. All these

interactions as well as the demand to be as optimal as possible owing to the large number

of times such simulations need to be repeated, for example, in MCMC analysis calls for a

demand in more novel approaches to minimize memory overhead and optimize simulations.

The two main approaches currently used are, thinning and hybrid simulations. In thinning,

only a small portion of the shower is explicitly considered for Monte-Carlo simulations while

the rest are ignored. The considered showers are re-weighted accordingly. Such an approach,

gives rise to artiőcial ŕuctuations because of the lower number of particles considered. One

way to alleviate this problem is to have a maximum allowable weight to a particle, but this

creates limitations on using less detailed sampling and doesn’t help speedup the calculation
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process[Ko01]. The second hybrid simulations approach, models the shower using a cascade

equation and then after initially running the shower using explicit Monte-Carlo simulations

for very high energies. The data is then fed to cascade equations at a threshold. Combining

cascade equations and MCMC this way, allows us to get accurate results for the average

behaviour of the shower.

The idea of using cascade equations for cosmic ray showers is not new. There have been

various attempts at trying to model the longitudinal proőle of cosmic ray showers using

cascade equations for more than 30 years. The initial shower is usually done explicitly since

it involves small number of particles, and it also provides a way to incorporate ŕuctuations

into the simulations since cascade equations are deterministic. We can determine the

mean behaviour and the moments of the ŕuctuations using cascade equations accurately.

One of the biggest problems with this approach is, it is limited by our modelling of the

cascade equations. Currently, we only have the analytical form of the cascade equations

in one dimension. Thus, cascade equations only provide us with the longitudinal proőle

of the shower. The numerical solution of the cascade, equation can also be avoided by a

pre-tabulation of of the secondary showers, using an iterative MC procedure [Al02]. Such

pre-tabulation makes the simulations less ŕexible to changes in the environment and initial

conditions.

The current work builds upon the work of CONEX [Be07], in trying to build a neural

network model which mimics the behaviour of the analytic form of the cascade equation.

Once the network is trained, the network would no longer require any sort of pre-tabulation

and is designed to be ŕexible across various initial conditions. This paper is organised as

follows, Sect. 2 serves as an introduction to cascade equations for a general particle shower.

Sect. 3 talks about the neural network model. Sect. 4 provides some preliminary results to

this approach, and Sect. 5 talks about conclusions and future potential directions for this

work.

2 Cascade equations for hybrid simulations

A simple Monte-Carlo process can be described by a linear cascade equation. The current

approaches to cascade equations for hybrid simulations are done in a theory driven manner,

where our theoretical understanding and ability to derive the analytical form of the cascade

equation. Cascade equations in one-dimensional form are derived based on various physics

processes, such as hadronic and electromagnetic interactions and they are numerically

solved using the tables generated during the explicit simulation as initial conditions.

Various attempts have been made towards cascade equations, with physics parameters,
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modelled speciőcally for hadronic interactions and electromagnetic interactions. The general

structure of the cascade equations are as follows.

𝜕𝑛𝑖 (𝐸, 𝑋)

𝜕𝑋
=

Production and Decay Terms

︷                                                                                                  ︸︸                                                                                                  ︷

∑︁

𝑎

∫
𝐸0

𝐸

𝜎𝑎𝑛𝑎 (𝐸
′, 𝑋)𝑃𝑎→𝑖 (𝐸, 𝐸

′)𝑑𝐸 ′ −

∫
𝐸

𝐸𝑚𝑖𝑛

𝜎𝑖𝑛𝑖 (𝐸
′, 𝑋)𝑃𝑖→𝑎 (𝐸, 𝐸

′)𝑑𝐸 ′

+𝑆𝑖 (𝐸, 𝑋) − 𝜎𝑖𝑛𝑖 (𝐸, 𝑋) − 𝛼
𝜕𝑛𝑖 (𝐸, 𝑋)

𝜕𝐸
︸                                              ︷︷                                              ︸

Source, Interaction and Loss terms

(1)

where, 𝑛𝑖 (𝐸, 𝑋) is the energy spectra at given depth 𝑋 . Solution to the cascade equation

provides us with the energy spectra ∀𝑋 . This cascade equation is one dimensional, and

helps us calculate the longitudinal proőle of the shower.

Production terms in Equation (1), account for the formation of particles by particles at

higher energy decaying, and increasing the number of particles at a particular energy bin.

Decay terms account for the loss of particles at a particular bin by decaying into particles of

lower energy. Source terms account for sudden appearance and disappearance of particles,

not captured by the rest of the cascade equation. It can account for new particles joining

the shower during the process of solving it, or particles leaving the cascade equation to be

handled differently. Interaction and Loss terms account for the loss in energy of particles

by not performing a explicit cascade beyond a particular energy threshold. This involves

ionization losses in the atmosphere, etc.

CONEX solves this system of coupled differential equations, and gets the projection of

the shower along the longitudinal axis. One of the problems with extending this approach

to higher dimensions is the lack of the analytical form of the cascade equation. In 1D the

system is completely described by the energy spectrum at a particular height, but at 3D,

we need additional information such as the direction of the subshowers etc in order to

fully describe the system. We postulate the existence of such a differential equation which

can fully describe the system in 3D though it is not tractable in analytic form. We use a

neural network approach where the learning process learns the differential equation which

describes the system and can be used to generate the state of the shower at every height.

3 CONEX inspired sequential neural approach

Let us assume that 𝑓 is the functional which takes the energy spectrum at a particular height

and gives the energy spectrum at the next height step.

𝑛(𝐸, 𝑋 + Δ𝑋) = 𝑓 (𝑛(𝐸, 𝑋)) (2)
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solving the differential equation is equivalent to őnding this functional, which helps us

iterate through the height and generate the entire shower from an initial condition. The

ideology behind the neural network model is that, such a functional can be approximated

by the neural network during the training process. This allows us to model the interaction

using explicit simulations directly without relying on our understanding of the underlying

physics. This also allows us to model higher dimensional distributions since we don’t rely

on the explicit form of the cascade equations.

As a initial check of the idea, we take a purely electromagnetic cascade in vacuum, and see

if it learns the information to perform a single step. The input dataset is generated using

CONEX, and we check if given a table at a particular height slice, the network can learn to

generate the table at the next height slice. We use a fully connected neural network for this

implemented using PyTorch [Pa19]. The network has 5 hidden layers, with 512 , 256 , 128 ,

256 , 512 nodes each, using MSE as loss function and optimized using ADAM.

4 Preliminary Results

These are the preliminary results for the ability of the network to learn the functional.

Fig. 1. shows that the neural network is capable of performing a single step with good

accuracy. We őnd that the neural network learns with around 5% error. When we try to use

the learned 𝑓 , to generate the entire shower, we őnd that the error soon accumulates and

the shower reaches unphysical situations which the network hasn’t seen in its training dataset.

A recurrent neural network is ideally suited for such a problem where there are cor-

rective mechanisms for such "time series"data as a hidden layer is passed to the next step.

Before using recurrent neural networks, we attempt using sequential neural networks. The

neural network is applied iteratively for multiple steps and then the result is back propagated.

Such sequential chains are useful in helping the network learn the correct physics, so that it

doesnt lead to unphysical situations when applied iteratively. The length of the sequential

chains is a hyperparameter which needs to be tweaked. The results in this work are done

using a sequential chain of ten steps.

Fig. 2 shows the results of using the sequential network to generate the entire shower. We

see while the network has higher error earlier in the shower. It has learnt the right physics

and has low energy at the later parts of the shower. This is particularly useful given, the later

parts of the shower are the ones which are computationally intensive and the part which we

hope to replace with our model.

5 Conclusions and Further Work

We see that the neural network can learn the stepping function 𝑓 , for the one dimensional

case. Further, work is needed on analysing the learnt physics by injecting new particles into
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the shower in between, a situation the network didn’t see in the training dataset. This checks

if the network learns that showers can be super imposed. One way to solve this is to hard

code the linearity of Eq. (1) into the network to improve the network performance in early

parts of the shower. This work is ongoing currently.

After this, the aim is to make the network generate the three dimensional distribu-

tion. We also hope that the network can predict the higher moments of the ŕuctuations

apart from the mean behaviour, when the higher moments are provided along with the

input distribution. The methods outlined in this work, can also be extended to any simple

monte-carlo system since they would be described by a linear cascade equation. We hope

this will be a valuable contribution to the cosmic-ray physics community where the showers

can be quickly generated for high energies for event-by-event analysis in air-shower arrays

or ŕuorescence light detectors.
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Fig. 1: Results where the neural network performs a single step, the generated showers match with

CONEX showers and are accurate to around 5% error.
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Fig. 2: Results where the neural network generates the entire shower. The generated shower deviates

from the CONEX showers earlier in the shower
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