
J
H
E
P
1
0
(
2
0
2
2
)
0
9
9

Published for SISSA by Springer

Received: March 28, 2022
Accepted: October 7, 2022

Published: October 14, 2022

Automation of antenna subtraction in colour space:
gluonic processes

X. Chen,a,b T. Gehrmann,c E.W.N. Glover,d A. Husse and M. Marcolic
aInstitute for Theoretical Physics, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany

bInstitute for Astroparticle Physics, Karlsruhe Institute of Technology,
76344 Eggenstein-Leopoldshafen, Germany

cPhysik-Institut, Universität Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland

dInstitute for Particle Physics Phenomenology, Department of Physics, University of Durham,
Durham, DH1 3LE, U.K.

eTheoretical Physics Department, CERN,
1211 Geneva 23, Switzerland
E-mail: xuan.chen@kit.edu, thomas.gehrmann@uzh.ch,
e.w.n.glover@durham.ac.uk, alexander.huss@cern.ch,
mmarcoli@physik.uzh.ch

Abstract: We present the colourful antenna subtraction method, a reformulation of the
antenna subtraction scheme for next-to-next-to-leading order (NNLO) calculations in QCD.
The aim of this new approach is to achieve a general and process-independent construction
of the subtraction infrastructure at NNLO. We rely on the predictability of the infrared
singularity structure of one- and two-loop amplitudes in colour space to generate virtual
subtraction terms and, subsequently, we define an automatable procedure to systematically
infer the expression of the real subtraction terms, guided by the correspondence between
unintegrated and integrated antenna functions. To demonstrate the applicability of the
described approach, we compute the full colour NNLO correction to gluonic three-jet
production pp(gg)→ ggg, in the gluons-only assumption.

Keywords: Automation, Higher-Order Perturbative Calculations

ArXiv ePrint: 2203.13531

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2022)099

mailto:xuan.chen@kit.edu
mailto:thomas.gehrmann@uzh.ch
mailto:e.w.n.glover@durham.ac.uk
mailto:alexander.huss@cern.ch
mailto:mmarcoli@physik.uzh.ch
https://arxiv.org/abs/2203.13531
https://doi.org/10.1007/JHEP10(2022)099


J
H
E
P
1
0
(
2
0
2
2
)
0
9
9

Contents

1 Introduction 1

2 Colour space 2
2.1 Gluon amplitudes in colour space 2
2.2 Gluon exchange in colour space 3
2.3 Leading and subleading colour 4

3 Colourful antenna subtraction at NLO 7
3.1 IR singularity structure at one loop 9
3.2 NLO mass factorization 11
3.3 NLO virtual subtraction term 12
3.4 NLO real subtraction term 13

4 Colourful antenna subtraction at NNLO 16
4.1 IR singularity structure at two loops 19
4.2 NNLO mass factorization 21

4.2.1 Double virtual mass factorization term 21
4.2.2 Real virtual mass factorization term 23

4.3 NNLO double virtual subtraction term 23
4.4 NNLO real virtual subtraction term 25

4.4.1 dσT,a 26
4.4.2 dσT,b 27
4.4.3 dσT,c 30

4.5 NNLO double real subtraction term 32
4.5.1 dσS,a 33
4.5.2 dσS,b 33
4.5.3 dσS,c 35
4.5.4 dσS,d 35

5 Gluonic three-jet production at NNLO 36
5.1 Computational setup 36
5.2 Tests of the subtraction terms 38
5.3 Results 42
5.4 Comments on scale variation 45

6 Conclusions and outlook 48

– i –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
9

1 Introduction

Precision measurements of benchmark cross sections are an important pillar of the LHC
physics program. In combining these measurements with equally precise theory predictions,
fundamental Standard Model parameters are measured to high accuracy, and indirect
constraints on physics beyond the Standard Model are obtained. The success of the LHC
precision physics program relies crucially on a close interplay between theory and experiment,
which calls in particular for highly accurate theoretical predictions. These predictions are
obtained through a perturbation theory expansion to sufficiently high order. The workflow
for the computation of next-to-leading order (NLO) perturbative corrections in QCD and in
the electroweak theory combines the automated generation of one-loop virtual corrections [1]
with multi-purpose event generator programs [2–5], enabling NLO-accurate predictions for
any collider process.

Calculations at next-to-next-to-leading order (NNLO) and beyond are performed on a
case-by-case basis [6] and are mostly limited to final-states corresponding to an underlying
two-to-two scattering kinematics. This limitation to low-multiplicity processes arises
from two causes: missing two-loop virtual corrections to higher-multiplicity scattering
amplitudes and computational complexity of the real radiation corrections. The real
radiation contributions develop infrared singularities related to soft and collinear particle
emissions, which become explicit only after phase space integration, and which require
an infrared subtraction method for the extraction of the singular contributions, thereby
enabling the numerical implementation of the finite remainders. Several subtraction methods
have been developed for NNLO calculations [7–14]. Implementations using these methods
are largely made on a process-by-process basis, and most methods scale either poorly or
not at all to higher multiplicities.

Important progress has been made most recently on the derivation of two-loop 2→ 3
scattering amplitudes [15–23], which already entered the calculations for three-photon
production [24, 25], diphoton-plus-jet production [26, 27] and three-jet production [28].
Among these, only three-jet production contains three final-state QCD objects at Born
level and displays the full complexity of real radiation corrections to 2→ 3 processes. Its
NNLO infrared subtraction has been performed with a sector-improved residue subtraction
approach [10, 29]. The large variety of phenomenologically relevant high-multiplicity
processes for which NNLO predictions will be in future demand highlights the importance
to automate the workflow of infrared subtraction leading to an algorithmic construction of
the subtraction terms in a form directly suitable for numerical implementation.

It is the objective of this paper to enable the automation of the NNLO antenna
subtraction method [8, 9], which is based up to now on the identification of single and
double real radiation patterns in colour-ordered subprocess contributions. This method has
been applied successfully in computing NNLO corrections to a variety of hadron-collider
processes [30–39]. Working towards a fully automated workflow, we propose a complete
reformulation, named colourful antenna subtraction, based on a colour-space representation
of parton-level subprocesses and subtraction terms. We fully formulate the new method for
gluonic processes, and demonstrate its implementation by generating and computing the
NNLO gluons-only contribution to three-jet production at hadron colliders.
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The paper is structured as follows. In section 2 we introduce our notation and summarize
the colour space techniques. In sections 3 and 4 we delineate the application of the colourful
antenna subtraction method for the construction of the subtraction terms at NLO and
NNLO. The proof-of-principle application to gluonic three-jet production at NNLO is
presented in section 5, where we test the behaviour of the generated subtraction terms in
single and double unresolved limits and we report the computation of the NNLO correction
for a selection of observables. We conclude in section 6 with an overview of the remaining
steps required to include quarks in this new approach.

2 Colour space

2.1 Gluon amplitudes in colour space

We summarize here the colour space formalism (also called colour dipole formalism) and
the associated notation. We choose to treat the QCD amplitudes as objects in colour space
since the singularity structure of QCD loop amplitudes is best described working in this
framework, as discussed in [13, 40–42]. In colour space, a `-loop amplitude with n external
partons is represented by an abstract vector |A`n({p}n)〉. If a set of generating vectors

{
C`n,i

}
is defined, which span the n-parton colour space, any amplitude can be decomposed as:

|A`n({p}n)〉 =
∑
i∈I`

C`n,iA`n,i({p}n), (2.1)

where I` indicates a suitable subset of generating vectors. The scalar quantities A`n,i({p}n)
are colour-ordered partial amplitudes. In equation (2.1), the dependence on the helicities
of the external partons is implicit and in the following a sum over helicity configurations is
always assumed when squared quantities are considered. For ` ≥ 1, the dependence on the
renormalization scale µr is understood. Our convention is to strip the partial amplitudes
of overall coefficients such as couplings and incoming particles average factors, which are
inserted later at the cross section level. In particular, we strip an `-loop amplitude of

an overall factor
(
αsC̄(ε)

2π

)`
with respect to the corresponding tree-level amplitude, where

C(ε) = (4π)εe−γEε.
For the application of the colourful antenna subtraction method at NNLO only the

treatment of tree-level and one-loop amplitudes in colour space is needed, since the two-loop
amplitudes do not participate in the construction of the subtraction terms. For this reason
we limit the following discussion to the cases ` = 0, 1. We focus on amplitudes involving only
gluons, for which a convenient choice of generating vectors is given by the so-called trace
basis or Chan-Paton basis, which consists of traces of SU(Nc) generators in the fundamental
representation [43, 44]. For tree-level amplitudes, the basis corresponds to:

C0
n,σ = Tr(T aσ(1) . . .T aσ(n)), with σ ∈ Sn/Zn (2.2)

where Sn/Zn represents the group of non-cyclic permutations of n objects. The SU(Nc)
generators are normalized according to:

Tr(T aT b) = 1
2δ

ab. (2.3)

– 2 –
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With this choice, a tree-level amplitude with n external gluons is given by [45]:

|A0
n({p}n)〉 =

∑
σ∈Sn/Zn

Tr(T aσ(1) . . .T aσ(n))A0
n(σ(p1), . . . , σ(pn)), (2.4)

and the corresponding squared matrix elementM0
n can be computed as its squared norm

in colour space:

M0
n({p}n) = 〈A0

n({p}n)|A0
n({p}n)〉

=
∑

σ,σ′∈Sn/Zn

(
C0
n,σ

)†
C0
n,σ′A

0
n(σ({p}n))†A0

n(σ′({p}n)), (2.5)

where a sum over colour indices is assumed.
For one-loop amplitudes with gluons only, both as external and internal particles, we

have an analogous colour decomposition [46]:

|A1
n({p}n)〉 =

bn/2c+1∑
c=1

∑
σ∈Sn/Sn,c

C1
n,c,σA

1
n,c(σ(p1), . . . , σ(pn)), (2.6)

where the generating one-loop vectors in colour space are given by:

C1
n,1,σ = Nc C0

n,σ = Nc Tr(T aσ(1) . . .T aσ(n)),
C1
n,c,σ = Tr(T aσ(1) . . .T aσ(c−1)) Tr(T aσ(c) . . .T aσ(n)), for c > 1, (2.7)

and Sn,c represents the subgroup of Sn which leaves the trace structure of C1
n,c unaffected.

We notice that C1
n,2,σ = 0, since the SU(Nc) generators are traceless. The squared one-loop

matrix elementM1
n is given by:

M1
n({p}n) = 〈A0

n({p}n)|A1
n({p}n)〉+ 〈A1

n({p}n)|A0
n({p}n)〉

= 2Re


bn/2c+1∑
c=1

∑
σ∈Sn/Zn
σ′∈Sn/Sn,c

(
C0
n,σ

)†
C1
n,c,σA

0
n(σ({p}n))†A1

n,c(σ′({p}n))

 . (2.8)

We note that, both for ` = 0 and ` = 1, the colour-ordered partial amplitudes are not all
independent quantities. Several relations can be defined among them such as reflection
identities or decoupling equations [44, 46–48].

2.2 Gluon exchange in colour space

The coherent emission of a gluon between a dipole formed by parton i and parton j in a
tree-level amplitude is described in colour space by colour correlators as

〈A0
n({p}n)|Ti · Tj |A0

n({p}n)〉 , (2.9)

where Ti · Tj = T ai T
a
j . These properties hold:

Ti · Tj = Tj · Ti, (2.10)
Ti · Ti = T 2

i = Ci Id, (2.11)
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where Ci is the Casimir coefficient for the SU(Nc) representation associated to parton i and
Id represents the identity operator in colour space. For gluons we have Cg = CA.

For tree amplitudes with only gluons in the trace basis representation, it is possible to
compute colour correlators in (2.9) using:

〈C0
n,σ|Ti · Tj |C0

n,σ′〉 = (Tr(T aσ(1) . . .T aσ(n)))† Ti · Tj Tr(T aσ′(1) . . .T aσ′(n))
= (Tr(T aσ(1) . . .T ai . . .T aj . . .T aσ(n)))† (Ti)aaibi (Tj)aajbj

× Tr(T aσ′(1) . . .T bi . . .T bj . . .T aσ′(n)), (2.12)

where, for either incoming or outgoing gluons, Ti is in the adjoint representation:

(Ti)abc = ifbac. (2.13)

In fact, for the purpose of an NNLO calculation, the single colour dipole insertion at
tree-level in (2.9) is not sufficient. The computation of colour correlators representing the
exchange of a gluon at one-loop level

〈A1
n({p}n)| (Ti · Tj) |A0

n({p}n)〉+ 〈A0
n({p}n)| (Ti · Tj) |A1

n({p}n)〉 (2.14)

and the exchange of two gluons at tree-level

〈A0
n({p}n)| (Ti · Tj)(Tk · Tl) |A0

n({p}n)〉 , (2.15)

is necessary. It is straightforward [13] to extend (2.12) to compute (2.14) and (2.15) when
both k and l are different from i or j, namely the gluons are exchanged between two
separated dipoles. When a radiator in the second dipole coincides with one in the first
dipole, the two gluons are emitted from the same leg, and the colour algebra must be
computed accordingly. The same applies if both partons in the second dipole coincide with
the ones in the first. For example, if k = i and l 6= j one has:

(Tr(T aσ(1) . . .T aσ(n)))† (Ti · Tj)(Ti · Tl) Tr(T aσ′(1) . . .T aσ′(n))

= (Tr(T aσ(1) . . .T ai . . .T aj . . .T al . . .T aσ(n)))†
[
(Ti)aaic (Tj)aajbj

] [
(Ti)bcbi (Tl)balbl

]
× Tr(T aσ′(1) . . .T bi . . .T bl . . .T bj . . .T aσ′(n)). (2.16)

Finally, we point out that each state |A`n({p}n)〉 is a colour singlet and so by colour
conservation:

n∑
i=1
Ti |A`n({p}n)〉 = 0. (2.17)

Since in what follows we always consider colour singlet states, we can employ the previous
identity as ∑j 6=i Tj = −Ti.

2.3 Leading and subleading colour

When squared matrix elements like (2.5) and (2.8), or colour operator insertions such
as (2.9), (2.14) and (2.15) are computed, the result is a real function of the external
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momenta and possibly the renormalization scale. At tree-level, the general form of such a
function is given by:

f0 ({ p }n) =
∑

σ,σ′∈Sn/Zn

c0
n(σ, σ′) a0

n(σ, σ′; {p}n), (2.18)

where the coefficients c0
n(σ, σ′) are colour factors which depend on Nc and the number of

gluons n and

a0
n(σ, σ′; {p}n) =


∣∣A0

n(σ({p}n))
∣∣2 if σ = σ′,

A0
n(σ({p}n))†A0

n(σ′({p}n)) if σ 6= σ′.
(2.19)

This quantity represents the squared interference of two colour-ordered partial amplitudes,
with generic colour orderings dictated by σ and σ′. When σ = σ′, we have squared coherent
partial amplitudes, while we refer to the case σ 6= σ′ as incoherent interference. We notice
that even in the case σ 6= σ′, a0

n(σ, σ′; {p}n) is a real quantity, since a sum over helicities is
assumed. Indeed, if we consider a helicity configuration for the external particles {h}n, the
opposite configuration where the helicities are all swapped, denoted by {−h}n also appears
in the sum. Restoring the helicity dependence in partial amplitudes, by charge conjugation
at tree level we have:

A0
n(σ({p}n , {−h}n)) = A0

n(σ({p}n , {h}n))†, (2.20)

and so

A0
n(σ({p}n , {h}n))†A0

n(σ′({p}n , {h}n)) + A0
n(σ({p}n , {−h}n))†A0

n(σ′({p}n , {−h}n))
= A0

n(σ({p}n , {h}n))†A0
n(σ′({p}n , {h}n)) +A0

n(σ({p}n , {h}n))A0
n(σ′({p}n , {h}n))†

= 2Re
[
A0
n(σ({p}n , {h}n))†A0

n(σ′({p}n , {h}n))
]
, (2.21)

which implies that the sum over helicities is indeed real. Analogously, at one loop we have:

f1 ({ p }n) =
bn/2c+1∑
c=1

∑
σ∈Sn/Sn,c
σ′∈Sn/Zn

c1
n,c(σ, σ′) a1

n,c(σ, σ′; {p}n), (2.22)

where
a1
n,c(σ, σ′; {p}n) = 2Re

[
A0
n(σ({p}n))†A1

n,c(σ′({p}n))
]
. (2.23)

The Nc dependence of (2.18) ad (2.22) is in general given by:

f` = P (Nc)
Nm
c

, (2.24)

where P (Nc) is a polynomial in Nc. The degree of P (Nc) and the integer m depend on `
and the number of gluons n. It is indeed possible to predict which is the highest power of
Nc appearing in a large Nc expansion of the squared quantities, as shown in table 1.

The leading colour approximation is defined retaining only the terms coming with the
power of Nc indicated in table 1. Our convention is actually to incorporate an overall factor

– 5 –
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f highest Nc power
M0

n Nn
c

M1
n Nn+1

c

〈A0
n|(Ti · Tj)|A0

n〉 Nn+1
c

〈A1
n|(Ti · Tj)|A0

n〉+ 〈A0
n|(Ti · Tj)|A1

n〉 Nn+2
c

〈A0
n|(Ti · Tj)(Tk · Tl)|A0

n〉 Nn+2
c

Table 1. Highest power of Nc appearing in the squared quantities.

N2
c−1
N2
c

in the definition of the leading colour contribution since this factor is ubiquitous in
our calculations and partially retains subleading terms without affecting the complexity.
We define the operator LC(·) which extracts the leading colour part of a given quantity. At
leading colour, (2.18) and (2.22) have a particularly simple form, since only the coherent
contributions with σ = σ′ survive. This convenient behaviour follows from the fact that the
trace basis behaves as an actual orthogonal basis at leading colour:

LC
[
(Tr(T aσ(1) . . .T aσ(n)))†Tr(T aσ′(1) . . .T aσ′(n))

]
= Nn−2

c (N2
c − 1)

2n δσσ′ , (2.25)

which is a direct consequence of Fierz identity for SU(Nc) generators in the fundamental
representation:

T aijT
a
kl = 1

2

(
δilδjk −

1
Nc
δijδkl

)
. (2.26)

Using (2.25), it is straightforward to obtain the expression for squared matrix elements at
leading colour:

LC
[
M0

n({p}n)
]

= (Nc)n−2 (N2
c − 1)
2n

∑
σ∈Sn/Zn

∣∣∣A0
n(σ({p}n))

∣∣∣2 (2.27)

and

LC
[
M1

n({p}n)
]

= (Nc)n−1 (N2
c − 1)
2n

∑
σ∈Sn/Zn

2Re
[
A0
n(σ({p}n))†A1

n,1(σ({p}n))
]
. (2.28)

This simplicity is the foundation of the efficient application of the antenna subtraction in
the leading colour approximation. The antenna functions are directly derived from squared
matrix elements [8, 49, 50] and are therefore well suited to describe the infrared behaviour of
matrix elements when these are expressed as a sum of coherent squared partial amplitudes,
as it happens in the leading colour approximation. The same simple structure arises in
colour correlators too:

LC
[
〈C0
n,σ|Ti · Tj |C0

n,σ′〉
]

= −δσσ′χσ(i, j)
(
Nc

2

)
Nn−2
c (N2

c − 1)
2n , (2.29)

LC
[
〈C1
n,1,σ|Ti · Tj |C0

n,σ′〉
]

= Nc LC
[
〈C0
n,σ|Ti · Tj |C0

n,σ′〉
]

(2.30)
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and

LC
[
〈C0
n,σ|(Ti · Tj)(Tk · Tl)|C0

n,σ′〉
]

= δσσ′χσ(i, j)χσ(k, l)
(
Nc

2

)2 Nn−2
c (N2

c − 1)
2n , (2.31)

where χσ(i, j) is 1 if partons i and j appear adjacent to each other in the colour ordering
represented by σ and 0 otherwise.

At the subleading colour level, the emergence of incoherent interferences between
different colour orderings spoils the pattern observed at leading colour. As pointed out
in [9], this represented an obstacle to the application of the antenna subtraction method
beyond leading colour. When the number of considered partons at the Born level np is
small, in particular for np < 4, relations among partial amplitudes can be conveniently
exploited to convert incoherent interferences into combinations of squared coherent partial
amplitudes and proceed as in the leading colour case. However, for np ≥ 4 this is not
possible any more and the treatment of the subleading colour part requires a significant
effort [39]. As we show in the rest of this paper, working in colour space allows us to retain
the full Nc dependence in a straightforward way and to consistently approach leading and
subleading colour contributions with the same techniques.

In the following sections, we drop the explicit dependence of the amplitudes on the mo-
menta {p}n to ease the notation. Moreover, in general we consider Born-level (n+ 2)-parton
amplitudes, to keep n as the number of final-state partons. Indices 1 and 2 correspond to
initial-state partons, while i ≥ 3 indicates a final-state parton.

3 Colourful antenna subtraction at NLO

The NLO QCD correction to an n-jet partonic cross section with parton species a and b in
the initial state is given by:

dσ̂ab,NLO =
∫
n

(
dσ̂Vab,NLO + dσ̂MF

ab,NLO

)
+
∫
n+1

dσ̂Rab,NLO, (3.1)

where the symbol
∫
n indicates an integration over the n final state particles. dσ̂Vab,NLO and

dσ̂Rab,NLO respectively represent the virtual and real corrections, while dσ̂MF
ab,NLO is the NLO

mass factorization counterterm. The NLO mass factorization counterterm is needed to
absorb initial-state collinear singularities into physical parton distribution functions (PDFs)
and is discussed in detail in section 3.2. The NLO cross section in (3.1), despite being
well defined and finite, is not suitable for numerical integration in this form. The virtual
correction and the mass factorization contribution contain explicit ε-poles and the real
correction diverges in soft and collinear infrared (IR) limits. These singularities cancel in
the final result, but a proper subtraction procedure is needed to separately remove the
singularities in the real and virtual corrections and make both integrals in (3.1) computable
with numerical methods.

In the context of antenna subtraction, this is achieved constructing a real subtraction
term dσ̂Sab,NLO [9], which locally removes the singular behaviour of dσ̂Rab,NLO in the IR limits
and can be analytically integrated over the phase space of the unresolved radiation. This
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latter feature is required to obtain from dσ̂Sab,NLO the virtual subtraction term dσ̂Tab,NLO,
which cancels the explicit poles of the virtual correction and contains the mass factorization
contribution. The NLO cross section can then be reformulated as [9]:

dσ̂ab,NLO =
∫
n

[
dσ̂Vab,NLO − dσ̂Tab,NLO

]
+
∫
n+1

[
dσ̂Rab,NLO − dσ̂Sab,NLO

]
, (3.2)

with
dσ̂Tab,NLO = −

∫
1
dσ̂Sab,NLO − dσ̂MF

ab,NLO. (3.3)

The real subtraction term dσ̂Sab,NLO is constructed as a sum of product of antenna functions
and reduced matrix elements. Up to an overall process-dependent normalisation, it has the
following form [9]:

dσ̂Sab,NLO ∼
∑
σ,σ′

∑
i,j,k

dΦn+1(p3, . . . , pn+3; p1, p2)

×X0
3 (i, k, j) a0

n(σ, σ′; {., ĩk, ., k̃j, .})J (n)
n (., p

ĩk
, ., p

k̃j
, .) (3.4)

where dΦm denotes the standard (2 → m)-particle phase space and J (m)
n ({p}m) encodes

the jet algorithm which selects n jets from m final-state parton momenta. The first sum
in (3.4) covers all permutations of external momenta, while the second runs over the possible
choices of partons i, j and k that are involved in each specific unresolved configuration.
The function X0

3 (i, k, j) is a tree-level three-parton antenna function which encapsulates
the divergent behaviour associated to parton k becoming unresolved (soft or collinear) with
respect to the pair of hard radiators i and j (antenna configuration) [50, 51]. While the
unresolved parton k is in the final state, each of the radiator partons i and j can either be in
initial or final state. Antenna functions are universal objects, which depend on the parton
species i, j and k and can be obtained as ratios of squared matrix elements [49, 50, 52].
In (3.4), a0

n(σ, σ′; {., ĩk, ., k̃j, .}) denotes the so-called reduced matrix element, given in
general by a Born-level squared interference. The notation ĩk and k̃j indicates a suitable
momentum mapping {pi, pk, pj} → {pĩk, pk̃j} [51, 53] from the (n+ 1)-particle phase space
to the n-particle phase space, which ensures that the momenta (pi, pk, pj) appearing in the
antenna functions are mapped into two composite hard momenta, entering in the reduced
matrix element and in the jet algorithm, with correct behaviour in all unresolved limits.

As indicated in (3.3), the real subtraction term has to be integrated over the phase
space of the unresolved parton to construct the virtual subtraction term. In particular,
the notation

∫
1 represents the analytical integration over the antenna phase space dΦXikj ,

obtained through exact factorization of the real emission phase space:

dΦn+1(.,pi, .,pj , .,pk, .;p1,p2) = dΦn(.,p
ĩk
, .,p

k̃j
, .;p1,p2)·dΦXikj (pi,pk,pj ;pĩk,pk̃j). (3.5)

The properly normalised integration of an antenna function over the corresponding phase
space dΦXikj yields the integrated antenna functions [8]:

X 0
3 (s(ĩk)(k̃j)) = 8π2

C(ε)

∫
dΦXikjX

0
3 (i, k, j). (3.6)
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We note that (3.5) and (3.6) are appropriate only when the hard radiators i and j are
final-state partons, the suitable extensions of these formulae when one or both of them are
in the initial state can be found in [51]. In general in the following we will use the symbols
X and X to respectively denote a generic unintegrated and integrated antenna function.
One has:∫

1
dσ̂Sab,NLO ∼

∑
σ,σ′

∑
i,j,k

dΦn(., p
ĩk
, ., p

k̃j
, .; p1, p2)

×X 0
3 (s(ĩk)(k̃j)) a

0
n(σ, σ′; {., ĩk, ., k̃j, .})J (n)

n (., p
ĩk
, ., p

k̃j
, .). (3.7)

The full virtual subtraction term (3.3) is then obtained by adding all mass factorization
counterterms for the incoming partons to this expression. Integrated antenna functions X
with one or two initial state radiators can be combined with specific mass-factorization
counterterms to yield so-called integrated dipole factors [9] that are free from initial-state
singularities, thereby allowing direct cancellations with the singularity structure of the
virtual one-loop corrections. These integrated dipole factors are described in more detail in
section 3.3 below.

Both contributions in square brackets in (3.2) are free of IR singularities and suitable
for a numerical integration through Monte Carlo methods. The procedure we have just
depicted represents the traditional antenna subtraction approach: the real subtraction term
is constructed first, studying the behaviour of the real radiation matrix elements in soft
and collinear limits, and then it is integrated and combined with the mass factorization
contribution to obtain the virtual subtraction term.

In the following we give an overview of the colourful antenna subtraction approach
at NLO. General subtraction schemes for automated NLO calculations have long been
available [40, 54], so the purpose of this section is mainly to introduce important concepts
behind the new approach, which will be crucial for its application at NNLO. Indeed, despite
posing a significantly simpler task with respect to NNLO, some key observations can already
be made at the NLO level. The main idea behind the colourful antenna approach is to
exploit the predictability of the singularity structure of virtual amplitudes in colour space
to directly construct the virtual subtraction term in a general way and subsequently derive
the real subtraction term with a systematic procedure.

3.1 IR singularity structure at one loop

The singularity structure of renormalized (n+ 2)-parton one-loop amplitudes in QCD can
be described in colour space with [41]:

|A1
n+2〉 = I(1)

(
ε, µ2

r

)
|A0

n+2〉+ |A1,fin
n+2(µ2

r)〉 , (3.8)

where µr is the renormalization scale, |A1,fin
n+2(µ2

r)〉 is a finite remainder and I(1) (ε, µ2
r

)
is

the Catani’s IR insertion operator given by [41]:

I(1)
(
ε, µ2

r

)
= 1

2
eεγE

Γ(1− ε)

n+2∑
i=1

1
T 2
i

Vi(ε)
∑
j 6=i

(Ti · Tj)
(−sij
µ2
r

)−ε
. (3.9)
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The singular functions Vi(ε) contain double and single ε-poles. The previous expression can
be rewritten as

I(1)
(
ε, µ2

r

)
= 1

2

n+2∑
i=1

∑
j 6=i

(Ti · Tj) I(1)
ij

(
ε, µ2

r

)
=
∑
(i,j)

(Ti · Tj) I(1)
ij

(
ε, µ2

r

)
, (3.10)

where in the last line the sum runs over pairs of partons. For the gluons-only case that is
considered here, we only need the expression of I(1)

igjg

(
ε, µ2

r

)
at Nf = 0:

I(1)
igjg

(
ε, µ2

r

)
= eεγE

Γ(1− ε)

[ 1
ε2

+ b0
ε

](−sij
µ2
r

)−ε
, (3.11)

where b0 is the gluon component of the one-loop QCD β-function:

b0 = 11
6 . (3.12)

Using (3.8) it is possible to extract the poles of one-loop matrix elements in the following
way:

Poles
(
M1

n+2

)
= Poles

(
〈A0

n+2|A1
n+2〉+ 〈A1

n+2|A0
n+2〉

)
= Poles(〈A0

n+2|I(1) (ε) + I(1),† (ε) |A0
n+2〉) . (3.13)

The appearance of the sum I(1) (ε)+I(1),† (ε) indicates that only the real part of the insertion
operator affects the description of the poles at the matrix element level, as expected. In the
gluons-only case we can write the previous expression as

Poles
(
M1

n+2

)
= Poles

 ∑
(ig ,jg)

〈A0
n+2|Tig · Tjg |A0

n+2〉 2Re
(
I(1)
igjg

(
ε, µ2

r

)) , (3.14)

where we moved the colour sandwich outside the real part, since, as argued in section 2.3 it
is a real quantity. At the cross section level we have

Poles
(
σ̂Vgg,NLO

)
= N V

NLO

∫
dΦn(p3, . . . , pn+2; p1, p2) J (n)

n ({p}n)

× Poles

 ∑
(ig ,jg)

〈A0
n+2|Tig · Tjg |A0

n+2〉 2Re
(
I(1)
igjg

(
ε, µ2

r

)) . (3.15)

The factor N V
NLO is given by

N V
NLO =

(
αsC(ε)

2π

)
NLO, (3.16)

where NLO contains the overall factors appropriate for the LO process, such as the strong
coupling, symmetry factors and factors coming from the spin- and colour-average over the
initial-state partons.
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3.2 NLO mass factorization

For processes involving initial-state partons, it is necessary to treat the singularities arising
when a final-state parton becomes collinear to the initial-state ones. These singularities are
removed defining physical parton density functions which are obtained from the bare ones
by means of mass factorization counterterms. At NLO this counterterm is given by

dσ̂MF
ab,NLO = −

(
αsC(ε)

2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd(x1, x2) dσ̂cd,LO, (3.17)

where x1 and x2 represent the momentum fractions transferred to the hard process and
Γ(1)
ab;cd (x1, x2) denotes the NLO mass factorization kernel:

Γ(1)
ab;cd (x1, x2) = Γ(1)

ca,full (x1) δdbδ(1− x2) + Γ(1)
db,full (x1) δcaδ(1− x1). (3.18)

The Γ(1)
ca,full (xi) contain the LO Altarelli-Parisi splitting kernels p0

ca(xi) [55] and can be
organized into several layers corresponding to different colour factors (the subscript ‘full’
precisely indicates this). In principle, equation (3.17) has both identity preserving and
identity changing contributions, respectively when (c, d) = (a, b) and (c, d) 6= (a, b). In the
gluons-only case, we have (c, d) = (a, b) = (g, g), so only gluon-to-gluon splitting kernels
contribute:

Γ(1)
gg;gg (x1, x2) = Γ(1)

gg,full (x1) δ(1− x2) + Γ(1)
gg,full (x1) δ(1− x1), (3.19)

where we only extract the gluon component of the splitting kernels at Nf = 0:

Γ(1)
gg,full (xi) = Nc Γ(1)

gg (xi) = −1
ε
Nc p

0
gg(xi), (3.20)

with [55]:

p0
gg(x) = b0δ(1− x) + 2

( 1
1− x

)
+

+ 2
x
− 2x2 + 2x− 4. (3.21)

It is possible to express the identity preserving mass factorization kernels in colour space, in
analogy to the formalism used in the previous section to represent the singularity structure
of the one-loop amplitudes. We define:

Γ(1)
gg;gg (x1, x2) = Γ(1)

gg,full (x1) δ(1− x2) + Γ(1)
gg,full (x2) δ(1− x1), (3.22)

where
Γ(1)
gg,full (xi) = −Γ(1)

gg,full (xi)
1
CA

∑
j 6=i
Ti · Tj , i = 1, 2. (3.23)

This colour operator is proportional to the identity in colour space when it acts on a colour
singlet vector, due to colour conservation (2.17) and (2.11), therefore

Γ(1)
gg;gg (x1, x2) |A`n+2〉 = Γ(1)

gg;gg (x1, x2) |A`n+2〉 , (3.24)
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which restores the original result, namely that the mass factorization counterterm factorizes
onto the full corresponding LO matrix element. We can then rewrite (3.17) in the gluons-only
case as

dσ̂MF
gg,NLO = −N V

NLO

∫ dx1
x1

dx2
x2

∫
dΦn(p3, . . . , pn+2;x1p1, x2p2) J (n)

n ({p}n)

× 〈A0
n+2|Γ(1)

gg;gg (x1, x2) |A0
n+2〉 . (3.25)

3.3 NLO virtual subtraction term

The virtual subtraction term at NLO σ̂Tgg,NLO has to reproduce the explicit poles of the
virtual matrix element as well as include the mass factorization contribution. Traditionally
this was achieved summing the mass factorization counterterm with the real subtraction
term after analytical integration over the phase space of an unresolved parton, as indicated
by (3.3). In this approach we exploit a combination of equations (3.15) and (3.25) to
directly construct σ̂Tgg,NLO. To do so, we define a NLO singularity dipole operator in colour
space for an (n+ 2)-parton process:

J (1)(ε) =
∑

(i,j)≥3
(Ti · Tj)J (1)

2 (ig, jg) +
∑
i 6=1,2

(T1 · Ti)J (1)
2 (1g, ig)

+
∑
i 6=1,2

(T2 · Ti)J (1)
2 (2g, ig) + (T1 · T2)J (1)

2 (1g, 2g) . (3.26)

The first sum runs over all pairs of gluons in the final state, the second and the third sums
include all pairs with an initial-state gluon (respectively 1g and 2g) and a final-state one
and the last term addresses the configuration where both gluons are in the initial state.
The scalar functions J (1)

2 (i, j) are colour stripped one-loop integrated dipoles [9, 56], given
by a combination of integrated three-parton tree-level antenna functions and NLO mass
factorization kernels. The explicit expressions of the gluon-gluon integrated dipoles for
final-final (FF), initial-final (IF) and initial-initial (II) configurations are the following:

J (1)
2 (ig, jg) = 1

3F
0
3 (sij),

J (1)
2 (1g, jg) = 1

2F
0
3,g(s1j)−

1
2Γ(1)

gg (x1) ,

J (1)
2 (1g, 2g) = F0

3,gg(s12)− 1
2Γ(1)

gg (x1) δ2 −
1
2Γ(1)

gg (x2) δ1, (3.27)

where δi = δ(1 − xi). The functions F0
3 , F0

3,g and F0
3,gg are gluon-gluon three-parton

integrated antenna functions [8, 51] respectively in the final-final, initial-final and initial-
initial configuration. We note that integrated antenna functions in the initial-final and
initial-initial configurations exhibit a dependence on the momentum fractions x1 and x2 [51],
which is omitted here and in the rest of this paper for simplicity. The structure of the
integrated dipoles in (3.27) is chosen in such a way that the singularities carried by the
mass factorization kernels cancel with poles in the integrated initial-final and initial-initial
antenna functions associated with initial-state collinear divergences. Consequently, the
integrated dipoles do not depend on x1 or x2. The remaining ε-poles exactly match the ones
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of the virtual matrix element, once the operator in (3.26) is evaluated on the corresponding
Born-level amplitude in colour space. In particular, at one loop the following relation holds:

Poles
[
J (1)

2 (ig, jg)
]

= Poles
[
Re
(
I(1)
igjg

(
ε, µ2

r

))]
, (3.28)

where the integrated dipole on the left-hand side can be in the FF, IF or II configuration.
Therefore, exploiting the dipole operator defined in (3.26), it is possible to express the NLO
virtual subtraction term as

dσ̂Tgg,NLO = N V
NLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2 〈A0
n+2|J (1)(ε)|A0

n+2〉 . (3.29)

This virtual subtraction term describes in a general way the singularity structure of an
(n+ 2)-gluon one-loop matrix element and includes the mass factorization contribution.
Once this is subtracted from dσ̂Vgg,NLO, an ε-finite quantity is obtained, which can be
integrated via Monte Carlo techniques. The explicit expression for the subtraction term
in (3.29) is obtained computing the colour sandwiches 〈A0

n+2|Ti · Tj |A0
n+2〉 and dressing

them with the associated colour stripped integrated dipoles, as indicated by the structure
of (3.26). We remark that (3.29) is a completely general result in the case of gluon scattering:
it is valid for any number of external legs n and retains the full Nc dependence.

3.4 NLO real subtraction term

In the traditional approach, the NLO real subtraction term, describing the divergent
behaviour of the real emission matrix elements in the IR limits, is constructed combining
unintegrated NLO antenna functions with reduced matrix elements. In the colourful antenna
approach, as explained in section 3.3, the starting point is the virtual subtraction term,
while the real subtraction term is obtained in an automated way from it. The key concept
is the cancellation of the IR singularities between real and virtual corrections. Apart from
the mass factorization counterterm, each term in dσ̂Tgg,NLO must have an unintegrated
counterpart in dσ̂Sgg,NLO. Therefore, it is possible to define a correspondence between
integrated and unintegrated structures appearing at the virtual and real level respectively:

X 0
3 (sij) a0

n+2(σ, σ′, {., i, ., j, .}) ↔ X0
3 (i, k, j)a0

n+2(σ, σ′, {., ĩk, ., k̃j, .}), (3.30)

where X 0
3 (sij) is the integrated antenna function obtained integrating the tree-level three-

parton antenna function X0
3 (i, k, j) over the phase space of the unresolved parton k, as

in (3.6). Due to this correspondence, once the virtual subtraction term is obtained, the
structure of the real subtraction term can be completely determined by inserting an
unresolved gluon between each pair of hard radiators appearing in the integrated dipoles.
This involves a transition from an integrated NLO antenna to an unintegrated one and
from a genuine LO colour interference to a reduced one where the n-particle momenta
are meant to be obtained from a (n+ 1)-particle phase space through a suitable mapping.
The right-hand-side of (3.30) reproduces the divergent behaviour of the real interference
a0
n+3(σ, σ′; {., i, ., k, ., j, .}) when gluon k is unresolved between the hard pair (i, j).
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The procedure to obtain dσ̂SNLO,gg from dσ̂TNLO,gg can be summarized as follows:

• remove the splitting kernels from the expression of the integrated dipoles J (1)
2 in

dσ̂TNLO,gg;

• replace each integrated gluon-gluon F0
3 with its unintegrated version inserting an

unresolved gluon:
FF: F0

3 (sij) → 3 f0
3 (i, k, j),

IF: F0
3,g(s1i) → 2 f0

3,g(1, k, i),
II: F0

3,gg(s12) → F 0
3,gg(1, k, 2),

(3.31)

where the numerical coefficients are symmetry factors related to the antenna phase
space. The expressions for the unintegrated three-parton gluon-gluon antenna func-
tions f0

3 , f0
3,g and F 0

3,gg are given in [8, 51];

• suitably replace the momenta in the colour interferences, according to the accompa-
nying integrated antenna:

a0
n+2(σ, σ′, {., i, ., j, .})→ a0

n+2(σ, σ′, {., ĩk, ., k̃j, .}); (3.32)

• apply the same momenta relabelling to the jet function:

J (m)
n (. . . , pi, . . . , pj , . . . )→ J (m)

n (. . . , p
ĩk
, . . . , p

k̃j
, . . . ); (3.33)

• the obtained expression is now a function of n+ 3 momenta, so the phase space has
to be adjusted accordingly:

dΦn(p3, . . . , pn+2;x1p1, x2p2)→ dΦn+1(p3, . . . , pn+3;x1p1, x2p2) (3.34)

and a sum over suitable permutations of these momenta is needed to have the full
real subtraction term;

• the overall factor used at the virtual level needs to be replaced by the appropriate
one for the real correction:

N V
NLO → NR

NLO = sR (4παs)NLO, (3.35)

where sR compensates the different final state symmetry factor for the real radiation
and for a process with n final-state gluons at the Born level we have:

sR = n!
(n+ 1)! = 1

n+ 1 . (3.36)

With this procedure for the derivation of the real subtraction term, the cancellation
of IR singularities between the real and virtual correction is trivially guaranteed. What is
left to check is that the constructed dσ̂SNLO,gg correctly reproduces the divergent behaviour
of the real correction matrix element in each unresolved limit once and only once. If one
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inserts an unresolved gluon between each pair in the (n+ 2)-gluon set and correctly sums
over the relevant permutations of the resulting set of n+ 3 partons (with n+ 1 in the final
state), it is clear that all possible unresolved limits at the real level are taken into account.
The double-counting of any unresolved configuration is avoided since the unintegrated
antenna functions in (3.31) are explicitly constructed to only reproduce the divergence
arising when gluon k is unresolved between the two hard radiators i and j. In other words,
each unintegrated f0

3 addresses one and only one configuration of unresolved gluon and
hard radiators pair.

We introduce the following notation for the procedure that we have just illustrated to
convert integrated quantities into their unintegrated counterparts:

dσ̂Sgg,NLO = −Ins
[
dσ̂Tgg,NLO

]
. (3.37)

The action of the Ins [·] operator on its argument is comprehensive of the steps discussed
above and can be systematically formulated as follows:

1. Removal of the splitting kernels from the integrated dipoles;

2. Transition from integrated three-parton antenna functions to unintegrated ones, as
indicated by (3.31);

3. Momenta relabeling within colour interferences and jet functions according to the
accompanying antenna function;

4. Sum over permutations of the n+ 3 momenta to cover all possible IR limits;

5. Dressing of the obtained expression with the appropriate phase space and overall
coefficient factor.

The minus sign in (3.37) is explained in (3.3) and is needed to make the virtual subtraction
term cancel with the integrated real subtract term once the full result is computed. This
set of operations is sufficient at NLO, while it needs to be extended to be applied at NNLO.
Nevertheless, as we show in section 4, the majority of the NNLO subtraction terms can be
generated through the application of Ins [·] to integrated quantities, namely through the
very same insertion used at NLO. The only exception is represented by configurations that
require a simultaneous double insertion of unresolved gluons.

A clear parallelism can be identified between the colourful antenna approach at NLO
and the Catani-Seymour dipole formalism [40]. In both schemes, the real subtraction term
is obtained as a combination of dipole contributions exploiting the general factorization
properties of QCD in soft and collinear limits. However, in the Catani-Seymour dipole
formalism, as well as in other subtraction schemes both at NLO and NNLO, the principal
effort precisely lies in the construction of the subtraction term for the real emission. The
integrated version of such subtraction term eventually cancels the ε-poles in virtual correction.
On the opposite, the peculiarity of the described colourful antenna method consists in
prioritizing the construction of the virtual subtraction term, from which the real subtraction
term is then systematically inferred. As in the traditional subtraction schemes the key
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requirement is the analytical integrability of the real subtraction term over the phase space
of the unresolved radiation, here it is crucial that the virtual subtraction term is expressed in
a language suitable for the unintegration procedure. The correspondence between integrated
antenna functions, collected in (3.26), and their unintegrated versions guarantees this
property. We remark that the knowledge of the unintegrated antenna functions required for
the construction of the real subtraction term is a crucial premise for the application of this
method. Indeed, the described unintegration procedure allows for a systematic assembly
of such ingredients and not for an actual direct generation of the structures required to
remove the IR divergences of real emission corrections. This observation, of course, applies
to the NNLO case too. Despite the complete availability of all the needed integrated and
unintegrated antenna functions, the construction of the subtraction terms remains a highly
non-trivial task and the colourful antenna subtraction method is meant to achieve it in an
automated way.

On a practical standpoint, both the computation of colour operators insertions like
〈A0

n+2|J (1)(ε)|A0
n+2〉 and the application of Ins [·] can be performed with any symbolic

algebra program such as FORM, Mathematica or Maple. Once the symbolic expressions for
the subtraction terms are generated, they can be implemented in a numerical code which
performs the Monte Carlo integration.

4 Colourful antenna subtraction at NNLO

The NNLO QCD correction to an n-jet cross section is given by:

dσ̂ab,NNLO =
∫
n

(
dσ̂V Vab,NNLO + dσ̂MF,2

ab,NNLO

)
+
∫
n+1

(
dσ̂RVab,NNLO + dσ̂MF,1

ab,NNLO

)
+
∫
n+2

dσ̂RRab,NNLO, (4.1)

where dσ̂V Vab,NNLO represents the double virtual correction, dσ̂RVab,NNLO the real virtual correc-
tion and dσ̂RRab,NNLO the double real correction. The mass factorization counterterm is split
into two terms associated with n- and (n+ 1)-particle final states, respectively dσ̂MF,2

ab,NNLO
and dσ̂MF,1

ab,NNLO, treated in detail in section 4.2.
As for the NLO case, the quantity in (4.1) cannot be directly computed with numerical

methods. The singular behaviour of both the double real and real virtual corrections in the
IR limits must be subtracted and the explicit poles in the double virtual and real virtual
matrix elements need to be properly removed. To achieve this, the NNLO cross section is
rewritten in the context of antenna subtraction as [9]:

dσ̂ab,NNLO =
∫
n

[
dσ̂V Vab,NNLO − dσ̂Uab,NNLO

]
+
∫
n+1

[
dσ̂RVab,NNLO − dσ̂Tab,NNLO

]
+
∫
n+2

[
dσ̂RRab,NNLO − dσ̂Sab,NNLO

]
, (4.2)
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where the subtracted quantities are the double virtual, the real virtual and the double real
subtraction term. These contributions have the following form [9]:

dσ̂Sab,NNLO = dσ̂S,1ab,NNLO + dσ̂S,2ab,NNLO ,

dσ̂Tab,NNLO = dσ̂V Sab,NNLO −
∫

1
dσ̂S,1ab,NNLO − dσ̂MF,1

ab,NNLO ,

dσ̂Uab,NNLO = −
∫

1
dσ̂V Sab,NNLO −

∫
2
dσ̂S,2ab,NNLO − dσ̂MF,2

ab,NNLO . (4.3)

The double real subtraction term has been decomposed into two contributions which contain
single and double unresolved IR limits. In the real virtual subtraction term, dσ̂V Sab,NNLO
cancels the implicit singular behaviour of the real virtual correction in the soft and collinear
limits, while the remaining contributions remove the explicit ε-poles.

Analogously to NLO, in the traditional antenna subtraction approach the IR limits [57–
60] of the double real and real virtual matrix elements are studied first to construct
dσ̂Sab,NNLO and dσ̂V Sab,NNLO. These terms are then integrated and combined with the mass
factorization contributions to obtain the full infrastructure in (4.3). We do not illustrate
here the explicit structure of the terms in (4.3), since each layer of the infrastructure at
NNLO is extensively described in the remaining part of this section, under the point of view
of the colourful antenna subtraction approach. All the details of the traditional construction
of the subtraction terms at NNLO are described in [9]. However, for completeness we
mention that the notation

∫
2 indicates the integration over the phase space of two unresolved

partons, namely the antenna phase space associated to a tree-level four-parton antenna,
obtained similarly to (3.5) from the exact factorization of the double real phase space:

dΦn+2(., pi, ., pk, ., pl, ., pj , .; p1, p2) = dΦn(., p
ĩkl
, ., p

l̃kj
, .; p1, p2)

· dΦXiklj (pi, pk, pl, pj ; pĩkl, pl̃kj), (4.4)

with partons k and l unresolved between the pair of hard radiators i and j, which for
simplicity are assumed here to be final-state partons. The analogous factorization formulae
for the initial-final and initial-initial cases are presented in [64, 66].

The application of the colourful antenna subtraction method at NNLO begins by
addressing the double virtual correction in colour space. The singularity structure of
two-loop amplitudes can be predicted in a general way and therefore the construction of
the double virtual subtraction term can be achieved without the need of studying the real
emission corrections first. The predictability of the poles of two-loop amplitudes in colour
space is neither limited by the number of partons in the process nor conceptually more
involved beyond leading colour. For this reason, if one aims at a general application of
antenna subtraction at NNLO, starting from the construction of dσ̂Uab,NNLO in colour space
is significantly more convenient. Once the double virtual subtraction term is constructed,
the real virtual and double real subtraction terms are generated by the insertion of unre-
solved partons, exploiting the relations between integrated and unintegrated blocks in the
subtraction terms in (4.3) and removing any spurious singularity.

In the rest of this section we show how this can be achieved in the case of gluon scattering.
To support the explanation, we summarize the procedure in figure 1. Single descendant red
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VV

RV

RR

Figure 1. Structure of colourful antenna subtraction at NNLO. Descendant red arrows represent
the transition from an integrated quantity to its unintegrated counterpart via single insertion
(single arrow), double iterated insertion (two disjoint arrows) or double simultaneous insertion (two
connected arrows) of unresolved gluons. The definitions of each component are listed in table 2.

U, a eq. (4.39)
U, a0 eq. (4.42)
U, a1 eq. (4.43)

U, b eq. (4.40)
U, b, c.u. eq. (4.60)
U, b, a.c.c. eq. (4.61)

U, c eq. (4.41)

S, a eq. (4.70)
S, b1 eq. (4.75)
S, b2 eq. (4.72)
S, c eq. (4.76)
S, d eq. (4.79)

T, a eq. (4.45)
T, b1 eq. (4.52)

T, b2 eq. (4.57)
T, b2, X

1
3 eq. (4.54)

T, b2, JX section 4.4.2
T, b2,MX eq. (4.55)

T, b3 eq. (4.59)

T, c eq. (4.65)
T, c1 eq. (4.62)
T, c2 eq. (4.63)
T, c0 section 4.4.3

Table 2. Definitions of each term appearing in figure 1.

arrows represent the transition from an integrated quantity to its unintegrated counterpart
by means of the insertion of an unresolved gluon. Two disjoint red arrows indicate the
iterated insertion of two unresolved gluons, while two connected red arrows indicate the
simultaneous insertion of two unresolved gluons.
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To facilitate the navigation through the paper, we list in table 2 the location of the
definition of each term appearing in figure 1.

4.1 IR singularity structure at two loops

The singularity structure of renormalized two-loop amplitudes in QCD is known [41] and
can be described in colour space by:

|A2
n+2〉 = I(1)

(
ε, µ2

r

)
|A1

n+2〉+ I(2)
(
ε, µ2

r

)
|A0

n+2〉+ |A2,fin
n+2(µ2

r)〉 , (4.5)

where, as before, |A2,fin
n+2(µ2

r)〉 is a finite remainder. The two-loop Catani IR insertion
operator has the following expression [41]:

I(2)
(
ε, µ2

r

)
= −β0

ε
I(1)

(
ε, µ2

r ; {p}n
)
− 1

2I
(1)
(
ε, µ2

r

)
I(1)

(
ε, µ2

r

)
+ e−εγE

Γ(1− 2ε)
Γ(1− ε)

(
β0
ε

+K

)
I(1)

(
2ε, µ2

r

)
+H(2)

(
ε, µ2

r

)
. (4.6)

In the gluons-only case with Nf = 0 we have:

β0 = b0Nc = 11
6 Nc, (4.7)

K = k0Nc =
(

67
18 −

π2

6

)
Nc. (4.8)

The colour structure of (4.6) is more involved than the colour charge dipole structure
of (3.9). As anticipated, products of two colour charge dipoles appear. The last line
of (4.6) contains the hard radiation function H(2) (ε, µ2

r ; {p}n
)
[41, 42, 61], which can be

decomposed in the following manner:

H(2)
(
ε, µ2

r

)
=
∑
i

CiH(2)
i (ε) Id + Ȟ(2)(ε, µ2

r), (4.9)

where the sum runs over the n + 2 external partons and Ci are the Casimir coefficients.
The first term in (4.9) is proportional to the identity in colour space, while the second term
has a non-trivial colour structure, which can not be in general expressed in terms of colour
charge dipoles. However, the second term vanishes when sandwiched between tree-level
states [42, 61]:

〈A0
n+2| Ȟ(2)(ε, µ2

r) |A0
n+2〉 = 0. (4.10)

For the purpose of describing the IR singularity structure of the two-loop squared matrix
elements, the hard radiation function H(2) (ε, µ2

r

)
needs to be evaluated on tree-level states

and therefore it is possible to neglect Ȟ(2)(ε, µ2
r) in its decomposition. As we did for the

splitting kernels in section 3.2, we can express a colour operator proportional to the identity
as a sum of colour charge dipoles using colour conservation. We can then rewrite:∑

i

CiH(2)
i (ε) Id = −

∑
i

H(2)
i (ε)

∑
j 6=i
Ti · Tj

= −
∑
(i,j)
H(2)
ij (ε)Ti · Tj , (4.11)

– 19 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
9

where, as usual, the sum runs over pairs of partons and H(2)
ij = H(2)

i +H(2)
j . In the gluon-only

case we only need H(2)
g (ε) for Nf = 0:

H(2)
g (ε) = eεγE

4Γ(1− ε)
Nc

ε

[ 5
12 + 11

144π
2 + ζ3

2

]
. (4.12)

Using (3.10) and (4.11) and neglecting Ȟ(2)(ε, µ2
r) we can rearrange equation (4.6) as:

I(2)
(
ε, µ2

r

)
= −β0

ε

∑
(i,j)
I(1)
ij

(
ε, µ2

r

)
Ti · Tj

− 1
2
∑
(i,j)

∑
(k,l)
I(1)
ij

(
ε, µ2

r

)
I(1)
kl

(
ε, µ2

r

)
(Ti · Tj)(Tk · Tl)

+
∑
(i,j)
I(2)
ij

(
ε, µ2

r

)
Ti · Tj , (4.13)

where
I(2)
ij

(
ε, µ2

r

)
= e−εγE

Γ(1− 2ε)
Γ(1− ε)

(
β0
ε

+K

)
I(1)
ij

(
2ε, µ2

r

)
−H(2)

ij (ε) . (4.14)

We can now use (3.8), (4.5) and (4.6) to express the singularity structure of a two-loop
matrix element:

Poles
(
M2

n+2

)
=Poles

(
〈A2

n+2|A0
n+2〉+〈A0

n+2|A2
n+2〉+〈A1

n+2|A1
n+2〉

)
=Poles

{
〈A1

n+2|I(1) (ε)+I(1),† (ε) |A0
n+2〉+〈A0

n+2|I(1) (ε)+I(1),† (ε) |A1
n+2〉

− 1
2 〈A

0
n+2|

(
I(1) (ε)+I(1),† (ε)

)(
I(1) (ε)+I(1),† (ε)

)
|A0

n+2〉

−β0
ε
〈A0

n+2|I(1) (ε)+I(1),† (ε) |A0
n+2〉

+e−εγE Γ(1−2ε)
Γ(1−ε)

(
β0
ε

+K
)
〈A0

n+2|I(1) (2ε)+I(1),† (2ε) |A0
n+2〉

+〈A0
n+2|H(2) (ε)+H(2),† (ε) |A0

n+2〉
}
. (4.15)

We see again that only the real part of the insertion operators is needed to describe the
singularity structure. Using (3.10) and (4.13) it is possible to recast equation (4.15) as:

Poles
(
M2

n+2

)
=Poles

{∑
(i,j)

2Re
[
I(1)
ij

(
ε,µ2

r

)][
〈A1

n+2|Ti ·Tj |A0
n+2〉+〈A0

n+2|Ti ·Tj |A1
n+2〉

]
− 1

2
∑
(i,j)

∑
(k,l)

2Re
[
I(1)
ij

(
ε,µ2

r

)]
2Re

[
I(1)
lk

(
ε,µ2

r

)]
〈A0

n+2|(Ti ·Tj)(Tk ·Tl)|A0
n+2〉

−β0
ε

∑
(i,j)

2Re
[
I(1)
ij

(
ε,µ2

r

)]
〈A0

n+2|Ti ·Tj |A0
n+2〉

+
∑
(i,j)

2Re
[
I(2)
ij

(
ε,µ2

r

)]
〈A0

n+2|Ti ·Tj |A0
n+2〉

}
. (4.16)
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The poles of the double virtual cross section for gluons-only processes are therefore given by:

Poles
(
σ̂V Vgg,NNLO

)
= N V V

NNLO

∫
dΦn+2(p3, . . . , pn+2; p1, p2) J (n+2)

n+2 ({p}n)

× Poles
{ ∑

(ig ,jg)
2Re

[
I(1)
igjg

(
ε, µ2

r

)] [
〈A1

n+2|Tig · Tjg |A0
n+2〉+ 〈A0

n+2|Tig · Tjg |A1
n+2〉

]
− 1

2
∑

(ig ,jg)

∑
(kg ,lg)

2Re
[
I(1)
igjg

(
ε, µ2

r

)]
2Re

[
I(1)
lgkg

(
ε, µ2

r

)]
〈A0

n+2|(Tig · Tjg)(Tkg · Tlg)|A0
n+2〉

− β0
ε

∑
(i,j)

2Re
[
I(1)
igjg

(
ε, µ2

r

)]
〈A0

n+2|Tig · Tjg |A0
n+2〉

+
∑
(i,j)

2Re
[
I(2)
igjg

(
ε, µ2

r

)]
〈A0

n+2|Tig · Tjg |A0
n+2〉

}
, (4.17)

where

N V V
NNLO =

(
αsC(ε)

2π

)2

NLO . (4.18)

4.2 NNLO mass factorization

At NNLO, as indicated in (4.2) and (4.3), we have two different contributions to the mass
factorization counterterm: the double virtual and the real virtual mass factorization terms.
The decomposition is meant to separate contributions that are defined on the n-particle
phase space from terms that are defined on the (n+ 1)-particle phase space.

4.2.1 Double virtual mass factorization term

We first address the double virtual mass factorization term at NNLO. It can be written as [9]:

dσ̂MF,2
ab,NNLO = −

∫ dx1
x1

dx2
x2

∑
c,d

{(
αsC(ε)

2π

)[
Γ(1)
ab;cd (x1, x2)

(
dσ̂Vcd,NLO − dσ̂Tcd,NLO

)]

+
(
αsC(ε)

2π

)2 [
Γ(2)
ab;cd (x1, x2)− β0

ε
Γ(1)
ab;cd (x1, x2)

+ 1
2
∑
α,β

[
Γ(1)
ab;αβ ⊗ Γ(1)

αβ;cd

]
(x1, x2)

]
dσ̂cd,LO

}
. (4.19)

The reduced two-loop mass factorization kernel is defined as [9]:

Γ(2)
ab;cd (x1, x2) = Γ(2)

ca,full (x1) δdbδ(1− x2) + Γ(2)
db,full (x2) δcaδ(1− x1), (4.20)

where the Γ(2)
ca,full (x1) can be written in terms of LO and NLO Altarelli-Parisi spitting

kernels [55, 62, 63] and have their own colour decomposition. In the gluons-only case we
simply need:

Γ(2)
gg;gg (x1, x2) = Γ(2)

gg,full (x1) δ(1− x2) + Γ(2)
gg,full (x2) δ(1− x1), (4.21)
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where we discard any contribution in the two-loop splitting kernel except for the gluon-to-
gluon one for Nf = 0. Thus we have:

Γ(2)
gg,full (xi) = N2

c Γ(2)
gg (xi) = − 1

2ε

(
N2
c p

1
gg(xi) + β0Nc

ε
p0
gg(xi)

)
, (4.22)

where p1
gg(xi) is the Altarelli-Parisi NLO splitting kernel given by [63]:

p1
gg(x) =

[
67
9 − 4 ln(x) ln(1− x) + ln2(x)− π2

3

] [( 1
1− x

)
+

+ 1
x
− 2 + x(1− x)

]

+ 2S2(x)
[ 1

1 + x
− 1
x
− 2− x(1 + x)

]
+ 27

2 (1− x) + 67
9

(
x2 − 1

x

)
−
(25

3 −
11
3 x+ 44

3 x
2
)

ln(x)

+ 4(1 + x) ln2(x) +
(8

3 + 3ζ3

)
δ(1− x), (4.23)

with

S2(x) = −2Li2(−x) + 1
2 ln2(x)− 2 ln(x) ln(1 + x)− π2

6 . (4.24)

As we did in section 3.2, it is possible to express the two-loop identity-preserving mass
factorization kernel in colour space as:

Γ(2)
gg;gg (x1, x2) = Γ(2)

gg,full (x1) δ(1− x2) + Γ(2)
gg,full (x2) δ(1− x1), (4.25)

where

Γ(2)
gg,full (xi) = −Γ(2)

gg,full (xi)
1
CA

∑
j 6=i
Ti · Tj , i = 1, 2. (4.26)

We can then write the expression for the required double virtual mass factorization coun-
terterm as:

dσ̂MF,2
gg,NNLO = −N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

×
{
〈A0

n+2|Γ(1)
gg;gg (x1, x2) |A1

n+2〉+ 〈A1
n+2|Γ(1)

gg;gg (x1, x2) |A0
n+2〉

− 2 〈A0
n+2|

[
Γ(1)
gg;gg ⊗J (1)(ε)

]
(x1, x2)|A0

n+2〉

+ 1
2 〈A

0
n+2|

[
Γ(1)
gg;gg ⊗ Γ(1)

gg;gg

]
(x1, x2)|A0

n+2〉

− β0
ε
〈A0

n+2|Γ(1)
gg;gg (x1, x2) |A0

n+2〉

+ 〈A0
n+2|Γ

(2)
gg;gg (x1, x2) |A0

n+2〉
}
, (4.27)

where we used the expression of dσ̂Tcd,NLO given in (3.29).
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4.2.2 Real virtual mass factorization term

The real virtual mass factorization term is given by [9]:

dσ̂MF,1
ab,NNLO = −

(
αsC(ε)

2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd (x1, x2)

(
dσ̂Rcd,NLO − dσ̂Scd,NLO

)
. (4.28)

For later convenience, it can be split into two contributions:

dσ̂MF,1
ab,NNLO = dσ̂MF,1,a

ab,NNLO + dσ̂MF,1,b
ab,NNLO, (4.29)

with

dσ̂MF,1,a
ab,NNLO = −

(
αsC(ε)

2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd (x1, x2) dσ̂Rcd,NLO, (4.30)

dσ̂MF,1,b
ab,NNLO =

(
αsC(ε)

2π

)∑
c,d

∫ dx1
x1

dx2
x2

Γ(1)
ab;cd (x1, x2) dσ̂Scd,NLO. (4.31)

In the gluons-only case, in analogy with (3.25), dσ̂MF,1,a
ab,NNLO can be rewritten as:

dσ̂MF,1,a
gg,NNLO = −NRV

NNLO

∫ dx1
x1

dx2
x2

∫
dΦn(p3, . . . , pn+2;x1p1, x2p2) J (n+1)

n ({p}n+1)

× 〈A0
n+3|Γ(1)

gg;gg (x1, x2) |A0
n+3〉 , (4.32)

where |A0
n+3〉 indicates the real correction to the (n+ 2)-gluon Born process and NRV

NNLO is
the appropriate overall coefficient at the real virtual level:

NRV
NNLO = sRV (4παs)

(
αsC(ε)

2π

)
NLO, with sRV = sR. (4.33)

Similarly, dσ̂MF,1,b
ab,NNLO can be rewritten as:

dσ̂MF,1,b
gg,NNLO =

(
αsC(ε)

2π

)∫ dx1
x1

dx2
x2

Γ(1)
gg;gg (x1, x2) dσ̂Sgg,NLO. (4.34)

We notice that the terms appearing in this mass factorization contribution have a structure
like Γ(1)

gg X0
3a

0
n+2. As we show in section 4.4.2, this term is used to reconstruct one-loop

integrated dipoles that are needed in the real virtual subtraction term to remove the explicit
poles of one-loop reduced matrix elements.

4.3 NNLO double virtual subtraction term

The double virtual subtraction term at NNLO dσ̂Ugg,NNLO, reproduces the explicit poles of
the two-loop matrix element and contains the double virtual mass factorization counterterm.
In the following we see how to construct dσ̂Ugg,NNLO in a general way relying on the results
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of the previous sections, in particular equations (4.17) and (4.27). In analogy with (3.26),
we define a two-loop insertion operator in colour space:

J (2)(ε) = Nc

∑
(i,j)≥3

(Ti · Tj)J (2)
2 (ig, jg) +Nc

∑
i 6=1,2

(T1 · Ti)J (2)
2 (1̂g, ig)

+Nc

∑
i 6=1,2

(T2 · Ti)J (2)
2 (2̂g, ig) +Nc (T1 · T2)J (2)

2 (1̂g, 2̂g) . (4.35)

The two-loop colour stripped integrated dipoles J (2)
2 have a more involved structure with

respect to their one-loop counterparts. The expressions of the gluon-gluon J (2)
2 are given

by [9, 56]:

J (2)
2 (ig, jg) = 1

4F
0
4 + 1

3F
1
3 + 1

3
b0
ε

( |sij |
µ2
r

)−ε
F0

3 −
1
9
[
F0

3 ⊗F0
3

]
,

J (2)
2 (1̂g, jg) = 1

2F
0
4,g + 1

2F
1
3,g + 1

2
b0
ε

( |s1j |
µ2
r

)−ε
F0

3,g −
1
4
[
F0

3,g ⊗F0
3,g

]
− 1

2Γ(2)
gg (x1) δ2,

J (2)
2 (1̂g, 2̂g) = F0,adj

4,gg + 1
2F

0,n.adj
4,gg + F1

3,gg + b0
ε

( |s12|
µ2
r

)−ε
F0

3,gg −
[
F0

3,gg ⊗F0
3,gg

]
− 1

2Γ(2)
gg (x1) δ2 −

1
2Γ(2)

gg (x2) δ1, (4.36)

where we omitted the dependence on the scale sij in the integrated antennae. At NNLO,
as expected, we see the appearance of integrated four-parton antennae (F0

4 , F0
4,g, F

0,adj
4,gg ,

F0,n.adj
4,gg ), integrated three-parton one-loop antennae (F1

3 , F1
3,g, F1

3,gg) and a convolution of
two three-parton integrated antennae, as well as two-loop mass factorization kernels for
initial-final and initial-initial configurations. The expressions for the integrated antenna
functions can be found in references [8, 64–66], while the convolutions integrals of two
three-parton antennae are computed in [67]. In analogy with (3.28), we can relate the pole
structure of (4.36) to the insertion operators in (4.13):

Poles
[
Nc J (2)

2 (ig, jg)−
β0
ε
J (1)

2 (ig, jg)
]

= Poles
[
Re
(
I(2)
gg

(
ε, µ2

r

)
− β0

ε
I(1)
gg

(
ε, µ2

r

))]
.

(4.37)
Thus, using (3.26) and (4.35) we can construct an expression for the double virtual subtrac-
tion term in colour space:

dσ̂Ugg,NNLO = N V V
NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
〈A0

n+2|J (1)(ε)|A1
n+2〉+ 〈A1

n+2|J (1)(ε)|A0
n+2〉

− 〈A0
n+2|J (1)(ε)⊗J (1)(ε)|A0

n+2〉

− β0
ε
〈A0

n+2|J (1)(ε)|A0
n+2〉

+ 〈A0
n+2|J (2)(ε)|A0

n+2〉
}
. (4.38)

The poles of the mass factorization kernels cancel against initial-state collinear poles in the
integrated IF and II antennae and the remaining singularities in (4.38) exactly cancel the
poles coming from the (n+ 2)-gluon two-loop matrix element in (4.17).
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According to the usual decomposition of the double virtual subtraction term [9], we
conveniently split (4.38) into the following contributions:

dσ̂U,agg,NNLO = N V V
NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
〈A0

n+2|J (1)(ε)|A1
n+2〉+ 〈A1

n+2|J (1)(ε)|A0
n+2〉

− β0
ε
〈A0

n+2|J (1)(ε)|A0
n+2〉

}
, (4.39)

dσ̂U,bgg,NNLO = N V V
NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
− 〈A0

n+2|J (1)(ε)⊗J (1)(ε)|A0
n+2〉

}
, (4.40)

dσ̂U,cgg,NNLO = N V V
NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2 〈A0
n+2|J (2)(ε)|A0

n+2〉 . (4.41)

We further decompose dσ̂U,a into

dσ̂U,a0
gg,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
− β0

ε
〈A0

n+2|J (1)(ε)|A0
n+2〉

}
; (4.42)

dσ̂U,a1
gg,NNLO = N V V

NNLO

∫ dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)
n ({p}n)

× 2
{
〈A0

n+2|J (1)(ε)|A1
n+2〉+ 〈A1

n+2|J (1)(ε)|A0
n+2〉

}
, (4.43)

where we separated the contribution of the one-loop amplitude from the β0 term, which
only contains tree-level amplitudes. We also label the contributions in dσ̂U,cgg,NNLO according
to the different terms in the two-loop integrated dipoles (4.35): dσ̂U,c,X

0
4

gg,NNLO, dσ̂
U,c,X 1

3
gg,NNLO,

dσ̂U,c,X
0
3⊗X

0
3

gg,NNLO and dσ̂U,c,b0
gg,NNLO.

4.4 NNLO real virtual subtraction term

At NLO, once the virtual subtraction term is obtained, it is straightforward to system-
atically construct the real subtraction term. At NNLO, the structure of the subtraction
is significantly more involved, due to the presence of two additional layers besides the
double virtual correction: real virtual and double real. The real virtual subtraction term
dσ̂Tgg,NNLO must cancel the explicit ε-poles in the real virtual matrix element, as well as
remove the divergent behaviour in single unresolved IR limits. The double real subtraction
term dσ̂Sgg,NNLO is needed to remove the single and double unresolved divergences in the
double real correction. Due to the complexity of the NNLO IR structure, the systematic
generation of the real virtual and double real subtraction terms from the double virtual one
is non-trivial.

In the following, we illustrate how the real virtual subtraction term can be generated for
the gluons-only case. Once again, the correspondence between unintegrated real emission
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subtraction terms and integrated virtual subtraction term is the key. The deduction of
dσ̂Tgg,NNLO from dσ̂Ugg,NNLO is articulated in two main steps:

• integrated terms are translated from dσ̂Ugg,NNLO to dσ̂Tgg,NNLO inserting an unresolved
gluon between a pair of hard radiators, via the application of Ins [·], in complete
analogy to what is done at NLO;

• suitable terms are generated to remove spurious ε-poles.

Any additional contribution which is added at the real virtual level and does not have a
direct correspondence to terms in dσ̂Ugg,NNLO will eventually generate corresponding terms
at the double real level after the insertion of a second unresolved gluon. We note that not
the entirety of dσ̂Ugg,NNLO will be translated to dσ̂Tgg,NNLO, some terms have to undergo a
double insertion of unresolved gluons and directly move from dσ̂Ugg,NNLO to dσ̂Sgg,NNLO, as
explained in section 4.5.

We recall the usual decomposition of dσ̂Tgg,NNLO in the context of antenna subtraction [9]:

dσ̂Tgg,NNLO = dσ̂T,a + dσ̂T,b + dσ̂T,c, (4.44)

where we dropped the subscript ‘gg,NNLO’ in the right-hand-side. The meaning of this
decomposition is the following:

• dσ̂T,a reproduces the explicit poles of the real virtual matrix element;

• dσ̂T,b describes the divergent behaviour of the real virtual matrix element in single
unresolved limits;

• dσ̂T,c removes the overlap in the single unresolved behaviour between the two terms
above [9].

4.4.1 dσT,a

This part of the real virtual subtraction term is needed to remove the explicit poles of
the (n+ 3)-particle one-loop matrix element. Moreover, it contains the mass factorization
contribution dσ̂MF,1,a

gg,NNLO given in (4.32). The construction of σT,a is completely analogous
to the one adopted for the NLO virtual subtraction term in section 3.3, with the difference
that here we have an additional particle. It is clear that this term is not generated by any
integrated contribution at the double virtual level and so, as we show in section 4.5.1 below,
its unintegrated counterpart will be added to the double real subtraction term. For the
gluons-only case we have:

dσ̂T,a = NRV
NNLO

∫ dx1
x1

dx2
x2

dΦ(p3, . . . , pn+2;x1p1, x2p2)J (n)
n+1({p}n+1)

× 2 〈A0
n+3|J (1)(ε)|A0

n+3〉 . (4.45)
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4.4.2 dσT,b

This block of the subtraction term reproduces the divergent behaviour of the real virtual
matrix element in single unresolved IR limits. The subtraction of infrared divergences from
a one loop matrix element is more involved than the one required at tree-level. In particular,
along with tree-level antennae and reduced one-loop matrix elements (tree × loop), suitable
combinations of three-particle one-loop antenna functions and tree-level reduced matrix
elements (loop × tree) have to be used. Both these structures are present, in their integrated
form, in the double virtual subtraction term, since they describe the emission of soft and
collinear gluons from the one-loop amplitude. It is possible to systematically generate
these terms at the real virtual level starting from dσ̂Ugg,NNLO, as we show in the following.
According to [9], we introduce a suitable decomposition of dσ̂T,b:

dσ̂T,b = dσ̂T,b1 + dσ̂T,b2 + dσ̂T,b3 , (4.46)

where the elements on the right-hand-side respectively contain (tree × loop) contributions,
(loop × tree) contributions and suitable terms needed to ensure the correct renormalization
of loop quantities in the real virtual subtraction term.

We first focus on dσ̂T,b1 . The respective integrated counterparts appear in the double
virtual subtraction term as a combination of a one-loop integrated dipole and a one-
loop reduced matrix element. In particular, these contributions are given by dσ̂U,a1 . The
procedure of inserting an unresolved gluon is the same as the one depicted in section 3.4, with
the tree-level amplitudes replaced by the one-loop ones. The result has the following form:

Ins
[
dσ̂U,a1

]
∼
∑
ijk

f0
3 (i, k, j) a1

n+2,c(σ, σ′; {., ĩk, ., k̃j, .}). (4.47)

The resulting contribution partially takes care of the divergent IR limits of the real virtual
matrix element. However, the one-loop interferences a1

n+2,c contain explicit ε-poles which
must be removed to ensure the finiteness of the real virtual subtraction term. In fact, it
is possible to systematically generate suitable terms that cancel these poles, exploiting once
again the predictability of the singularity structure of one-loop amplitudes. The following
relation holds:

Poles

2
∑
(i,j)

(
〈A0

n+2| (Ti · Tj) |A1
n+2〉+ 〈A1

n+2| (Ti · Tj) |A0
n+2〉

)
= Poles

4
∑
(i,j)

Re
(
〈A0

n+2| (Ti · Tj) |A1
n+2〉

)
= Poles

4
∑
(i,j)

Re

〈A0
n+2| (Ti · Tj)

∑
(k,l)

(Tk · Tl) I(1)
kl

(
ε, µ2

r

) |A0
n+2〉


= −2Poles

−2
∑
(i,j)

∑
(k,l)

Re
[
I(1)
kl

(
ε, µ2

r

)]
〈A0

n+2| (Ti · Tj) (Tk · Tl) |A0
n+2〉

 , (4.48)
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which is analogous to state that the ε−4 and ε−3 poles in the first and second lines of (4.16)
are related by the same factor −2 we see in the last line here. Equation (4.48) indicates
that the pole structure of Ins

[
dσ̂U,a1

]
can be obtained in a general way by applying the

unresolved parton insertion operator in dσ̂U,b. In particular we have:

Poles
{
Ins

[
dσ̂U,a1

]}
= Poles

{
−2 Ins

[
dσ̂U,b

]
− dσ̂MF,1,b

}
. (4.49)

Equation (4.49) requires some comments. First of all, the Ins [·] operator removes the
splitting kernels from both the J (1) present in dσ̂U,b and dσ̂MF,1,b, given by (4.34), exactly
reconstructs the one-loop integrated dipole which is not affected by the insertion of the
unresolved parton. Secondly, step 3 of the list in section 3.4 needs to be extended: the
momentum relabelling here affects not only the colour interferences and the jet function,
but also the integrated dipole which is not converted into unintegrated antenna functions.
This applies in general at NNLO, namely the transition to higher multiplicities via momenta
relabelling occurs within any function of the external momenta accompanying the integrated
dipole which is converted into unintegrated antennae. The choice of which integrated dipole
to convert into an unintegrated antenna function should be done in such a way any pair
of hard radiators is addressed once and only once. In practise this can be easily achieved
performing the decomposition:

J (1)
2 (i, j)J (1)

2 (l, k) = 1
2J

(1)
2 (i, j)J (1)

2 (l, k) + 1
2J

(1)
2 (k, l)J (1)

2 (i, j) (4.50)

and then fixing the first dipole in each term of the symmetrized expression on the right-
hand-side to be the one converted into unintegrated antennae. Therefore, the structure of
the right-hand-side of (4.49) is given by:

−2Ins
[
dσ̂U,b

]
−dσ̂MF,1,b∼−2

∑
ijk,lm

f0
3 (i,k,j)J (1)

2 (l,m)a0
n+2(σ,σ′;{., ĩk, ., k̃j, .}), (4.51)

where l and m can represent either ĩk and k̃j or any other parton not belonging to the (i, j)
dipole. We can thus write down the first contribution to the real virtual subtraction term as:

dσ̂T,b1 = −Ins
[
dσ̂U,a1

]
− 2 Ins

[
dσ̂U,b

]
− dσ̂MF,1,b

gg,NNLO, (4.52)

which is free of ε-poles. We observe that, to compensate dσ̂U,b in the double virtual subtrac-
tion term, we should add back a factor +Ins

[
dσ̂U,b

]
. This contribution is indeed added

later in the generation of the real virtual and double real subtraction terms.
We consider now dσ̂T,b2 , namely (loop × tree) contributions. The core part of this

term is given by unintegrated three-parton one-loop antenna functions X1
3 combined with

tree-level reduced matrix elements. The integrated counterpart of these terms is contained
in dσ̂U,c,X 1

3 . Once again, we can insert an unresolved gluon and obtain from dσ̂U,c,X 1
3 the

contribution needed at the real virtual level. As it happened for dσ̂T,b1 , if one simply
considers Ins

[
dσ̂U,c,X 1

3
]
, spurious ε-poles coming from the one-loop antennae would remain

in the real virtual subtraction term. Therefore, these singularities need to be removed to
obtain a finite subtraction term. This can be done systematically since the singularity
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structure of the unintegrated three-parton one-loop antenna functions is known and can be
expressed by means of one-loop integrated dipoles and three-parton tree-level antennae [8, 9].
The construction of the required blocks in the specific case of a f1

3 antenna, the only one
needed for gluon scattering, is achieved through the following replacement:

f1
3 (i, k, j)→ f1

3 (i, k, j) +
3∑

(l,m)=1
J (1)

2 (l,m)f0
3 (i, k, j)− 2J (1)

2 (ĩk, k̃j)f0
3 (i, k, j), (4.53)

where the sum in the second term runs over the 3 pairs of colour-connected gluons in the
f1

3 (i, k, j) antenna. The expression obtained after the replacement in (4.53) is free of poles
and can be used to construct the missing part of the real virtual subtraction term. To use a
similar notation to [9], we label dσ̂T,b2,X1

3 , dσ̂T,b2,JX and dσ̂T,b2,MX the three blocks coming
from the three components in (4.53). As we have already stated

dσ̂T,b2,X1
3 = −Ins

[
dσ̂U,c,X 1

3
]
∼
∑
ijk

f1
3 (i, k, j)a0

n+2(σ, σ′; {., ĩk, ., k̃j, .}). (4.54)

The two remaining blocks are treated differently: dσ̂T,b2,MX comes from dσ̂U,c,X 0
3⊗X

0
3 after

the insertion of an unresolved gluon, while dσ̂T,b2,JX is a genuinely new contribution added
at the real virtual level, which needs to be compensated by its unintegrated counterpart
at the double real level. This can be noticed looking at the arguments of the integrated
dipoles appearing in the two blocks. dσ̂T,b2,MX depends on mapped momenta, which come
from the insertion of an extra unresolved gluon in the n-particle phase space, where the
double virtual subtraction term lives. On the other hand, the integrated dipoles in dσ̂T,b2,JX

depend on (n+ 1)-particle phase space momenta, which are not accessible at the double
virtual level. It is trivial to verify that the mass factorization kernels in the integrated
dipoles in dσ̂T,b2,JX and dσ̂T,b2,MX exactly cancel for any configuration of gluons i, j and k.
For bookkeeping purposes we label this mass factorization dσ̂MF,1,b2 .

For dσ̂T,b2,MX one obtains the relation:

dσ̂T,b2,MX = −2Ins
[
dσ̂U,c,X 0

3⊗X
0
3
]
− dσ̂MF,1,b2 . (4.55)

The structure of dσ̂T,b2,MX is indeed the required one, according to (4.53):

dσ̂T,b2,MX ∼ −2
∑
ijk

f0
3 (i, k, j)J (1)

2 (ĩk, k̃j)a0
n+2(σ, σ′; {., ĩk, ., k̃j, .}). (4.56)

The leftover +Ins
[
dσ̂U,c,X 0

3⊗X
0
3
]
is used in dσ̂T,c, as we show in the next section. In the

gluons-only case, the two integrated antennae are identical (see (4.36)), so the choice of
which one has to be translated into its unintegrated form is irrelevant. In general, the same
symmetrization procedure employed for dσ̂U,b can be used here as well. In conclusion, the
(loop × tree) block is given by:

dσ̂T,b2 = −Ins
[
dσ̂U,c,X 1

3
]

+ dσ̂T,b2,JX − 2Ins
[
dσ̂U,c,X 0

3⊗X
0
3
]
− dσ̂MF,1,b2 , (4.57)

which is free of ε-poles. We remark again that dσ̂MF,1,b2 is compensated by an identical
contribution in dσ̂T,b2,JX and no new mass factorization kernels are actually added in dσ̂T,b2 .

– 29 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
9

The last contribution to dσ̂T,b is required to fix the renormalization of one-loop quantities
in dσ̂T,b1 and dσ̂T,b2 . To fix the correct renormalization of both the one-loop matrix elements
and the one-loop antenna functions it is sufficient to perform the following replacement [8]:

X1
3 (i, k, j)→ X1

3 (i, k, j) + b0
ε
X0

3 (i, k, j)
(( |sijk|

µ2
r

)−ε
− 1

)
. (4.58)

dσ̂T,b3 is entirely constructed with terms coming from the double virtual subtraction term:

dσ̂T,b3 = −Ins
[
dσ̂U,a0

]
− Ins

[
dσ̂U,c,b0

]
, (4.59)

as can be easily checked keeping track of the QCD β-function coefficient b0.

4.4.3 dσT,c

The last block of the real virtual subtraction term is dσ̂T,c. This block has two components,
one which is better identified as the integrated version of part of the double real subtraction
term and one which can be obtained as the unintegrated counterpart of contributions
at the double virtual level. In the original antenna subtraction approach [9], dσ̂T,c was
constructed starting from the former contribution and adding the latter subsequently to
remove spurious ε-poles and ensuring the finiteness of the full real-virtual contribution.
In particular, dσ̂S,c, the block containing almost colour-connected contributions [68] and
large angle soft terms [69, 70] at the double real level, is integrated over the phase space
of an unresolved parton and used as part of dσ̂T,c. To remove the singularities present in
these results, two blocks denoted as dσ̂T,c1 and dσ̂T,c2 in [9] are generated. The integrated
counterparts of these two blocks are then used respectively in dσ̂U,b and dσ̂U,c.

The procedure we present in the following to construct dσ̂T,c proceeds in reverse with
respect to the one summarized above. We first deduce dσ̂T,c1 and dσ̂T,c2 from the double
virtual subtraction term and then we infer the complete structure of the combination of
integrated almost colour-connected terms and large angle soft terms. Again, the guiding
principle is the cancellation of unwanted ε-poles, which, combined with the knowledge of
the general structure of dσ̂S,c, allows for a systematic generation of dσ̂T,c.

The first block dσ̂T,c1 comes from the leftover +Ins
[
dσ̂U,b

]
that we did not use in

section 4.4.2. However, we can identify in dσ̂U,b two types of structures: almost colour-
connected contributions and colour-unconnected contributions [9, 68]. These latter terms do
not need to be included at the real virtual level and can actually be moved from the double
virtual to the double real subtraction term directly. The reason is that the integration
over the phase space of two unresolved colour-unconnected partons can be performed
independently. In our top-down approach (see figure 1), this means that two unresolved
partons can be iteratively inserted to produce a contribution to the double real subtraction
term, as we show in section 4.5.4. The colour-unconnected contribution in dσ̂U,b, which we
label as dσ̂U,b,c.u. can be easily identified since, in the convolution of two one-loop integrated
dipoles, the two partons that form the first dipole are both different from either of the two
partons appearing as arguments of the second. Namely:

dσ̂U,b,c.u. ∼ J (1)
2 (i, j)⊗ J (1)

2 (k, l), with i 6= k, l and j 6= k, l. (4.60)
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For the purpose of constructing dσ̂T,c1 , we can then decompose dσ̂U,b into

dσ̂U,b = dσ̂U,b,a.c.c. + dσ̂U,b,c.u., (4.61)

where dσ̂U,b,a.c.c. contains almost colour-connected contributions and is identified removing
from dσ̂U,b contributions with a structure like (4.60). dσ̂T,c1 is then obtained as

dσ̂T,c1 = +Ins
[
dσ̂U,b,a.c.c.

]
+ dσ̂MF,1,c1 . (4.62)

The structure of this term is the same as the one in (4.51), where the contribution with l
and m both different from ĩk or k̃j have been removed. To generate dσ̂T,c2 , we directly use
the leftover +Ins

[
dσ̂U,c,X 0

3⊗X
0
3
]
:

dσ̂T,c2 = +Ins
[
dσ̂U,c,X 0

3⊗X
0
3
]

+ dσ̂MF,1,c2 , (4.63)

which has a structure analogous to (4.56). In the previous expressions, the two contribu-
tions dσ̂MF,1,c1 and dσ̂MF,1,c2 contain the mass factorization kernels needed to reconstruct
integrated dipoles, however they will be immediately subtracted back again and are included
explicitly here only for consistency of notation. As we said, the sum dσ̂T,c1 +dσ̂T,c2 exhibits
explicit singularities that need to be cancelled adding a suitable block which represents the
integrated counterpart of almost colour-connected contributions and large angle soft terms
in the double real subtraction term. The systematic generation of this contribution is a
crucial step in the colourful antenna subtraction method and in the gluons-only case can be
achieved through the following replacements in the combination dσ̂T,c1 + dσ̂T,c2 :

f0
3 (i, k, j)J (1)

2 (ĩk, k̃j)→ f0
3 (i, k, j)

[
J (1)

2 (ĩk, k̃j)− J (1)
2 (i, j)

+ S(sij , si′j′ , 1)− S(s(ik)(kj), si′j′ , x(ik)(kj),i′j′)
]
,

f0
3 (i, k, j)J (1)

2 (ĩk, a)→ f0
3 (i, k, j)

[
J (1)

2 (ĩk, a)− J (1)
2 (i, a)

+ S(sia, si′j′ , xia,ij)− S(s(ik)a, si′j′ , x(ik)a,i′j′)
]
,

f0
3 (i, k, j)J (1)

2 (b, k̃j)→ f0
3 (i, k, j)

[
J (1)

2 (b, k̃j)− J (1)
2 (b, j)

+ S(sbj , si′j′ , xbj,ij)− S(sb(kj), si′j′ , xb(kj),i′j′)
]
, (4.64)

where S denotes the integrated large angle soft terms [69, 71]. These replacements cover all
possible structures appearing in dσ̂T,c1 + dσ̂T,c2 . The expressions on the right-hand-side
of (4.64) are free of poles, since the residual singularities in the difference of one-loop
integrated dipoles are removed by the integrated large angle soft terms and this cancellation
is in fact the guiding principle through which (4.64) is constructed. Moreover, as we
anticipated, the mass factorization kernels needed for the newly introduced integrated
dipoles exactly cancel the ones present in dσ̂MF,1,c1 and dσ̂MF,1,c2 , in such a way that the
resulting expression is actually free of mass factorization kernels. Partons i′ and j′ can
be chosen arbitrarily since there is a priori no singular behaviour associated with them.
They appear as reference momenta in a phase space mapping for a soft gluon radiation
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between other momenta i and j that can but do not have to be different from i′ and j′
(all arrangements of i, j and i′, j′ are discussed in section 4.5.3 below). In particular, for
process involving four or more partons at the Born level, i′ and j′ can be chosen to be two
final-state partons [71]. This implies that the integrated large angle soft terms appearing
in (4.64) are obtained through the integration of soft eikonal factors over a FF configuration,
which requires a simpler momentum mapping with respect to IF or II configurations. The
identification of i′ and j′ must be inherited properly to the double real level, where the
unintegrated counterpart of the large angle soft terms in (4.64) is needed to compensate for
the oversubtraction of large angle soft gluon radiation [69, 70, 72]. We label dσ̂T,c0 the new
block generated through (4.64) and we can finally construct dσ̂T,c as:

dσ̂T,c = dσ̂T,c0 + dσ̂T,c1 + dσ̂T,c2 . (4.65)

This last step completes the construction of the real virtual subtraction term. We
notice that almost the entire double virtual subtraction term has been converted into its
unintegrated counterpart and has been used at the real virtual level, with the only exceptions
being dσ̂U,b,cu and dσ̂U,c,X 0

4 , which are directly converted to the double real subtraction
term via the insertion of two unresolved gluons. Moreover, new components had to be
added at the real virtual level to cancel unwanted singularities and need a corresponding
counterpart in the double real subtraction term. These components are dσ̂T,a, dσ̂T,b2,JX

and dσ̂T,c0 .

4.5 NNLO double real subtraction term

The last ingredient for an NNLO calculation is the double real subtraction term dσ̂Sgg,NNLO,
which removes the divergent behaviour of the double real matrix element in single and
double unresolved limits. In the colourful antenna subtraction approach, the generation of
dσ̂Sgg,NNLO is performed at the end, with the significant advantage of avoiding to deal with
the involved IR structure of the matrix elements arising from the large number of partons.
Once the double virtual and the real virtual subtraction terms are available, it is indeed
straightforward to complete the subtraction procedure with the missing blocks needed to
cancel the unmatched contributions in those two layers. The double real subtraction term
is constructed inserting a second unresolved gluon in contributions coming from dσ̂Tgg,NNLO
and two unresolved gluons in terms coming from dσ̂Ugg,NNLO. The only non-trivial step, as we
show later in this section, is related to these latter contributions, in particular to the insertion
of an unresolved gluon pair in the integrated four-parton antennae X 0

4 . The appropriate
overall coefficient to be used to dress the double real subtraction term is given by:

NRR
NNLO = sRR(4παs)2NLO, (4.66)

where, in the gluons-only case we have

sRR = n!
(n+ 2)! = 1

(n+ 1)(n+ 2) . (4.67)

We recall the usual decomposition of dσ̂Sgg,NNLO [9]:

dσ̂Sgg,NNLO = dσ̂S,a + dσ̂S,b + dσ̂S,c + dσ̂S,d. (4.68)
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The first term dσ̂S,a removes single unresolved limits and it is analogous to an NLO real
subtraction term for an (n+ 3)-particle Born process. The remaining terms respectively
reproduce the divergent behaviour of the double real correction in colour-connected, almost
colour-connected and colour-unconnected configurations [9, 68]. Moreover, dσ̂S,c also
contains the large angle soft terms. In the following, we describe how to systematically
generate each contribution.

4.5.1 dσS,a

This part of the subtraction term can be straightforwardly generated from dσ̂T,a, since it can
be seen as its corresponding real NLO subtraction term. Indeed, the following relation holds:

dσ̂T,a = −
∫

1
dσ̂S,a − dσ̂MF,1,a, (4.69)

which reflects equation (3.3) and therefore, following what is done in section 3.4 for the
NLO real subtraction term, we can write:

dσ̂S,a = −Ins
[
dσ̂T,a

]
. (4.70)

4.5.2 dσS,b

In the colour-connected configuration, the two unresolved gluons are emitted between
the same pair of hard radiators. According to [9], we further decompose dσ̂S,b into two
contributions:

dσ̂S,b = dσ̂S,b1 + dσ̂S,b2 , (4.71)

where dσ̂S,b1 contains four-parton antennae X0
4 , while dσ̂S,b2 contains suitable convolutions

of two three-parton antennae X0
3 ⊗X0

3 needed to remove single unresolved limits from the
X0

4 . The generation of dσ̂S,b2 is straightforward, since its integrated counterpart is exactly
dσ̂T,b2,JX and so:

dσ̂S,b2 = −Ins
[
dσ̂T,b2,JX

]
, (4.72)

where the momenta relabelling due to the insertion of an unresolved parton must occur
within the unintegrated antenna functions which appear in dσ̂T,b2,JX too. On the other
hand, dσ̂S,b1 comes from the insertion of two unresolved gluons in dσ̂U,c,X 0

4 . We therefore
define a new transformation which acts on the integrated four-parton antennae as:

X 0
4 (sij)a0

n+2(σ, σ′, {., i, ., j, .})↔ X0
4 (i, k, l, j)a0

n+2(σ, σ′, {., ĩkl, ., l̃kj, .}), (4.73)

where partons k and l are unresolved between the pair of hard radiators i and j. The
considered momentum mapping maps the final state (n+ 2)-particle momenta to n-particle
momenta, possibly together with a rescaling of the initial state momenta [53]. As it happens
in the case of a single insertion, after the replacement described by (4.73), a suitable sum
over the permutations of the external momenta is needed to construct the full contribution.
The conversion of the X 0

4 to their unintegrated counterparts is less trivial than the one
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needed for the X 0
3 , given the more involved structure of four-particle antenna functions.

For gluon scattering the required replacements are given by:

FF: F0
4 (sij) → 4

[
F 0

4,a(i, k, l, j) + F 0
4,b(i, k, l, j)

]
,

IF: F0
4,g(s1i) → F 0

4 (1, k, l, i),
II: F0,adj.

4,gg (s12) → F 0
4 (1, k, l, 2),

F0,n.adj.
4,gg (s12) → F 0

4 (1, k, 2, l),

(4.74)

where the sub-antennae F 0
4,a and F 0

4,b are defined in [68]. We notice that the order of the
unresolved gluons k and l in (4.74) matters, since different orderings are associated to
different colour connections within the unintegrated four-parton antennae. This must be
properly taken into account when the sum over permutations of the external momenta is
performed, in such a way that both the (a, k, l, b) and (a, l, k, b) orderings are considered.
We introduce a new operator Ins2 [·] to indicate the simultaneous double insertion of two
unresolved gluons, in the sense indicated by (4.73). The application of Ins2 [·] occurs
through the following steps:

1. Removal of the splitting kernels from the integrated dipoles;

2. Transition from integrated four-parton antenna functions to unintegrated ones, as
indicated by (4.74);

3. Momenta relabelling within colour interferences and jet functions according to the
accompanying antenna function;

4. Sum over permutations of the n+ 4 momenta to cover all possible IR limits;

5. Dressing of the resulting expression with the appropriate phase space and overall
coefficient.

We can then obtain dσ̂S,b1 as

dσ̂S,b1 = −Ins2
[
dσ̂U,c,X 0

4
]
. (4.75)

Since the integrated version of a four-particle antenna is obtained after analytic integration
over the double unresolved antenna phase space, in principle the simultaneous insertion of
a pair of unresolved gluons can not be equated to the iterated insertion of a single gluon.
Nevertheless, as shown by the instructions above, on a practical standpoint the action of the
Ins2 [·] operator is very similar to the application of Ins [·] with two unresolved partons,
provided the appropriate momentum mapping is used and the correct sum over external
momenta is performed. In figure 1, we denote the action of Ins2 [·] with two connected
descendant red arrows.

We notice that the two contributions dσ̂S,b1 and dσ̂S,b2 are obtained here from a priori
independent blocks, while a precise relation between these two terms should hold to ensure
the removal of single unresolved limits from the four-particle antenna functions at the double
real level. In fact, the structure of dσ̂S,b2 directly descends from the one-loop three-parton
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antennae appearing in the two-loop integrated dipoles, which are in turn related to the
four-parton antenna functions. Therefore, the relation among dσ̂S,b1 and dσ̂S,b2 is actually
mirrored by the inner structure of the two-loop integrated dipoles and the interplay between
the X 0

4 and the X 1
3 , which gives the correct ε-poles at the double virtual level, manifest

here in the form of the correct arrangement of X0
4 and X0

3 ⊗X0
3 contributions.

4.5.3 dσS,c

In the almost colour-connected configuration, the unresolved gluons are emitted between
two pairs of hard radiators which share one common hard radiator. The structure of the
blocks needed to remove the divergences associated to these configurations is shared by
the large angle soft terms too, which are thus naturally incorporated in dσ̂S,c [9, 68]. The
integrated counterpart of dσ̂S,c is generated at the real virtual level and it is part of dσ̂T,c,
as depicted in section 4.4.3. In particular we have:

dσ̂S,c = −Ins
[
dσ̂T,c0

]
. (4.76)

The action of the Ins [·] operator on dσ̂T,c0 actually requires the insertion of an unresolved
parton within integrated large angle soft terms. Calling k and l respectively the previously
inserted unresolved gluon and the newly inserted unresolved gluon at the double real level,
the required replacements are:

S(sIJ , sI′J ′ , x) → S(I, l, J) for (I, J) 6= (I ′, J ′),
S(sI′J , sI′J ′ , x) → S(Ĩ ′l, l, J) for J 6= J ′,

S(sIJ ′ , sI′J ′ , x) → S(I, l, l̃J ′) for I 6= I ′,

S(sI′J ′ , sI′J ′ , x) → S(Ĩ ′l, l, l̃J ′),

(4.77)

where S(a, b, c) is the eikonal factor:

S(a, b, c) = 2 sac
sabsbc

. (4.78)

I and J represent any unmapped or mapped parton and I ′, J ′ indicate either i′, j′ or
ĩ′k, k̃j′. In this latter case, namely when parton i′ or j′ acts as a hard radiator for
both partons k and l, the correct order of the momentum mapping is i′ → ĩ′l → ˜̃

i′lk or
j′ → j̃′l→ ˜̃

j′lk, since the first parton which is integrated over at the double real level is l.
The eikonal factors generated via (4.77) remove the remnant soft gluon divergent behaviour
associated to colour-connected and almost colour-connected contributions at the double
real level [9, 68–70, 72].

4.5.4 dσS,d

In the colour-unconnected configuration, the two unresolved gluons are emitted between two
distinct pairs of hard radiators. As we explained in section 4.4.2, these terms do not appear
at the real virtual level but can be inherited directly from the double virtual subtraction
term to the double real one. This is achieved inserting two unresolved gluons in dσ̂U,b,c.u.,
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one in each of the two one-loop integrated dipoles. Since the two pairs of hard radiators are
distinct, the two insertions can be performed independently. Therefore dσ̂S,d is actually
generated through the iterated application of the Ins [·] operator:

dσ̂S,d = +Ins
[
Ins

[
dσ̂U,b,c.u.

]]
. (4.79)

In figure 1, we indicate the iterated insertion of two unresolved gluons as two disjoint
descendant red arrows, to differentiate it from the simultaneous double insertion discussed
in section 4.5.2.

5 Gluonic three-jet production at NNLO

To assess the applicability of the colourful antenna subtraction scheme, we compute the
NNLO QCD corrections to the hadron-collider all-gluons three-jet production process:

pp(gg)→ ggg (5.1)

We set Nf = 0 and we only consider gluons both as internal and external particles, as if
no quarks were present in the theory (pure Yang-Mills). To be consistent with this choice,
the renormalization of one- and two-loop amplitudes is performed setting Nf = 0 and the
mass factorization counterterms only contain gluon-to-gluon splitting kernels. The NNLO
correction in the gluons-only scenario is theoretically well defined and all IR divergences
cancel in the sum of virtual and real corrections. We perform the calculation in full colour,
with the only exception represented by the finite remainder of the two-loop five-gluon
amplitude [16], which is only available at leading colour.

From a phenomenological point of view, this calculation is part of the NNLO corrections
to three-jet production (which were computed recently [28, 29] using a residue subtraction
technique [10], with the same leading-colour restriction on the finite remainders of the virtual
two-loop amplitudes). However, our result can not be considered a faithful approximation
of the full calculation, due to the absence of quarks. Both the Nf 6= 0 contributions to
gluonic scattering and the quark-induced channels have a large impact, both in terms of
the final numerical result and of the scale variation behaviour of the theoretical predictions.
Indeed, as we discuss in more detail in section 5.4 below, the gluons-only picture exhibits
pathological issues when one assesses the theoretical uncertainty by means of the usual
renormalization and factorization scale variation analysis. This is not surprising, given the
unphysical nature of the gluons-only scenario.

For these reasons, our calculation should be considered as a proof of concept for the
automated implementation of the colourful antenna subtraction formalism, and not yet as
a precision phenomenology prediction.

5.1 Computational setup

The computation is performed within the NNLOjet framework. NNLOjet is a Monte
Carlo event generator which implements the antenna subtraction method to compute NNLO
QCD corrections to a series of processes. For gluonic three-jet production at NNLO, high
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multiplicity tree and loop gluonic amplitudes are needed. The computation relies on a
mixture of analytical results and numerical implementations for the amplitudes. The tree-
level helicity amplitudes for the scattering of five, six and seven gluons [45, 73], corresponding
to the LO, real and double real contributions, are incorporated in an analytical form in
NNLOjet. This is also the case for the five-gluon one-loop helicity amplitudes [74], which
represent the virtual correction.

The planar five-parton two-loop amplitudes have recently been computed [15] using a
basis of pentagon functions [75–77]. We rely on a public C++ code [16] which implements the
aforementioned amplitudes and computes the renormalized infrared-finite remainder of the
five-gluon two-loop matrix element in the leading colour approximation. According to [16],
for a given configuration of external momenta and helicities, the two-loop infrared-finite
remainder is defined as [41]:

|R(2)〉 = |A(2)〉 − I(1) (ε) |A(1)〉 − I(2) (ε) |A(0)〉 , (5.2)

where the A(`) represent the renormalized two-loop (` = 2), one-loop (` = 1) and tree-level
(` = 0) amplitudes. The quantity in (5.2) is evaluated in the leading colour approximation.
For the ε-poles of the two-loop matrix element we use the full colour result and we checked
their complete cancellation against the full-colour double virtual subtraction term. We
notice that in (5.2), not only the singularities, but also finite contributions are subtracted
from the two-loop amplitude. Our numerical implementation is suitably designed to take this
into account and restore the correct finite result in the combination dσ̂V Vgg,NNLO− dσ̂Ugg,NNLO.

The six-gluon one-loop matrix elements are computed with the OpenLoops gener-
ator [78–80]. In particular we use a new version of OpenLoops [81] which implements
the original algorithm of [78] in combination with the helicity summation technique of [79]
as well as a new tensor reduction algorithm [81, 82]. The latter is based on the reduction
techniques of [79], which are implemented at the level of tensor integrals in a way that yields
improved numerical stability in the deep infrared regions together with a very significant
speedup of quadruple-precision evaluations. Internally, OpenLoops uses double-precision
scalar integrals that are provided by Collier [83, 84], as well as quadruple-precision scalar
integrals provided by OneLoop [85]. As explained in the following sections, to validate the
generated subtraction terms and to estimate the impact of the subleading colour contribu-
tion, we had to extract the leading colour part of the six-gluon one-loop amplitude. This
was possible since OpenLoops allows for the computation of partial amplitudes, which can
be suitably combined to construct the leading colour contribution, according to (2.28).

The subtraction terms needed for the NNLO calculation are constructed in a systematic
way with the colourful antenna subtraction method, as described in sections 3 and 4. The
subtraction terms only depend on five- and six-gluon tree-level amplitudes and five-gluon
one-loop amplitudes, so they are implemented in a completely analytical fashion within
NNLOjet. The real, double real and real virtual subtraction terms have been extensively
tested against the corresponding matrix elements to check the pointwise cancellation of IR
divergences in single and double unresolved limits, as discussed in section 5.2.

The NNLO correction to this process is very challenging from the computational point
of view. The stability over the whole phase space of the numerical implementations of double
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virtual and real virtual matrix elements must be ensured exploiting quadruple-precision
arithmetic when the standard evaluation fails. Moreover, due to the high multiplicity, the nu-
merical integration of real virtual and double real corrections and their respective subtraction
terms requires a very substantial number of evaluations to reach a satisfactory precision.

5.2 Tests of the subtraction terms

Before presenting the results for the NNLO corrections to differential three-jet cross sections,
we first assess the pointwise convergence in all single and double unresolved IR limits of the
NNLO subtraction terms at double real and real virtual level that we generated using the
colourful antenna method against the respective squared matrix elements. We do so in a
similar way to what is done in [68]: we generate a sample of 10′000 phase space points at√
s = 13TeV close to a given infrared limit and we compute:

RRV =
dσ̂RVgg,NNLO
dσ̂Tgg,NLO

and RRR =
dσ̂RRgg,NNLO
dσ̂Sgg,NLO

, (5.3)

for the real virtual and double real case respectively. We then bin the events as function of
the following quantity:

ti = log10 (|1−Ri|) , with i = RV, RR, (5.4)

which provides an estimate of the number of correct digits reproduced by the subtraction
terms. We probe each unresolved limit through the variables x and y, which parametrize
the IR depth at which each limit is tested. The definition of x and y varies according to
the considered configuration and is given in table 3. The squared centre-of-mass energy is
s, while the other invariants are defined as:

si1...im = (pi1 + · · ·+ pim)2 small when i1, . . . , im are collinear,

s−i1...im =

 ∑
j≥3, j 6=i1...im

pj

2

close to s when i1, . . . , im are soft.
(5.5)

The smaller x and y are, the more enhanced the divergent behaviour of matrix elements is.
For configurations that require both x and y we choose to fix x = y.

We perform the test independently for the leading colour (LC) and the subleading
colour (SLC) part of the real virtual and double real matrix elements, to assess the correct
behaviour of the subtraction terms in both cases. Indeed, as can be noticed in the plots in
section 5.3, the subleading colour contribution for gluon scattering has a very small numerical
impact on the full colour result. Therefore, the inspection of the ti distributions in full
colour might give no insights on the correct behaviour of the subtraction at the subleading
colour level. Since the systematic treatment of the subleading colour contribution is a major
achievement of the new formalism described in this paper, we focus on it specifically. To
remove angular correlations and achieve a proper subtraction in IR limits with collinear
partons, a point-by-point angular average is considered, as described in detail in [68].

We start by addressing the single unresolved limits of the real virtual correction. There
are two IR regions that we test: single soft emission and single collinear emission. The
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Configuration Soft Collinear x y

Single soft i — (s− s−i)/s —
Single collinear — i//j sij/s —
Double soft i, j — (s− s−ij)/s —

Triple collinear — i//j//k sijk/s —
Soft and collinear i j//k (s− s−i)/s sjk/s

Double collinear — i//j, k//l sjk/s skl/s

Table 3. Variables x and y used to test the IR limits. The first two lines refer to single unresolved
limits, the remaining ones to double unresolved limits.
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Figure 2. Test of the real virtual subtraction term in single soft (left) and single collinear (right)
limits for the leading colour (upper plots) and subleading colour (lower plots) contributions.

results are shown in figure 2. The pairs of numbers reported in the plots under the label
‘outside’ respectively indicate how many events fell on the left and on the right of the
displayed range in ti.

We observe that the agreement between the squared matrix elements and the subtraction
terms increases the deeper the IR regions are tested, with the single soft limit exhibiting
more peaked distributions with respect to the single collinear one. Reasons for this are the
more divergent behaviour of matrix elements and the exact locality of the subtraction in
soft limits. For a given value of x, both in the soft and in the collinear limit, the subleading
colour contribution is characterized by broader distributions, centred around higher values
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Figure 3. Test of the double real subtraction term in double soft (left) and soft and collinear (right)
limits for the leading colour (upper plots) and subleading colour (lower plots) contributions.

of ti with respect to the leading colour counterpart. This can be explained by an enhanced
numerical noise for this contribution. The expressions for subtraction terms and squared
matrix elements at subleading colour are considerably larger compared to the leading colour
case, and each IR limit receives contributions from a substantial number of individual
terms. The numerical cancellations between these terms induce rounding errors in the
final expressions for the squared matrix element and subtraction term, thereby leading to
the observed deterioration of convergence. Nevertheless, the observed agreement between
the subtraction terms and the matrix elements is largely satisfactory both at leading and
subleading colour. In general, we remark that the excellent performance of the OpenLoops
implementation of the six-gluon one-loop amplitudes is crucial to probe the IR limits of the
real virtual correction for such small values of x.

For the double real correction, we have both single and double unresolved limits.
Concerning double unresolved limits we have double soft emission, soft and collinear
emission, triple collinear emission and double collinear emission. The results for the double
soft and soft and collinear limits are presented in figure 3, while in figure 4 we report the
results for triple collinear and double collinear limits. Finally we present the results for the
single unresolved limits of the double real correction in figure 5.

In double and triple collinear limits, the subleading colour contribution does not exhibit
a divergent behaviour. This is motivated by an argument analogous to the one adduced
in [56] to explain why the six-gluon tree-level matrix element is not divergent in single,
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Figure 4. Test of the double real subtraction term in triple collinear (left) and double collinear
(right) limits at leading colour. The subleading colour contribution does not exhibit IR divergences
in these limits.
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Figure 5. Test of the double real subtraction term in single soft (left) and single collinear (right)
limits for the leading colour (upper plots) and subleading colour (lower plots) contributions.

double and triple collinear limits at subleading colour. For the seven-gluon tree-level matrix
element considered here, one can express the subleading colour contribution as a sum of
incoherent interferences within which the two colour orderings share at most a single pair
of adjacent gluons. This implies that the subleading colour part of the matrix element is
indeed divergent in single collinear limits, but is finite in double and triple collinear limits.
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In general we observe that the subtraction terms correctly reproduce the divergent
behaviour of the double real correction in both double and single unresolved configurations,
with the quality of the agreement increasing with the infrared depth. Once again, the
subleading colour contribution presents some numerical noise with respect to the leading
colour part, for the same reasons explained in the real virtual case.

We conclude this section mentioning that the colourful antenna subtraction method
was also employed to generate the NNLO subtraction terms for two-jet production in
the gluons-only assumption, for validation purposes against the original implementation
in [56]. We found complete agreement with the results obtained in the traditional antenna
subtraction framework.

5.3 Results

In this section we present the results of our NNLO calculation. The considered centre-of-
mass energy for the colliding protons is 13TeV and the applied kinematical cuts are the
same used for the three-jet production NNLO calculation in [28]. The cuts are as follows:

• minimal transverse momentum of a jet: pT (j) > 60GeV;

• maximal jet rapidity: |y(j)| < 4.4;

• minimal sum of the transverse momenta of the first two leading jets: pT (j1)+pT (j2) >
250GeV.

Jets are reconstructed using the anti-kT algorithm [86] with a radius R = 0.4. We use the
NNLO set of the NNPDF3.1 parton distribution functions [87] and we evaluate the PDFs
using LHAPDF [88]. The same PDF set is used for the predictions at LO, NLO and NNLO.
LHAPDF is also used to evaluate the strong coupling constant, with αs(mZ) = 0.118.
We notice here that these quantities are the only ones in the entire calculation which
are evaluated in the full QCD theory, namely with the complete bosonic and fermionic
degrees of freedom of QCD. As we explicitly show in section 5.4, this is the origin of an
inconsistent estimation of the uncertainty on our theory prediction, which is assessed with
a seven-point variation of the renormalization and factorization scales. The central value is
chosen dynamically for each event and is given by the scalar sum of transverse momenta at
parton level:

µf = µr = ĤT =
∑

i∈partons
pT (i). (5.6)

We consider distributions in the HT observable:

HT =
∑
j∈jets

pT (j), (5.7)

in the three-jet invariant mass m123, in individual jet transverse momenta and rapidities,
jet-pair differences in rapidity |∆y| and azimuthal angle |∆Φ| as well as three-jet rapidity
variables y?123 and |ymax|, defined as:

y∗123 = |y1 − y2|+ |y2 − y3|+ |y3 − y1|, (5.8)
|ymax| = max(|y1|, |y2|, |y3|). (5.9)

– 42 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
9

10 1

100

101

102

103

104

105

d
/d

H
T  

[fb
]

NNLOJET s = 13 TeV

NNPDF31_nnlo_as_0118

7-point scale variation

r = f = HT

pp(gg) ggg

LO NLO NNLO-LC NNLO-FC

500 1000 1500 2000 2500 3000
HT  [GeV]

0.5

1.0

1.5

Ra
tio

 to
 

NL
O

103

104

105

d
/d

m
12

3  
[fb

]

NNLOJET s = 13 TeV

NNPDF31_nnlo_as_0118

7-point scale variation

r = f = HT

pp(gg) ggg

LO NLO NNLO-LC NNLO-FC

400 600 800 1000 1200 1400 1600 1800 2000
m123  [GeV]

0.4

0.6

0.8

1.0

1.2

Ra
tio

 to
 

NL
O

Figure 6. Gluons-only three-jet production cross section differential in HT (left) and m123 (right)
up to NNLO. The NNLO-LC band corresponds to the leading-colour only contributions at NNLO,
the NNLO-FC line includes subleading colour contributions except for the finite parts of the two-loop
virtual corrections.

The calculation is performed in full colour, however, the subleading colour contribution
to this process at NNLO has an exiguous numerical impact and the inclusion of the missing
subleading colour part of the finite reminder of the double virtual matrix element might
significantly affect the value of the subleading colour correction. For this reason, in the
plots presented here, we focus on the leading colour NNLO correction (NNLO-LC), which
is a well defined and complete quantity. We then superimpose the full colour result without
the finite two-loop remainder pieces (NNLO-FC) to provide an estimate of the impact of
the subleading colour contribution. The Monte Carlo integration error is reported for the
NNLO correction at leading colour. A consistent effort on the computational side would be
required to significantly reduce the statistical uncertainty on the presented results. Since
this computation serves as an assessment of the colourful antenna subtraction method at
NNLO more than a high-precision phenomenological study, we did not invest additional
resources in the reduction of the integration error.

Figures 6–9 show differential distributions related to gluons-only three-jet production
in terms of various variables derived from the three-jet system (figures 6 and 8), from
individual jets (figure 7) and from jet pairs (figure 9) at LO, NLO and NNLO. The
LO and NLO predictions are obtained at full colour and NNLO-LC corresponds to the
NNLO predictions at leading colour, which is our default prediction that is also used to
determine the scale uncertainty bands at NNLO. To estimate the potential impact of the
yet incomplete subleading colour contributions, these were computed discarding the finite
parts of the two-loop virtual corrections and added to the leading colour contributions
(only for the central scale setting), yielding the NNLO-FC lines. In most distributions,
the difference between NNLO-LC and NNLO-FC is at the per-cent level or below and can
hardly be resolved, thereby indicating the small numerical impact of subleading colour
effects at NNLO in gluonic jet production.
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Figure 7. Differential distributions in individual jet transverse momenta (upper row) and rapidities
(lower row) for gluons-only three-jet production up to NNLO. Definition of NNLO-LC and NNLO-FC
as in figure 6.
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Figure 8. Gluons-only three-jet production cross section differential in the combined rapidity
variables y?

123 (left) and |ymax| (right) up to NNLO. Definition of NNLO-LC and NNLO-FC as in
figure 6.
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Figure 9. Differential distributions in geometrical jet-pair variables: rapidity differences (upper
row) and azimuthal angles (lower row) for gluons-only three-jet production up to NNLO. Definition
of NNLO-LC and NNLO-FC as in figure 6.

Except for the high-HT tail of the HT distribution, figure 6 (left), and the distributions
in azimuthal opening angles, figure 9 (lower panels), we observe the NNLO corrections to
be quite moderate in all distributions, typically ranging between ±10%. The error bars
on the NNLO-LC central values indicate the numerical integration errors on the NNLO
coefficients. Except for the very tails of the distributions, we managed to obtain quite small
numerical integration errors on these NNLO coefficients, leading to total integration errors
on the NNLO-LC predictions at the level of 2% or below. These are already sufficient to
establish the numerical convergence of the predictions and could be lowered further with
more Monte Carlo integration statistics.

The differential three-jet distributions that we presented here demonstrate the applica-
bility of the colourful antenna approach to the construction of NNLO subtraction terms
for a highly non-trivial high-multiplicity process, and illustrate the quality of numerical
convergence that can be obtained with these subtraction terms in the NNLOjet framework.

As anticipated, a notable feature is the increase in the scale uncertainty bands from
NLO to NNLO-LC that is observed across all distributions. This effect is an artefact of the
gluons-only simplification and we further investigate it in the following section.

5.4 Comments on scale variation

In this section we investigate the anomalous scale variation behaviour observed in the NLO
and NNLO correction to gluonic three-jet production. As pointed out above, the coupling
constant αs(µr) sees the full content of QCD, since its determination relies on experimental
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measurements and scale evolution equations which incorporate the dependence on the
number of light quark flavours. On the contrary, the matrix elements we implemented in our
calculation only contain the gluonic degrees of freedom and are then evaluated for Nf = 0.
This mismatch breaks the interplay between the renormalization scale variation of the
running coupling and the virtual corrections at higher orders. An analogous observation can
be done for the factorization scale µf . The scale dependence of the PDFs takes into account
the presence of light quark flavours. To correctly compensate the PDF’s factorization scale
variation at higher orders in QCD, the inclusion of quark-induced channels is necessary.
Therefore, the scale variation analysis should provide a consistent estimate of the uncertainty
of theoretical predictions for a given process only when the entire set of subprocesses is
considered and included in the final result.

We illustrate the effect of the inclusion of quarks on the scale variation analysis with a
dedicated study on dijet production. We implement the same setup and cuts described in
section 5.3 and we compute the NNLO corrections with the traditional antenna subtraction
approach in the leading colour approximation [32, 56], for three different scenarios:

• pp(gg)→ jj with Nf = 0, gluons-only;

• pp(gg)→ jj with Nf = 5, where we include the contribution coming from fermionic
loops in virtual corrections as well as gluons splitting into quark-antiquark pairs in
real emission corrections, but we keep the restriction to gluon-initiated subprocesses
only;

• pp → jj, where we consider the whole set of sub-processes that contribute to dijet
production, both gluon- and quark-initiated.

The first scenario reflects the same implementation we used for gluonic three-jet
production and we expect to observe a similar pattern, namely an anomalous size of
the NNLO scale variation bands with respect to NLO. Allowing gluons to split into
quark-antiquark pairs should restore the correct compensation at higher orders of the
renormalization scale dependence of the strong coupling. Finally, with the inclusion of
quark-induced sub-processes, we expect to correctly balance factorization scale variation
effects due to the evolution of the PDFs.

In figure 10 we compare the total cross section in the three cases, normalized with
respect to the corresponding NLO result. As expected, the size of the NNLO scale variation
bands with respect to the NLO ones significantly reduces when the full QCD degrees of
freedom are considered. This can also be noticed in the HT distributions in figure 11. The
total cross section is dominated by the low-HT region, for which we observe the same scale
variation pattern as in the total cross section.

Analogously, we have a similar adjustment of the scale variation bands in observables
which are largely dominated by the low-HT region, such as y∗ = |y(j1)− y(j2)|/2, as shown
in figure 12. For the pT (j1) distribution in figure 13, the transition from pp(gg) → jj

with Nf = 0 to pp(gg)→ jj with Nf = 5 does not seem to reduce the relative size of the
NLO and NNLO scale variation bands to the same extent observed in other distributions.
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Figure 10. Total cross section for pp(gg) → jj with Nf = 0 (left), pp(gg) → jj with Nf = 5
(centre) and pp→ jj (right). Each result is normalized with respect to the corresponding NLO total
cross section.
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Figure 11. HT distribution for pp(gg)→ jj with Nf = 0 (left), pp(gg)→ jj with Nf = 5 (centre)
and pp→ jj (right).
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Figure 12. y∗ distribution for pp(gg)→ jj with Nf = 0 (left), pp(gg)→ jj with Nf = 5 (centre)
and pp→ jj (right).
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Figure 13. pT (j1) distribution for pp(gg) → jj with Nf = 0 (left), pp(gg) → jj with Nf = 5
(centre) and pp→ jj (right).

However, this happens if the NNLO correction to the full process pp → jj is considered,
which indicates that µf variation effects dominate in the studied range of pT (j1).

These results demonstrate the inconsistency of the scale variation analysis when specific
sub-channels of a given process are considered. The effect on differential distributions is
not uniform and may vary according to the considered observable, range, kinematical cuts
and choice of central scale. We can confidently conclude that the considerably larger scale
variation bands observed at NNLO in the differential distributions in section 5.3 are an
artefact of missing fermionic contributions and quark-induced sub-processes.

6 Conclusions and outlook

The antenna subtraction method for the construction of infrared subtraction terms at
NLO and NNLO has originally been formulated based on colour-ordered amplitudes and
squared matrix elements. This formulation results in very compact subtraction terms for
low-multiplicity processes, but extends very poorly to higher multiplicities and requires
complicated constructions beyond the leading-colour contributions. This paper overcomes
these constrictions by reformulating the antenna subtraction in a new colour space basis.
The resulting colourful antenna subtraction method allows for a systematic construction
of antenna subtraction terms. Starting from an analysis of the colour structure of purely
virtual corrections at NLO and NNLO, we were able to devise an algorithm that translates
infrared poles of virtual corrections into real radiation dipole insertions that constitute the
subtraction terms for single real radiation up to one-loop level and for double real radiation
at tree level. We remark once again that the main advantage of this perspective consists
in avoiding the direct treatment of the divergent behaviour of real emission corrections.
In the case of an NNLO calculation, this feature represents a major simplification, since
the double real subtraction term is obtained as the last step of a completely automatable
procedure, with no need of dealing with the involved infrared structure of double real
radiation matrix elements.

We fully formulated the colourful antenna subtraction method for gluons-only processes
and automated its workflow. As proof-of-principle applications, we rederived the NNLO
antenna subtraction terms for gluons-only dijet production [56] and newly derived these
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terms of gluons-only three-jet production. We verified the pointwise convergence of these
subtraction terms towards the respective matrix elements and demonstrated the numerical
stability of the predictions in computing various differential three-jet distributions. As
a by-product, we also assessed the reliability of the gluons-only approximation to dijet
production, demonstrating in particular the large impact of missing fermionic contributions
and quark-induced subprocesses onto the renormalization and factorization scale dependence
of the predictions. The gluons-only predictions for three jet production are thus not yet of
phenomenological relevance, but should only be considered as proof-of-principle applica-
tion of the newly developed coloured antenna subtraction method and of its automated
implementation. We also were able to quantify the numerical impact of subleading colour
contributions at NNLO, which were found to be small throughout most distributions.

The next step towards a complete, process-independent subtraction scheme at NNLO
consists in the inclusion of quarks in the presented formalism. To treat these contributions
in the context of the colourful antenna subtraction approach, a crucial distinction must
be made between the identity-preserving (IP) and identity-changing (IC) sectors of the
subtraction infrastructure. The IP sector contains infrared limits for which the real
emission corrections factorize onto a lower multiplicity process with the same initial-state
parton species. On the contrary, the IC sector refers to the configurations where a final-
state quark becomes collinear to an initial-state gluon or same-flavour quark, effectively
changing the initial-state parton species of the associated reduced matrix element in the
collinear limit.

After integration over the unresolved radiation, the IP contributions generate ε-poles
which cancel against the explicit singularities of the corresponding virtual contributions and
IP mass factorization counterterms. Therefore, the whole IP sector would be systematically
constructed at NNLO following the procedure summarized in figure 1, in complete analogy to
what was done in the simplified case of pure gluonic scattering. Of course, appropriate colour
stripped one- and two-loop integrated dipoles need to be defined to include quark-antiquark
and quark-gluon configurations, as well as the correct translation between integrated and
unintegrated antenna functions. Nevertheless, these steps do not represent a major issue
and most of the ingredients for the extension to the IP sector of sub-processes involving
quarks have already been constructed and assessed.

The IC infrared divergences cancel against ε-poles in IC mass factorization counterterms
and do not communicate with the singularity structure of the virtual corrections. For this
reason, these contributions can not be straightforwardly generated with the method we
described in this paper, thus requiring an extension of the approach. The starting point for
the construction of the IC sector will be the IC mass factorization structure at one and
two loops, which can be written down in a general way from (3.17), (4.19) and (4.28). The
main issue is then to dress the splitting kernels with the appropriate IC integrated antenna
functions, in such a way suitable universal IC integrated dipoles can be constructed and
the entire generation of the subtraction layers can proceed in the same way as it does for
the IP sector. At NLO, IC integrated dipoles have already been defined, for example in [9],
while at NNLO this task still requires additional work.
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