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Abstract: We present the colourful antenna subtraction method, a reformulation of

the antenna subtraction scheme for next-to-next-to-leading order (NNLO) calculations in

QCD. The aim of this new approach is to achieve a general and process-independent con-

struction of the subtraction infrastructure at NNLO. We rely on the predictability of the

infrared singularity structure of one- and two-loop amplitudes in colour space to generate

virtual subtraction terms and, subsequently, we define an automatable procedure to sys-

tematically infer the expression of the real subtraction terms, guided by the correspondence

between unintegrated and integrated antenna functions. To demonstrate the applicability

of the described approach, we compute the full colour NNLO correction to gluonic three-jet

production pp(gg)→ ggg, in the gluons-only assumption.
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1 Introduction

Precision measurements of benchmark cross sections are an important pillar of the LHC

physics program. In combining these measurements with equally precise theory predictions,

fundamental Standard Model parameters are measured to high accuracy, and indirect con-

straints on physics beyond the Standard Model are obtained. The success of the LHC

precision physics program relies crucially on a close interplay between theory and exper-

iment, which calls in particular for highly accurate theoretical predictions. These predic-

tions are obtained through a perturbation theory expansion to sufficiently high order. The

workflow for the computation of next-to-leading order (NLO) perturbative corrections in

QCD and in the electroweak theory combines the automated generation of one-loop virtual

corrections [1] with multi-purpose event generator programs [2–5], enabling NLO-accurate

predictions for any collider process.

Calculations at next-to-next-to-leading order (NNLO) and beyond are performed on a

case-by-case basis [6] and are mostly limited to final-states corresponding to an underlying

two-to-two scattering kinematics. This limitation to low-multiplicity processes arises from

two causes: missing two-loop virtual corrections to higher-multiplicity scattering ampli-

tudes and computational complexity of the real radiation corrections. The real radiation

contributions develop infrared singularities related to soft and collinear particle emissions,

which become explicit only after phase space integration, and which require an infrared

subtraction method for the extraction of the singular contributions, thereby enabling the

numerical implementation of the finite remainders. Several subtraction methods have been

developed for NNLO calculations [7–14]. Implementations using these methods are largely

made on a process-by-process basis, and most methods scale either poorly or not at all to

higher multiplicities.

Important progress has been made most recently on the derivation of two-loop 2→ 3

scattering amplitudes [15–23], which already entered the calculations for three-photon pro-

duction [24, 25], diphoton-plus-jet production [26, 27] and three-jet production [28]. Among

these, only three-jet production contains three final-state QCD objects at Born level and

displays the full complexity of real radiation corrections to 2 → 3 processes. Its NNLO

infrared subtraction has been performed with a sector-improved residue subtraction ap-

proach [10, 29]. The large variety of phenomenologically relevant high-multiplicity pro-

cesses for with NNLO predictions will be in future demand highlights the importance to

automate the workflow of infrared subtraction leading to an algorithmic construction of

the subtraction terms in a form directly suitable for numerical implementation.

It is the objective of this paper to enable the automation of the NNLO antenna sub-

traction method [8, 9], which is based up to now on the identification of single and double

real radiation patterns in colour-ordered subprocess contributions. This method has been

applied successfully in computing NNLO corrections to a variety of hadron-collider pro-

cesses [30–38]. Working towards a fully automated workflow, we propose a complete refor-

mulation, named colourful antenna subtraction, based on a colour-space representation of

parton-level subprocesses and subtraction terms. We fully formulate the new method for

gluonic processes, and demonstrate its implementation by generating and computing the
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NNLO gluons-only contribution to three-jet production at hadron colliders.

The paper is structured as follows. In section 2 we introduce our notation and sum-

marize the colour space techniques. In sections 3 and 4 we delineate the application of

the colourful antenna subtraction method for the construction of the subtraction terms

at NLO and NNLO. The proof-of-principle application to gluonic three-jet production at

NNLO is presented in section 5, where we test the behaviour of the generated subtraction

terms in single and double unresolved limits and we report the computation of the NNLO

correction for a selection of observables. We conclude in section 6 with an overview of the

remaining steps required to include quarks in this new approach.

2 Colour space

2.1 Gluon amplitudes in colour space

We summarize here the colour space formalism (also called colour dipole formalism) and

the associated notation. We choose to treat the QCD amplitudes as objects in colour

space since the singularity structure of QCD loop amplitudes is best described working in

this framework, as discussed in [13, 39–41]. In colour space, a `-loop amplitude with n

external partons is represented by an abstract vector |A`n({p}n)〉. If a set of generating

vectors
{
C`n,i

}
is defined, which span the n-parton colour space, any amplitude can be

decomposed as:

|A`n({p}n)〉 =
∑
i∈I`

C`n,iA`n,i({p}n), (2.1)

where I` indicates a suitable subset of generating vectors. The scalar quantities A`n,i({p}n)

are colour-ordered partial amplitudes. In equation (2.1), the dependence on the helicities

of the external partons is implicit and in the following a sum over helicity configurations is

always assumed when squared quantities are considered. For ` ≥ 1, the dependence on the

renormalization scale µr is understood. Our convention is to strip the partial amplitudes

of overall coefficients such as couplings and incoming particles average factors, which are

inserted later at the cross section level. In particular, we strip an `-loop amplitude of

an overall factor
(
αsC̄(ε)

2π

)`
with respect to the corresponding tree-level amplitude, where

C(ε) = (4π)εe−γEε.

We focus on amplitudes involving only gluons, for which a convenient choice of gen-

erating vectors is given by the so-called trace basis or Chan-Paton basis, which consists

of traces of SU(Nc) generators in the fundamental representation [42, 43]. For tree-level

amplitudes, the basis corresponds to:

C0
n,σ = Tr(T aσ(1) . . .T aσ(n)), with σ ∈ Sn/Zn (2.2)

where Sn/Zn represents the group of non-cyclic permutations of n objects. The SU(Nc)

generators are normalized according to:

Tr(T aT b) =
1

2
δab. (2.3)
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With this choice, a tree-level amplitude with n external gluons is given by [44]:

|A0
n({p}n)〉 =

∑
σ∈Sn/Zn

Tr(T aσ(1) . . .T aσ(n))A0
n(σ(p1), . . . , σ(pn)), (2.4)

and the corresponding squared matrix element M0
n can be computed as its squared norm

in colour space:

M0
n({p}n) = 〈A0

n({p}n)|A0
n({p}n)〉

=
∑

σ,σ′∈Sn/Zn

(
C0
n,σ

)† C0
n,σ′A

0
n(σ({p}n))†A0

n(σ′({p}n)), (2.5)

where a sum over colour indices is assumed.

For one-loop amplitudes with gluons only, both as external and internal particles, we

have an analogous colour decomposition [45]:

|A1
n({p}n)〉 =

bn/2c+1∑
c=1

∑
σ∈Sn/Sn,c

C1
n,c,σA

1
n,c(σ(p1), . . . , σ(pn)), (2.6)

where the generating one-loop vectors in colour space are given by:

C1
n,1,σ = Nc C0

n,σ = Nc Tr(T aσ(1) . . .T aσ(n)),

C1
n,c,σ = Tr(T aσ(1) . . .T aσ(c−1)) Tr(T aσ(c) . . .T aσ(n)), for c > 1, (2.7)

and Sn,c represents the subgroup of Sn which leaves the trace structure of C1
n,c unaffected.

We notice that C1
n,2,σ = 0, since the SU(Nc) generators are traceless. The squared one-loop

matrix element M1
n is given by:

M1
n({p}n) = 〈A0

n({p}n)|A1
n({p}n)〉+ 〈A1

n({p}n)|A0
n({p}n)〉

= 2Re

{ bn/2c+1∑
c=1

∑
σ∈Sn/Zn
σ′∈Sn/Sn,c

(
C0
n,σ

)† C1
n,c,σA

0
n(σ({p}n))†A1

n,c(σ
′({p}n))

}
.,(2.8)

We note that, both for ` = 0 and ` = 1, the colour-ordered partial amplitudes are not

all independent quantities. Several relations can be defined among them such as reflection

identities or decoupling equations [43, 45–47].

2.2 Gluon exchange in colour space

The coherent emission of a gluon between a dipole formed by parton i and parton j in a

tree-level amplitude is described in colour space by colour correlators as

〈A0
n({p}n)|Ti · Tj |A0

n({p}n)〉 , (2.9)

where Ti · Tj = T ai T
a
j . These properties hold:

Ti · Tj = Tj · Ti, (2.10)

Ti · Ti = T 2
i = Ci Id, (2.11)
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where Ci is the Casimir coefficient for the SU(Nc) representation associated to parton i

and Id represents the identity operator in colour space. For gluons we have Cg = CA.

For tree amplitudes with only gluons in the trace basis representation, it is possible to

compute colour correlators in (2.9) using:

〈C0
n,σ|Ti · Tj |C0

n,σ′〉 = (Tr(T aσ(1) . . .T aσ(n)))† Ti · Tj Tr(T aσ′(1) . . .T aσ′(n))

= (Tr(T aσ(1) . . .T ai . . .T aj . . .T aσ(n)))† (Ti)
a
aibi

(Tj)
a
ajbj

×Tr(T aσ′(1) . . .T bi . . .T bj . . .T aσ′(n)), (2.12)

where, for either incoming or outgoing gluons, Ti is in the adjoint representation:

(Ti)
a
bc = ifbac. (2.13)

In fact, for the purpose of an NNLO calculation, the single colour dipole insertion at

tree-level in (2.9) is not sufficient. The computation of colour correlators representing the

exchange of a gluon at one-loop level

〈A1
n({p}n)| (Ti · Tj) |A0

n({p}n)〉+ 〈A0
n({p}n)| (Ti · Tj) |A1

n({p}n)〉 (2.14)

and the exchange of two gluons at tree-level

〈A0
n({p}n)| (Ti · Tj)(Tk · Tl) |A0

n({p}n)〉 . (2.15)

is necessary. It is straightforward [13] to extend (2.12) to compute (2.14) and (2.15) when

both k and l are different from i or j, namely the gluons are exchanged between two

separated dipoles. When a radiator in the second dipole coincides with one in the first

dipole, the two gluons are emitted from the same leg, and the colour algebra must be

computed accordingly. The same applies if both partons in the second dipole coincide with

the ones in the first. For example, if k = i and l 6= j one has:

(Tr(T aσ(1) . . .T aσ(n)))† (Ti · Tj)(Ti · Tl) Tr(T aσ′(1) . . .T aσ′(n))

= (Tr(T aσ(1) . . .T ai . . .T aj . . .T al . . .T aσ(n)))†
[
(Ti)

a
aic

(Tj)
a
ajbj

] [
(Ti)

b
cbi

(Tl)
b
albl

]
×Tr(T aσ′(1) . . .T bi . . .T bl . . .T bj . . .T aσ′(n)). (2.16)

Finally, we point out that each state |A`n({p}n)〉 is a colour singlet and so by colour

conservation:
n∑
i=1

Ti |A`n({p}n)〉 = 0. (2.17)

Since in what follows we always consider colour singlet states, we can employ the previous

identity as
∑

j 6=i Tj = −Ti.

2.3 Leading and subleading colour

When squared matrix elements like (2.5) and (2.8), or colour operator insertions such

as (2.9), (2.14) and (2.15) are computed, the result is a real function of the external
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momenta and possibly the renormalization scale. At tree-level, the general form of such a

function is given by:

f0 ({ p }n) =
∑

σ,σ′∈Sn/Zn

c0
n(σ, σ′) a0

n(σ, σ′; {p}n), (2.18)

where the coefficients c0
n(σ, σ′) are colour factors which depend on Nc and the number of

gluons n and

a0
n(σ, σ′; {p}n) =

{∣∣A0
n(σ({p}n))

∣∣2 if σ = σ′,

A0
n(σ({p}n))†A0

n(σ′({p}n)) if σ 6= σ′.
(2.19)

This quantity represents the squared interference of two colour-ordered partial amplitudes,

with generic colour orderings dictated by σ and σ′. When σ = σ′, we have squared coherent

partial amplitudes, while we refer to the case σ 6= σ′ as incoherent interference. We notice

that even in the case σ 6= σ′, a0
n(σ, σ′; {p}n) is a real quantity, since a sum over helicities is

assumed. Indeed, if we consider a helicity configuration for the external particles {h}n, the

opposite configuration where the helicities are all swapped, denoted by {−h}n also appears

in the sum. Restoring the helicity dependence in partial amplitudes, by charge conjugation

at tree level we have:

A0
n(σ({p}n , {−h}n)) = A0

n(σ({p}n , {h}n))†, (2.20)

and so

A0
n(σ({p}n , {h}n))†A0

n(σ′({p}n , {h}n)) +A0
n(σ({p}n , {−h}n))†A0

n(σ′({p}n , {−h}n))

= A0
n(σ({p}n , {h}n))†A0

n(σ′({p}n , {h}n)) +A0
n(σ({p}n , {h}n))A0

n(σ′({p}n , {h}n))†

= 2Re
[
A0
n(σ({p}n , {h}n))†A0

n(σ′({p}n , {h}n))
]
, (2.21)

which implies that the sum over helicities is indeed real. Analogously, at one loop we have:

f1 ({ p }n) =

bn/2c+1∑
c=1

∑
σ∈Sn/Sn,c
σ′∈Sn/Zn

c1
n,c(σ, σ

′) a1
n,c(σ, σ

′; {p}n), (2.22)

where

a1
n,c(σ, σ

′; {p}n) = 2Re
[
A0
n(σ({p}n))†A1

n,c(σ
′({p}n))

]
. (2.23)

The Nc dependence of (2.18) ad (2.22) is in general given by:

f` =
P (Nc)

Nm
c

, (2.24)

where P (Nc) is a polynomial in Nc. The degree of P (Nc) and the integer m depend on `

and the number of gluons n. It is indeed possible to predict which is the highest power of

Nc appearing in a large Nc expansion of the squared quantities, as shown in Table 1.
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f highest Nc power

M0
n Nn

c

M1
n Nn+1

c

〈A0
n|(Ti · Tj)|A0

n〉 Nn+1
c

〈A1
n|(Ti · Tj)|A0

n〉+ 〈A0
n|(Ti · Tj)|A1

n〉 Nn+2
c

〈A0
n|(Ti · Tj)(Tk · Tl)|A0

n〉 Nn+2
c

Table 1: Highest power of Nc appearing in the squared quantities.

The leading colour approximation is defined retaining only the terms coming with the

power of Nc indicated in Table 1. Our convention is actually to incorporate an overall factor
N2
c−1
Nc2

in the definition of the leading colour contribution since this factor is ubiquitous in

our calculations and partially retains subleading terms without affecting the complexity.

We define the operator LC(·) which extracts the leading colour part of a given quantity. At

leading colour, (2.18) and (2.22) have a particularly simple form, since only the coherent

contributions with σ = σ′ survive. This convenient behaviour follows from the fact that

the trace basis behaves as an actual orthogonal basis at leading colour:

LC
[
(Tr(T aσ(1) . . .T aσ(n)))†Tr(T aσ′(1) . . .T aσ′(n))

]
=
Nn−2
c (N2

c − 1)

2n
δσσ′ . (2.25)

which is a direct consequence of Fierz identity for SU(Nc) generators in the fundamental

representation:

T aijT
a
kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)
. (2.26)

Using (2.25), it is straightforward to obtain the expression for squared matrix elements at

leading colour:

LC
[
M0

n({p}n)
]

= (Nc)
n−2 (N2

c − 1)

2n

∑
σ∈Sn/Zn

∣∣A0
n(σ({p}n))

∣∣2 (2.27)

and

LC
[
M1

n({p}n)
]

= (Nc)
n−1 (N2

c − 1)

2n

∑
σ∈Sn/Zn

2Re
[
A0
n(σ({p}n))†A1

n,1(σ({p}n))
]
. (2.28)

This simplicity is the foundation of the efficient application of the antenna subtraction in

the leading colour approximation. The antenna functions are directly derived from squared

matrix elements [8, 48, 49] and are therefore well suited to describe the infrared behaviour of

matrix elements when these are expressed as a sum of coherent squared partial amplitudes,

as it happens in the leading colour approximation. The same simple structure arises in

colour correlators too:

LC
[
〈C0
n,σ|Ti · Tj |C0

n,σ′〉
]

= −δσσ′χσ(i, j)

(
Nc

2

)
Nn−2
c (N2

c − 1)

2n
, (2.29)

LC
[
〈C1
n,1,σ|Ti · Tj |C0

n,σ′〉
]

= Nc LC
[
〈C0
n,σ|Ti · Tj |C0

n,σ′〉
]

(2.30)
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and

LC
[
〈C0
n,σ|(Ti · Tj)(Tk · Tl)|C0

n,σ′〉
]

= δσσ′χσ(i, j)χσ(k, l)

(
Nc

2

)2 Nn−2
c (N2

c − 1)

2n
, (2.31)

where χσ(i, j) is 1 if partons i and j appear adjacent to each other in the colour ordering

represented by σ and 0 otherwise.

At the subleading colour level, the emergence of incoherent interferences between dif-

ferent colour orderings spoils the pattern observed at leading colour. As pointed out in [9],

this represented an obstacle to the application of the antenna subtraction method beyond

leading colour. When the number of considered partons at the Born level np is small, in

particular for np < 4, relations among partial amplitudes can be conveniently exploited to

convert incoherent interferences into combinations of squared coherent partial amplitudes

and proceed as in the leading colour case. However, for np ≥ 4 this is not possible any

more and the treatment of the subleading colour part requires a significant effort. As we

show in the rest of this paper, working in colour space allows us to retain the full Nc

dependence in a straightforward way and to consistently approach leading and subleading

colour contributions with the same techniques.

In the following sections, we drop the explicit dependence of the amplitudes on the mo-

menta {p}n to ease the notation. Moreover, in general we consider Born-level (n+ 2)-parton

amplitudes, to keep n as the number of final-state partons. Indices 1 and 2 correspond to

initial-state partons, while i ≥ 3 indicates a final-state parton.

3 Colourful antenna subtraction at NLO

The NLO QCD correction to an n-jet partonic cross section with parton species a and b in

the initial state is given by:

dσ̂ab,NLO =

∫
n

(
dσ̂Vab,NLO + dσ̂MF

ab,NLO

)
+

∫
n+1

dσ̂Rab,NLO, (3.1)

where the symbol
∫
n indicates an integration over the n final state particles. dσ̂Vab,NLO and

dσ̂Rab,NLO respectively represent the virtual and real corrections, while dσ̂MF
ab,NLO is the NLO

mass factorization counterterm. The NLO cross section in (3.1), despite being well defined

and finite, is not suitable for numerical integration in this form. The virtual correction and

the mass factorization contribution contain explicit ε-poles and the real correction diverges

in soft and collinear infrared (IR) limits. These singularities cancel in the final result,

but a proper subtraction procedure is needed to separately remove the singularities in the

real and virtual corrections and make both integrals in (3.1) computable with numerical

methods.

In the context of antenna subtraction, this is achieved constructing a real subtraction

term dσ̂Sab,NLO [9], which locally removes the singular behaviour of dσ̂Rab,NLO in the IR limits

and can be analytically integrated over the phase space of the unresolved radiation. This

latter feature is required to obtain from dσ̂Sab,NLO the virtual subtraction term dσ̂Tab,NLO,
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which cancels the explicit poles of the virtual correction and contains the mass factorization

contribution. The NLO cross section can then be reformulated as:

dσ̂ab,NLO =

∫
n

[
dσ̂Vab,NLO − dσ̂Tab,NLO

]
+

∫
n+1

[
dσ̂Rab,NLO − dσ̂Sab,NLO

]
, (3.2)

with

dσ̂Tab,NLO = −
∫

1
dσ̂Sab,NLO − dσ̂MF

ab,NLO. (3.3)

Both contributions in (3.2) are now free of IR singularities and suitable for a numerical

integration through Monte Carlo methods. The procedure we have just depicted represents

the traditional antenna subtraction approach: the real subtraction term is constructed first,

studying the behaviour of the real radiation matrix elements in soft and collinear limits,

and then it is integrated and combined with the mass factorization contribution to obtain

the virtual subtraction term.

In the following we give an overview of the colourful antenna subtraction approach

at NLO. General subtraction schemes for automated NLO calculations have long been

available [39, 50], so the purpose of this section is mainly to introduce important concepts

concepts behind the new approach, which will be crucial for its application at NNLO.

Indeed, despite posing a significantly simpler task with respect to NNLO, some key obser-

vations can already be made at the NLO level. The main idea behind the colourful antenna

approach is to exploit the predictability of the singularity structure of virtual amplitudes

in colour space to directly construct the virtual subtraction term in a general way and

subsequently derive the real subtraction term with a systematic procedure.

3.1 IR singularity structure at one loop

The singularity structure of renormalized (n+ 2)-parton one-loop amplitudes in QCD can

be described in colour space with [40]:

|A1
n+2〉 = I(1)

(
ε, µ2

r

)
|A0

n+2〉+ |A1,fin
n+2(µ2

r)〉 , (3.4)

where µr is the renormalization scale, |A1,fin
n+2(µ2

r)〉 is a finite remainder and I(1)
(
ε, µ2

r

)
is

the Catani’s IR insertion operator given by [40]:

I(1)
(
ε, µ2

r

)
=

1

2

eεγE

Γ(1− ε)

n+2∑
i=1

1

T 2
i

Vi(ε)
∑
j 6=i

(Ti · Tj)
(
−sij
µ2
r

)−ε
. (3.5)

The singular functions Vi(ε) contain double and single ε-poles. The previous expression

can be rewritten as

I(1)
(
ε, µ2

r

)
=

1

2

n+2∑
i=1

∑
j 6=i

(Ti · Tj) I(1)
ij

(
ε, µ2

r

)
=
∑
(i,j)

(Ti · Tj) I(1)
ij

(
ε, µ2

r

)
, (3.6)
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where in the last line the sum runs over pairs of partons. For the gluons-only case that is

considered here, we only need the expression of I(1)
igjg

(
ε, µ2

r

)
at Nf = 0:

I(1)
igjg

(
ε, µ2

r

)
=

eεγE

Γ(1− ε)

[
1

ε2
+
b0
ε

](
−sij
µ2
r

)−ε
, (3.7)

where b0 is the gluon component of the one-loop QCD β-function:

b0 =
11

6
. (3.8)

Using (3.4) it is possible to extract the poles of one-loop matrix elements in the fol-

lowing way:

Poles
(
M1

n+2

)
= Poles

(
〈A0

n+2|A1
n+2〉+ 〈A1

n+2|A0
n+2〉

)
= Poles(〈A0

n+2|I(1) (ε) + I(1),† (ε) |A0
n+2〉) . (3.9)

The appearance of the sum I(1) (ε) +I(1),† (ε) indicates that only the real part of the inser-

tion operator affects the description of the poles at the matrix element level, as expected.

In the gluons-only case we can write the previous expression as

Poles
(
M1

n+2

)
= Poles

 ∑
(ig ,jg)

〈A0
n+2|Tig · Tjg |A0

n+2〉 2Re
(
I(1)
igjg

(
ε, µ2

r

)) , (3.10)

where we moved the colour sandwich outside the real part, since, as argued in section 2.3

it is a real quantity. At the cross section level we have

Poles
(
σ̂Vgg,NLO

)
= N V

NLO

∫
dΦn(p3, . . . , pn+2; p1, p2) J (n)

n ({p}n)

×Poles

 ∑
(ig ,jg)

〈A0
n+2|Tig · Tjg |A0

n+2〉 2 Re
(
I(1)
igjg

(
ε, µ2

r

)) . (3.11)

In (3.11), dΦn denotes the standard (2 → n)-particle phase space and J
(m)
n ({p}m) is the

jet algorithm which selects n jets from m final-state parton momenta. The factor N V
NLO is

given by

N V
NLO =

(
αsC(ε)

2π

)
NLO, (3.12)

where NLO contains the overall factors appropriate for the LO process, such as the strong

coupling, symmetry factors and factors coming from the spin- and colour-average over the

initial-state partons.

3.2 NLO mass factorization

For processes involving initial-state partons, it is necessary to treat the singularities arising

when a final-state parton becomes collinear to the initial-state ones. These singularities
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are removed defining physical parton density functions which are obtained from the bare

ones by means of mass factorization counterterms. At NLO this counterterm is given by

dσ̂MF
ab,NLO = −

(
αsC(ε)

2π

)∑
c,d

∫
dx1

x1

dx2

x2
Γ

(1)
ab;cd(x1, x2) dσ̂cd,LO, (3.13)

where x1 and x2 represent the momentum fractions transferred to the hard process and

Γ
(1)
ab;cd (x1, x2) denotes the NLO mass factorization kernel:

Γ
(1)
ab;cd (x1, x2) = Γ

(1)
ca,full (x1) δdbδ(1− x2) + Γ

(1)
db,full (x1) δcaδ(1− x1). (3.14)

The Γ
(1)
ca,full (xi) contain the LO Altarelli-Parisi splitting kernels p0

ca(xi) [51] and can be

organized into several layers corresponding to different colour factors (the subscript ‘full’

precisely indicates this). In principle, equation (3.13) has both identity preserving and

identity changing contributions, respectively when (c, d) = (a, b) and (c, d) 6= (a, b). In the

gluons-only case, we have (c, d) = (a, b) = (g, g), so only gluon-to-gluon splitting kernels

contribute:

Γ(1)
gg;gg (x1, x2) = Γ

(1)
gg,full (x1) δ(1− x2) + Γ

(1)
gg,full (x1) δ(1− x1), (3.15)

where we only extract the gluon component of the splitting kernels at Nf = 0:

Γ
(1)
gg,full (xi) = Nc Γ(1)

gg (xi) = −1

ε
Nc p

0
gg(xi), (3.16)

with [51]:

p0
gg(x) = b0δ(1− x) + 2

(
1

1− x

)
+

+
2

x
− 2x2 + 2x− 4. (3.17)

It is possible to express the identity preserving mass factorization kernels in colour space, in

analogy to the formalism used in the previous section to represent the singularity structure

of the one-loop amplitudes. We define:

Γ(1)
gg;gg (x1, x2) = Γ

(1)
gg,full (x1) δ(1− x2) + Γ

(1)
gg,full (x2) δ(1− x1), (3.18)

where

Γ
(1)
gg,full (xi) = −Γ

(1)
gg,full (xi)

1

CA

∑
j 6=i
Ti · Tj , i = 1, 2. (3.19)

This colour operator is proportional to the identity in colour space when it acts on a colour

singlet vector, due to colour conservation (2.17) and (2.11), therefore

Γ(1)
gg;gg (x1, x2) |A`n+2〉 = Γ(1)

gg;gg (x1, x2) |A`n+2〉 , (3.20)

which restores the original result, namely that the mass factorization counterterm factorizes

onto the full corresponding LO matrix element. We can then rewrite (3.13) in the gluons-

only case as

dσ̂MF
gg,NLO = −N V

NLO

∫
dx1

x1

dx2

x2

∫
dΦn(p3, . . . , pn+2;x1p1, x2p2) J (n)

n ({p}n)

×〈A0
n+2|Γ(1)

gg;gg (x1, x2) |A0
n+2〉 . (3.21)
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3.3 NLO virtual subtraction term

The virtual subtraction term at NLO σ̂Tgg,NLO has to reproduce the explicit poles of the

virtual matrix element as well as include the mass factorization contribution. Traditionally

this was achieved summing the mass factorization counterterm with the real subtraction

term after analytical integration over the phase space of an unresolved parton, as indicated

by (3.3). In this approach we exploit a combination of equations (3.11) and (3.21) to

directly construct σ̂Tgg,NLO. To do so, we define a NLO singularity dipole operator in

colour space for an (n+ 2)-parton process:

J (1)(ε) =
∑

(i,j)≥3

(Ti · Tj)J (1)
2 (ig, jg) +

∑
i 6=1,2

(T1 · Ti)J (1)
2 (1g, ig)

+
∑
i 6=1,2

(T2 · Ti)J (1)
2 (2g, ig) + (T1 · T2)J (1)

2 (1g, 2g) . (3.22)

The first sum runs over all pairs of gluons in the final state, the second and the third sums

include all pairs with an initial-state gluon (respectively 1g and 2g) and a final-state one

and the last term addresses the configuration where both gluons are in the initial state.

The scalar functions J (1)
2 (i, j) are colour stripped one-loop integrated dipoles [9, 52], given

by a combination of integrated three-parton tree-level antenna functions and NLO mass

factorization kernels. The explicit expressions of the gluon-gluon integrated dipoles for

final-final (FF), initial-final (IF) and initial-initial (II) configurations are the following:

J (1)
2 (ig, jg) =

1

3
F0

3 (sij),

J (1)
2 (1g, jg) =

1

2
F0

3,g(s1j)−
1

2
Γ(1)
gg (x1) ,

J (1)
2 (1g, 2g) = F0

3,gg(s12)− 1

2
Γ(1)
gg (x1) δ2 −

1

2
Γ(1)
gg (x2) δ1, (3.23)

where δi = δ(1−xi). The structure of the integrated dipoles is chosen in such a way that the

singularities carried by the mass factorization kernels cancel with poles in the integrated

initial-final and initial-initial antenna functions associated with initial-state collinear diver-

gences. The remaining ε-poles exactly match the ones of the virtual matrix element, once

the operator in (3.22) is evaluated on the corresponding Born-level amplitude in colour

space. In particular, at one loop the following relation holds:

Poles
[
J (1)

2 (ig, jg)
]

= Poles
[
Re
(
I(1)
igjg

(
ε, µ2

r

))]
, (3.24)

where the integrated dipole on the left-hand side can be in the FF, IF or II configuration.

Therefore, exploiting the dipole operator defined in (3.22), it is possible to express the

NLO virtual subtraction term as

dσ̂Tgg,NLO = N V
NLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n)

×2 〈A0
n+2|J (1)(ε)|A0

n+2〉 . (3.25)

This virtual subtraction term describes in a general way the singularity structure of an

(n+ 2)-gluon one-loop matrix element and includes the mass factorization contribution.
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Once this is subtracted from dσ̂Vgg,NLO, an ε-finite quantity is obtained, which can be in-

tegrated via Monte Carlo techniques. The explicit expression for the subtraction term

in (3.25) is obtained computing the colour sandwiches 〈A0
n+2|Ti · Tj |A0

n+2〉 and dressing

them with the associated colour stripped integrated dipoles, as indicated by the struc-

ture of (3.22). We remark that (3.25) is a completely general result in the case of gluon

scattering: it is valid for any number of external legs n and retains the full Nc dependence.

3.4 NLO real subtraction term

In the traditional approach, the NLO real subtraction term, describing the divergent be-

haviour of the real emission matrix elements in the IR limits, is constructed combining

unintegrated NLO antenna functions with reduced matrix elements. In the colourful an-

tenna approach, as explained in section 3.3, the starting point is the virtual subtraction

term, while the real subtraction term is obtained in an automated way from it. The key

concept is the cancellation of the IR singularities between real and virtual corrections.

Apart from the mass factorization counterterm, each term in dσ̂Tgg,NLO must have an un-

integrated counterpart in dσ̂Sgg,NLO. Therefore, it is possible to define a correspondence

between integrated and unintegrated structures appearing at the virtual and real level

respectively:

X 0
3 (sij) a

0
n+2(σ, σ′, {., i, ., j, .}) ↔ X0

3 (i, k, j)a0
n+2(σ, σ′, {., ĩk, ., k̃j, .}), (3.26)

where X 0
3 (sij) is the integrated tree-level antenna function obtained integrating X0

3 (i, k, j)

over the phase space of the unresolved parton k. The notation ĩk and k̃j indicates a suitable

momentum mapping {pi, pk, pj} → {pĩk, pk̃j} [53] from the (n+ 1)-particle phase space to

the n-particle phase space, obtained after the integration over the phase space of the unre-

solved gluon k. Due to this correspondence, once the virtual subtraction term is obtained,

the structure of the real subtraction term can be completely determined by inserting an

unresolved gluon between each pair of hard radiators appearing in the integrated dipoles.

This involves a transition from an integrated NLO antenna to an unintegrated one and

from a genuine LO colour interference to a reduced one where the n-particle momenta are

meant to be obtained from a (n + 1)-particle phase space through a suitable mapping.

The right-hand-side of (3.26) reproduces the divergent behaviour of the real interference

a0
n+3(σ, σ′; {., i, ., k, ., j, .}) when gluon k is unresolved between the hard pair (i, j).

The procedure to obtain dσ̂SNLO,gg from dσ̂TNLO,gg can be summarized as follows:

• remove the splitting kernels from the expression of the integrated dipoles J (1)
2 in

dσ̂TNLO,gg;

• replace each integrated gluon-gluon F0
3 with its unintegrated version inserting an

unresolved gluon:
FF: F0

3 (sij) → 3 f0
3 (i, k, j),

IF: F0
3,g(s1i) → 2 f0

3,g(1, k, i),

II: F0
3,gg(s12) → F 0

3,gg(1, k, 2),

(3.27)
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where the numerical coefficients are symmetry factors related to the antenna phase

space;

• suitably replace the momenta in the colour interferences, according to the accompa-

nying integrated antenna:

a0
n+2(σ, σ′, {., i, ., j, .})→ a0

n+2(σ, σ′, {., ĩk, ., k̃j, .}); (3.28)

• apply the same momenta relabelling to the jet function:

J (m)
n (. . . , pi, . . . , pj , . . . )→ J (m)

n (. . . , p
ĩk
, . . . , p

k̃j
, . . . ); (3.29)

• the obtained expression is now a function of n+ 3 momenta, so the phase space has

to be adjusted accordingly:

dΦn(p3, . . . , pn+2;x1p1, x2p2)→ dΦn+1(p3, . . . , pn+3;x1p1, x2p2) (3.30)

and a sum over suitable permutations of these momenta is needed to have the full

real subtraction term;

• the overall factor used at the virtual level needs to be replaced by the appropriate

one for the real correction:

N V
NLO → NR

NLO = sR (4παs)NLO, (3.31)

where sR compensates the different final state symmetry factor for the real radiation

and for a process with n final-state gluons at the Born level we have:

sR =
n!

(n+ 1)!
=

1

n+ 1
. (3.32)

With this procedure for the derivation of the real subtraction term, the cancellation

of IR singularities between the real and virtual correction is trivially guaranteed. What is

left to check is that the constructed dσ̂SNLO,gg correctly reproduces the divergent behaviour

of the real correction matrix element in each unresolved limit once and only once. If

one inserts an unresolved gluon between each pair in the (n + 2)-gluon set and correctly

sums over the relevant permutations of the resulting set of n + 3 partons (with n + 1 in

the final state), it is clear that all possible unresolved limits at the real level are taken

into account. The double-counting of any unresolved configuration is avoided since the

unintegrated antenna functions in (3.27) are explicitly constructed to only reproduce the

divergence arising when gluon k is unresolved between the two hard radiators i and j. In

other words, each unintegrated f0
3 addresses one and only one configuration of unresolved

gluon and hard radiators pair.

We introduce the following notation for the procedure that we have just illustrated to

convert integrated quantities into their unintegrated counterparts:

dσ̂Sgg,NLO = −Ins
[
dσ̂Tgg,NLO

]
. (3.33)

The action of the Ins [·] operator on its argument is comprehensive of the steps discussed

above and can be systematically formulated as follows:
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1. Removal of the splitting kernels from the integrated dipoles;

2. Transition from integrated three-parton antenna functions to unintegrated ones, as

indicated by (3.27);

3. Momenta relabeling within colour interferences and jet functions according to the

accompanying antenna function;

4. Sum over permutations of the n+ 3 momenta to cover all possible IR limits;

5. Dressing of the obtained expression with the appropriate phase space and overall

coefficient factor.

The minus sign in (3.33) is explained in (3.3) and is needed to make the virtual subtraction

term cancel with the integrated real subtract term once the full result is computed. This

set of operations is sufficient at NLO, while it needs to be extended to be applied at NNLO.

Nevertheless, as we show in section 4, the majority of the NNLO subtraction terms can be

generated through the application of Ins [·] to integrated quantities, namely through the

very same insertion used at NLO. The only exception is represented by configurations that

require a simultaneous double insertion of unresolved gluons.

A clear parallelism can be identified between the colourful antenna approach at NLO

and the Catani-Seymour dipole formalism [39]. In both schemes, the real subtraction term

is obtained as a combination of dipole contributions exploiting the general factorization

properties of QCD in soft and collinear limits. However, in the Catani-Seymour dipole

formalism, as well as in other subtraction schemes both at NLO and NNLO, the principal

effort precisely lies in the construction of the subtraction term for the real emission. The

integrated version of such subtraction term eventually cancels the ε-poles in virtual correc-

tion. On the opposite, the peculiarity of the described colourful antenna method consists

in prioritizing the construction of the virtual subtraction term, from which the real sub-

traction term is then systematically inferred. As in the traditional subtraction schemes

the key requirement is the analytical integrability of the real subtraction term over the

phase space of the unresolved radiation, here it is crucial that the virtual subtraction term

is expressed in a language suitable for the unintegration procedure. The correspondence

between integrated antenna functions, collected in (3.22), and their unintegrated versions

guarantees this property.

On a practical standpoint, both the computation of colour operators insertions like

〈A0
n+2|J (1)(ε)|A0

n+2〉 and the application of Ins [·] can be performed with any symbolic

algebra program such as FORM, Mathematica or Maple. Once the symbolic expressions for

the subtraction terms are generated, they can be implemented in a numerical code which

performs the Monte Carlo integration.
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4 Colourful antenna subtraction at NNLO

The NNLO QCD correction to an n-jet cross section is given by:

dσ̂ab,NNLO =

∫
n

(
dσ̂V Vab,NNLO + dσ̂MF,2

ab,NNLO

)
+

∫
n+1

(
dσ̂RVab,NNLO + dσ̂MF,1

ab,NNLO

)
+

∫
n+2

dσ̂RRab,NNLO, (4.1)

where dσ̂V Vab,NNLO represents the double virtual correction, dσ̂RVab,NNLO the real virtual cor-

rection and dσ̂RRab,NNLO the double real correction. The mass factorization counterterm

is split into two terms associated with n- and (n + 1)-particle final states, respectively

dσ̂MF,2
ab,NNLO and dσ̂MF,1

ab,NNLO.

As for the NLO case, the quantity in (4.1) cannot be directly computed with numerical

methods. The singular behaviour of both the double real and real virtual corrections in the

IR limits must be subtracted and the explicit poles in the double virtual and real virtual

matrix elements need to be properly removed. To achieve this, the NNLO cross section is

rewritten in the context of antenna subtraction as [9]:

dσ̂ab,NNLO =

∫
n

[
dσ̂V Vab,NNLO − dσ̂Uab,NNLO

]
+

∫
n+1

[
dσ̂RVab,NNLO − dσ̂Tab,NNLO

]
+

∫
n+2

[
dσ̂RRab,NNLO − dσ̂Sab,NNLO

]
, (4.2)

where the subtracted quantities are the double virtual, the real virtual and the double real

subtraction term. These contributions have the following form:

dσ̂Sab,NNLO = dσ̂S,1ab,NNLO + dσ̂S,2ab,NNLO ,

dσ̂Tab,NNLO = dσ̂V Sab,NNLO −
∫

1
dσ̂S,1ab,NNLO − dσ̂MF,1

ab,NNLO ,

dσ̂Uab,NNLO = −
∫

1
dσ̂V Sab,NNLO −

∫
2

dσ̂S,2ab,NNLO − dσ̂MF,2
ab,NNLO . (4.3)

The double real subtraction term has been decomposed into two contributions which con-

tain single and double unresolved IR limits. In the real virtual subtraction term, dσ̂V Sab,NNLO
cancels the implicit singular behaviour of the real virtual correction in the soft and collinear

limits, while the remaining contributions remove the explicit ε-poles.

Analogously to NLO, in the traditional antenna subtraction approach the IR lim-

its [54–57] of the double real and real virtual matrix elements are studied first to construct

dσ̂Sab,NNLO and dσ̂V Sab,NNLO. These terms are then integrated and combined with the mass

factorization contributions to obtain the full infrastructure in (4.3).

The application of the colourful antenna subtraction method at NNLO begins by ad-

dressing the double virtual correction in colour space. The singularity structure of two-loop

amplitudes can be predicted in a general way and therefore the construction of the double
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VV

RV

RR

Figure 1: Structure of colourful antenna subtraction at NNLO. Descendant red arrows

represent the transition from an integrated quantity to its unintegrated counterpart via

single insertion (single arrow), double iterated insertion (two disjoint arrows) or double

simultaneous insertion (two connected arrows) of unresolved gluons. The definitions of

each component are listed in Table 2.

virtual subtraction term can be achieved without the need of studying the real emission

corrections first. The predictability of the poles of two-loop amplitudes in colour space is

neither limited by the number of partons in the process nor conceptually more involved

beyond leading colour. For this reason, if one aims at a general application of antenna

subtraction at NNLO, starting from the construction of dσ̂Uab,NNLO in colour space is sig-

nificantly more convenient. Once the double virtual subtraction term is constructed, the

real virtual and double real subtraction terms are generated by the insertion of unresolved

partons, exploiting the relations between integrated and unintegrated blocks in the sub-

traction terms in (4.3) and removing any spurious singularity.

In the rest of this section we show how this can be achieved in the case of gluon

scattering. To support the explanation, we summarize the procedure in Figure 1. Single

descendant red arrows represent the transition from an integrated quantity to its unin-

tegrated counterpart by means of the insertion of an unresolved gluon. Two disjoint red

arrows indicate the iterated insertion of two unresolved gluons, while two connected red

arrows indicate the simultaneous insertion of two unresolved gluons.
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U, a eq. (4.38)
U, a0 eq. (4.41)

U, a1 eq. (4.42)

U, b eq. (4.39)
U, b, c.u. eq. (4.59)

U, b, a.c.c. eq. (4.60)

U, c eq. (4.40)

S, a eq. (4.69)

S, b1 eq. (4.74)

S, b2 eq. (4.71)

S, c eq. (4.75)

S, d eq. (4.78)

T, a eq. (4.44)

T, b1 eq. (4.51)

T, b2 eq. (4.56)

T, b2, X
1
3 eq. (4.53)

T, b2, JX section 4.4.2

T, b2,MX eq. (4.54)

T, b3 eq. (4.58)

T, c eq. (4.64)

T, c1 eq. (4.61)

T, c2 eq. (4.62)

T, c0 section 4.4.3

Table 2: Definitions of each term appearing in Figure 1.

To facilitate the navigation through the paper, we list in Table 2 the location of the

definition of each term appearing in Figure 1.

4.1 IR singularity structure at two loops

The singularity structure of renormalized two-loop amplitudes in QCD is known [40] and

can be described in colour space by:

|A2
n+2〉 = I(1)

(
ε, µ2

r

)
|A1

n+2〉+ I(2)
(
ε, µ2

r

)
|A0

n+2〉+ |A2,fin
n+2(µ2

r)〉 , (4.4)

where, as before, |A2,fin
n+2(µ2

r)〉 is a finite remainder. The two-loop Catani IR insertion

operator has the following expression [40]:

I(2)
(
ε, µ2

r

)
= −β0

ε
I(1)

(
ε, µ2

r ; {p}n
)
− 1

2
I(1)

(
ε, µ2

r

)
I(1)

(
ε, µ2

r

)
+e−εγE

Γ(1− 2ε)

Γ(1− ε)

(
β0

ε
+K

)
I(1)

(
2ε, µ2

r

)
+H(2)

(
ε, µ2

r

)
. (4.5)

In the gluons-only case with Nf = 0 we have:

β0 = b0Nc =
11

6
Nc, (4.6)

K = k0Nc =

(
67

18
− π2

6

)
Nc. (4.7)

The colour structure of (4.5) is more involved than the colour charge dipole structure

of (3.5). As anticipated, products of two colour charge dipoles appear. The last line

of (4.5) contains the hard radiation function H(2)
(
ε, µ2

r ; {p}n
)

[40, 41, 58], which can be

decomposed in the following manner:

H(2)
(
ε, µ2

r

)
=
∑
i

CiH(2)
i (ε) Id + Ȟ(2)(ε, µ2

r), (4.8)
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where the sum runs over the n + 2 external partons and Ci are the Casimir coefficients.

The first term in (4.8) is proportional to the identity in colour space, while the second term

has a non-trivial colour structure, which can not be in general expressed in terms of colour

charge dipoles. However, the second term vanishes when sandwiched between tree-level

states [41, 58]:

〈A0
n+2| Ȟ(2)(ε, µ2

r) |A0
n+2〉 = 0. (4.9)

For the purpose of describing the IR singularity structure of the two-loop squared matrix

elements, the hard radiation function H(2)
(
ε, µ2

r

)
needs to be evaluated on tree-level states

and therefore it is possible to neglect Ȟ(2)(ε, µ2
r) in its decomposition. As we did for the

splitting kernels in section 3.2, we can express a colour operator proportional to the identity

as a sum of colour charge dipoles using colour conservation. We can then rewrite:∑
i

CiH(2)
i (ε) Id = −

∑
i

H(2)
i (ε)

∑
j 6=i
Ti · Tj

= −
∑
(i,j)

H(2)
ij (ε)Ti · Tj , (4.10)

where, as usual, the sum runs over pairs of partons and H(2)
ij = H(2)

i + H(2)
j . In the

gluon-only case we only need H(2)
g (ε) for Nf = 0:

H(2)
g (ε) =

eεγE

4Γ(1− ε)
Nc

ε

[
5

12
+

11

144
π2 +

ζ3

2

]
. (4.11)

Using (3.6) and (4.10) and neglecting Ȟ(2)(ε, µ2
r) we can rearrange equation (4.5) as:

I(2)
(
ε, µ2

r

)
= −β0

ε

∑
(i,j)

I(1)
ij

(
ε, µ2

r

)
Ti · Tj

−1

2

∑
(i,j)

∑
(k,l)

I(1)
ij

(
ε, µ2

r

)
I(1)
kl

(
ε, µ2

r

)
(Ti · Tj)(Tk · Tl)

+
∑
(i,j)

I(2)
ij

(
ε, µ2

r

)
Ti · Tj , (4.12)

where

I(2)
ij

(
ε, µ2

r

)
= e−εγE

Γ(1− 2ε)

Γ(1− ε)

(
β0

ε
+K

)
I(1)
ij

(
2ε, µ2

r

)
−H(2)

ij (ε) . (4.13)

We can now use (3.4), (4.4) and (4.5) to express the singularity structure of a two-loop
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matrix element:

Poles
(
M2

n

)
= Poles

(
〈A2

n|A0
n〉+ 〈A0

n|A2
n〉+ 〈A1

n|A1
n〉
)

= Poles
{
〈A1

n|I(1) (ε) + I(1),† (ε) |A0
n〉+ 〈A0

n|I(1) (ε) + I(1),† (ε) |A1
n〉

−1

2
〈A0

n|
(
I(1) (ε) + I(1),† (ε)

)(
I(1) (ε) + I(1),† (ε)

)
|A0

n〉

−β0

ε
〈A0

n|I(1) (ε) + I(1),† (ε) |A0
n〉

+e−εγE
Γ(1− 2ε)

Γ(1− ε)

(
β0

ε
+K

)
〈A0

n|I(1) (2ε) + I(1),† (2ε) |A0
n〉

+ 〈A0
n|H(2) (ε) +H(2),† (ε) |A0

n〉
}
. (4.14)

We see again that only the real part of the insertion operators is needed to describe the

singularity structure. Using (3.6) and (4.12) it is possible to recast equation (4.14) as:

Poles
(
M2

n

)
= Poles

{∑
(i,j)

2Re
[
I(1)
ij

(
ε, µ2

r

)] [
〈A1

n|Ti · Tj |A0
n〉+ 〈A0

n|Ti · Tj |A1
n〉
]

−1

2

∑
(i,j)

∑
(k,l)

2Re
[
I(1)
ij

(
ε, µ2

r

)]
2Re

[
I(1)
lk

(
ε, µ2

r

)]
〈A0

n|(Ti · Tj)(Tk · Tl)|A0
n〉

−β0

ε

∑
(i,j)

2Re
[
I(1)
ij

(
ε, µ2

r

)]
〈A0

n|Ti · Tj |A0
n〉

+
∑
(i,j)

2Re
[
I(2)
ij

(
ε, µ2

r

)]
〈A0

n|Ti · Tj |A0
n〉
}
. (4.15)

The poles of the double virtual cross section for gluons-only processes are therefore given

by:

Poles
(
σ̂V Vgg,NNLO

)
= N V V

NNLO

∫
dΦn(p3, . . . , pn+2; p1, p2) J (n)

n ({p}n)

× Poles
{ ∑

(ig ,jg)

2Re
[
I(1)
igjg

(
ε, µ2

r

)] [
〈A1

n|Tig · Tjg |A0
n〉+ 〈A0

n|Tig · Tjg |A1
n〉
]

−1

2

∑
(ig ,jg)

∑
(kg ,lg)

2Re
[
I(1)
igjg

(
ε, µ2

r

)]
2Re

[
I(1)
lgkg

(
ε, µ2

r

)]
〈A0

n|(Tig · Tjg)(Tkg · Tlg)|A0
n〉

−β0

ε

∑
(i,j)

2Re
[
I(1)
igjg

(
ε, µ2

r

)]
〈A0

n|Tig · Tjg |A0
n〉

+
∑
(i,j)

2Re
[
I(2)
igjg

(
ε, µ2

r

)]
〈A0

n|Tig · Tjg |A0
n〉
}
, (4.16)

where

N V V
NNLO =

(
αsC(ε)

2π

)2

NLO . (4.17)
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4.2 NNLO mass factorization

At NNLO, as indicated in (4.2) and (4.3), we have two different contributions to the mass

factorization counterterm: the double virtual and the real virtual mass factorization terms.

The decomposition is meant to separate contributions that are defined on the n-particle

phase space from terms that are defined on the (n+ 1)-particle phase space.

4.2.1 Double virtual mass factorization term

We first address the double virtual mass factorization term at NNLO. It can be written

as [9]:

dσ̂MF,2
ab,NNLO = −

∫
dx1

x1

dx2

x2

∑
c,d

{(
αsC(ε)

2π

)[
Γ

(1)
ab;cd (x1, x2)

(
dσ̂Vcd,NLO − dσ̂Tcd,NLO

)]

+

(
αsC(ε)

2π

)2 [
Γ

(2)
ab;cd (x1, x2)− β0

ε
Γ

(1)
ab;cd (x1, x2)

+
1

2

∑
α,β

[
Γ

(1)
ab;αβ ⊗ Γ

(1)
αβ;cd

]
(x1, x2)

]
dσ̂cd,LO

}
. (4.18)

The reduced two-loop mass factorization kernel is defined as [9]:

Γ
(2)
ab;cd (x1, x2) = Γ

(2)
ca,full (x1) δdbδ(1− x2) + Γ

(2)
db,full (x2) δcaδ(1− x1), (4.19)

where the Γ
(2)
ca,full (x1) can be written in terms of LO and NLO Altarelli-Parisi spitting

kernels [51, 59, 60] and have their own colour decomposition. In the gluons-only case we

simply need:

Γ
(2)
gg;gg (x1, x2) = Γ

(2)
gg,full (x1) δ(1− x2) + Γ

(2)
gg,full (x2) δ(1− x1), (4.20)

where we discard any contribution in the two-loop splitting kernel except for the gluon-to-

gluon one for Nf = 0. Thus we have:

Γ
(2)
gg,full (xi) = N2

c Γ
(2)
gg (xi) = − 1

2ε

(
N2
c p

1
gg(xi) +

β0Nc

ε
p0
gg(xi)

)
, (4.21)

where p1
gg(xi) is the Altarelli-Parisi NLO splitting kernel given by [60]:

p1
gg(x) =

[
67

9
− 4 ln(x) ln(1− x) + ln2(x)− π2

3

] [(
1

1− x

)
+

+
1

x
− 2 + x(1− x)

]
+2S2(x)

[
1

1 + x
− 1

x
− 2− x(1 + x)

]
+

27

2
(1− x) +

67

9

(
x2 − 1

x

)
−
(

25

3
− 11

3
x+

44

3
x2

)
ln(x)

+4(1 + x) ln2(x) +

(
8

3
+ 3ζ3

)
δ(1− x), (4.22)
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with

S2(x) = −2Li2(−x) +
1

2
ln2(x)− 2 ln(x) ln(1 + x)− π2

6
. (4.23)

As we did in section 3.2, it is possible to express the two-loop identity-preserving mass

factorization kernel in colour space as:

Γ
(2)
gg;gg (x1, x2) = Γ

(2)
gg,full (x1) δ(1− x2) + Γ

(2)
gg,full (x2) δ(1− x1), (4.24)

where

Γ
(2)
gg,full (xi) = −Γ

(2)
gg,full (xi)

1

CA

∑
j 6=i
Ti · Tj , i = 1, 2. (4.25)

We can then write the expression for the required double virtual mass factorization coun-

terterm as:

dσ̂MF,2
gg,NNLO = −N V V

NNLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n){
〈A0

n+2|Γ(1)
gg;gg (x1, x2) |A1

n+2〉+ 〈A1
n+2|Γ(1)

gg;gg (x1, x2) |A0
n+2〉

−2 〈A0
n+2|

[
Γ(1)
gg;gg ⊗J (1)(ε)

]
(x1, x2)|A0

n+2〉

+
1

2
〈A0

n+2|
[
Γ(1)
gg;gg ⊗ Γ(1)

gg;gg

]
(x1, x2)|A0

n+2〉

−β0

ε
〈A0

n+2|Γ(1)
gg;gg (x1, x2) |A0

n+2〉

+ 〈A0
n+2|Γ

(2)
gg;gg (x1, x2) |A0

n+2〉
}
, (4.26)

where we used the expression of dσ̂Tcd,NLO given in (3.25).

4.2.2 Real virtual mass factorization term

The real virtual mass factorization term is given by [9]:

dσ̂MF,1
ab,NNLO = −

(
αsC(ε)

2π

)∑
c,d

∫
dx1

x1

dx2

x2
Γ

(1)
ab;cd (x1, x2)

(
dσ̂Rcd,NLO − dσ̂Scd,NLO

)
. (4.27)

For later convenience, it can be split into two contributions:

dσ̂MF,1
ab,NNLO = dσ̂MF,1,a

ab,NNLO + dσ̂MF,1,b
ab,NNLO, (4.28)

with

dσ̂MF,1,a
ab,NNLO = −

(
αsC(ε)

2π

)∑
c,d

∫
dx1

x1

dx2

x2
Γ

(1)
ab;cd (x1, x2) dσ̂Rcd,NLO, (4.29)

dσ̂MF,1,b
ab,NNLO =

(
αsC(ε)

2π

)∑
c,d

∫
dx1

x1

dx2

x2
Γ

(1)
ab;cd (x1, x2) dσ̂Scd,NLO. (4.30)

In the gluons-only case, in analogy with (3.21), dσ̂MF,1,a
ab,NNLO can be rewritten as:

dσ̂MF,1,a
gg,NNLO = −NRV

NNLO

∫
dx1

x1

dx2

x2

∫
dΦn(p3, . . . , pn+2;x1p1, x2p2) J (n+1)

n ({p}n+1)

×〈A0
n+3|Γ(1)

gg;gg (x1, x2) |A0
n+3〉 , (4.31)
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where |A0
n+3〉 indicates the real correction to the (n+ 2)-gluon Born process and NRV

NNLO

is the appropriate overall coefficient at the real virtual level:

NRV
NNLO = sRV (4παs)

(
αsC(ε)

2π

)
NLO, with sRV = sR. (4.32)

Similarly, dσ̂MF,1,b
ab,NNLO can be rewritten as:

dσ̂MF,1,b
gg,NNLO =

(
αsC(ε)

2π

)∫
dx1

x1

dx2

x2
Γ(1)
gg;gg (x1, x2) dσ̂Sgg,NLO. (4.33)

We notice that the terms appearing in this mass factorization contribution have a structure

like Γ
(1)
gg X0

3a
0
n+2. As we show in section 4.4.2, this term is used to reconstruct one-loop

integrated dipoles that are needed in the real virtual subtraction term to remove the explicit

poles of one-loop reduced matrix elements.

4.3 NNLO double virtual subtraction term

The double virtual subtraction term at NNLO dσ̂Ugg,NNLO, reproduces the explicit poles

of the two-loop matrix element and contains the double virtual mass factorization coun-

terterm. In the following we see how to construct dσ̂Ugg,NNLO in a general way relying on

the results of the previous sections, in particular equations (4.16) and (4.26). In analogy

with (3.22), we define a two-loop insertion operator in colour space:

J (2)(ε) = Nc

∑
(i,j)≥3

(Ti · Tj)J (2)
2 (ig, jg) +Nc

∑
i 6=1,2

(T1 · Ti)J (2)
2 (1̂g, ig)

+Nc

∑
i 6=1,2

(T2 · Ti)J (2)
2 (2̂g, ig) +Nc (T1 · T2)J (2)

2 (1̂g, 2̂g) . (4.34)

The two-loop colour stripped integrated dipoles J (2)
2 have a more involved structure with

respect to their one-loop counterparts. The expressions of the gluon-gluon J (2)
2 are given

by [9, 52]:

J (2)
2 (ig, jg) =

1

4
F0

4 +
1

3
F1

3 +
1

3

b0
ε

(
|sij |
µ2
r

)−ε
F0

3 −
1

9

[
F0

3 ⊗F0
3

]
,

J (2)
2 (1̂g, jg) =

1

2
F0

4,g +
1

2
F1

3,g +
1

2

b0
ε

(
|s1j |
µ2
r

)−ε
F0

3,g −
1

4

[
F0

3,g ⊗F0
3,g

]
− 1

2
Γ

(2)
gg (x1) δ2,

J (2)
2 (1̂g, 2̂g) = F0,adj

4,gg +
1

2
F0,n.adj

4,gg + F1
3,gg +

b0
ε

(
|s12|
µ2
r

)−ε
F0

3,gg −
[
F0

3,gg ⊗F0
3,gg

]
−1

2
Γ

(2)
gg (x1) δ2 −

1

2
Γ

(2)
gg (x2) δ1, (4.35)

where we omitted the dependence on the scale sij in the integrated antennae. At NNLO,

as expected, we see the appearance of integrated four-parton antennae, integrated three-

parton one-loop antennae and a convolution of two three-parton integrated antennae, as

well as two-loop mass factorization kernels for initial-final and initial-initial configurations.
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In analogy with (3.24), we can relate the pole structure of (4.35) to the insertion operators

in (4.12):

Poles
[
Nc J (2)

2 (ig, jg)−
β0

ε
J (1)

2 (ig, jg)

]
= Poles

[
Re

(
I(2)
gg

(
ε, µ2

r

)
− β0

ε
I(1)
gg

(
ε, µ2

r

))]
.

(4.36)

Thus, using (3.22) and (4.34) we can construct an expression for the double virtual sub-

traction term in colour space:

dσ̂Ugg,NNLO = N V V
NNLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n)

×2
{
〈A0

n+2|J (1)(ε)|A1
n+2〉+ 〈A1

n+2|J (1)(ε)|A0
n+2〉

− 〈A0
n+2|J (1)(ε)⊗J (1)(ε)|A0

n+2〉

−β0

ε
〈A0

n+2|J (1)(ε)|A0
n+2〉

+ 〈A0
n+2|J (2)(ε)|A0

n+2〉
}
. (4.37)

The poles of the mass factorization kernels cancel against initial-state collinear poles in the

integrated IF and II antennae and the remaining singularities in (4.37) exactly cancel the

poles coming from the (n+ 2)-gluon two-loop matrix element in (4.16).

According to the usual decomposition of the double virtual subtraction term [9], we

conveniently split (4.37) into the following contributions:

dσ̂U,agg,NNLO = N V V
NNLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n)

×2
{
〈A0

n+2|J (1)(ε)|A1
n+2〉+ 〈A1

n+2|J (1)(ε)|A0
n+2〉

−β0

ε
〈A0

n+2|J (1)(ε)|A0
n+2〉

}
, (4.38)

dσ̂U,bgg,NNLO = N V V
NNLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n)

×2
{
− 〈A0

n+2|J (1)(ε)⊗J (1)(ε)|A0
n+2〉

}
, (4.39)

dσ̂U,cgg,NNLO = N V V
NNLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n)

×2 〈A0
n+2|J (2)(ε)|A0

n+2〉 . (4.40)

We further decompose dσ̂U,a into

dσ̂U,a0gg,NNLO = N V V
NNLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n)

×2
{
− β0

ε
〈A0

n+2|J (1)(ε)|A0
n+2〉

}
; (4.41)
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dσ̂U,a1gg,NNLO = N V V
NNLO

∫
dx1

x1

dx2

x2
dΦn(p3, . . . , pn+2;x1p1, x2p2)J (n)

n ({p}n)

×2
{
〈A0

n+2|J (1)(ε)|A1
n+2〉+ 〈A1

n+2|J (1)(ε)|A0
n+2〉

}
, (4.42)

where we separated the contribution of the one-loop amplitude from the β0 term, which

only contains tree-level amplitudes. We also label the contributions in dσ̂U,cgg,NNLO according

to the different terms in the two-loop integrated dipoles (4.34): dσ̂
U,c,X 0

4
gg,NNLO, dσ̂

U,c,X 1
3

gg,NNLO,

dσ̂
U,c,X 0

3⊗X 0
3

gg,NNLO and dσ̂U,c,b0gg,NNLO.

4.4 NNLO real virtual subtraction term

At NLO, once the virtual subtraction term is obtained, it is straightforward to system-

atically construct the real subtraction term. At NNLO, the structure of the subtraction

is significantly more involved, due to the presence of two additional layers besides the

double virtual correction: real virtual and double real. The real virtual subtraction term

dσ̂Tgg,NNLO must cancel the explicit ε-poles in the real virtual matrix element, as well as

remove the divergent behaviour in single unresolved IR limits. The double real subtraction

term dσ̂Sgg,NNLO is needed to remove the single and double unresolved divergences in the

double real correction. Due to the complexity of the NNLO IR structure, the systematic

generation of the real virtual and double real subtraction terms from the double virtual

one is non-trivial.

In the following, we illustrate how the real virtual subtraction term can be generated for

the gluons-only case. Once again, the correspondence between unintegrated real emission

subtraction terms and integrated virtual subtraction term is the key. The deduction of

dσ̂Tgg,NNLO from dσ̂Ugg,NNLO is articulated in two main steps:

• integrated terms are translated from dσ̂Ugg,NNLO to dσ̂Tgg,NNLO inserting an unresolved

gluon between a pair of hard radiators, via the application of Ins [·], in complete

analogy to what is done at NLO;

• suitable terms are generated to remove spurious ε-poles.

Any additional contribution which is added at the real virtual level and does not have a

direct correspondence to terms in dσ̂Ugg,NNLO will eventually generate corresponding terms

at the double real level after the insertion of a second unresolved gluon. We note that not

the entirety of dσ̂Ugg,NNLO will be translated to dσ̂Tgg,NNLO, some terms have to undergo a

double insertion of unresolved gluons and directly move from dσ̂Ugg,NNLO to dσ̂Sgg,NNLO, as

explained in section 4.5.

We recall the usual decomposition of dσ̂Tgg,NNLO in the context of antenna subtrac-

tion [9]:

dσ̂Tgg,NNLO = dσ̂T,a + dσ̂T,b + dσ̂T,c, (4.43)

where we dropped the subscript ‘gg,NNLO’ in the right-hand-side. The meaning of this

decomposition is the following:

• dσ̂T,a reproduces the explicit poles of the real virtual matrix element;
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• dσ̂T,b describes the divergent behaviour of the real virtual matrix element in single

unresolved limits;

• dσ̂T,c removes the overlap in the single unresolved behaviour between the two terms

above [9].

4.4.1 dσT,a

This part of the real virtual subtraction term is needed to remove the explicit poles of

the (n+ 3)-particle one-loop matrix element. Moreover, it contains the mass factorization

contribution dσ̂MF,1,a
gg,NNLO given in (4.31). The construction of σT,a is completely analogous

to the one adopted for the NLO virtual subtraction term in section 3.3, with the difference

that here we have an additional particle. It is clear that this term is not generated by

any integrated contribution at the double virtual level and so, as we show in section 4.5.1

below, its unintegrated counterpart will be added to the the double real subtraction term.

For the gluons-only case we have:

dσ̂T,a = NRV
NNLO

∫
dx1

x1

dx2

x2
dΦ(p3, . . . , pn+2;x1p1, x2p2)J

(n)
n+1({p}n+1)

×2 〈A0
n+3|J (1)(ε)|A0

n+3〉 . (4.44)

4.4.2 dσT,b

This block of the subtraction term reproduces the divergent behaviour of the real virtual

matrix element in single unresolved IR limits. The subtraction of infrared divergences from

a one loop matrix element is more involved than the one required at tree-level. In partic-

ular, along with tree-level antennae and reduced one-loop matrix elements (tree × loop),

suitable combinations of three-particle one-loop antenna functions and tree-level reduced

matrix elements (loop × tree) have to be used. Both these structures are present, in their

integrated form, in the double virtual subtraction term, since they describe the emission

of soft and collinear gluons from the one-loop amplitude. It is possible to systematically

generate these terms at the real virtual level starting from dσ̂Ugg,NNLO, as we show in the

following. According to [9], we introduce a suitable decomposition of dσ̂T,b:

dσ̂T,b = dσ̂T,b1 + dσ̂T,b2 + dσ̂T,b3 , (4.45)

where the elements on the right-hand-side respectively contain (tree × loop) contributions,

(loop × tree) contributions and suitable terms needed to ensure the correct renormalization

of loop quantities in the real virtual subtraction term.

We first focus on dσ̂T,b1 . The respective integrated counterparts appear in the double

virtual subtraction term as a combination of a one-loop integrated dipole and a one-loop

reduced matrix element. In particular, these contributions are given by dσ̂U,a1 . The pro-

cedure of inserting an unresolved gluon is the same as the one depicted in section 3.4, with

the tree-level amplitudes replaced by the one-loop ones. The result has the following form:

Ins
[
dσ̂U,a1

]
∼
∑
ijk

f0
3 (i, k, j) a1

n+2,c(σ, σ
′; {., ĩk, ., k̃j, .}). (4.46)
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The resulting contribution partially takes care of the divergent IR limits of the real virtual

matrix element. However, the one-loop interferences a1
n+2,c contain explicit ε-poles which

must be removed to ensure the finiteness of the real virtual subtraction term. In fact, it is

possible to systematically generate suitable terms that cancel these poles, exploiting once

again the predictability of the singularity structure of one-loop amplitudes. The following

relation holds:

Poles

2
∑
(i,j)

(
〈A0

n+2| (Ti · Tj) |A1
n+2〉+ 〈A1

n+2| (Ti · Tj) |A0
n+2〉

)
= Poles

4
∑
(i,j)

Re
(
〈A0

n+2| (Ti · Tj) |A1
n+2〉

)
= Poles

4
∑
(i,j)

Re

〈A0
n+2| (Ti · Tj)

∑
(k,l)

(Tk · Tl) I
(1)
kl

(
ε, µ2

r

) |A0
n+2〉


= −2Poles

−2
∑
(i,j)

∑
(k,l)

Re
[
I(1)
kl

(
ε, µ2

r

)]
〈A0

n+2| (Ti · Tj) (Tk · Tl) |A0
n+2〉

 , (4.47)

which is analogous to state that the ε−4 and ε−3 poles in the first and second lines of (4.15)

are related by the same factor −2 we see in the last line here. Equation (4.47) indicates

that the pole structure of Ins
[
dσ̂U,a1

]
can be obtained in a general way by applying the

unresolved parton insertion operator in dσ̂U,b. In particular we have:

Poles
{
Ins

[
dσ̂U,a1

]}
= Poles

{
−2 Ins

[
dσ̂U,b

]
− dσ̂MF,1,b

}
. (4.48)

Equation (4.48) requires some comments. First of all, the Ins [·] operator removes the

splitting kernels from both the J (1) present in dσ̂U,b and dσ̂MF,1,b, given by (4.33), exactly

reconstructs the one-loop integrated dipole which is not affected by the insertion of the

unresolved parton. Secondly, step 3 of the list in section 3.4 needs to be extended: the

momentum relabelling here affects not only the colour interferences and the jet function,

but also the integrated dipole which is not converted into unintegrated antenna functions.

This applies in general at NNLO, namely the transition to higher multiplicities via mo-

menta relabelling occurs within any function of the external momenta accompanying the

integrated dipole which is converted into unintegrated antennae. The choice of which in-

tegrated dipole to convert into an unintegrated antenna function should be done in such

a way any pair of hard radiators is addressed once and only once. In practise this can be

easily achieved performing the decomposition:

J (1)
2 (i, j)J (1)

2 (l, k) =
1

2
J (1)

2 (i, j)J (1)
2 (l, k) +

1

2
J (1)

2 (k, l)J (1)
2 (i, j) (4.49)

and then fixing the first dipole in each term of the symmetrized expression on the right-

hand-side to be the one converted into unintegrated antennae. Therefore, the structure of

the right-hand-side of (4.48) is given by:

−2 Ins
[
dσ̂U,b

]
−dσ̂MF,1,b ∼ −2

∑
ijk,lm

f0
3 (i, k, j)J (1)

2 (l,m)a0
n+2(σ, σ′; {., ĩk, ., k̃j, .}), (4.50)
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where l and m can represent either ĩk and k̃j or any other parton not belonging to the

(i, j) dipole. We can thus write down the first contribution to the real virtual subtraction

term as:

dσ̂T,b1 = −Ins
[
dσ̂U,a1

]
− 2 Ins

[
dσ̂U,b

]
− dσ̂MF,1,b

gg,NNLO, (4.51)

which is free of ε-poles. We observe that, to compensate dσ̂U,b in the double virtual

subtraction term, we should add back a factor +Ins
[
dσ̂U,b

]
. This contribution is indeed

added later in the generation of the real virtual and double real subtraction terms.

We consider now dσ̂T,b2 , namely (loop × tree) contributions. The core part of this

term is given by unintegrated three-parton one-loop antenna functions X1
3 combined with

tree-level reduced matrix elements. The integrated counterpart of these terms is contained

in dσ̂U,c,X
1
3 . Once again, we can insert an unresolved gluon and obtain from dσ̂U,c,X

1
3 the

contribution needed at the real virtual level. As it happened for dσ̂T,b1 , if one simply con-

siders Ins
[
dσ̂U,c,X

1
3

]
, spurious ε-poles coming from the one-loop antennae would remain

in the real virtual subtraction term. Therefore, these singularities need to be removed to

obtain a finite subtraction term. This can be done systematically since the singularity

structure of the unintegrated three-parton one-loop antenna functions is known and can

be expressed by means of one-loop integrated dipoles and three-parton tree-level anten-

nae [8, 9]. The construction of the required blocks in the specific case of a f1
3 antenna, the

only one needed for gluon scattering, is achieved through the following replacement:

f1
3 (i, k, j)→ f1

3 (i, k, j) +
3∑

(l,m)=1

J (1)
2 (l,m)f0

3 (i, k, j)− 2J (1)
2 (ĩk, k̃j)f0

3 (i, k, j), (4.52)

where the sum in the second term runs over the 3 pairs of colour-connected gluons in the

f1
3 (i, k, j) antenna. The expression obtained after the replacement in (4.52) is free of poles

and can be used to construct the missing part of the real virtual subtraction term. To

use a similar notation to [9], we label dσ̂T,b2,X
1
3 , dσ̂T,b2,JX and dσ̂T,b2,MX the three blocks

coming from the three components in (4.52). As we have already stated

dσ̂T,b2,X
1
3 = −Ins

[
dσ̂U,c,X

1
3

]
∼
∑
ijk

f1
3 (i, k, j)a0

n+2(σ, σ′; {., ĩk, ., k̃j, .}). (4.53)

The two remaining blocks are treated differently: dσ̂T,b2,MX comes from dσ̂U,c,X
0
3⊗X 0

3 after

the insertion of an unresolved gluon, while dσ̂T,b2,JX is a genuinely new contribution added

at the real virtual level, which needs to be compensated by its unintegrated counterpart

at the double real level. This can be noticed looking at the arguments of the integrated

dipoles appearing in the two blocks. dσ̂T,b2,MX depends on mapped momenta, which come

from the insertion of an extra unresolved gluon in the n-particle phase space, where the

double virtual subtraction term lives. On the other hand, the integrated dipoles in dσ̂T,b2,JX

depend on (n + 1)-particle phase space momenta, which are not accessible at the double

virtual level. It is trivial to verify that the mass factorization kernels in the integrated

dipoles in dσ̂T,b2,JX and dσ̂T,b2,MX exactly cancel for any configuration of gluons i, j and

k. For bookkeeping purposes we label this mass factorization dσ̂MF,1,b2 .
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For dσ̂T,b2,MX one obtains the relation:

dσ̂T,b2,MX = −2Ins
[
dσ̂U,c,X

0
3⊗X 0

3

]
− dσ̂MF,1,b2 . (4.54)

The structure of dσ̂T,b2,MX is indeed the required one, according to (4.52):

dσ̂T,b2,MX ∼ −2
∑
ijk

f0
3 (i, k, j)J (1)

2 (ĩk, k̃j)a0
n+2(σ, σ′; {., ĩk, ., k̃j, .}). (4.55)

The leftover +Ins
[
dσ̂U,c,X

0
3⊗X 0

3

]
is used in dσ̂T,c, as we show in the next section. In the

gluons-only case, the two integrated antennae are identical (see (4.35)), so the choice of

which one has to be translated into its unintegrated form is irrelevant. In general, the same

symmetrization procedure employed for dσ̂U,b can be used here as well. In conclusion, the

(loop × tree) block is given by:

dσ̂T,b2 = −Ins
[
dσ̂U,c,X

1
3

]
+ dσ̂T,b2,JX − 2Ins

[
dσ̂U,c,X

0
3⊗X 0

3

]
− dσ̂MF,1,b2 , (4.56)

which is free of ε-poles. We remark again that dσ̂MF,1,b2 is compensated by an identical

contribution in dσ̂T,b2,JX and no new mass factorization kernels are actually added in dσ̂T,b2 .

The last contribution to dσ̂T,b is required to fix the renormalization of one-loop quan-

tities in dσ̂T,b1 and dσ̂T,b2 . To fix the correct renormalization of both the one-loop matrix

elements and the one-loop antenna functions it is sufficient to perform the following re-

placement [8]:

X1
3 (i, k, j)→ X1

3 (i, k, j) +
b0
ε
X0

3 (i, k, j)

((
|sijk|
µ2
r

)−ε
− 1

)
. (4.57)

dσ̂T,b3 is entirely constructed with terms coming from the double virtual subtraction term:

dσ̂T,b3 = −Ins
[
dσ̂U,a0

]
− Ins

[
dσ̂U,c,b0

]
, (4.58)

as can be easily checked keeping track of the QCD β-function coefficient b0.

4.4.3 dσT,c

The last block of the real virtual subtraction term is dσ̂T,c. This block has two components,

one which is better identified as the integrated version of part of the double real subtraction

term and one which can be obtained as the unintegrated counterpart of contributions

at the double virtual level. In the original antenna subtraction approach [9], dσ̂T,c was

constructed starting from the former contribution and adding the latter subsequently to

remove spurious ε-poles and ensuring the finiteness of the full real-virtual contribution.

In particular, dσ̂S,c, the block containing almost colour-connected contributions [61] and

large angle soft terms [62, 63] at the double real level, is integrated over the phase space

of an unresolved parton and used as part of dσ̂T,c. To remove the singularities present in

these results, two blocks denoted as dσ̂T,c1 and dσ̂T,c2 in [9] are generated. The integrated

counterparts of these two blocks are then used respectively in dσ̂U,b and dσ̂U,c.
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The procedure we present in the following to construct dσ̂T,c proceeds in reverse with

respect to the one summarized above. We first deduce dσ̂T,c1 and dσ̂T,c2 from the double

virtual subtraction term and then we infer the complete structure of the combination of

integrated almost colour-connected terms and large angle soft terms. Again, the guiding

principle is the cancellation of unwanted ε-poles, which, combined with the knowledge of

the general structure of dσ̂S,c, allows for a systematic generation of dσ̂T,c.

The first block dσ̂T,c1 comes from the leftover +Ins
[
dσ̂U,b

]
that we did not use in

section 4.4.2. However, we can identify in dσ̂U,b two types of structures: almost colour-

connected contributions and colour-unconnected contributions [9, 61]. These latter terms

do not need to be included at the real virtual level and can actually be moved from

the double virtual to the double real subtraction term directly. The reason is that the

integration over the phase space of two unresolved colour-unconnected partons can be

performed independently. In our top-down approach (see Figure 1), this means that two

unresolved partons can be iteratively inserted to produce a contribution to the double real

subtraction term, as we show in section 4.5.4. The colour-unconnected contribution in

dσ̂U,b, which we label as dσ̂U,b,c.u. can be easily identified since, in the convolution of two

one-loop integrated dipoles, the two partons that form the first dipole are both different

from either of the two partons appearing as arguments of the second. Namely:

dσ̂U,b,c.u. ∼ J (1)
2 (i, j)⊗ J (1)

2 (k, l), with i 6= k, l and j 6= k, l. (4.59)

For the purpose of constructing dσ̂T,c1 , we can then decompose dσ̂U,b into

dσ̂U,b = dσ̂U,b,a.c.c. + dσ̂U,b,c.u., (4.60)

where dσ̂U,b,a.c.c. contains almost colour-connected contributions and is identified removing

from dσ̂U,b contributions with a structure like (4.59). dσ̂T,c1 is then obtained as

dσ̂T,c1 = +Ins
[
dσ̂U,b,a.c.c.

]
+ dσ̂MF,1,c1 . (4.61)

The structure of this term is the same as the one in (4.50), where the contribution with

l and m both different from ĩk or k̃j have been removed. To generate dσ̂T,c2 , we directly

use the leftover +Ins
[
dσ̂U,c,X

0
3⊗X 0

3

]
:

dσ̂T,c2 = +Ins
[
dσ̂U,c,X

0
3⊗X 0

3

]
+ dσ̂MF,1,c2 , (4.62)

which has a structure analogous to (4.55). In the previous expressions, the two contribu-

tions dσ̂MF,1,c1 and dσ̂MF,1,c2 contain the mass factorization kernels needed to reconstruct

integrated dipoles, however they will be immediately subtracted back again and are in-

cluded explicitly here only for consistency of notation. As we said, the sum dσ̂T,c1 + dσ̂T,c2

exhibits explicit singularities that need to be cancelled adding a suitable block which repre-

sents the integrated counterpart of almost colour-connected contributions and large angle

soft terms in the double real subtraction term. The systematic generation of this contribu-

tion is a crucial step in the colourful antenna subtraction method and in the gluons-only
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case can be achieved through the following replacements in the combination dσ̂T,c1 +dσ̂T,c2 :

f0
3 (i, k, j)J (1)

2 (ĩk, k̃j) → f0
3 (i, k, j)

[
J (1)

2 (ĩk, k̃j)− J (1)
2 (i, j)

+S(sij , si′j′ , 1)− S(s(ik)(kj), si′j′ , x(ik)(kj),i′j′)
]
,

f0
3 (i, k, j)J (1)

2 (ĩk, a) → f0
3 (i, k, j)

[
J (1)

2 (ĩk, a)− J (1)
2 (i, a)

+S(sia, si′j′ , xia,ij)− S(s(ik)a, si′j′ , x(ik)a,i′j′)
]
,

f0
3 (i, k, j)J (1)

2 (b, k̃j) → f0
3 (i, k, j)

[
J (1)

2 (b, k̃j)− J (1)
2 (b, j)

+S(sbj , si′j′ , xbj,ij)− S(sb(kj), si′j′ , xb(kj),i′j′)
]
, (4.63)

where S denotes the integrated large angle soft terms [62, 64]. These replacements cover

all possible structures appearing in dσ̂T,c1 + dσ̂T,c2 . The expressions on the right-hand-

side of (4.63) are free of poles, since the residual singularities in the difference of one-

loop integrated dipoles are removed by the integrated large angle soft terms and this

cancellation is in fact the guiding principle through which (4.63) is constructed. Moreover,

as we anticipated, the mass factorization kernels needed for the newly introduced integrated

dipoles exactly cancel the ones present in dσ̂MF,1,c1 and dσ̂MF,1,c2 , in such a way that the

resulting expression is actually free of mass factorization kernels. Partons i′ and j′ can

be chosen arbitrarily since there is a priori no singular behaviour associated with them.

They appear as reference momenta in a phase space mapping for a soft gluon radiation

between other momenta i and j that can but do not have to be different from i′ and j′

(all arrangements of i, j and i′, j′ are discussed in Section 4.5.3 below). In particular, for

process involving four or more partons at the Born level, i′ and j′ can be chosen to be two

final-state partons [64]. This implies that the integrated large angle soft terms appearing

in (4.63) are obtained through the integration of soft eikonal factors over a FF configuration,

which requires a simpler momentum mapping with respect to IF or II configurations. The

identification of i′ and j′ must be inherited properly to the double real level, where the

unintegrated counterpart of the large angle soft terms in (4.63) is needed to compensate

for the oversubtraction of large angle soft gluon radiation [62, 63, 65]. We label dσ̂T,c0 the

new block generated through (4.63) and we can finally construct dσ̂T,c as:

dσ̂T,c = dσ̂T,c0 + dσ̂T,c1 + dσ̂T,c2 . (4.64)

This last step completes the construction of the real virtual subtraction term. We

notice that almost the entire double virtual subtraction term has been converted into

its unintegrated counterpart and has been used at the real virtual level, with the only

exceptions being dσ̂U,b,cu and dσ̂U,c,X
0
4 , which are directly converted to the double real

subtraction term via the insertion of two unresolved gluons. Moreover, new components

had to be added at the real virtual level to cancel unwanted singularities and need a

corresponding counterpart in the double real subtraction term. These components are

dσ̂T,a, dσ̂T,b2,JX and dσ̂T,c0 .
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4.5 NNLO double real subtraction term

The last ingredient for an NNLO calculation is the double real subtraction term dσ̂Sgg,NNLO,

which removes the divergent behaviour of the double real matrix element in single and

double unresolved limits. In the colourful antenna subtraction approach, the generation of

dσ̂Sgg,NNLO is performed at the end, with the significant advantage of avoiding to deal with

the involved IR structure of the matrix elements arising from the large number of partons.

Once the double virtual and the real virtual subtraction terms are available, it is indeed

straightforward to complete the subtraction procedure with the missing blocks needed to

cancel the unmatched contributions in those two layers. The double real subtraction term

is constructed inserting a second unresolved gluon in contributions coming from dσ̂Tgg,NNLO
and two unresolved gluons in terms coming from dσ̂Ugg,NNLO. The only non-trivial step,

as we show later in this section, is related to these latter contributions, in particular to

the insertion of an unresolved gluon pair in the integrated four-parton antennae X 0
4 . The

appropriate overall coefficient to be used to dress the double real subtraction term is given

by:

NRR
NNLO = sRR(4παs)

2NLO, (4.65)

where, in the gluons-only case we have

sRR =
n!

(n+ 2)!
=

1

(n+ 1)(n+ 2)
. (4.66)

We recall the usual decomposition of dσ̂Sgg,NNLO [9]:

dσ̂Sgg,NNLO = dσ̂S,a + dσ̂S,b + dσ̂S,c + dσ̂S,d. (4.67)

The first term dσ̂S,a removes single unresolved limits and it is analogous to an NLO real

subtraction term for an (n + 3)-particle Born process. The remaining terms respectively

reproduce the divergent behaviour of the double real correction in colour-connected, al-

most colour-connected and colour-unconnected configurations [9, 61]. Moreover, dσ̂S,c also

contains the large angle soft terms. In the following, we describe how to systematically

generate each contribution.

4.5.1 dσS,a

This part of the subtraction term can be straightforwardly generated from dσ̂T,a, since it

can be seen as its corresponding real NLO subtraction term. Indeed, the following relation

holds:

dσ̂T,a = −
∫

1
dσ̂S,a − dσ̂MF,1,a, (4.68)

which reflects equation (3.3) and therefore, following what is done in section 3.4 for the

NLO real subtraction term, we can write:

dσ̂S,a = −Ins
[
dσ̂T,a

]
. (4.69)
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4.5.2 dσS,b

In the colour-connected configuration, the two unresolved gluons are emitted between the

same pair of hard radiators. According to [9], we further decompose dσ̂S,b into two contri-

butions:

dσ̂S,b = dσ̂S,b1 + dσ̂S,b2 , (4.70)

where dσ̂S,b1 contains four-parton antennae X0
4 , while dσ̂S,b2 contains suitable convolutions

of two three-parton antennae X0
3 ⊗X0

3 needed to remove single unresolved limits from the

X0
4 . The generation of dσ̂S,b2 is straightforward, since its integrated counterpart is exactly

dσ̂T,b2,JX and so:

dσ̂S,b2 = −Ins
[
dσ̂T,b2,JX

]
, (4.71)

where the momenta relabelling due to the insertion of an unresolved parton must occur

within the unintegrated antenna functions which appear in dσ̂T,b2,JX too. On the other

hand, dσ̂S,b1 comes from the insertion of two unresolved gluons in dσ̂U,c,X
0
4 . We therefore

define a new transformation which acts on the integrated four-parton antennae as:

X 0
4 (sij)a

0
n+2(σ, σ′, {., i, ., j, .})↔ X0

4 (i, k, l, j)a0
n+2(σ, σ′, {., ĩkl, ., l̃kj, .}), (4.72)

where partons k and l are unresolved between the pair of hard radiators i and j. The

considered momentum mapping maps the final state (n+2)-particle momenta to n-particle

momenta, possibly together with a rescaling of the initial state momenta [53]. As it happens

in the case of a single insertion, after the replacement described by (4.72), a suitable sum

over the permutations of the external momenta is needed to construct the full contribution.

The conversion of the X 0
4 to their unintegrated counterparts is less trivial than the one

needed for the X 0
3 , given the more involved structure of four-particle antenna functions.

For gluon scattering the required replacements are given by:

FF: F0
4 (sij) → 4

[
F 0

4,a(i, k, l, j) + F 0
4,b(i, k, l, j)

]
,

IF: F0
4,g(s1i) → F 0

4 (1, k, l, i),

II: F0,adj.
4,gg (s12) → F 0

4 (1, k, l, 2),

F0,n.adj.
4,gg (s12) → F 0

4 (1, k, 2, l),

(4.73)

where the sub-antennae F 0
4,a and F 0

4,b are defined in [61]. We notice that the order of

the unresolved gluons k and l in (4.73) matters, since different orderings are associated to

different colour connections within the unintegrated four-parton antennae. This must be

properly taken into account when the sum over permutations of the external momenta is

performed, in such a way that both the (a, k, l, b) and (a, l, k, b) orderings are considered.

We introduce a new operator Ins2 [·] to indicate the simultaneous double insertion of two

unresolved gluons, in the sense indicated by (4.72). The application of Ins2 [·] occurs

through the following steps:

1. Removal of the splitting kernels from the integrated dipoles;

2. Transition from integrated four-parton antenna functions to unintegrated ones, as

indicated by (4.73);
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3. Momenta relabelling within colour interferences and jet functions according to the

accompanying antenna function;

4. Sum over permutations of the n+ 4 momenta to cover all possible IR limits;

5. Dressing of the resulting expression with the appropriate phase space and overall

coefficient.

We can then obtain dσ̂S,b1 as

dσ̂S,b1 = −Ins2

[
dσ̂U,c,X

0
4

]
. (4.74)

Since the integrated version of a four-particle antenna is obtained after analytic integration

over the double unresolved antenna phase space, in principle the simultaneous insertion of

a pair of unresolved gluons can not be equated to the iterated insertion of a single gluon.

Nevertheless, as shown by the instructions above, on a practical standpoint the action

of the Ins2 [·] operator is very similar to the application of Ins [·] with two unresolved

partons, provided the appropriate momentum mapping is used and the correct sum over

external momenta is performed. In Figure 1, we denote the action of Ins2 [·] with two

connected descendant red arrows.

We notice that the two contributions dσ̂S,b1 and dσ̂S,b2 are obtained here from a priori

independent blocks, while a precise relation between these two terms should hold to ensure

the removal of single unresolved limits from the four-particle antenna functions at the

double real level. In fact, the structure of dσ̂S,b2 directly descends from the one-loop three-

parton antennae appearing in the two-loop integrated dipoles, which are in turn related

to the four-parton antenna functions. Therefore, the relation among dσ̂S,b1 and dσ̂S,b2 is

actually mirrored by the inner structure of the two-loop integrated dipoles and the interplay

between the X 0
4 and the X 1

3 , which gives the correct ε-poles at the double virtual level,

manifest here in the form of the correct arrangement of X0
4 and X0

3 ⊗X0
3 contributions.

4.5.3 dσS,c

In the almost colour-connected configuration, the unresolved gluons are emitted between

two pairs of hard radiators which share one common hard radiator. The structure of the

blocks needed to remove the divergences associated to these configurations is shared by

the large angle soft terms too, which are thus naturally incorporated in dσ̂S,c [9, 61]. The

integrated counterpart of dσ̂S,c is generated at the real virtual level and it is part of dσ̂T,c,

as depicted in section 4.4.3. In particular we have:

dσ̂S,c = −Ins
[
dσ̂T,c0

]
. (4.75)

The action of the Ins [·] operator on dσ̂T,c0 actually requires the insertion of an unresolved

parton within integrated large angle soft terms. Calling k and l respectively the previously

inserted unresolved gluon and the newly inserted unresolved gluon at the double real level,
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the required replacements are:

S(sIJ , sI′J ′ , x) → S(I, l, J) for (I, J) 6= (I ′, J ′),

S(sI′J , sI′J ′ , x) → S(Ĩ ′l, l, J) for J 6= J ′,

S(sIJ ′ , sI′J ′ , x) → S(I, l, l̃J ′) for I 6= I ′,

S(sI′J ′ , sI′J ′ , x) → S(Ĩ ′l, l, l̃J ′),

(4.76)

where S(a, b, c) is the eikonal factor:

S(a, b, c) = 2
sac
sabsbc

. (4.77)

I and J represent any unmapped or mapped parton and I ′, J ′ indicate either i′, j′ or ĩ′k,

k̃j′. In this latter case, namely when parton i′ or j′ acts as a hard radiator for both partons

k and l, the correct order of the momentum mapping is i′ → ĩ′l → ˜̃
i′lk or j′ → j̃′l → ˜̃

j′lk,

since the first parton which is integrated over at the double real level is l. The eikonal

factors generated via (4.76) remove the remnant soft gluon divergent behaviour associated

to colour-connected and almost colour-connected contributions at the double real level

[9, 61–63, 65].

4.5.4 dσS,d

In the colour-unconnected configuration, the two unresolved gluons are emitted between

two distinct pairs of hard radiators. As we explained in section 4.4.2, these terms do

not appear at the real virtual level but can be inherited directly from the double virtual

subtraction term to the double real one. This is achieved inserting two unresolved gluons

in dσ̂U,b,c.u., one in each of the two one-loop integrated dipoles. Since the two pairs of hard

radiators are distinct, the two insertions can be performed independently. Therefore dσ̂S,d

is actually generated through the iterated application of the Ins [·] operator:

dσ̂S,d = +Ins
[
Ins

[
dσ̂U,b,c.u.

]]
. (4.78)

In Figure 1, we indicate the iterated insertion of two unresolved gluons as two disjoint

descendant red arrows, to differentiate it from the simultaneous double insertion discussed

in section 4.5.2.

5 Gluonic three-jet production at NNLO

To assess the applicability of the colourful antenna subtraction scheme, we compute the

NNLO QCD corrections to the hadron-collider all-gluons three-jet production process:

pp(gg)→ ggg (5.1)

We set Nf = 0 and we only consider gluons both as internal and external particles, as if

no quarks were present in the theory (pure Yang-Mills). To be consistent with this choice,

the renormalization of one- and two-loop amplitudes is performed setting Nf = 0 and the

– 35 –



mass factorization counterterms only contain gluon-to-gluon splitting kernels. The NNLO

correction in the gluons-only scenario is theoretically well defined and all IR divergences

cancel in the sum of virtual and real corrections. We perform the calculation in full colour,

with the only exception represented by the finite remainder of the two-loop five-gluon

amplitude [16], which is only available at leading colour.

From a phenomenological point of view, this calculation is part of the NNLO cor-

rections to three-jet production (which were computed recently [28, 29] using a residue

subtraction technique [10], with the same leading-colour restriction on the finite remain-

ders of the virtual two-loop amplitudes). However, our result can not be considered a

faithful approximation of the full calculation, due to the absence of quarks. Both the

Nf 6= 0 contributions to gluonic scattering and the quark-induced channels have a large

impact, both in terms of the final numerical result and of the scale variation behaviour

of the theoretical predictions. Indeed, as we discuss in more detail in section 5.4 below,

the gluons-only picture exhibits pathological issues when one assesses the theoretical un-

certainty by means of the usual renormalization and factorization scale variation analysis.

This is not surprising, given the unphysical nature of the gluons-only scenario.

For these reasons, our calculation should be considered as a proof of concept for the

automated implementation of the colourful antenna subtraction formalism, and not yet as

a precision phenomenology prediction.

5.1 Computational setup

The computation is performed within the NNLOjet framework. NNLOjet is a Monte

Carlo event generator which implements the antenna subtraction method to compute

NNLO QCD corrections to a series of processes. For gluonic three-jet production at NNLO,

high multiplicity tree and loop gluonic amplitudes are needed. The computation relies on

a mixture of analytical results and numerical implementations for the amplitudes. The

tree-level helicity amplitudes for the scattering of five, six and seven gluons [44, 66], corre-

sponding to the LO, real and double real contributions, are incorporated in an analytical

form in NNLOjet. This is also the case for the five-gluon one-loop helicity amplitudes [67],

which represent the virtual correction.

The planar five-parton two-loop amplitudes have recently been computed [15] using a

basis of pentagon functions [68–70]. We rely on a public C++ code [16] which implements

the aforementioned amplitudes and computes the renormalized infrared-finite remainder

of the five-gluon two-loop matrix element in the leading colour approximation. According

to [16], for a given configuration of external momenta and helicities, the two-loop infrared-

finite remainder is defined as [40]:

|R(2)〉 = |A(2)〉 − I(1) (ε) |A(1)〉 − I(2) (ε) |A(0)〉 , (5.2)

where the A(`) represent the renormalized two-loop (` = 2), one-loop (` = 1) and tree-level

(` = 0) amplitudes. The quantity in (5.2) is evaluated in the leading colour approximation.

For the ε-poles of the two-loop matrix element we use the full colour result and we checked

their complete cancellation against the full-colour double virtual subtraction term. We
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notice that in (5.2), not only the singularities, but also finite contributions are subtracted

from the two-loop amplitude. Our numerical implementation is suitably designed to take

this into account and restore the correct finite result in the combination dσ̂V Vgg,NNLO −
dσ̂Ugg,NNLO.

The six-gluon one-loop matrix elements are computed with the OpenLoops genera-

tor [71–73]. In particular we use a new version of OpenLoops [74] which implements the

original algorithm of [71] in combination with the helicity summation technique of [72] as

well as a new tensor reduction algorithm [74, 75]. The latter is based on the reduction tech-

niques of [72], which are implemented at the level of tensor integrals in a way that yields

improved numerical stability in the deep infrared regions together with a very significant

speedup of quadruple-precision evaluations. Internally, OpenLoops uses double-precision

scalar integrals that are provided by Collier [76, 77], as well as quadruple-precision scalar

integrals provided by OneLoop [78]. As explained in the following sections, to validate the

generated subtraction terms and to estimate the impact of the subleading colour contribu-

tion, we had to extract the leading colour part of the six-gluon one-loop amplitude. This

was possible since OpenLoops allows for the computation of partial amplitudes, which

can be suitably combined to construct the leading colour contribution, according to (2.28).

The subtraction terms needed for the NNLO calculation are constructed in a systematic

way with the colourful antenna subtraction method, as described in sections 3 and 4. The

subtraction terms only depend on five- and six-gluon tree-level amplitudes and five-gluon

one-loop amplitudes, so they are implemented in a completely analytical fashion within

NNLOjet. The real, double real and real virtual subtraction terms have been extensively

tested against the corresponding matrix elements to check the pointwise cancellation of IR

divergences in single and double unresolved limits, as discussed in section 5.2.

The NNLO correction to this process is very challenging from the computational point

of view. The stability over the whole phase space of the numerical implementations of dou-

ble virtual and real virtual matrix elements must be ensured exploiting quadruple-precision

arithmetic when the standard evaluation fails. Moreover, due to the high multiplicity, the

numerical integration of real virtual and double real corrections and their respective sub-

traction terms requires a very substantial number of evaluations to reach a satisfactory

precision.

5.2 Tests of the subtraction terms

Before presenting the results for the NNLO corrections to differential three-jet cross sec-

tions, we first assess the pointwise convergence in all single and double unresolved IR limits

of the NNLO subtraction terms at double real and real virtual level that we generated using

the colourful antenna method against the respective squared matrix elements. We do so in

a similar way to what is done in [61]: we generate a sample of 10′000 phase space points

at
√
s = 13 TeV close to a given infrared limit and we compute:

RRV =
dσ̂RVgg,NNLO

dσ̂Tgg,NLO
and RRR =

dσ̂RRgg,NNLO

dσ̂Sgg,NLO
, (5.3)
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Configuration Soft Collinear x y

Single soft i - (s− s−i)/s -

Single collinear - i//j sij/s -

Double soft i, j - (s− s−ij)/s -

Triple collinear - i//j//k sijk/s -

Soft and collinear i j//k (s− s−i)/s sjk/s

Double collinear - i//j, k//l sjk/s skl/s

Table 3: Variables x and y used to test the IR limits. The first two lines refer to single

unresolved limits, the remaining ones to double unresolved limits.

for the real virtual and double real case respectively. We then bin the events as function

of the following quantity:

ti = log10 (|1−Ri|) , with i = RV, RR, (5.4)

which provides an estimate of the number of correct digits reproduced by the subtraction

terms. We probe each unresolved limit through the variables x and y, which parametrize

the IR depth at which each limit is tested. The definition of x and y varies according to

the considered configuration and is given in Table 3. The squared centre-of-mass energy is

s, while the other invariants are defined as:

si1...im = (pi1 + · · ·+ pim)2 small when i1, . . . , im are collinear,

s−i1...im =

 ∑
j≥3, j 6=i1...im

pj

2

close to s when i1, . . . , im are soft.
(5.5)

The smaller x and y are, the more enhanced the divergent behaviour of matrix elements

is. For configurations that require both x and y we choose to fix x = y.

We perform the test independently for the leading colour (LC) and the subleading

colour (SLC) part of the real virtual and double real matrix elements, to assess the correct

behaviour of the subtraction terms in both cases. Indeed, as can be noticed in the plots in

section 5.3, the subleading colour contribution for gluon scattering has a very small numer-

ical impact on the full colour result. Therefore, the inspection of the ti distributions in full

colour might give no insights on the correct behaviour of the subtraction at the subleading

colour level. Since the systematic treatment of the subleading colour contribution is a ma-

jor achievement of the new formalism described in this paper, we focus on it specifically.

To remove angular correlations and achieve a proper subtraction in IR limits with collinear

partons, a point-by-point angular average is considered, as described in detail in [61].

We start by addressing the single unresolved limits of the real virtual correction. There

are two IR regions that we test: single soft emission and single collinear emission. The

results are shown in Figure 2. The pairs of numbers reported in the plots under the label
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Figure 2: Test of the real virtual subtraction term in single soft (left) and single collinear

(right) limits for the leading colour (upper plots) and subleading colour (lower plots) con-

tributions.

‘outside’ respectively indicate how many events fell on the left and on the right of the

displayed range in ti.

We observe that the agreement between the squared matrix elements and the sub-

traction terms increases the deeper the IR regions are tested, with the single soft limit

exhibiting more peaked distributions with respect to the single collinear one. Reasons for

this are the more divergent behaviour of matrix elements and the exact locality of the sub-

traction in soft limits. For a given value of x, both in the soft and in the collinear limit, the

subleading colour contribution is characterized by broader distributions, centred around

higher values of ti with respect to the leading colour counterpart. This can be explained by

an enhanced numerical noise for this contribution. The expressions for subtraction terms

and squared matrix elements at subleading colour are considerably larger compared to the

leading colour case, and each IR limit receives contributions from a substantial number

of individual terms. The numerical cancellations between these terms induce rounding er-

rors in the final expressions for the squared matrix element and subtraction term, thereby

leading to the observed deterioration of convergence. Nevertheless, the observed agree-

ment between the subtraction terms and the matrix elements is largely satisfactory both

at leading and subleading colour. In general, we remark that the excellent performance of

the OpenLoops implementation of the six-gluon one-loop amplitudes is crucial to probe
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Figure 3: Test of the double real subtraction term in double soft (left) and soft and

collinear (right) limits for the leading colour (upper plots) and subleading colour (lower

plots) contributions.

the IR limits of the real virtual correction for such small values of x.

For the double real correction, we have both single and double unresolved limits. Con-

cerning double unresolved limits we have double soft emission, soft and collinear emission,

triple collinear emission and double collinear emission. The results for the double soft and

soft and collinear limits are presented in Figure 3, while in Figure 4 we report the results

for triple collinear and double collinear limits. Finally we present the results for the single

unresolved limits of the double real correction in Figure 5.

In double and triple collinear limits, the subleading colour contribution does not exhibit

a divergent behaviour. This is motivated by an argument analogous to the one adduced

in [52] to explain why the six-gluon tree-level matrix element is not divergent in single,

double and triple collinear limits at subleading colour. For the seven-gluon tree-level matrix

element considered here, one can express the subleading colour contribution as a sum of

incoherent interferences within which the two colour orderings share at most a single pair

of adjacent gluons. This implies that the subleading colour part of the matrix element is

indeed divergent in single collinear limits, but is finite in double and triple collinear limits.

In general we observe that the subtraction terms correctly reproduce the divergent

behaviour of the double real correction in both double and single unresolved configurations,

with the quality of the agreement increasing with the infrared depth. Once again, the
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Figure 4: Test of the double real subtraction term in triple collinear (left) and double

collinear (right) limits at leading colour. The subleading colour contribution does not

exhibit IR divergences in these limits.
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Figure 5: Test of the double real subtraction term in single soft (left) and single collinear

(right) limits for the leading colour (upper plots) and subleading colour (lower plots) con-

tributions.
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subleading colour contribution presents some numerical noise with respect to the leading

colour part, for the same reasons explained in the real virtual case.

5.3 Results

In this section we present the results of our NNLO calculation. The considered centre-of-

mass energy for the colliding protons is 13 TeV and the applied kinematical cuts are the

same used for the three-jet production NNLO calculation in [28]. The cuts are as follows:

• minimal transverse momentum of a jet: pT (j) > 60 GeV;

• maximal jet rapidity: |y(j)| < 4.4;

• minimal sum of the transverse momenta of the first two leading jets : pT (j1)+pT (j2) >

250 GeV.

Jets are reconstructed using the anti-kT algorithm [79] with a radius R = 0.4. We use the

NNLO set of the NNPDF3.1 parton distribution functions [80] and we evaluate the PDFs

using LHAPDF [81]. The same PDF set is used for the predictions at LO, NLO and NNLO.

LHAPDF is also used to evaluate the strong coupling constant, with αs(mZ) = 0.118.

We notice here that these quantities are the only ones in the entire calculation which

are evaluated in the full QCD theory, namely with the complete bosonic and fermionic

degrees of freedom of QCD. As we explicitly show in section 5.4, this is the origin of an

inconsistent estimation of the uncertainty on our theory prediction, which is assessed with

a seven-point variation of the renormalization and factorization scales. The central value

is chosen dynamically for each event and is given by the scalar sum of transverse momenta

at parton level:

µf = µr = ĤT =
∑

i∈partons

pT (i). (5.6)

We consider distributions in the HT observable:

HT =
∑
j∈jets

pT (j), (5.7)

in the three-jet invariant mass m123, in individual jet transverse momenta and rapidities,

jet-pair differences in rapidity |∆y| and azimuthal angle |∆Φ| as well as three-jet rapidity

variables y?123 and |ymax|, defined as:

y∗123 = |y1 − y2|+ |y2 − y3|+ |y3 − y1|, (5.8)

|ymax| = max(|y1|, |y2|, |y3|). (5.9)

The calculation is performed in full colour, however, the subleading colour contribution

to this process at NNLO has an exiguous numerical impact and the inclusion of the missing

subleading colour part of the finite reminder of the double virtual matrix element might

significantly affect the value of the subleading colour correction. For this reason, in the

plots presented here, we focus on the leading colour NNLO correction (NNLO-LC), which
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Figure 6: Gluons-only three-jet production cross section differential in HT (left) and

m123 (right) up to NNLO. The NNLO-LC band corresponds to the leading-colour only

contributions at NNLO, the NNLO-FC line includes subleading colour contributions except

for the finite parts of the two-loop virtual corrections.

is a well defined and complete quantity. We then superimpose the full colour result without

the finite two-loop remainder pieces (NNLO-FC) to provide an estimate of the impact of

the subleading colour contribution. The Monte Carlo integration error is reported for the

NNLO correction at leading colour. A consistent effort on the computational side would be

required to significantly reduce the statistical uncertainty on the presented results. Since

this computation serves as an assessment of the colourful antenna subtraction method at

NNLO more than a high-precision phenomenological study, we did not invest additional

resources in the reduction of the integration error.

Figures 6–9 show differential distributions related to gluons-only three-jet production

in terms of various variables derived from the three-jet system (Figures 6 and 8), from

individual jets (Figure 7) and from jet pairs (Figure 9) at LO, NLO and NNLO. The

LO and NLO predictions are obtained at full colour and NNLO-LC corresponds to the

NNLO predictions at leading colour, which is our default prediction that is also used to

determine the scale uncertainty bands at NNLO. To estimate the potential impact of the

yet incomplete subleading colour contributions, these were computed discarding the finite

parts of the two-loop virtual corrections and added to the leading colour contributions

(only for the central scale setting), yielding the NNLO-FC lines. In most distributions,

the difference between NNLO-LC and NNLO-FC is at the per-cent level or below and can

hardly be resolved, thereby indicating the small numerical impact of subleading colour

effects at NNLO in gluonic jet production.

Except for the high-HT tail of the HT distribution, Figure 6 (left), and the distributions

in azimuthal opening angles, Figure 9 (lower panels), we observe the NNLO corrections to

be quite moderate in all distributions, typically ranging between ±10%. The error bars

on the NNLO-LC central values indicate the numerical integration errors on the NNLO

coefficients. Except for the very tails of the distributions, we managed to obtain quite small

numerical integration errors on these NNLO coefficients, leading to total integration errors
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Figure 7: Differential distributions in individual jet transverse momenta (upper row)

and rapidities (lower row) for gluons-only three-jet production up to NNLO. Definition of

NNLO-LC and NNLO-FC as in Figure 6.
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Figure 8: Gluons-only three-jet production cross section differential in the combined

rapidity variables y?123 (left) and |ymax| (right) up to NNLO. Definition of NNLO-LC and

NNLO-FC as in Figure 6.
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Figure 9: Differential distributions in geometrical jet-pair variables: rapidity differences

(upper row) and azimuthal angles (lower row) for gluons-only three-jet production up to

NNLO. Definition of NNLO-LC and NNLO-FC as in Figure 6.

on the NNLO-LC predictions at the level of 2% or below. These are already sufficient to

establish the numerical convergence of the predictions and could be lowered further with

more Monte Carlo integration statistics.

The differential three-jet distributions that we presented here demonstrate the appli-

cability of the colourful antenna approach to the construction of NNLO subtraction terms

for a highly non-trivial high-multiplicity process, and illustrate the quality of numerical

convergence that can be obtained with these subtraction terms in the NNLOjet frame-

work.

As anticipated, a notable feature is the increase in the scale uncertainty bands from

NLO to NNLO-LC that is observed across all distributions. This effect is an artefact of

the gluons-only simplification and we further investigate it in the following section.

5.4 Comments on scale variation

In this section we investigate the anomalous scale variation behaviour observed in the NLO

and NNLO correction to gluonic three-jet production. As pointed out above, the coupling

constant αs(µr) sees the full content of QCD, since its determination relies on experimen-

tal measurements and scale evolution equations which incorporate the dependence on the

number of light quark flavours. On the contrary, the matrix elements we implemented

in our calculation only contain the gluonic degrees of freedom and are then evaluated for

Nf = 0. This mismatch breaks the interplay between the renormalization scale variation

of the running coupling and the virtual corrections at higher orders. An analogous obser-
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vation can be done for the factorization scale µf . The scale dependence of the PDFs takes

into account the presence of light quark flavours. To correctly compensate the PDF’s fac-

torization scale variation at higher orders in QCD, the inclusion of quark-induced channels

is necessary. Therefore, the scale variation analysis should provide a consistent estimate

of the uncertainty of theoretical predictions for a given process only when the entire set of

subprocesses is considered and included in the final result.

We illustrate the effect of the inclusion of quarks on the scale variation analysis with a

dedicated study on dijet production. We implement the same setup and cuts described in

section 5.3 and we compute the NNLO corrections with the traditional antenna subtraction

approach in the leading colour approximation [32, 52], for three different scenarios:

• pp(gg)→ jj with Nf = 0, gluons-only;

• pp(gg)→ jj with Nf = 5, where we include the contribution coming from fermionic

loops in virtual corrections as well as gluons splitting into quark-antiquark pairs in

real emission corrections, but we keep the restriction to gluon-initiated subprocesses

only;

• pp → jj, where we consider the whole set of sub-processes that contribute to dijet

production, both gluon- and quark-initiated.

The first scenario reflects the same implementation we used for gluonic three-jet pro-

duction and we expect to observe a similar pattern, namely an anomalous size of the NNLO

scale variation bands with respect to NLO. Allowing gluons to split into quark-antiquark

pairs should restore the correct compensation at higher orders of the renormalization scale

dependence of the strong coupling. Finally, with the inclusion of quark-induced sub-

processes, we expect to correctly balance factorization scale variation effects due to the

evolution of the PDFs.

In Figure 10 we compare the total cross section in the three cases, normalized with

respect to the corresponding NLO result. As expected, the size of the NNLO scale variation

bands with respect to the NLO ones significantly reduces when the full QCD degrees of

freedom are considered. This can also be noticed in the HT distributions in Figure 11. The

total cross section is dominated by the low-HT region, for which we observe the same scale

variation pattern as in the total cross section.

Analogously, we have a similar adjustment of the scale variation bands in observables

which are largely dominated by the low-HT region, such as y∗ = |y(j1)−y(j2)|/2, as shown

in Figure 12. For the pT (j1) distribution in Figure 13, the transition from pp(gg) → jj

with Nf = 0 to pp(gg) → jj with Nf = 5 does not seem to reduce the relative size of the

NLO and NNLO scale variation bands to the same extent observed in other distributions.

However, this happens if the NNLO correction to the full process pp → jj is considered,

which indicates that µf variation effects dominate in the studied range of pT (j1).

These results demonstrate the inconsistency of the scale variation analysis when specific

sub-channels of a given process are considered. The effect on differential distributions is

not uniform and may vary according to the considered observable, range, kinematical cuts
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Figure 10: Total cross section for pp(gg) → jj with Nf = 0 (left), pp(gg) → jj with

Nf = 5 (centre) and pp → jj (right). Each result is normalized with respect to the

corresponding NLO total cross section.
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Figure 11: HT distribution for pp(gg)→ jj with Nf = 0 (left), pp(gg)→ jj with Nf = 5

(centre) and pp→ jj (right).

0.2

0.4

0.6

0.8

1.0

1.2

1.4

d
/d

y*   
[fb

]

1e8
NNLOJET s = 13 TeV

NNPDF31_nnlo_as_0118

7-point scale variation

r = f = HT

pp(gg) jj Nf = 0
NLO NNLO 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

y*

0.8

1.0

1.2

Ra
tio

 to
 

NL
O

0.2

0.4

0.6

0.8

1.0

1.2

1.4

d
/d

y*   
[fb

]

1e8
NNLOJET s = 13 TeV

NNPDF31_nnlo_as_0118

7-point scale variation

r = f = HT

pp(gg) jj Nf = 5
NLO NNLO 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

y*

0.8

1.0

1.2

Ra
tio

 to
 

NL
O

0.5

1.0

1.5

2.0

2.5

d
/d

y*   
[fb

]

1e8
NNLOJET s = 13 TeV

NNPDF31_nnlo_as_0118

7-point scale variation

F = R = htpart

pp jj

NLO NNLO 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

y*

0.9

1.0

1.1

Ra
tio

 to
 

NL
O

Figure 12: y∗ distribution for pp(gg)→ jj with Nf = 0 (left), pp(gg)→ jj with Nf = 5

(centre) and pp→ jj (right).

and choice of central scale. We can confidently conclude that the considerably larger scale

variation bands observed at NNLO in the differential distributions in section 5.3 are an
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Figure 13: pT (j1) distribution for pp(gg) → jj with Nf = 0 (left), pp(gg) → jj with

Nf = 5 (centre) and pp→ jj (right).

artefact of missing fermionic contributions and quark-induced sub-processes.

6 Conclusions and outlook

The antenna subtraction method for the construction of infrared subtraction terms at

NLO and NNLO has originally been formulated based on colour-ordered amplitudes and

squared matrix elements. This formulation results in very compact subtraction terms for

low-multiplicity processes, but extends very poorly to higher multiplicities and requires

complicated constructions beyond the leading-colour contributions. This paper overcomes

these constrictions by reformulating the antenna subtraction in a new colour space basis.

The resulting colourful antenna subtraction method allows for a systematic construction

of antenna subtraction terms. Starting from an analysis of the colour structure of purely

virtual corrections at NLO and NNLO, we were able to devise an algorithm that translates

infrared poles of virtual corrections into real radiation dipole insertions that constitute the

subtraction terms for single real radiation up to one-loop level and for double real radiation

at tree level. We remark once again that the main advantage of this perspective consists

in avoiding the direct treatment of the divergent behaviour of real emission corrections.

In the case of an NNLO calculation, this feature represents a major simplification, since

the double real subtraction term is obtained as the last step of a completely automatable

procedure, with no need of dealing with the involved infrared structure of double real

radiation matrix elements.

We fully formulated the colourful antenna subtraction method for gluons-only pro-

cesses and automated its workflow. As proof-of-principle applications, we rederived the

NNLO antenna subtraction terms for gluons-only dijet production [52] and newly derived

these terms of gluons-only three-jet production. We verified the pointwise convergence of

these subtraction terms towards the respective matrix elements and demonstrated the nu-

merical stability of the predictions in computing various differential three-jet distributions.

As a by-product, we also assessed the reliability of the gluons-only approximation to dijet

production, demonstrating in particular the large impact of missing fermionic contributions

and quark-induced subprocesses onto the renormalization and factorization scale depen-

dence of the predictions. The gluons-only predictions for three jet production are thus not
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yet of phenomenological relevance, but should only be considered as proof-of-principle ap-

plication of the newly developed coloured antenna subtraction method and of its automated

implementation. We also were able to quantify the numerical impact of subleading colour

contributions at NNLO, which were found to be small throughout most distributions, thus

lending support to a recent computation of NNLO corrections to three-jet production at

leading colour [28] obtained with a residue subtraction method.

The next step towards a complete, process-independent subtraction scheme at NNLO

consists in the inclusion of quarks in the presented formalism. To treat these contributions

in the context of the colourful antenna subtraction approach, a crucial distinction must

be made between the identity-preserving (IP) and identity-changing (IC) sectors of the

subtraction infrastructure. The IP sector contains infrared limits for which the real emission

corrections factorize onto a lower multiplicity process with the same initial-state parton

species. On the contrary, the IC sector refers to the configurations where a final-state quark

becomes collinear to an initial-state gluon or same-flavour quark, effectively changing the

initial-state parton species of the associated reduced matrix element in the collinear limit.

After integration over the unresolved radiation, the IP contributions generate ε-poles

which cancel against the explicit singularities of the corresponding virtual contributions

and IP mass factorization counterterms. Therefore, the whole IP sector would be system-

atically constructed at NNLO following the procedure summarized in Figure 1, in complete

analogy to what was done in the simplified case of pure gluonic scattering. Of course, ap-

propriate colour stripped one- and two-loop integrated dipoles need to be defined to include

quark-antiquark and quark-gluon configurations, as well as the correct translation between

integrated and unintegrated antenna functions. Nevertheless, these steps do not represent

a major issue and most of the ingredients for the extension to the IP sector of sub-processes

involving quarks have already been constructed and assessed.

The IC infrared divergences cancel against ε-poles in IC mass factorization countert-

erms and do not communicate with the singularity structure of the virtual corrections. For

this reason, these contributions can not be straightforwardly generated with the method

we described in this paper, thus requiring an extension of the approach. The starting point

for the construction of the IC sector will be the IC mass factorization structure at one and

two loops, which can be written down in a general way from (3.13), (4.18) and (4.27). The

main issue is then to dress the splitting kernels with the appropriate IC integrated antenna

functions, in such a way suitable universal IC integrated dipoles can be constructed and

the entire generation of the subtraction layers can proceed in the same way as it does for

the IP sector. At NLO, IC integrated dipoles have already been defined, for example in [9],

while at NNLO this task still requires additional work.
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