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16Facultad de Ciencias Qúımicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico.

17Department of Computer Science, Stanford University, California, USA.
18Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Canada.

19Institute for Inorganic and Analytical Chemistry,
Friedrich-Schiller Universität Jena, Jena, Germany.

20Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
21Laboratory of Artificial Chemical Intelligence (LIAC),

Institut des Sciences et Ingénierie Chimiques,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

22National Centre of Competence in Research (NCCR) Catalysis,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

23Vector Institute for Artificial Intelligence, Toronto, Canada.
24Solar Fuels Group, Department of Chemistry, University of Toronto, Canada

25Department of Chemical Engineering, University of Rochester, USA.
26Department of Computer Science and Engineering, University of California, San Diego, USA.
27Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada.

28Department of Materials Science, University of Toronto, Canada.
29Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto, Canada.

Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad ap-
plications to challenging tasks in chemistry and materials science. Examples include the prediction
of properties, the discovery of new reaction pathways, or the design of new molecules. The ma-
chine needs to read and write fluently in a chemical language for each of these tasks. Strings are a
common tool to represent molecular graphs, and the most popular molecular string representation,
SMILES, has powered cheminformatics since the late 1980s. However, in the context of AI and ML
in chemistry, SMILES has several shortcomings – most pertinently, most combinations of symbols
lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language
for molecules was introduced in 2020 that guarantees 100% robustness: SELFIES (SELF-referencIng
Embedded Strings). SELFIES has since simplified and enabled numerous new applications in chem-
istry. In this manuscript, we look to the future and discuss molecular string representations, along
with their respective opportunities and challenges. We propose 16 concrete Future Projects for
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robust molecular representations. These involve the extension toward new chemical domains, ex-
citing questions at the interface of AI and robust languages, and interpretability for both humans
and machines. We hope that these proposals will inspire several follow-up works exploiting the full
potential of molecular string representations for the future of AI in chemistry and materials science.
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I. INTRODUCTION

The discovery of new materials and molecules with
exceptional properties could lead to enormous scien-
tific, technological and ultimately societal impact.
In the last few years, digital discoveries – that is,
in silico discoveries using computers – have been sig-
nificantly reinforced through ML applications and
other AI tools for chemistry. Specifically, recent ad-
vances in AI and ML have sparked numerous new
applications in quantum chemistry [1–7], molecular
dynamics simulations [8–10], prediction of molecular
properties [11–13] and reactivity [14–17], artificial
molecular design [18–22], and the formulation of de-
sign heuristics [23, 24] and representations [25, 26].
One germane question in all these applications is:
which language should be used to symbolically rep-
resent molecules and materials?

Since the 1980s, SMILES (Simplified Molecular In-
put Line Entry System) strings have been a very
prominent graph representation in computational
chemistry. However, questions have arisen as to
whether SMILES is an ideal language for computer
applications that are tasked to discover new struc-
tures. For example, SMILES are not robust on their
own, which means that generative models are likely
to create strings that do not represent valid molec-
ular graphs. A large body of work has been devoted
to resolving this issue in recent years. Much of the
advances came from model-dependent solutions, fix-
ing the problem inside ML algorithms [27, 28].

In 2020, some of us introduced SELFIES [29]1. This
new string-based representation circumvents the is-
sue of robustness by defining a formal grammar that
always leads to a valid molecular graph. This new
molecular graph representation has simplified nu-
merous applications in cheminformatics and even en-
abled new ones. Given this exciting potential, the
authors assembled2 to jointly discuss the future of
SELFIES in terms of generalizations and new appli-
cations. Here, we present an overview of the progress
as well as outstanding questions, formulating 16 con-
crete projects and challenging ideas for the next
years.

1 SELFIES can be installed via pip install selfies

https://github.com/aspuru-guzik-group/selfies
2 The authors assembled in a virtual mini-workshop in Au-

gust 2021 organized by IOP and the Acceleration Consor-
tium, on the topic of this paper.

mailto:mario.krenn@mpl.mpg.de
mailto:alan@aspuru.com
https://github.com/aspuru-guzik-group/selfies
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The manuscript is structured as follows: we
first summarize briefly the 250-year-long history of
molecular representations. Then we look at mod-
ern representations and discuss their strengths and
weaknesses. This motivates a look into the future,
where many open questions remain. In our journey,
we also visit stochastic macromolecules and crystals.
We will go further down the rabbit hole of inor-
ganic chemistry and look at the potential for mod-
eling and predicting chemical reactions. Then, we
analyse the performance of string-based and non-
string-based representations in terms of ML, and fi-
nally also investigate questions about general inter-
pretability of chemical languages – for both human
and artificial scientists. During our journey through
different fields of chemistry and AI research, we pro-
pose 16 independent stand-alone research projects
which could define the future of molecular represen-
tations for AI in chemistry.

II. HISTORICAL REVIEW

Shaping the future of molecular representation is
only sensible if we comprehend its history. Here, we
briefly describe the 250-year evolution of chemical
notations and the advent of modern string repre-
sentations for molecules. Detailed accounts of the
history can be found in other papers [30–35].

1787: The origin of chemical nomenclature is
rooted in the seminal work “Méthode de nomen-
clature chimique”, with contributions from Lavoisier
and others [36]. This work ushered in the modern,
post-alchemy era of chemical nomenclature.

1808: Dalton developed his atomic theory and
used symbols to represent elements and compounds
[37]. These symbols resembled those used in the
prior, alchemical era. For example, the elements hy-
drogen and sulfur were represented by

⊙
and

⊕
,

respectively, while the compound water was rep-
resented as

⊙
©. However, such highly special-

ized symbols had two major drawbacks. Firstly,
they were non-intuitive and therefore cumbersome
for others to learn and apply. Secondly, they were
incompatible with contemporaneous printing meth-
ods, resulting in limited circulation of Dalton’s work.

1813: Berzelius sought to address this by propos-
ing a terminology where the first letters of the Latin
names of a substance were used in lieu of symbols
[38]. This new notation represented chemical ratios
rather than molecular structures.

1889–1911: International committees were
formed to standardize the chemical nomenclature.
The International Chemistry Committee published
the Geneva Rules for Organic Chemistry in 1889.
This was the first attempt to standardize chemical

nomenclature [34]. Nomenclature reforms continued
with the International Association of Chemical So-
cieties, which convened in 1911 in Paris. However,
the proceedings were interrupted by the outbreak of
World War I [39].

1919–1930: The International Union of Pure and
Applied Chemistry (IUPAC) was formed following
the conclusion of World War I. In 1921, the Union
continued to advance chemical nomenclature, culmi-
nating in 1930 with the so-called Liège Rules [35].

1944–1947: While the outbreak of World War
II interrupted the work of IUPAC, Dyson indepen-
dently published a seminal work entitled “A No-
tation for Organic Compounds” in 1944 [40]. A
revised version: “A New Notation and Enumera-
tion System for Organic Compounds.” was subse-
quently accepted by IUPAC in 1947 [32, 41]. The
latter received criticism for not adding to the prob-
lem of chemical nomenclature, and that better ex-
planations would be found in the original lecture in
1944. The claims in Dyson’s work were taken with
reservations, especially the affirmation that there
was only one possible cipher for any one chemi-
cal compound when there was not enough evidence
and little scrutiny by the chemistry community [42].
There was a feeling that he was prescribing a sledge-
hammer to crush a nut.

Figure 1. (A) Typical tape obtained with the Army
Chemical Typewriter (ACT) built by members of the
Walter Reed Army Institute of Research. (B) The ACT,
a mechanical typewriter for the encoding of chemical
structures. (C) Typed characters from the ACT. Image
from Reference [43].

1949–1951: With the advent of computers, there
was a new necessity to adapt chemical formulas
to line notation using ASCII, thereby eliminating,
among other features, the use of subscript and Greek
letters [44]. In 1949, the IUPAC Commission on
Codification, Ciphering, and Punched Card Tech-
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niques opened a call for proposals regarding an in-
ternational notation system. The criteria for the
proposed annotation system included simplicity of
use and ease of printing and typewriting. In 1951,
the commission reviewed line notations with contri-
butions from seven different proposals [45]. From
those, Dyson’s ciphering remained the standard,
though many alternatives were used in practice.
Among these, the Wiswesser Line Notation (WLN)
[30] is the most noteworthy. It provided a “compact
way of uniquely and unambiguously representing the
complete topology of a chemical molecule” and was
preferred by scientists for many decades thereafter
[33].

1961–1969: During this era, the WLN method
became the de facto standard in computer and
punched card approaches to storing large data sets
of chemical compounds [46]. Subsequent efforts fo-
cused on automated hardware specially designed to
codify molecules, like the Army Chemical Type-
writer (Figure 1), or, alternatively, on improving ma-
chine readability and storage capacity, for example
the Hayward Notation (1961) [47] and the Skolnik
Notation (1969) [48]. In the former, the aim was
to establish a basis for a one-to-one relationship be-
tween structure, cipher, and nomenclature, while for
the latter it was to have the notations conform to
the accepted chemical structures, and to invoke rel-
atively few rules.

III. MODERN MOLECULAR STRING
REPRESENTATIONS

The development of molecular string representa-
tions has continued in the direction laid out by
IUPAC in 1949. However, advances in computer
power and cheminformatics applications have accel-
erated development far beyond the use cases orig-
inally envisioned. In the following section, we dis-
cuss four molecular string representations which are
widely used today, with a focus on their applications
in AI for chemistry and material science.

A. SMILES

Weininger published SMILES in 1988 with the goal
to serve the needs of “modern chemical information
processing” [49, 50]. The development of SMILES

focused on the implementation of molecular graph
theory, to allow for rigorous structure specification
with a grammar that is both minimal and natural.
SMILES has since become the de facto standard rep-
resentation in cheminformatics.

An example for the SMILES representation is

shown in Figure 2. In SMILES, molecules are defined
as a chain of atoms which are written as letters in a
string. Branches in the molecule are defined within
parentheses, while ring closures are indicated by two
matching numbers. The SMILES grammar, though
simple, allows for the description of complex struc-
tures as well as properties such as stereochemistry,
aromatic bonds, chirality, ions, and isotopes.

While SMILES has been a workhorse for chem-
informatics over the last three decades, in recent
years, new applications in cheminformatics have ex-
posed several weaknesses which motivated the in-
troduction of new molecular string representations.
Firstly, multiple different SMILES strings can repre-
sent the same molecule (e.g., see Figure 2a). This
weakness has been addressed by a different repre-
sentation called INCHI, which we will explain below,
and can be enforced by post-processing canonical-
ization via tools such as RDKit [51].

Another weakness is that SMILES has no mecha-
nism to ensure that molecular strings are valid with
respect to syntax and physical principles. An ex-
ample of the former is CC(CCCC, a string with an
unpaired open parenthesis. This string has no valid
interpretation as a molecular graph. Semantic er-
rors involve strings that form valid graphs, but do
not reflect valid chemical structures. For example,
the string CO=CC represents a molecular graph with
an oxygen atom that has three bonds – a violation of
the maximum number of bonds that neutral oxygen
can form.

The lack of syntactic and semantic robustness has
a significant impact with respect to the validity of
computer-designed molecules based on evolutionary
or deep learning methods [18, 52, 53]. One solution
has been the design of special ML models that at-
tempt to enforce robustness [27, 54, 55]. A more fun-
damental solution is the modification of the molec-
ular representation itself. O’Boyle and Dalke pio-
neered this approach by developing DEEPSMILES, a
modification of SMILES which obviates most syntac-
tic errors, while semantic mistakes were still possible
[56]. Finally, 2020 witnessed the release of SELFIES–
a molecular string representation [29] that is 100%
robust to both syntactic and semantic errors.

B. INCHI

SMILES are not unique representations of molec-
ular graphs, i.e., a structure can be represented
by multiple strings and custom identifiers. This
makes it difficult to construct large-scale databases
where each structure has to map to a unique label
and vice versa. The International Chemical Identi-
fier (INCHI) was created in 2013 by IUPAC as an
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Figure 2. Derivation of established string representations (A) SMILES, (B) DEEPSMILES, and (C) INCHI from
molecular structures, using 3,4-methylenedioxymethamphetamine (MDMA) as example. Branches and ring closures
are represented by specific syntax based on the main path (orange). (D) Derivation of a SELFIES string from the
molecular structure, building on the corresponding derivation rules.

open-source software to encode molecular structures
in order to standardize searching across databases
and the internet [57]. INCHI strings are composed
of six main layers and multiple sublayers, where
each layer represents a specific category of informa-
tion about the molecule (sublayers include chem-

ical formula, atomic connections, charges, stereo-
chemistry). There are a number of advantages in-
troduced by the INCHI syntax. The first is that
molecules have a canonical representation, which al-
lows straightforward linking in databases. O’Boyle
created a method based on this feature of INCHI
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that generates universal SMILES strings to standard-
ize the output from different cheminformatics toolk-
its [58]. Another benefit of INCHI is that the lay-
ered structure encodes hierarchical information, and
so two molecules which are derivatives of each other
will have the same parent structure. Finally, INCHI
is more expressive than SMILES and is able to en-
code more information. For example, INCHI can
specify which hydrogen atoms are mobile and which
are immobile [57]. This allows for tautomers of
the same molecule to be represented by the same
INCHI string, while with the SMILES framework,
each tautomer is represented by a different string.
Also, SMILES requires explicit notation of double
bond locations, while INCHI infers them. Conse-
quently, resonance structures are represented by a
single INCHI string but potentially multiple SMILES

strings. There are also a number of disadvantages
with the use of INCHI strings. The first is that the
hierarchical structure and syntax makes the nota-
tion difficult to read by humans (although this is
a point of contention as the readability improves
with usage, we come back to this aspect in Section
IX). The complicated syntax also makes it more dif-
ficult to employ INCHI in generative modeling, as
there are a number of arithmetic and grammatical
rules that are difficult to enforce when sampling a
new molecule from deep learning models. Moreover,
the current standard INCHI consistently disconnects
bonds to metal atoms, which leads to loss of impor-
tant stereochemical and bonding information. How-
ever, this behavior might change in future versions
[59]. In practice, it has been found that INCHI per-
forms worse than SMILES in ML-based applications,
likely due to the above-mentioned reasons [53].

C. DEEPSMILES

Deep neural networks are increasingly used to
create generative models for the design of new
molecules [18]. Many models were trained using
molecules encoded as SMILES strings. These models
are subsequently queried to generate SMILES strings
representing molecules with specific target proper-
ties. However, the resulting SMILES may have un-
matched parentheses or ring closure symbols, ren-
dering the molecule invalid. To resolve these issues,
O’Boyle and Dalke created DEEPSMILES, which en-
codes SMILES into a syntax more suitable for auto-
mated inverse design such as deep generative mod-
els [56]. The DEEPSMILES grammar only uses one
symbol to represent ring closures (instead of two).
This symbol is a number which indicates how far
back in the string the ring is connected. Branch-
ing is represented by one or more closing paren-

theses, where the number indicates branch length.
Thereby, DEEPSMILES resolves most cases of syntac-
tical mistakes. This advance leads to greater robust-
ness compared to SMILES with respect to random
mutations and deep generative models [29]. How-
ever, DEEPSMILES strings still allow for semantically
incorrect strings, i.e., molecules that violate basic
physical constraints. This factor points to a need
for an even more robust molecular grammar.

D. SELFIES

Introduced in 2020, SELFIES is a 100% robust
molecular string representation [29]. That is,
SELFIES cannot produce an invalid molecule, as ev-
ery combination of symbols in the SELFIES alphabet
maps to a chemically valid graph. Let us imagine
the same for a natural language, such as English.
In the overwhelming majority of cases, an arbitrary
combination of letters from the Latin alphabet (a–z)
will not lead to a valid word. In this sense, English
is not robust, while SELFIES is robust with respect
to chemistry.

Figure 3. Decoding points from the internal representa-
tion (latent space) of a Variational AutoEncoder (VAE).
Green stands for valid and blue for invalid molecules.
The left image is trained using SMILES strings, most
of its latent space representing invalid molecular strings.
The right image shows the latent space of a VAE trained
with SELFIES. Every point stands for a physically mean-
ingful molecule. Figure from [29].

SELFIES is a formal grammar (or automaton) with
derivation rules. This can be understood as a small
computer program with minimal memory to achieve
100% robust derivation. The SELFIES grammar is
designed with the explicit aim of eliminating syn-
tactically and semantically invalid molecules, for ex-
ample in generative tasks.

In SMILES, syntactic invalidity consists of unbal-
anced parentheses or ring identifiers. For instance,
a generative model using SMILES may generate a
string that includes an open parenthesis with no
corresponding closing parenthesis. The resulting
string would represent an invalid graph. The prob-
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lem stems from the non-local definition of rings and
branches, which has already been addressed through
the introduction of DEEPSMILES [56]. To resolve
these issues, SELFIES follows a different approach.
Here, rings and branches are both defined at one
single location. Special symbols (such as [Branch1]
or [Ring1]) start a branch or ring. Instead of using
an end-symbol, the subsequent token in the string
defines the length of the branch or ring. To achieve
that, the next symbol is overloaded (similar to func-
tion overloading in programming languages allowing
creation of multiple functions with identical names
but different implementations) by a number (see the
concrete overloading list of SELFIES version 2.0 in
Table I). With these ideas, all syntactic mistakes are
resolved.

Table I. List of SELFIES symbols which are overloaded
with numeric values if they appear after a ring or branch
token. It is a hexadecimal system and larger numbers
can be represented by overloading the next n symbols.

Index Symbol Index Symbol

0 [C] 8 [#Branch2]

1 [Ring1] 9 [O]

2 [Ring2] 10 [N]

3 [Branch1] 11 [=N]

4 [=Branch1] 12 [=C]

5 [#Branch1] 13 [#C]

6 [Branch2] 14 [S]

7 [=Branch2] 15 [P]

All other symbols are assigned index 0.

Semantic mistakes lead to molecular graphs that
violate physical constraints. They are avoided by
applying another concept from theoretical computer
science – formal grammar or formal automata [60].
The formal automaton derives the molecules, and
every derivation step can change the state of the
automaton. As the state defines the rules for the
next derivation step, it can be used as a minimal
memory that encodes physical constraints and en-
sures that only meaningful molecules are derived.
SELFIES can be seen as a very simple programming
language for chemistry, and a SELFIES string is a
program that creates a valid molecular graph upon
execution. This leads to interesting consequences
and possibilities, which we will discuss in Section
VIII.

Robustness can be demonstrated by inspecting
the internal latent space of a deep learning model
that is trained once with SMILES and once with
SELFIES (Figure 3). Without changing anything in-
side the ML model, every SELFIES output is phys-
ically valid. Not surprisingly, SELFIES has already

been shown to improve, simplify, or even enable new
AI-driven applications in cheminformatics. These
include genetic algorithms [61], curiosity-based ex-
ploration [62], efficient combinatorial methods [63],
and many other topics to be discussed later.

The library contains two core functions that facil-
itate the translation between SMILES and SELFIES

representations, alongside other peripheral functions
for manipulating SELFIES strings. The following de-
picts a simple use case of SELFIES:

1 import selfies as sf

2

3 benzene = "c1ccccc1"

4

5 # SMILES to SELFIES

6 benzene_sf = sf.encoder(benzene)

7 # [C][=C][C][=C][C][=C][Ring1 ][= Branch1]

8

9 # SELFIES to SMILES

10 benzene_smi = sf.decoder(benzene_sf)

11 # C1=CC=CC=C1

In this example, benzene is first translated to
SELFIES and then back to SMILES. The ini-
tial SMILES string is dearomatized to encode the
molecule robustly in SELFIES.

1. Current capabilities of SELFIES

Currently, SELFIES can represent ordinary organic
molecules, including isotopes, charged and radical
species. Furthermore it can represent chirality and
stereochemistry by using an analogous approach to
that of SMILES.

SELFIES can not yet fully represent macro-
molecules, crystals, and molecules with complicated
bonds. We will explain the context, the challenges
and potential ways to generalize SELFIES to tackle
these current shortcomings, and to develop an even
more general, 100% robust string representation for
ML in chemistry.

E. General Mappings

SELFIES, SMILES, INCHI, and DEEPSMILES are
representations of a molecular graph. They all aim
to map a string of tokens to a molecular graph, as
illustrated in Figure 4. SMILES is a surjective rep-
resentation from strings to structures that include
molecular graphs, but also non-molecular (semanti-
cally invalid) graphs and other structures that can-
not be interpreted as graphs (syntactically invalid).
INCHI has the same co-domain, but its mapping is
bijective, meaning each string corresponds to only
one structure and vice versa. DEEPSMILES makes
the first important advance in terms of validity, and
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Figure 4. Graphical representation of the mapping from
strings to their corresponding structures. SMILES maps
to general structures, that include molecules, but also
non-molecular graphs or invalid (non-graph) structures.
INCHI maps to the same space, although in a unique,
bijective way. DEEPSMILES maps strings to general
graphs, not all of which stand for molecular graphs. Fi-
nally, SELFIES is the only representation that maps in a
surjective way only to molecular graphs.

can be seen as a surjective mapping from strings
to general (not necessarily molecular) graphs. Fi-
nally, SELFIES is a surjective mapping from strings
to molecular graphs. Both SMILES and SELFIES can
be made bijective through post-processing. For ex-
ample, canonicalization (as provided by a number of
tools such as RDKit) leads to a restricted domain,
where each element maps to exactly one structure.
It remains open whether a bijective mapping from
strings to molecular graphs will be possible with-
out post-selection. In the remaining text, we will
discuss generalizations of SELFIES and other molecu-
lar string representations along with important open
questions. We will raise a number of concrete Future
Projects, which can be seen as stand-alone projects
that aim to further the development of molecular
string representation and their applications in ML
for cheminformatics.

Future Project 1: metaSELFIES – 100%
domain-agnostic robustness directly from data

So far, the discussion has focused on SELFIES as
a robust representation for molecular graphs. How-
ever, SELFIES can also be thought of as a domain-
independent robust representation for any graph in
which vertices and edges have different semantic con-
straints. SELFIES presently uses domain-dependent
constraints which limit the maximum number of
bonds which can be used by an atom. Mathemati-
cally, this constraint can be formulated in terms of
the maximum vertex degree in a molecular graph.

Interestingly, the domain-dependent rules could be
obtained directly from large data sets in a determin-
istic way, without using ML. A technical description
of such an algorithm is presented in the Supplemen-
tary Information of [29].

The derivation rules of SELFIES are defined to sat-
isfy the number of bonds a certain atom can form.
In the language of graph theory, it constrains the
vertex degree for each vertex type. Given a large
enough data set of example graphs, one can directly
approximate the maximum allowed vertex degree for
every vertex type. Thus, SELFIES obtains its defin-
ing feature of robust derivation rules.

It is important to realize that vertex degree con-
straints can not only be formulated for molecules
in chemistry, but also for many other graph-based
databases in the natural sciences. Examples include
quantum optical experiments, where each individ-
ual optical element has a well-defined vertex degree
constraint [64]. In quantum circuits for quantum
computers, individual gates have well-defined vertex
degree constraints. RNA origamis [65] in biology
also have vertex degree constraints (in addition to
other constraints) that can be extracted from large
databases.

Therefore, the robust generation of graphs can be
seen as the basis of SELFIES (metaSELFIES) while
the vertex degree constraints define the scientific
domain. The opportunity of extracting the full
SELFIES language from data only and the under-
standing that this language can be applied in diverse
domains opens up exciting opportunities. Given a
particular data set, it would immediately, without
training, be able to generate 100% robust samples
in the new domain, without anybody ever having to
craft the language by hand. Additionally, a model
could learn to solve design tasks in multiple domains.
Given highly diverse training data sets, the oppor-
tunity for the generation of creative new solutions
exists. For instance, one could us metaSELFIES di-
rectly as the input of a Variational AutoEncoder
(VAE) or a generative adversarial network (GAN).
The quality of this approach will significantly de-
pend on the size and diversity of the data set.

One can envision that domain-specific derivation
rules could be shared in a standardized form in a
SELFIES registry, facilitating reuse by the commu-
nity.

Future Project 2: The effect of token
overloading in generative models

One innovation in SELFIES is the encoding of the
sizes of branches and rings in a robust way. This is
referred to as overloading and is done by enumer-
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ating the subsequent symbol(s) after the defining
branch or ring token. Thereby, a token is inter-
preted as a hex number according to a table. A
drawback of this way to ensure robustness is that it
makes some SELFIES more difficult to read. One im-
portant question is to understand how overloading
impacts ML models, and whether the index alpha-
bet – which is currently heuristically composed – can
be improved to enhance performance in ML models.
It might be interesting, using attention mechanisms,
to study how these models understand overloading,
and contrast with the way humans think about it.

IV. MACROMOLECULES

A challenging task in computational chemistry
and biology is the simulation of macromolecules,
which include biomolecules (nucleic acids, proteins,
carbohydrates, and lipids) and synthetic polymers
(e.g., plastics and synthetic fibers). Some macro-
molecules, such as polymers, are largely stochastic
in nature and often feature a wide distribution over
multiple chemical structures. In contrast, SMILES

representations were created to describe determin-
istic structures such as small molecules, indicating
that a new way of representing stochastic systems is
needed.

One of the earliest macromolecule syntaxes de-
veloped was CurlySMILES [67], which provides
a method for encoding repetitive units such as
monomers. This method encodes monomers as well-
defined structures. Thus, it is unable to capture
any stochasticity or complex connectivity between
monomers. To address this issue, Lin et al. devel-
oped BigSMILES [66], a polymer extension of SMILES

which provides principles to represent the stochas-
tic nature of polymers. A few syntax rules were
added regarding the type of monomers and con-
nectivity in the polymer. A schematic BigSMILES

representations from Lin et al. is shown in Fig-
ure 5. BigSMILES therefore provides a list of building
blocks that can be assembled stochastically at run
time. Since BigSMILES inherited the basic syntax
of SMILES and introduced new symbols that require
matching, it also suffers from the invalidity of some
representations.

Zhang et al. proposed Helm [68] as a hierar-
chical way to represent large biomolecules. Un-
like BigSMILES, which emphasizes the stochastic na-
ture of synthetic polymers, Helm represents the full
structure of a biomolecule with monomers replaced
by their unique identifiers. This idea allows the rep-
resentation of much larger structures in a concise
way. Helm, however, has the same drawback as
SMILES with respect to reliance on matching paren-

theses, leading to reduced robustness for its usage in
generative models.

Next we describe two interesting stand-alone
projects that could advance molecular string rep-
resentations and their application in AI for macro-
molecules.

Future Project 3: BigSELFIES – Stochastically
assembling building blocks for 100% robust

polymers

SELFIES can naturally be extended to biomolecule
representations by combining the best of BigSMILES

(stochastic repeating patterns) and Helm (amino
acids). A sequence of amino acids can be encoded
with standardized symbols (for example, “V” = “va-
line”) and every possible amino acid sequence is a
valid representation. For the development of Helm-
SELFIES, one will need to identify grammatical rules
for the entry and exit points of the amino acid se-
quence monomers or other macro-components. A
challenge is that those rules likely go beyond individ-
ual bonding constraints, but this could be solved by
adding more complex derivation states (i.e., memory
during the derivation).

From these rules, BigSELFIES, an extension of
SELFIES to stochastic derivation using predefined
lists of monomers, will follow directly. This is be-
cause Helm-SELFIES will need to work for every
combination of monomers. During derivation, it will
not matter whether the structure is built determin-
istically or stochastically.

Such a new representation will allow for the ap-
plication of generative models to large molecules
and polymers, with minimal hand-crafted features
in the model. The ML algorithm can directly work
on the string representation, and all outputs are
valid and interpretable structures. This approach
will allow for the applications of both simple and
fast algorithms that have been proven successful for
organic molecule design [63]. Furthermore, many
deep generative models can directly be applied to
design questions without any in-model conditioning
or post-selection.

V. CRYSTALS

A crystal is a periodic arrangement of atoms or
molecules, commonly described by a set of lattice pa-
rameters, atomic coordinates, and symbols denoting
symmetries other than translations. This descrip-
tion was standardized decades ago in the form of
the Crystallographic Information File (CIF), which
is widely accepted by the crystallography commu-
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Figure 5. Schematic of BigSMILES representations from Lin et al. [66] Polymers are represented as monomers
(repeating units) enclosed within curly brackets; the curly brackets indicate that the molecule is a stochastic object.
The monomers are represented as SMILES strings with additional information expressing the connectivity between
monomeric units.

nity [69, 70]. The connectivity between atoms/build-
ing blocks is often a useful abstraction for think-
ing about chemical structures and materials which
can be represented as a graph. The introduction of
molecular graphs can be traced back to the 1870s
[71], but it was not until the late 1970s that pe-
riodic graphs were introduced to describe crystals
[72, 73]. Such abstractions led to various appli-
cations in solid-state chemistry. Prominent exam-
ples include the “chemical diagrams” used in the
Cambridge Structural Database (CSD) for struc-
ture search [74], connected coordination polyhedra
to classify oxysalts [75], and net topologies in retic-
ular chemistry [76].

One can envisage an augmented version of
SELFIES that can be used to represent connectivity
between atoms (the bond topology) in crystal struc-
tures robustly. String representations that have been
explored for bond topology, such as the extended
point symbols used in TOPOS [77] for periodic
graphs and the layered assemblies notation (LAN)
[78] for 2D materials, are either non-invertible (the
graph cannot be constructed from strings without a
lookup table), or based on a structural prototype.
SELFIES, however, provides a mapping that loses
no information when converting between sequence
and connectivity, and an explicit description of the
connectivity. This allows for generative learning
across the chemical space, and supervised learning
on sequences instead of crystal structures or graphs.
String-based graph representations are ubiquitous in
chemistry and biophysics because strings are easy to
use, process, and store, and there is a vibrant ecosys-
tem of tools like RDKit and deep learning models
for sequences that interface directly with strings. A
robust string-based graph representation of crystals
could inherit these advantages and transform mate-
rials informatics.

Figure 6. Nets for representing crystals. (A) Crystal
structure of graphene (2D honeycomb lattice). (B) 2D
carbon structure of an orthorhombic lattice. The struc-
tures are two different faithful 2D embeddings of the
same underlying net. This shows that a net, unlike its
real space realization, does not bear spatial information
(e.g., bond lengths, coordinates). Inspired by the suc-
cess of SELFIES in representing finite molecular graphs,
in this section, we discuss how SELFIES can be extended
to represent crystal nets.

A. Net and quotient graph

What is the “crystal graph” that can be repre-
sented by a string? To answer this question, first,
the basic terminology used in this section is intro-
duced. For more formal definitions, see Delgado-
Friedrichs and O’Keeffe [79]. A crystal structure
can be abstracted to a periodic graph, called a net,
whose vertices represent the atoms (not atomic co-
ordinates) and whose edges represent bonds between
atoms. In practice, it might not be obvious which
net best describes a crystal. The definition of edges
can be ambiguous due to non-directional bonding
or complicated coordination environments. For the
latter, readers are referred to a recent benchmark of
coordination number determination [80].

A net is an infinite, connected, undirected, simple
(i.e., no loops and no multiple edges between a pair
of vertices) graph. A net is n-periodic (1 ≤ n ≤ 3) if
it permits translations in n independent directions.
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Assigning coordinates to vertices constructs an em-
bedding of a net. An embedding is faithful if edges
do not intersect each other and only contain their
respective end-vertices. Two faithful embeddings of
the same net are shown in Figure 6. Note how they
share the same net, even though they differ in their
coordinates and cell parameters. Thus, to represent
the connectivity in a crystal as a string requires rep-
resenting a net that has a faithful embedding corre-
sponding to the crystal’s real space structure.

Generally, a graph with an infinite number of
edges cannot be described by a string of finite length.
Fortunately, a net can be represented by a finite
graph, known as its quotient graph [81]. There are
two variants of quotient graphs, one with directed,
labeled edges, and one with undirected, unlabeled
edges. Here, the focus will be on the former, which
seems more suitable for developing crystal-SELFIES

(vide infra) since only the first uniquely determines
a net.

The procedure to generate quotient graphs is de-
picted in Figure 7 using graphene as an example:

1. Start from an embedding E of the net N.

2. For embedding E, define a coordinate system
C including an origin and a set of basis vec-
tors (2 vectors for 2D, 3 vectors for 3D) repre-
senting the periodicity of E. Index all cells by
their positions with respect to the origin. For
instance, the cell containing the origin is the
(0, 0) cell.

3. Group translationally invariant edges into edge
classes (black, green and blue in Figure 7).

4. For each edge class, select one edge connecting
a vertex in the (0, 0) cell and a vertex in the
(i, j) cell. Direct the edge starting from the
vertex in the (0, 0) cell, and label this edge as
(i, j), where i, j are restricted to {-1, 0, 1}.

The finite graph generated from this procedure is
called the labeled quotient graph (LQG) of the em-
bedding of the net N with coordinate system C. On
the one hand, LQGs uniquely determine crystallo-
graphic nets up to isomorphism. An LQG can be
converted to a net by choosing an arbitrary coordi-
nate system, or to a crystallographic net through its
automorphism group [82]. On the other hand, LQGs
with two different labelings can represent a pair of
isomorphic nets. Such labelings are called equiva-
lent. Methods to check for equivalent LQGs can be
found in a study by Chung et al. [81].

An unlabeled quotient graph UQG can be obtained
by removing edge labels and edge directions from an
LQG. UQGs are more similar to molecular graphs
and preserve the neighborhoods of vertices. Unfor-
tunately, the same (up to isomorphic) UQG could be

derived from two nets that are not isomorphic, and
vice versa [83]. Thus, UQG alone cannot be used to
describe a net. However, it is possible to enumerate
LQGs from a UQG by enumerating edge labels [84].

Future Project 4: Labeled Quotient Graphs in
SELFIES

From the above definitions it appears that LQGs
are most suited for string representation since they
are 1) finite and 2) uniquely determine a net. LQGs
have already been used in previous studies to rep-
resent crystals. A numerical encoding of LQG, the
Systre key [85], was implemented to identify nets.
More recently, the LQG implementation was em-
ployed in crystal structure generation using a VAE
[86]. While the current SELFIES scheme is able to
represent molecules with localized bonds robustly, to
represent an LQG, several improvements are needed:

1. Edges in a quotient graph (LQG or UQG) can
be self-loops or parallel edges; these are not
allowed in the current SELFIES. The solution
may be to treat them as size 1 and size 2 rings,
respectively.

2. There should be symbols for edge directions
and edge labels, such that the edge properties
of an LQG can be represented.

3. The choices for edge direction and edge label
are finite, and not all labelings are allowed, for
example, parallel edges cannot have the same
labeling vector (i, j). There should be addi-
tional grammar that respects such (often local)
restrictions.

4. While an LQG uniquely determines a net,
two non-isomorphic LQGs can represent the
same net. This can happen in many cases,
such as constructing an LQG from a super-
cell or from the aforementioned label equiva-
lence. Thus, a canonicalization process is de-
sired such that every net can have a canonical
crystal-SELFIES.

Future Project 5: Crystal-SELFIES in
generative models

The search space for theoretical materials is
practically infinite. While high-throughput virtual
screening methods are now common in materials in-
formatics and valuable for exploring new regions of
materials space, generative models could provide a
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Figure 7. Construction of the labeled quotient graph (LQG) for the underlying net of graphene. (A) Embed the net
corresponding to graphene. (B) Define a coordinate system with two basis vectors (solid arrows) and an origin in
the (0, 0) cell encompassed by solid lines. Index cells by their positions relative to the cell containing the origin. (C)
Group bonds into three bond classes (black, blue, green) by translational invariance. (D) The result is the LQG. The
label of (0, 0) bonds is dropped by convention.

more systematic direction for targeted materials de-
sign. Generative models also aim to reduce system-
atic bias in the exploration of chemical space, al-
lowing for a higher chance of discovery. By solving
the missing pieces in the previous Future Project,
SELFIES could be augmented to crystal-SELFIES, a
lightweight and robust string representation of crys-
tal (bond) topology that could improve crystal struc-
ture generation.

Currently, a few different approaches are followed
to construct generative models for crystal structures.
The first approach, employed mainly in the field of
metal-organic frameworks (MOFs) [87, 88], starts
from a net that is usually selected from established
data sets. Appropriate building blocks are then cho-
sen as nodes and their connections as edges of the
net. The generation resembles the isoreticular ex-
pansion of MOFs. Such a method relies on prede-
fined nets in addition to a set of available building
blocks.

Another approach is to focus solely on embed-
dings. The embedding can be represented by a set of
parameters based on a structural prototype [89, 90],
which may not be generalizable. Alternatively, em-
bedding representations can be learned [91, 92] from
data sets. Such representations are often continuous,
thus suitable for inverse design. However, since bond
topology information is not explicitly included, it is
unclear whether this approach can generate topolog-
ically diverse structures.

Alternatively, it is possible to start with gener-
ating LQGs: In 2004, Thimm demonstrated that
structures can be generated with minimal specifi-
cations (number of atoms in a unit cell and ver-
tex degree for each atom) by 1) generating a UQG
based on the specifications, 2) enumerating LQGs
from the UQG, 3) unfolding the LQGs to nets, and
4) obtaining faithful embeddings from the nets [84].
This method allows to control the formation of types
of nets over generated structures and does not rely
on predefined nets. In addition, as discussed ear-

lier, both LQGs and UQGs can be represented by
crystal-SELFIES. Thus, following Thimm’s approach,
structure generation using crystal-SELFIES can be,
for example, a mapping: chemical composition →
UQG (crystal-SELFIES) → LQG (crystal-SELFIES)
→ net → embedding.

A shortcoming of net-based representations is the
obscure connections between the net of a crystal
and the physical/chemical properties of that crystal.
From a SMILES string or a molecular graph, proper-
ties (e.g., 2D descriptors) like logP can be readily es-
timated without embedding the graph (i.e., molecu-
lar conformations). However, for crystals, currently,
both physical and chemical properties are calculated
from embeddings. Thus a calculator connecting net
and crystal properties would greatly benefit the de-
velopment of this field. It has been demonstrated
that the dimensionality of a crystal structure can be
derived from its LQG [93]. More information regard-
ing relations between a net and its embeddings can
be found in a study by Blatov and Proserpio [94].

Finally, for crystal generative models using
SELFIES, some general considerations are listed here:

1. The alphabet of SELFIES can be extended to
include building units and linkers used in retic-
ular or inorganic chemistry. This also helps to
minimize the space of LQGs by reducing the
number of vertices. An alternative would be
to use contraction operations.

2. It has been demonstrated that the symmetry
and topological features of an LQG are related
to that of the corresponding net [95, 96]. Thus,
the model can be conditioned on these fea-
tures.

3. While a UQG does not determine a net, it does
preserve neighborhoods. This means that it
is possible to generate nets with specific local
structures by making the neighbors of a vertex
immutable.
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4. Some nets cannot be (faithfully) embedded in
3D. Crystal generative models should be con-
ditioned such that these “pathological nets”
are excluded from generations. Some proper-
ties used to identify such nets are introduced
by Thimm [84].

VI. BEYOND ORGANIC CHEMISTRY:
COMPLICATED BONDS

In this chapter, we discuss the challenges and
prospects of extending SELFIES beyond organic
chemistry. In contrast to organic molecules [59],
transition metal, lanthanide, actinide, and main-
group metal compounds are difficult to handle with
current digital molecular representations [25] due to
special bonding situations and intricate 3D struc-
tures, combined with technical limitations that have
evolved for historical reasons. Most problems trace
back to 1) the assumption that bonding is localized
and thus can be described with valence bond (VB)
theory, 2) the non-explicit representation of termi-
nal hydrogen atoms, which are added to the heavy
(non-H) atoms based on rules derived from VB mod-
els in an approach called “implicit hydrogens”, and
3) the inability to describe stereochemistry that goes
beyond the usual restrictions of organic chemistry,
i.e., stereogenic carbon centers plus some cases of
cis/trans isomerism in C=C double bonds and cu-
mulenes. While organic chemistry has plenty of ex-
amples of more advanced stereochemistry such as
planar and helical chirality [97–99], current digital
molecular representations are generally not equipped
to handle those.

Therefore, any approach toward a general digital
molecular representation covering all elements of the
periodic table will fail if it is unable to handle the
issues mentioned above. Here, we will illustrate a
number of prominent examples which highlight the
urgent need to improve the situation, as otherwise a
major part of chemical space will remain inaccessible
to modern cheminformatics and AI approaches [2].

A. Complex, “fuzzy” bonding situations vs.
valence bond theory

One reason for including connectivity information
in a molecular string representation is that it allows
chemists to describe structures in a simple way, for
example, by decomposing them into substructures.
Furthermore, from an ML perspective, connectivity
information might also be thought of as an addi-
tional inductive bias that can help a model to gen-
eralize [100].

However, bonding information turns into a sig-
nificant technical problem if there is no algorithmi-
cally unambiguous way to define it [101], and when
there is a wide array of possible interactions of dif-
ferent strength and origin. This ambiguity in defin-
ing bonds has led some chemists to call them “con-
venient fiction” [102], which is also reflected in the
widespread use of the bond type “Any” for substruc-
ture queries in databases such as the CSD, to ensure
no entries are missed. In some domains of chem-
istry, VB theory provides a convenient and intuitive
way to think about chemical bonding that is easy to
encode in widely used data structures. In standard
organic chemistry, for instance, most bonding situ-
ations can be described as two-center two-electron
(2c-2e) bonds, a scenario which translates well into
molecular string representations where atoms are
nodes and covalent bonds between two atoms shar-
ing two electrons are edges of a molecule graph.
However, as the OpenSMILES standard notes “This
simple mental model has little resemblance to the
underlying quantum mechanical reality of electrons,
protons, and neutrons. . . ” [103].

Two prominent examples from main group ele-
ment and transition metal compounds, respectively,
will be discussed here to outline the corresponding
major issues. Figure 8A shows four different molec-
ular structural models for diborane (B2H6), an im-
portant reducing agent and key reactant for hydrob-
oration reactions. Most (inorganic) chemists, when
asked to sketch the molecule, will likely draw struc-
ture 1, which properly captures the two bridging
µ2-hydrido ligands, but results in an incorrect va-
lence electron (VE) count of 16 VEs instead of the
proper 12 VEs, when each line connecting two el-
ement symbols is assumed to represent two elec-
trons. In order to preserve the electron-counting
function of the lines representing 2c-2e bonds, some-
times structure 2 is used, wherein additional inter-
actions between the two BH3 subunits are indicated
by dashed lines, which are assumed not to contribute
to the electron counting, and thus have been termed
“zero-order bonds” by Clark [104]. However, this
structure 2 incorrectly implies the symmetry of the
molecule to be C2h, while X-ray structure analy-
sis has demonstrated that diborane belongs to the
D2h point group. All four terminal B–H bonds are
equivalent at approximately 1.09 Å, and the four B-
H distances in the B2H6 “diamond-shaped core” are
also essentially equivalent at about 1.24 Å. Notably,
the observed differences of <0.03 Å in these formally
equivalent B–H bond distances are possibly caused
by packing effects [105]. Therefore, some chemistry
textbooks use structure 3 with two bent “banana
bonds,” with the two arched lines each representing
two VEs. Such a representation, although it gives
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Figure 8. A) Different structural representations for diborane (B2H6), where 1 properly accounts for the symmetrical
B2H6 “diamond core” but gives an incorrect valence electron (VE) count, 2 uses “zero-order bonds” indicated as
dashed lines to preserve the VE count but features a molecular symmetry that is too low, 3 attempts to capture the
actual three-center two-electron (3c-2e) bonding by use of arced “banana bonds” but cannot be used in molecular
graph approaches which only allow for each edge to connect two nodes (atoms), and 4 shows the full delocalization
of an electron pair over the B-H-B unit. (B) Lewis structures of ferrocene (C10H10Fe), where 5 is unfortunately used
by PubChem, but is wrong as the compound is not ionic. 6 and 7 cannot account for the 1H and 13C NMR spectra,
both of which feature only one singlet indicative of ten chemically equivalent CH units. Only 8 is fully in line with
crystallographic and spectroscopic data, but at the expense of making electron counting impossible.

the correct VE count, cannot be used in standard
molecular graphs, which assume that each edge con-
nects two – and only two – nodes (atoms). A better
description of the structure of diborane makes use of
three-center two-electron (3c-2e) bonds, where two
electrons are fully delocalized over the B-H-B unit,
as highlighted in yellow in structure 4.

Another complex bonding situation arises in
organometallic “sandwich” complexes such as fer-
rocene (C10H10Fe), which are common building
blocks in organic chemistry and have important in-
dustrial applications, for example in Ziegler-Natta
catalysis [106]. Some databases such as PubChem
[107] utilize ionic structure 5, as shown in Figure 8B,
assuming a “naked” Fe(II) cation without any co-
ordinated ligands, combined with two separate cy-
clopentadienyl anions. This structure, however, is
utterly wrong, as ferrocene is a compound without
separate charged ions, that can be purified by vac-
uum sublimation and is non-soluble in polar solvents
such as water, but dissolves well in non-polar or-
ganic solvents such as n-hexane and toluene. The
uncharged structure 6 would be in line with these
properties, but does not account for the 1H and 13C
NMR spectra, which both exhibit only one single
peak, indicating that all ten CH units are chemi-
cally equivalent, while the NMR spectra of represen-

tation 6 would feature three different peaks for each
nucleus. Furthermore, two-coordinate iron centers
are exceedingly rare and require very bulky ligands
to be stabilize [108]. Alternatively, structure 7 has
the Fe(II) center “sandwiched” between the two cy-
clopentadienyl rings, but still cannot account for the
NMR spectra due to the combination of two local-
ized C=C double bonds and one carbanionic center
per ring. Only structure 8 correctly captures both
the NMR properties and the X-ray data, which in-
dicate ten equivalent Fe–C and C–H bonds, and an
identical length for all ten C–C bonds [109]. This,
however, goes at the expense of any kind of VE
counting, as the actual bonding requires a molecu-
lar orbital (MO) treatment which at least considers
both the cyclopentadienyl π-system and the iron d
orbitals. The situation becomes even more compli-
cated when one attempts to capture not only co-
valent bonds but also weaker agostic interactions, in
which the two electrons of a C–H bond interact with
empty metal d orbitals in another example of 3c-
2e bonding. The same applies to other weak inter-
actions such as hydrogen bonds, raising important
questions as to which interactions should actually
be captured in a digital molecular representation as
a “bond” (and which not), and how to automati-
cally detect them from a set of atomic coordinates,
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ultimately leading to a rather arbitrary distinction
between bonded and non-bonded. To quote Democri-
tus: “Nothing exists except atoms and empty space;
everything else is only opinion.”

B. No “standard” valences

Current molecular string representations make use
of models based in VB theory, as it allows the def-
inition of “standard valences” for the different el-
ements. Missing hydrogen atoms are inferred and
inserted implicitly, which allows for a more compact
representation. These standard valences are usually
fixed to satisfy the octet rule, which is not gener-
ally applicable. Even many main group elements
do not follow that rule. For the d and f elements,
such a rule is largely irrelevant due to strongly de-
localized bonding with significant mixing between
metal and ligand orbitals that require an MO the-
ory treatment, something that cannot be captured
by structural representations exclusively based on
2c-2e bonds.

For example, while the noble gas elements have
to be formally assigned a “standard valence” of
zero, many stable compounds with them, such as
XeOF4, are known and readily prepared. Even car-
bon does not necessarily obey the octet rule, as the
catalytic center of nitrogenase, the enzyme that is
central for biological nitrogen fixation, contains an
FeMo co-factor with the composition of [Fe7MoS9C]
that is built around a carbide center with a formal
charge of −IV and six equivalent Fe–C bonds, as
demonstrated by X-ray crystallography [110]. Be-
yond such surprising structural motifs created by
nature itself, inorganic chemists in particular con-
stantly look for new oxidation states [111] and bond
orders [112, 113]. Furthermore, there needs to be a
critical discussion of the term “valence” itself, as in
inorganic chemistry it is normally used to describe
the physical oxidation state (related to the spec-
troscopically accessible d -electron count) of a metal
center (e.g., trivalent iron is Fe(III), which is usually
six-coordinate), while in the context of INCHI and
SMILES, it refers to the number of bonds to neigh-
boring atoms. Therefore, any approach to generally
applicable digital molecular representations should
not make use of “standard valences” and needs to
treat all hydrogen atoms explicitly.

C. Stereochemistry beyond the tetrahedron

Most organic molecules feature either linear sp,
planar sp2 or tetrahedral sp3 carbon centers and,
thus, their stereochemistry is usually restricted to

point chirality from stereogenic centres, cis/trans
isomerism of C=C double bonds in alkenes or ax-
ial chirality in allenes/cumulenes. However, in
more complex structures, even within organic chem-
istry, planar or axial chiral elements can addition-
ally come into play. Prominent examples of the
latter include ortho-condensed polycyclic aromatic
compounds from the class of the [n]helicenes (Fig-
ure 9A). Such systems are far from academic curiosi-
ties, as axial chirality is important to enantioselec-
tive catalysis. This is apparent in the BINAP class
of ligands, for which Noyori was awarded the 2001
Nobel Prize in Chemistry (Figure 9B).

Furthermore, metal complexes are characterized
by a wide range of coordination geometries with co-
ordination numbers in the range of 2–16. The struc-
tural motif assumed is often dictated by electronic
ligand field (LF) effects rather than steric repulsion,
as in the widely used VSEPR model applicable to
main group chemistry. For example, a metal cen-
ter with four ligands, in addition to a tetrahedral
structure, could also assume a square-planar coordi-
nation environment, where the central metal atom
and the ligands are in one plane, with L-M-L angles
of 90o and 180o, respectively. In MA2B2-type com-
pounds, this gives rise to two stereoisomers, with cis-
and trans-[PtCl2(NH3)2] as some of the most impor-
tant examples (Figure 9C). The compound cisplatin
is an approved anticancer drug with wide applica-
tions in chemotherapy and annual multi-billion dol-
lar sales, while transplatin shows no biological activ-
ity. Unfortunately, PubChem considers both com-
pounds simply as “synonyms” and thus provides an
incorrect record for them [114]. The reason for this
is rooted in the erroneous application of the concept
of “standard valences.” Since the Pt(II) center is as-
signed a valence of two, the compound is incorrectly
represented as a mixture of a bent(!) PtCl2 unit
and two separate NH3 molecules to also preserve the
“standard valence” of three for nitrogen. However,
the two ammine ligands are bonded to the metal in
a fashion that is comparable to covalent bonds in
organic chemistry, and in aqueous solution it is ac-
tually the chlorido ligands which are exchangeable
to water, not the ammine ligands. When moving
from four- to six-coordination, the range of accessi-
ble structures becomes even broader and one has to
additionally consider new stereocenters generated by
fixation of ligand atoms to the metal, which can lead
to helical structures, as discovered by Alfred Werner
more than 100 years ago [115] (Figure 9D). To com-
plicate matters even further, coordination numbers
of 12 and higher have been reported. One exam-
ple is [Ph4P][Hf(BH4)5], in which each borohydride
unit [BH4]− acts as a tridentate ligand to the Hf(IV)
metal center, which has a coordination number of
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Figure 9. Examples of (A) helical and (B) axial chirality in organic compounds. (C) Diastereomeric coordination
compounds: cisplatin is an approved anticancer drug, while its isomer transplatin is inactive. (D) Helical chirality in
metal complexes.

5× 3 = 15 [116].

D. Alternative approaches

Many alternative molecular representations that
have been put forward try to be more faithful in
representing chemical concepts such as multicenter
bonds or stereochemistry.

1. Separation of σ- and π-electron systems

In conventional molecular string representations
(e.g., SMILES and SELFIES), atoms are considered to
be nodes and bonds to be edges of a molecular graph.
These are then assigned numerical values such as
atomic number, number of unshared electrons, and
bond order, which are considered invariants of the
graph, as they do not depend on the labeling scheme
of the nodes (atoms) [117]. Most approaches allow
all edges to connect just two nodes, in line with the
standard 2c-2e bonds that dominate most of organic
chemistry.

In the symbolically extended BE (sXBE) matri-
ces [118–121], however, delocalized electron systems
are encoded using special bond types such as pisys
(e.g., benzene) or edsys (for electron deficient sys-
tems such as boranes). Therefore, these represen-
tations allow for a better representation of the true

multicenter bonding nature of some systems such as
diborane or ferrocene (Figure 10A–B).

2. Dietz representation

As an alternative, Dietz suggested a hypergraph
concept [122] where edges are allowed to contain
more than two nodes, accounting for multicenter
bonding (Figure 10C). However, the approach of
Dietz, Ugi, and Stein is based on groups of nodes
and edges which are additionally characterized by
the number of unshared VEs and delocalized elec-
trons [117]. This approach tries to exactly capture
the electronic structure but leads to complicated
nested sets of brackets that may be hard to com-
prehend. Furthermore, a clear assignment of valence
electrons is often not possible transition metal chem-
istry due to extensive delocalization. Consequently,
as the resulting representation and terminology is
difficult to tackle, to our knowledge, they have not
been used in any digital structure representation
to date. Furthermore, as noted by Bauerschmidt
and Gasteiger, the Dietz system (and all others de-
scribed so far) cannot easily distinguish between dif-
ferent spin states of the electrons [123]. This is
relevant for carbenes, where the singlet and triplet
states have a vastly different reactivity, and also ap-
plies to molecules as simple as dioxygen. Hence, to-
gether with its complexity, this representation has
not found widespread use.
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Figure 10. Current possibilities to represent molecules with complicated bonds (here ferrocene). Top Left: Bond-
agnostic edges neglect some physical constraints, and can be written as SMILES or a graph. Top Right: Separation
of σ- and π-electron systems. Bottom Left: Dietz representation. Bottom Right: “Zero-order” bonds.

3. “Zero-order” bonds

To address the issue of multicenter bonding, non-
specified bond orders, and the related problems with
implicit hydrogens, in 2011, Clark proposed two
backward-compatible modifications to connection
table (CT)-based molecular representations [104]. In
that work, it was suggested to allow for a bond or-
der of zero for all interactions or bonds that do not
fit the conventional scheme and to add a property
that explicitly describes the number of connected
hydrogen (Figure 10D). Interestingly, the zero bond
order reflects the fact that, due to the ambiguity of
bond orders, many chemists perform database sub-
structure searches with “Any” as bond type. How-
ever, as discussed in the previous section (Figure 8A,
Structure 2), this can lead to an incorrect decrease
in molecular symmetry. There are also cases where
ambiguities appear regarding which bonds should be
denoted as “zero-order” and which ones otherwise.
A common resort to be expected in that context is
that many users will then simply label all bonds as
“zero order.”

Thus, it should be stressed again that in d - and f -
block chemistry as well as main group organometal-
lic compounds it is often impossible to assign any
particular bond orders without high-level quantum
chemical calculations, due to the highly delocalized
nature of the bonding, where electrons are often
spread out over a significant number of atoms, in-
cluding the metal center itself, the immediately co-
ordinated atoms, and additional ligand groups. In

summary, despite more than 25 years of research
into the issue, little progress has been made toward
a generally applicable and domain-independent digi-
tal molecular representation, as some of the concepts
representations are built upon (standard valences,
2c-2e bonding, and the possibility to assign bonds
and bond orders unambiguously) are ill-defined for
many compounds outside of classic organic chem-
istry.

4. Tooling and the value of simplicity

In this section, a number of essentials charac-
terizing molecular assemblies of atoms and what is
needed to create a digital representation thereof are
outlined. The high variability of metal complexes, in
particular in terms of electronic structure and coor-
dination geometry calls for a flexible and extensible
“layer approach”, in which the essentials strictly re-
quired to describe a molecular structure are included
in a base layer while all domain-specific information
is covered by additional and user-definable property
layers, which can be used or ignored depending on
the users’ goals.

1. Base layer (domain-independent): The
nodes (atoms) “carry” the atomic number and
(non-standard) isotope distribution. Edges
(bonds) indicate strong pair-wise attractive
interactions, although it remains to be de-
fined which interactions should be captured
and which ones not.
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2. Property layer #1 (domain-dependent):
Nodes carry information about local stereo-
chemistry and charge; edges carry bond order
and type information (such as single, double,
triple, aromatic bonds).

3. Higher-level property layer #2 (domain-
dependent): Information from ML mod-
els, handcrafted information, experimental
data such as NMR chemical shifts, “strategic
bonds” for either retrosynthesis or reactivity
prediction.

An interesting aspect of the additional property
layers is that, beyond certain values assigned based
on user interaction or software-encoded domain-
specific models, these might also be generated from
ML approaches, which could allow for a more nu-
anced picture than simple binary assignments often
governing current models [124]. To conclude, the
need to describe all of chemical space is at odds with
imposing strong rules on the allowed valence or con-
nectivity and more elaborate derivation rules need
to be developed.

Future Project 6: Automatic compilation of
complex rules from data

Most chemists may possibly agree on which struc-
tures are “correct” (and which are not) by visual
inspection of structural formulas. As this ability is
based on knowledge obtained by inspection of other
compounds and the underlying trends that govern
their bonding, it should be possible to train an
ML model to deduce these rules (i.e., the necessary
extended SELFIES grammatical rules) for general
SELFIES from an appropriate data set. This project
is a further extension of the topic described in Fu-
ture Project 1 (metaSELFIES). One of the most ex-
tensive and curated structure collections is the CSD.
However, one has to keep in mind that there will be
biases in such a data set which need to be accounted
for. For example, the CSD only contains compounds
that could be crystallized and were deemed to be of
sufficient interest for X-ray structure analysis. This
could potentially be corrected by supplementing the
model with data from other databases and by the ad-
dition of manually selected structures. Furthermore,
state-of-the-art quantum chemical calculations are
nowadays able to provide optimized geometries that
often approach the accuracy of experimentally ob-
tained structures and might thus also be of interest
to feed to such models. One potential means of pro-
gression is to create a neural network that learns
to classify compounds into “correct” or “incorrect”
categories. After training, symbolic regression [125]

could be used to extract symbolic rules that can be
used directly by SELFIES.

VII. REACTIONS

So far, we have discussed only representations of
molecules. However, a significant part of chemistry
consists of the modifications of molecules, via re-
actions. In this section the applications of ML in
reactions is discussed and what role molecular rep-
resentations play.

A chemical reaction can be divided into four dis-
tinct parts: reactants, agents, products, and overall
conditions. Products are the outcome of the reac-
tion, or the molecule(s) obtained once the reaction
is done. Reactants are the building blocks of the
product(s): the initial compounds containing atoms
that will be incorporated into the product. Agents
can be anything from catalysts to solvents that are
added to the reaction mixture but will not be part of
the product molecule(s)3. Conditions are, for exam-
ple, the temperature and pressure at which the re-
action is run, or other more complex variables such
as heating profiles, the order of addition of reactants
and agents, and so on. The agents and conditions
describe the environment in which the reaction hap-
pens. Depending on the available data set, condi-
tions and agents may not always be fully described.

Openly available data sets are derived from either
patents [127, 128] or chemical journals [129], and
more rarely experimental procedures directly [130].
These data sets are distributed using SMILES as a
representation for the reaction itself and usually in-
clude extra information in various formats. There is
no standard format that allows for conveying infor-
mation about reactions and their details simultane-
ously. Initially intended for organic chemists, these
data sets also attracted the attention of computa-
tional chemists as they enabled the development of
new methods and algorithms. The Open Reaction
Database provides a centralized platform to collect
and access reaction data sets [131].

Chemical reactions are commonly investigated in
ML for chemistry regarding two broad categories:
reaction completion and property prediction. Usu-
ally, the full reaction is provided when running prop-
erty predictions. A typical variable to predict could
be the yield of the reaction or the energy profile. Re-
action completion consists of completing a reaction
scheme, where some of the molecules or conditions

3 This is a simplification as sometimes it is not possible to
identify which molecule contributes to the product, such as
in reactions involving protic catalysts.
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Figure 11. An example of a Molecular Transformer which uses SMILES to represent and transform reactant and
agent molecules into the product of the reaction, as used by Schwaller et al. [126]. The tokenization of the SMILES

is shown by the bold characters separated with spaces.

are missing. Two subcategories of interest are reac-
tion prediction, where the goal is to predict a prod-
uct based on a given set of reactants, and retrosyn-
thesis, where the goal is to predict a set of reactants
given a particular product. Likewise, prediction of
reaction conditions and/or agents represents a major
current challenge.

1. Reaction completion

(a) Reaction prediction

(b) Retrosynthesis

(c) Condition and agent prediction

2. Property prediction

Reaction completion is the category of tasks where
the representation matters most, as algorithms not
only take molecules as input but also need to output
molecules. Therefore, the main discussion here will
be about possible algorithms and representations of
reactions with respect to reaction completion.

There are three broad categories of methods de-
signed for reaction completion:

1. Template-based methods

2. Graph-based methods

3. Text-based methods.

Template-based methods use a set of reaction tem-
plates that encode the possible changes effected dur-
ing a reaction. These templates are either written
by domain experts [132] or directly extracted from
data using atom-mapping [133, 134]. Atom-mapping
links the product atoms with the corresponding reac-
tant atoms, and, hence, specifies the reaction center.
In template-based reaction completion methods, it
is common to see the outcome of these templates
ranked by a neural network [133, 134] to define which
reaction is the most likely to happen. Graph-based

methods [133, 135] typically use graph neural net-
works (GNNs). Generally, this kind of method splits
the project into two sub-tasks: the first step localizes
where the changes in the graph should happen by se-
lecting atoms, and in a later step, the changes are
performed. Similar to template-based methods, the
bond changes used for training of the graph-based
methods are extracted from atom-mapping. There-
fore, their performance depends on the quality of the
underlying atom-mapping [136].

Text-based methods use textual representations
of molecules to take advantage of models initially
developed for neural machine translation, such as
the Transformer model [137] (see Figure 11). Such
sequence-2-sequence methods for forward prediction,
retrosynthesis, and agent completion can be atom-
mapping independent as the reactant and product
atoms do not have to be linked in the training reac-
tions [126, 138, 139].

All these reaction completion methods could ben-
efit from improving the underlying representation of
reactions they are using. The following paragraphs
will focus on the most promising improvements, and
we will discuss how the three methods presented will
benefit from it. The reactions present in the cur-
rent data sets are rarely balanced, meaning not ev-
ery atom from the left hand side of the chemical
equation can theoretically be mapped to an atom to
the right hand side. Indeed, in the literature, parts
of a reaction are often omitted when they are either
considered irrelevant or are unknown (for instance,
not mentioning the side products), or so obvious it
does not need to be mentioned (for instance, disre-
garding counterions or necessary byproducts such as
CO2). While this makes sense when a human reads a
reaction, since it improves clarity, it would be bene-
ficial if the reactions were complete for an algorithm
to learn from them. For graph-based methods, this
would reduce the number of graph edits that need
to be predicted as there would be less variation on
both sides of the reaction. For text-based methods,
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Figure 12. In most cases, the changes happening during the reaction affect only a small fraction of the molecule
and everything else is left unchanged. However, current representations, like reaction SMILES, do not capture that,
and major parts of the molecules are actually repeated. In contrast, condensed graphs of representation (CGRs)
represent the bond changes in the reactions. To generate a CGR from a reaction SMILES, the atom-mapping has to
be determined first. Agents and conditions are not shown in the figure.

this would allow a user to enforce an atom count at
inference, which would most likely improve the per-
formance. Finally, template-based methods would
also benefit as the templates extracted from the data
would be more consistent.

A way to enforce the atom count of a reaction
would be to describe only one side of the reaction,
for instance the reactants, and then describe only the
changes happening during the reaction [140]. This
would not only enforce balanced reactions, but also
remove the unnecessary redundancy of the current
representation as illustrated in Figure 12. Bort et
al. [141] proposed the use of such a text-based con-
densed graph of reaction (CGR) representation to
perform property prediction. Extra symbols were
added to the reactants to describe the reaction.
This representation is well-suited for template-based
methods as it turns every reaction into a ready-to-
use template. This would also be convenient for
graph-based methods as there is no need to ex-
tract the graph edits. Further work is required to
make this kind of representation useful for text-
based methods. The application of such methods is
difficult if there is no separation between the changes
and the initial molecules, which to some extent also
applies to graph-based methods.

However, the atom-mapping that enables extract-

ing reaction templates or graph edits and build-
ing CGRs is typically not directly available for ex-
perimentally observed reactions. Moreover, human
labeling is prohibitively time-consuming for large
databases. Traditionally, automated atom-mapping
was performed using extended-connectivity-, max-
imum common substructure-, and optimization-
based approaches [142]. Schwaller et al. [136] re-
cently showed that accurate atom-mapping could be
learned from reactions represented as SMILES with-
out existing atom-mapping, through unsupervised
training.

So far, we have discussed methods to improve the
representation, but have not considered extending
SELFIES to represent reactions. We will consider two
cases: a representation that is syntactically robust
and one that is semantically robust. A syntactically
robust representation would ensure the validity of
the graph edits proposed. However, this would not
guarantee that the results make sense chemically.
This is the goal of the semantically correct repre-
sentation. In the following project, we will discuss
the benefits and the feasibility of such a representa-
tion.
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Future Project 7: Graph edit rules and
metaSELFIES for reactions

A syntactically robust reaction representation
would most likely improve the performance of pre-
dictive models, as it is no longer possible to predict
an invalid representation or an invalid graph edit
sequence. To achieve this representation, the rule
set that defines SELFIES has to be extended signif-
icantly. Although they are significantly more com-
prehensive, it should still be possible to write down
the set of rules corresponding to the possible graph
edits.

A semantically robust reaction representation will
be harder to achieve. The number of rules needed is
probably extremely high. Our best estimate of the
number of rules needed is from the work of Refer-
ence [132], with over 50,000 rules. Applying a sim-
ilar approach to reaction SELFIES will be quite an
endeavor and will not be scalable, as the number of
rules is too high. A more suitable approach would
be to extract the rules from the data directly. Such
rules could either be extracted using hand-crafted
algorithms (similar to the project on metaSELFIES

for organic molecules), or could be learned with ML.
The latter case requires the extraction of rules from
the ML model, which could be achieved with sym-
bolic regression of a trained neural network. This
project is conceptually related with the project for
molecules with complicated bonds.

VIII. STRINGS AS PROGRAMMING
LANGUAGES

String representations such as SMILES or SELFIES

are often considered less expressive and powerful
than true “graph-based” representations, for in-
stance those used in GNNs. However, fundamen-
tally, quite the opposite is true for two very appeal-
ing reasons:

• Strings and matrices can represent
graphs: Often, “graph-based” representa-
tions are understood implicitly as adjacency
matrices. However, graphs are abstract ob-
jects, and can indeed be represented in diverse
ways, for example by adjacency matrices, but
also by strings (or other ways such as images).
In that sense, both strings and matrices can
be representations for graphs.

• Strings can store Turing-complete pro-
gramming languages: In the most general
case, one can store the source code of com-
puter programs as strings. For example, a

Python file is a simple string, which is exe-
cuted by the Python interpreter. Python is
of course a Turing-complete language, which
means, strings can encode the most power-
ful computational algorithms. Coming back
to graph representations: one can imagine
that SMILES or SELFIES are programming lan-
guages, which are executed by an interpreter
(for instance, by RDKit). The output of the
program is a graph.

Arguably, SMILES and SELFIES are rather sim-
ple programming languages, but this way of think-
ing indicates that one can develop much more pow-
erful string-based molecular graph representations.
These new molecular programming languages can
be Turing-complete, thus encode arbitrary proper-
ties of a molecule that can be encoded in a computer.
What follows now are a number of interesting future
research questions that study the consequences of
these ideas.

Future Project 8: Introducing “molecular
programming languages”

Besides the performance of current string-based
representations, the question remains how to ex-
tend string representations or SELFIES to incorpo-
rate more prior information without losing desirable
properties such as robustness. In the following, we
propose two possible extensions to SELFIES:

• Including 3D information such as bond
angles and dihedral angles: By incorporat-
ing 3D information, a SELFIES could directly
map to a specific molecular conformer, which
could be beneficial in structure generation and
embedding methods [143]. In practice, exten-
sive conformer searches could be circumvented
if a specific configuration is already defined in
a SELFIES. A possible implementation of such
3D-SELFIES could be envisioned through the
use of pointer variables that locate positions
in memory.

• Including meta-characters for loops and
logic: Another important extension would in-
clude basic expressions of programming lan-
guages which can be used to enable differ-
ent types of logic such as for loops to re-
peat substructures or characters for symmet-
ric branches. Such characters could be of im-
mense value to generate SELFIES for larger and
more complicated molecules (such as polymers
or crystals, as discussed in previous chapters).
The general idea of meta-characters goes hand-
in-hand with the creation of a general purpose
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Figure 13. Graphs can be represented in numerous ways. For example, using images, adjacency matrices or strings.
All of them are graph representations. By relating string-based representations to programming languages, we show
that they are in general the most expressive representations. For SELFIES, B1 and R1 are appreviations for Branch1

and Ring1, respectively.

and domain-independent representation (i.e.,
metaSELFIES), discussed in the Future Project
1.

Future Project 9: A 100% robust programming
language

The discussion in the previous section motivates
another leap: the possibility of a Turing-complete
programming language that is 100% robust, i.e.,
every combination of elements in the instruction
set gives a valid computer program. The ques-
tion of deep generative models for code genera-
tion has just recently seen impressive progress in
OpenAI’s Codex, a GPT language model clone that
was trained on all Python code on GitHub [144].
It would be exciting to explore possibilities for gen-
erative ML models that have access to a scripting
language that produces valid code in every instance.
Interestingly, the question of robust programming
languages has been discussed in the field of arti-
ficial life since the pioneering 1993 work of Tierra
[145, 146]. Extensions of these ideas have since been
applied to studies on artificial evolution [147, 148].
We hope inspiration can be taken from that field of
study.

IX. COMPARING STRINGS, ADJACENCY
MATRICES AND IMAGES AS MOLECULAR

GRAPH REPRESENTATIONS FOR ML

Strings may be graph representations in the same
way as adjacency matrix representations or image-

based representations (cf. Figure 13). Since strings
are directly related to programming languages, they
are in general the most expressive of all graph repre-
sentations. A very important question is how these
different graph representations differ in actual ML
applications.

To answer this, it is interesting to note that differ-
ent representations are suitable for different, special-
ized neural network architectures. Image-based rep-
resentations can benefit from Convolutional Neural
Networks (CNNs), adjacency matrix- based repre-
sentations are the foundations for GNNs, and string-
based representations work well for language mod-
els such as recurrent neural networks (RNNs) and
Transformers.

The question of how these representations and
their related ML models compete in the same task
is so far underexplored. One very recent study
has shown that chemical language models (using
SELFIES) and RNNs are powerful enough to gen-
erate very complex molecular distributions, includ-
ing the largest molecules from PubChem [149]. So
far, GNN-based generative models struggle with this
task and do not yet scale to these large sizes.

The comparison between the representations (and
their corresponding models) leads to a number of
interesting questions:

• Memory footprint: As vehicles for stor-
ing molecular data, both strings and matrices
should provide characteristic descriptions of
the data. A fundamental principle for data de-
scription in ML is minimal description length
(MDL). That is, the best description of the
data is given by the model which compresses
it best. One example of MDL is Kolmogorov
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complexity [150], which is defined as the length
of the shortest computer program that pro-
duces the sequence of data. Even though Kol-
mogorov complexity itself is not computable,
practical approximations of Kolmogorov com-
plexity can be used to quantify the memory
footprint of the molecular representation. This
is especially important when using the strings
or matrices as input to downstream algorithms
for molecular property prediction or molecular
generation. The level of physical memory bur-
den incurred from using different representa-
tions can have significant impact on the exe-
cution speed, processor utilization, and energy
cost of the program.

• Optimization difficulty: Even if represen-
tations have the same memory footprint, their
impact on the outcome of the ML algorithms
may still vary. One reason is the difficulty of
non-convex optimization. The resulting deep
learning model may not be able to fully exploit
the information in the data. The choice of in-
put representation may also have an effect on
the loss landscape of the neural network op-
timization problem, which would certainly in-
fluence training dynamics. Different molecular
representations could lead to distinct local op-
tima, producing models that differ in terms of
generalization performance and sensitivity to
input perturbation.

• Computational efficiency: From a compu-
tational perspective, string vs. graph represen-
tation can also have different complexities due
to the differences in numerical algorithms. For
example, for strings of different lengths, one
can either use sequential processing models
such as RNNs, or Transformers with padding,
which can be easily parallelized. However, the
padded strings would have different sparsity
structures (the patterns of zeros) than the ma-
trix representations. These sparsity structures
can be utilized to a varying degree in order to
accelerate numerical operations including ad-
dition, multiplication or eigenvalue decompo-
sition. The efficiency of the entire program,
thus, can be easily affected.

To shed light onto these different properties, we
suggest the following project.

Future Project 10: Comparisons in various data
regimes in a regression task

While string-based representations tend to be
more expressive and easier to generate, adjacency

matrices in conjunction with GNNs have important
advantages, such as permutation invariance. Images
of the molecular graphs (which can be understood
as another graph representation) could take advan-
tage of extremely efficient, pretrained CNNs. A suit-
able experiment could be a discriminative task in
the various data regimes. This of course depends
on the target property to be learned. For example,
for learning coordinate-dependent properties, it is
still unknown how much prior information is actu-
ally necessary and whether string-based representa-
tions will outperform graph-based representations in
the high data regime for specific tasks.

We suggest the development of a benchmark to
compare image, adjacency matrix, and string rep-
resentations for graphs in various data regimes for
discriminative tasks. The PCQM4M-LSC data set
may be useful for these comparisons: with approx-
imately 3.8 million molecules and their associated
HOMO-LUMO energy gaps (as estimated by DFT
simulation), it poses a formidable chemical regres-
sion task [151, 152].

The comparison should measure all three models
in (at least) the prediction quality over the following
characteristics:

• the number of training epochs.

• the number of model parameters.

• various numbers of examples in the training
data.

• various sizes (measured in edges) of the largest
molecules in the training data set.

These experiments will give insightful answers
about the characteristics of different data modali-
ties in ML tasks, and will give experimental evidence
about which models should be used in which situa-
tions in future practical applications.

Future Project 11: Comparisons in generative
tasks

A main motivation of SELFIES is its application
in generative, inverse-design tasks. We therefore
suggest the development of new generative model
benchmarks. For that, a number of important pre-
cautions need to be considered. First, when SELFIES

is used, a comparison among models based on their
ability to generate valid molecules is no longer a use-
ful design objective [153]. Interestingly, previously
used benchmarks [153, 154] have also placed great
importance on distributional learning metrics. How-
ever, this approach is reported to have multiple flaws
in the form of edge cases [155]. For instance, simple
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algorithms that place carbon atoms at random posi-
tions within molecules have been shown to perform
well on distribution matching objectives. Addition-
ally, the recent proposal of the STONED algorithm
[63], which makes use of random SELFIES mutations,
has demonstrated ease in matching the structural
distribution of molecules. FastFlows [156] uses nor-
malizing flows to model distributions of molecules
represented as SELFIES and achieve fast sampling
speeds. Another class of methods used for com-
paring molecular generative models can be classi-
fied as goal-directed benchmarks. In these, genera-
tive models compete among one another to optimize
one or more molecular property functions. It can
also be important to generate dense local chemical
spaces, for example to create counterfactuals to ex-
plain black-box models [157]. Many of these tasks
are provided within GuacaMol [154]: however, given
the current rise of more sophisticated models, these
benchmarks have become outdated. Recently, many
generative models have been able to achieve perfect
results on many of the GuacaMol tasks [158–160],
making it difficult to establish comparisons between
models. Therefore, to compare deep generative mod-
els, one needs more sophisticated objectives that re-
flect the complexity of real-world molecular design.

X. INTERPRETABILITY AND USABILITY
OF STRING-BASED REPRESENTATIONS

A. For humans

Historically, representations have been developed
with humans in mind for reading and writing
molecules. String-based representations are more
difficult to interpret than images of molecules, and
an important question is their understandability for
humans. On the one hand, human chemists might
want to write molecules quickly as text instead of
drawing them, might be able to get a quick under-
standing of the structure without inserting it into a
plotting tool, or might be interested in identifying
substructures. On the other hand, readability for
humans might not always be necessary. For exam-
ple, INCHI strings are broadly used despite the fact
that the human readability was considered to be of
low importance when INCHI was designed [161]. It is
also worth pointing out that, while human readabil-
ity is one of the often-cited advantages of SMILES,
figuring out what a SMILES actually stands for can
require significant intellectual effort. We just have
to look at the SMILES for a simple steroid such as
testosterone to see that this is the case:

O=C1CC[C@]2(C)[C@@]3([H])CC[C@]4(C)[C@@H](O)CC[

↪→ C@@]4([H])[C@]3([H])CCC2=C1

This suggests a trade-off in the necessity of readabil-
ity and concrete computational applications. How-
ever, there is certainly a natural question of how
well humans can interpret molecular string repre-
sentations, which has not been investigated experi-
mentally to the best of our knowledge. Therefore,
we suggest the following project.

Future Project 12: Experiment on readability of
molecular string representations

We suggest an experiment that tests the human
readability of SMILES-, DEEPSMILES-, SELFIES-,
and adjacency matrix-based representations of
molecules. We envision a study with 50 or more
participants from different countries. None of the
participants must be previously familiar with these
representations, to guarantee a fair comparison. The
participants will get instructions for understanding
each of the representations, with which they should
familiarize themselves before the experiments start.

At the evaluation phase, the participants are
asked to solve a number of tasks, such as substruc-
ture identification and translating the representation
from and to molecular graphs. The participants will
also be asked to solve some tasks in which they need
to actively choose their preferred representation(s).

The results might help us to understand which
representations are easiest to read, by analysing the
accuracy, speed, and participant’s preference of rep-
resentations. Post-hoc interviews could then elab-
orate on the challenges of different representations
and might help to design a potential Esperanto for
Chemistry – an easy to understand language for
molecules. Beyond human readability, such an ex-
periment might allow us to compare and contrast
which properties of representations are challenging
for humans compared to computers. These re-
sults could potentially lead to interesting findings
on the differences between humans and machines,
thus showing where we should place our trust in our
intuitions around ML for chemistry.

B. For machines

An interesting question is how ML models in-
terpret different representations. Specifically, if
SELFIES is used in a generative model, all generated
molecules are correct. In this case, how can one
be sure that the model’s output is meaningful con-
cerning some metrics such as usefulness and not just
a collection of random strings which, by construc-
tion, lead to valid molecules? Furthermore, how can
the machine interpretability of different representa-
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Figure 14. Pasithea, the DeepDreaming Generative Model – While the model continuously decreases the loss,
the molecule changes in discrete steps. The target property was logP of the molecule. The network is able to increase
or decrease the molecular property almost steadily, which indicates a certain “understanding” of the representation.
Image from [162].

tions be compared, specifically between SMILES and
SELFIES? In other words, which one is “easier” to
learn for machines?

In deep generative models using VAEs, the latent
space using SMILES consists of numerous, scattered,
valid regions that exist within invalid valleys (see
Figure 3). In contrast, the entire latent space cor-
responds to valid molecular structures if SELFIES

is employed instead. This fact allows for the ap-
plication of continuous gradient descent optimiza-
tion in the latent space, where the optimizer will
always provide meaningful structures. The robust-
ness, however, does not necessarily correspond to a
smooth encoding in the latent space, per se, where
small changes in the latent space lead to small mod-
ifications in the molecule. Therefore, it remains to
be seen whether generative models can actually learn
structure-property relations using SELFIES.

Deep Molecular Dreaming – One experiment
that tackles the problem of interpretability and
smoothness to a certain extent employs the tech-
nique of DeepDreaming [162]. The generative model
denoted as Pasithea consists of a single neural net-
work that is used for the generation of molecules in
two steps. In the first of these, the network learns to
predict a chemical property given a one-hot encoding
of a SELFIES. In the second step, the neural network
weights are frozen and a target value of the property
is fixed. Gradient descent is then used with respect
to the one-hot encoding, meaning that the input
molecule is continuously modified. The results of
two design-processes are shown in Figure 14. While
the model continuously decreases the loss, the one-
hot encoding of the molecule is changed within the
discrete space. It is apparent that the target prop-
erty increases/decreases for positive/negative target
values of logP in a nearly monotonous way. This

indicates that the model has indeed understood an
essence of the structure-property relation, and is not
exploiting only the robustness of SELFIES. A comple-
mentary approach is to use directly invertible neural
networks for generative models, such as presented in
[163].

DECIMER – Optical Chemical Structure Recog-
nition (OCSR) tools have been developed to ex-
tract chemical structures and convert them into
a computer-readable format. The best-performing
OCSR tools are mostly rule-based algorithms. To
address the OCSR problem by using the latest com-
putational intelligence techniques and provide an au-
tomated open-source software solution, DECIMER
(Deep lEarning for Chemical ImagE Recognition)
was launched Figure 15 [164]. One of the biggest
challenges in developing DECIMER was to use the
string representation of chemical structures in a
meaningful way. The issues encountered initially
with SMILES were splitting them into meaningful to-
kens during training and evaluation, when the pre-
dicted SMILES were syntactically and semantically
incorrect, reducing the accuracy of the tool. As a
result of using SELFIES, these issues were resolved,
leading to better training of models. Additionally,
it demonstrates how efficiently neural networks can
be trained to read and write SELFIES strings.

STOUT – A conceptually related tool is STOUT
(SMILES-TO-IUPAC-name Translator). It was de-
veloped to translate between the IUPAC names and
string-representations of molecules. IUPAC devel-
oped a naming scheme for chemistry based on a set
of rules. Due to the complexity of this rule set, as-
signing a chemical name is challenging for humans,
and there are a limited number of rule-based chem-
informatics applications available to assist with this
process, all of which are commercial. STOUT is
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Figure 15. DECIMER & STOUT – A framework for translating images or strings to SMILES. Experiments show
that the application of SELFIES as an intermediate representation improves the results, which indicates that ML
models find it easier to read and write SELFIES compared to SMILES. These indications are surprising because it is
not clear how the model exploits SELFIES’s robustness to improve results. Image from [164, 165].

an open-source, deep-learning-based neural machine
translation approach developed to generate the IU-
PAC name for a given molecule from its SMILES

string and carry out the reverse translation [165].
One key observation was that STOUT works better
when using SELFIES as an internal representation
than with SMILES. Therefore, the SMILES strings are
internally converted into SELFIES before the input
is processed by the model. Likewise, the predicted
SELFIES are decoded back into SMILES during re-
verse translation. This is another indication that
SELFIES is understood better than SMILES for some
complex deep learning tasks.

SELFIES in a language model – It was shown
recently that an RNN language model trained on
SELFIES is more robust to over-fitting than with
SMILES [149]. This is understood from the larger
novelty of the generated molecules at similar quality
of the learned distribution.

There are numerous future experiments which
could shed light into the “understandability” of dif-
ferent representations. We summarize a few of them:

Future Project 13: Translation between
different types of representations

It would be interesting to train a neural network
which can translate between different representa-

tions of molecular graphs, including (current or fu-
ture) string-based representations, adjacency matrix
representations or images of molecular graphs. This
would be exciting for two reasons. Firstly, if the
neural network learns to work with three entirely
different representations, it might build up an in-
teresting and robust internal representation which
could be analysed subsequently. Secondly, it gives
the opportunity to combine three of the most pow-
erful ML methods at the same time, namely GNNs
for the adjacency matrix representation, Transform-
ers for strings, and CNNs for the images of molec-
ular graphs. A concrete use case could look like
this: the goal is to predict a molecular property
from a molecule that is encoded as a SELFIES. The
neural network translates the SELFIES to an adja-
cency matrix and an image, producing a latent meta-
representation of the molecule in one of its hidden
layers in the process. All or some of these four
representations are provided to downstream mod-
els with appropriate architectures (e.g., GNN for
an adjacency matrix or Transformer for a string),
which are then ensembled to produce better pre-
dictions and overcome deficiencies in each individ-
ual chemical representation. Note that some impor-
tant progress has already been achieved in transla-
tion tasks. Examples are image to string represen-
tation translations [164, 166], and string to IUPAC
translations [165, 167].
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Future Project 14: Which string-based
representations allow for simpler models and

faster training?

Several experiments could be performed to deter-
mine how the use of different representations for
training ML models on the same set of regression
tasks impacts learning and final quality metrics, such
as accuracy. Initially, these tasks should comprise
the usual benchmark endpoints for ML prediction,
such as boiling points, logP and pK a. In addition,
tasks known to be influenced by the 3D structure of
the compounds, such as predicting HOMO or LUMO
energies, or activity toward a biological target, could
also be explored.

In a first experiment, models with the same end
goal could be trained to determine how different rep-
resentations impact the final accuracy and how they
impact the model’s ability to achieve better perfor-
mance with less training time. In another experi-
ment, the numbers of neurons and layers of neural
networks would be decreased, and the number of
episodes necessary to reach a certain quality would
be recorded. This project would allow us to verify
the ability of models trained on SELFIES to gener-
alize better, provided the performance after these
model simplifications does not decrease as fast as
for models trained on different representations.

Future Project 15: Smoothness of generated
molecules

Another interesting experiment would be to in-
vestigate the smoothness of latent spaces of VAEs
trained with SMILES, DEEPSMILES, and SELFIES. If
one wants to use gradient-based optimizers in the
latent space, it would be desirable if the properties
of the generated molecules changed to a small ex-
tent when sampling from closely related points in
the latent space. We suggest to measure a set of
properties for each generated molecule while contin-
uously wandering in the latent space. Notably, the
design of such an ML experiment needs to take the
invalid regions of the latent space into account.

Future Project 16: Learning what the machine
has learned in the latent space

The latent space represents the intrinsic represen-
tation that has been learned by the model to solve
a given task. It will be exciting to understand what
this representation stands for. If one understands
how a VAE encodes and decodes molecules to and
from the latent space, some of the questions pre-

sented above can likely be answered even without
performing further experiments. To that end, t-
SNE [168] and other dimensionality reduction tools
are expected to be challenging to interpret, thus one
direction could be the applications of latent spaces
with only two or three dimensions, which can be dis-
played without projections. Related projects have
rediscovered interesting physical concepts such as
the heliocentric coordinates [169], the arrow of time,
[170] or interpretation in quantum optics [171, 172],
and we expect similar exciting possibilities in mate-
rial science and chemistry.

XI. CONCLUSION

The resolution of the 16 proposed challenges could
significantly advance the applicability of AI in di-
verse fields of chemistry and beyond. Furthermore,
questions about the interpretability of languages for
machines could help us understand how a machine
solves complex tasks in chemistry – what principles
or concepts it uses. This could be a path for hu-
man scientists to learn ideas from AI in chemistry.
We hope that our journey of possibilities will inspire
researchers in the cheminformatics and applied AI
community and lead to exciting new results and ad-
vances in molecular string representations.
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