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Abstract Fast interpolation-grid frameworks facilitate an
efficient and flexible evaluation of higher-order predictions
for any choice of parton distribution functions or value of
the strong coupling αs. They constitute an essential tool for
the extraction of parton distribution functions and Standard
Model parameters, as well as studies of the dependence of
cross sections on the renormalisation and factorisation scales.
The APPLfast project provides a generic interface between
the parton-level Monte Carlo generator NNLOJET and both
the APPLgrid and the fastNLO libraries for the grid inter-
polation. The extension of the project to include hadron–
hadron collider processes at next-to-next-to-leading order in
perturbative QCD is presented, together with an application
for jet production at the LHC.

1 Introduction

Theory predictions at next-to-next-to-leading order (NNLO)
in perturbative QCD (pQCD) are the current new standard for
an increasingly large range of important LHC processes [1].
This development is underscored by the completion of almost
all relevant 2 → 2 scattering processes at this order and first
results for genuine 2 → 3 processes, see e.g. Ref. [2] for
a recent overview. The NNLOJET program [3] provides a
single framework for performing such calculations fully dif-
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ferentially, and is under continuous development to provide
state-of-the-art theory predictions for a plethora of processes.

Despite this remarkable progress, applications of these
calculations, beyond simple predictions, still remain the
exception: computational efficiency is the primary bottle-
neck that restricts the wide-spread use of NNLO calcula-
tions in applications such as the extraction of parton distri-
bution functions (PDFs) [4] or Standard Model (SM) param-
eters such as αs [5] or a thorough assessment of theoreti-
cal uncertainties. With a typical computing cost that exceeds
O(105) CPU core hours, any application that relies on the
repeated calculation of the cross section with different input
conditions—e.g. the variation of the value of the strong cou-
pling αs, the parametrisation of PDFs, or the study of the
dependence on the renormalisation and factorisation scales—
quickly becomes a formidable challenge.

The technique of fast interpolation grids [6] addresses this
bottleneck and has been implemented in the APPLgrid [7,
8] and fastNLO [9,10] packages. The extension of this
approach to NNLO predictions has been achieved for the
case of DIS in Ref. [11,12] and diffractive DIS in Ref. [13].
First applications of the grid technique to hadron–hadron
collision processes at NNLO were discussed in Refs. [14–
18]. In this paper, the approach is extended to include the
NNLO processes in hadron–hadron collisions available from
the NNLOJET program. The technique has been applied to
the important and complex process of jet production at LHC
energies, and is here described in detail. The application to jet

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10880-2&domain=pdf
http://orcid.org/0000-0002-9246-7366
http://orcid.org/0000-0002-2686-9658
http://orcid.org/0000-0001-7009-432X
http://orcid.org/0000-0002-0173-4175
http://orcid.org/0000-0002-3518-0617
http://orcid.org/0000-0002-7799-909X
http://orcid.org/0000-0001-7040-9846
http://orcid.org/0000-0003-4893-8041
mailto:alexander.huss@cern.ch


  930 Page 2 of 17 Eur. Phys. J. C           (2022) 82:930 

production cross sections can be seen as a proof-of-principle
for any further processes implemented in NNLOJET at NNLO
QCD.

The paper is structured as follows: Sect. 2 provides a brief
review of the grid technique, whilst highlighting the main
conceptual differences with respect to the DIS case and pro-
viding additional necessary details of the implementation; the
interpolation quality is discussed in Sect. 3 and the inclusive
jet production process is used as an example. Various sources
of theoretical uncertainties are considered, including those
due to the scale, αs, and the PDF, followed by an assessment
of the quality of the commonly employed K -factor approach,
and an investigation of the total fiducial inclusive jet cross
section at the LHC. In Sect. 4, a simultaneous αs and PDF fit
is performed using the dijet process. Grids are made publicly
available on the Ploughshare website [19].

2 NNLO predictions for hadron–hadron colliders and
the APPLFAST project

2.1 Differential predictions

Cross section predictions for hadron–hadron collisions are
described through QCD factorisation as a convolution of the
underlying hard scattering of partons and the PDFs for each
target hadron,

σ =
∫

dx1dx2 fa(x1, μF) fb(x2, μF)

× dσ̂ab(x1, x2, μR, μF) , (1)

where an implicit summation over the incoming parton
flavours a and b is assumed. The hard-scattering cross sec-
tion can be obtained in pQCD as an expansion in the strong
coupling

dσ̂ab(x1, x2, μR, μF)

=
nmax∑
n=0

(
αs(μR)

2π

)p+n

dσ̂
(n)
ab (x1, x2, μR, μF) ,

where p denotes the power in αs of the leading-order (LO)
process (n = 0) and nmax the number of orders beyond LO
that are considered in the perturbative calculation.

Predictions beyond Born level (n > 0) receive contri-
butions that involve additional loop integrations and real-
emission corrections. This gives rise to a set of parton-level
ingredients of different particle multiplicities that are indi-
vidually divergent and only finite in their sum for sufficiently
inclusive quantities. Fully differential predictions must retain
the full kinematic information of the final state while at
the same time ensuring the cancellation of such infrared

singularities. The calculations within the NNLOJET frame-
work [3] accomplish this task through the re-distribution of
singularities using the antenna subtraction formalism [20–
22]. Arbitrary collinear- and infrared-safe observables can
be computed in this framework through a flexible parton-
level Monte Carlo generator that samples the available phase
space (x1;m, x2;m, Φm)m=1,...,Mn with Mn points and accu-
mulates the associated weights w

(n)
ab;m . The cross section in

Eq. (1) can then be computed via

σ
MC−−→

nmax∑
n=0

Mn∑
m=1

(
αs(μR;m)

2π

)p+n

× fa(x1;m, μF;m) fb(x2;m, μF;m)

× w
(n)
ab;m dσ̂

(n)
ab;m , (2)

using the short-hand notation

μX;m ≡ μX (Φm) for X = R, F,

dσ̂
(n)
ab;m ≡ dσ̂

(n)
ab (x1;m, x2;m, μR;m, μF;m) .

NNLOJET further provides a decomposition of the logarith-
mic structure of the cross section

dσ̂
(n)
ab (μ2

R, μ2
F) =

∑
α,β

α+β≤n

dσ̂
(n|α,β)
ab lnα

(
μ2

R

μ2
0

)
lnβ

(
μ2

F

μ2
0

)
,

(3)

to facilitate a flexible reconstruction of the scale dependence.
Here, μ0 denotes an arbitrary hard reference scale used for
this decomposition.

2.2 The grid technique for hadron–hadron collisions

The grid technique for hadron–hadron collisions at NNLO is
a non-trivial extension of that for DIS [12] taking into account
an additional parton distribution for the second target hadron
and the corresponding momentum fraction, x2. Adopting the
same notation as in Ref. [12], the equivalent of Eq. (11) from
there for the hadron–hadron case becomes

αs(μ) fa(x1, μ) fb(x2, μ)

�
∑
i, j,k

α[k]
s f [i,k]

a f [ j,k]
b E y

i (x1)E
y
j (x2) Eτ

k (μ) , (4)

where μR = μF ≡ μ has been set for simplicity. The sum-
mation over i , j , and k represents the summation over the
nodes of the grid structure for x1, x2, and μ, respectively,
where one dimension in the grid is needed for each interpo-
lated parameter. The superscripts on the interpolation kernels
Ey
i (x) denote variable transformations x �−→ y(x) that are
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introduced to allow for a more optimal span of the phase space
of the transformed variable and to improve the interpolation
quality with respect to using equidistant grid nodes. Some
common choices for the transformations are given explicitly
in Ref. [12].

The naïve application of the sum over the parton flavours
in Eq. (4) results in up to 121 (11 × 11) different parton–
parton luminosity contributions, or 169 if the top quark is
also included, which makes the representation as a numerical
grid excessively large and potentially prohibitive for practi-
cal applications. It is therefore expedient to instead make use
of symmetries within the structure of the hard subprocesses
to form linear combinations of the individual parton–parton
luminosities to arrange for a smaller set of unique luminosi-
ties. This allows the summation over the full set of parton
flavour combinations (a and b) to be replaced by a single
summation over a significantly smaller set of contributions,
Fλ(x1, x2, μ), such that

∑
λ

Fλ(x1, x2, μ) hλ(x1, x2, μ)

≡
∑
a,b

fa(x1, μ) fb(x2, μ) hab(x1, x2, μ), (5)

where the summations over parton luminosities have been
included explicitly on this occasion. The weights (denoted
as h) for any specific contribution λ are identical for each
of the individual terms (a, b) in the summation for the
corresponding index λ. As an example, the decomposition
within NNLOJET for jet production in hadron–hadron colli-
sions [23–26] is

F1 = fg(x1) fg(x2),

F2 =
5∑

i=1

fqi (x1) fg(x2), F2̄ =
5∑

i=1

fq̄i (x1) fg(x2)

F3 =
5∑

i=1

fg(x1) fqi (x2), F3̄ =
5∑

i=1

fg(x1) fq̄i (x2)

F4 =
5∑

i=1

fqi (x1) fq̄i (x2), F4̄ =
5∑

i=1

fq̄i (x1) fqi (x2)

F5 =
5∑

i=1

fqi (x1) fqi (x2), F5̄ =
5∑

i=1

fq̄i (x1) fq̄i (x2)

F6 =
5∑

i, j=1

fqi (x1) fq̄ j (x2), F6̄ =
5∑

i, j=1

fq̄i (x1) fq j (x2)

F7 =
5∑

i, j=1

fqi (x1) fq j (x2), F7̄ =
5∑

i, j=1

fq̄i (x1) fq̄ j (x2),

(6)

effectively reducing the number of separate contributions that
must be stored in the grid from up to 121 down to 13. This
reduction of the parton luminosities is automatically per-
formed in APPLfast for any hadron–hadron process based
on the process-dependent implementation in NNLOJET. For
jet production this number could in principle be further
reduced down to 7 independent combinations [8].

Using this reduced number of parton luminosities, the
interpolated cross section prediction can be written as

σ �
∑
n

∑
i, j,k

(
α

[k]
s

2π

)p+n

F [i, j,k]
λ σ̂

(n)
λ[i, j,k] , (7)

where the summation over λ is implied. The corresponding
grid is obtained by accumulating the weights according to

σ̂
(n)
λ[i, j,k]

MC−−→
Mn∑
m=1

Ey
i (x1;m)Ey

j (x2;m)Eτ
k (μm) w

(n)
λ;m dσ̂

(n)
λ;m , (8)

where now the terms w
(n)
λ;m correspond to those weights w

(n)
ab;m

associated with the individual terms for λ.

2.3 Renormalisation and factorisation scale dependence

A flexible variation of the renormalisation and factori-
sation scales in NNLO pQCD predictions is important
for many phenomenological applications. The interpolation
grids developed here allow the variation of the scales by arbi-
trary factors, and a selection of different scale choices, with-
out a recalculation of the hard coefficients. With the hard
coefficients σ̂

(n)
λ[i, j,k] determined separately order by order in

αs, the dependence on the renormalisation and factorisation
scales, μR and μF, can be restored using the RGE running
of αs and the DGLAP evolution for the PDFs. Introducing
a generic functional form depending on the scale choice μ

during the grid generation in Eq. (8),

μX = μX (μ) for X = R, F , (9)

and using the short-hand notation from Ref. [12],

L [k]
X ≡ ln

(
μ2
X (μ[k])
μ2[k]

)
for X = R, F,

α[k→R]
s ≡ αs(μR(μ[k])) , and

F [i, j,k→F]
λ ≡ Fλ(x

[i]
1 , x [ j]

2 , μF(μ[k])) ,
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the full scale dependence up to NNLO is then given by [23]

σNNLO(μR, μF) =
∑
i, j,k

(
α

[k→R]
s

2π

)p

F [i, j,k→F]
λ σ̂

(0)
λ[i, j,k]

+
∑
i, j,k

(
α

[k→R]
s

2π

)p+1{
F [i, j,k→F]

λ σ̂
(1)
λ[i, j,k]

+
[
pβ0F

[i, j,k→F]
λ L [k]

R

−
(
F [i, j,k→F]

λ; fa→P0⊗ fa
+ F [i, j,k→F]

λ; fb→P0⊗ fb

)
L [k]

F

]
σ̂

(0)
λ[i, j,k]

}

+
∑
i, j,k

(
α

[k→R]
s

2π

)p+2{
F [i, j,k→F]

λ σ̂
(2)
λ[i, j,k]

+
[
(p + 1)β0F

[i, j,k→F]
λ L [k]

R

−
(
F [i, j,k→F]

λ; fa→P0⊗ fa
+ F [i, j,k→F]

λ; fb→P0⊗ fb

)
L [l]

F

]
σ̂

(1)
λ[i, j,k]

+
[(

pβ1 + 1
2 p(p + 1)β2

0 L
[k]
R

)
F [i, j,k→F]

λ L [ j]
R

−
(
F [i, j,k→F]

λ; fa→P1⊗ fa
+ F [i, j,k→F]

λ; fb→P1⊗ fb

)
L [k]

F

+ 1
2

(
F [i, j,k→F]

λ; fa→P0⊗P0⊗ fa
+ F [i, j,k→F]

λ; fb→P0⊗P0⊗ fb

)
L2[k]

F

+
(

1
2β0L

[ j]
F − (p + 1)β0L

[k]
R

)

×
(
F [i, j,k→F]

λ; fa→P0⊗ fa
+ F [i, j,k→F]

λ; fb→P0⊗ fb

)
L [k]

F

+ F [i, j,k→F]
λ; fa→P0⊗ fa; fb→P0⊗ fb

L2[k]
F

]
σ̂

(0)
λ[i, j,k]

}
. (10)

Here, the notation Fλ; fa→Xa represents the term Fλ but with
fa replaced by Xa . InAPPLgrid, the calculation of the scale-
dependent terms is performed only if and when required,
with the convolutions involving the splitting functions Pn
evaluated using Hoppet [27].

As an alternative to the analytical reconstruction of the
scale variation in Eq. (10), additional individual grids for
each scale-independent coefficient can be generated, which
then are multiplied with the scale-dependent logarithms. This
corresponds to the default strategy in the fastNLO library
where the full scale dependence is reconstructed using

σNNLO(μR, μF) =
∑
i, j,k

(
α

[k→R]
s

2π

)p
F [i, j,k→F]
λ σ̂

(0|0,0)
λ[i, j,k]

+
∑
i, j,k

(
α

[k→R]
s

2π

)p+1
F [i, j,k→F]
λ

×
{
σ̂

(1|0,0)
λ[i, j,k] + L[k]

R σ̂
(1|1,0)
λ[i, j,k] + L[k]

F σ̂
(1|0,1)
λ[i, j,k]

}

+
∑
i, j,k

(
α

[k→R]
s

2π

)p+2
F [i, j,k→F]
λ

×
{
σ̂

(2|0,0)
λ[i, j,k] + L[k]

R σ̂
(2|1,0)
λ[i, j,k] + L[k]

F σ̂
(2|0,1)
λ[i, j,k]

+ L2[k]
R σ̂

(2|2,0)
λ[i, j,k] + L2[k]

F σ̂
(2|0,2)
λ[i, j,k]

+ L[k]
R L[k]

F σ̂
(2|1,1)
λ[i, j,k]

}
, (11)

where the grids are produced in analogy to Eq. (8) but using
the decomposition of Eq. (3)

σ̂
(n|α,β)
λ[i, j]

MC−−→
Mn∑
m=1

Ey
i (x1;m)Ey

j (x2;m)Eτ
k (μm) w

(n)
λ;m dσ̂

(n|α,β)

λ;m .

3 Applications of interpolation grids for inclusive jet
production

This section presents an example of the analyses that can
be performed using interpolation grids for inclusive jet pro-
duction cross sections at the LHC. Measurements at 7 TeV
by ATLAS [28] are used; the quality of the jet interpolation
grids is demonstrated in Sect. 3.2, and in Sect. 3.3 the grids
are used to perform a detailed comparison of scale, αs, and
PDF uncertainties. Section 3.4 studies the robustness of the
NNLO K -factor approach that is commonly used in PDF
fits as a proxy for the exact NNLO prediction. The grids
are subsequently employed for a detailed investigation of the
total inclusive jet cross section, where NNLO predictions are
compared to measurements from both ATLAS and CMS.

3.1 Interpolation grids for inclusive jet production

Inclusive jet production cross sections for the anti-kT [29] jet
algorithm have been measured in proton–proton collisions
by the ATLAS and CMS collaborations at different centre-
of-mass energies and for different values of the jet-radius (R)
parameter. Interpolation grids at NNLO have been generated
for a large selection of these measurements and a summary
of the NNLO predictions, together with their respective kine-
matic ranges, is provided in Table 1.1

For each calculation, a dedicated optimisation was emplo-
yed using kinematic reweighting factors and adaptation of
the phase space integration. In order to achieve a sufficient
numerical accuracy, the typical statistical precision of the
Monte Carlo integration is smaller than 1% in most bins,
with exceptions only for some bins near the edges of the
selected phase space. On modern batch computing systems,
these calculations typically require between 3·105 and 6·105

CPU hours. Together with the generation of the interpolation

1 Note that all predictions provided in this manuscript are based on the
leading-colour and leading N f approximation and do not include the
most recent sub-leading colour contributions presented in Ref. [26].
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Table 1 An overview of inclusive jet pT datasets withAPPLfast inter-
polation grids for proton–proton collisions at the LHC. For each dataset
the centre-of-mass energy

√
s, the integrated luminosity L, the number

of data points, and the jet algorithm are listed. Jets are required to be

within a given range of rapidity y in the laboratory frame. Available
choices for the central scales for μR/F for the interpolation grids are
listed

Data
√
s [TeV] L[fb−1] No. of points Anti-kT R Kinematic range [GeV] Fiducial cuts μR/F-choice

CMS [30] 2.76 0.00543 81 0.7 pjet
T ∈ [74, 592] |y| < 3.0 pjet

T ,ĤT

ATLAS [28] 7.0 4.5 140 0.6 pjet
T ∈ [100, 1992] |y| < 3.0 pjet

T ,ĤT

CMS [31] 7.0 5.0 133 0.7 pjet
T ∈ [114, 2116] |y| < 3.0 pjet

T ,ĤT

ATLAS [32] 8.0 20.3 171 0.6 pjet
T ∈ [70, 2500] |y| < 3.0 pjet

T ,ĤT

CMS [33] 8.0 5.6 248 0.7 pjet
T ∈ [21, 74] |y| < 4.7 pjet

T ,ĤT

19.7 pjet
T ∈ [74, 2500]

ATLAS [34] 13.0 3.2 177 0.4 pjet
T ∈ [100, 3937] |y| < 3.0 pjet

T ,ĤT

CMS [35] 13.0 36.3 2 × 78 0.4 pjet
T ∈ [97, 3103] |y| < 2.0 pjet

T ,ĤT

33.5 0.7

grids, the usual cross sections from NNLOJET are still cal-
culated and can be used as a reference to allow numerical
closure tests. The calculations are performed using either the
NNPDF3.1 [36] or the CT14 [37] PDF sets at NNLO. Central
scale choices of pjet

T and ĤT are available, encoded in a sin-
gle interpolation grid in the case of fastNLO, or available
in separate grids in the case of APPLgrid.

3.2 Closure test

As an important first step in the use of the interpolation grids,
the degree of consistency between the NNLO predictions
obtained from the grids and the raw NNLOJET prediction
is studied. In this case, the steps in the APPLfast proce-
dure to generate grids remain identical with the DIS case,
described in Section 4 of Ref. [12]. During the execution of
the calculation, in addition to the interpolation grids them-
selves, the usual reference predictions from NNLOJET are
produced, which correspond to a computation solely based
on NNLOJET without grid generation. For the consistency
comparison of the cross section from the grid convolution
with the reference cross section, the fast convolution uses
the same scale and PDF choice as for the original calculation.
This helps to ensure, for instance, that the density of inter-
polation nodes is sufficient, such that interpolation errors are
negligible in comparison to the statistical uncertainty of the
NNLO prediction.

Closure tests for the inclusive jet pT distribution are shown
in Fig. 1 for two representative ranges in jet rapidity. It can
be seen that the interpolation tables are able to reproduce the
reference prediction at permille level, which is well below
the experimental uncertainty and the residual Monte Carlo
statistical uncertainty of the calculation itself. Slight sys-
tematic trends are observed, where the interpolation quality
degrades somewhat towards more forward rapidity. This is

Fig. 1 Closure tests for the ATLAS 7 TeV inclusive jet cross section
grid as a function of pjet

T for two representative ranges in rapidity. The
horizontal dotted lines indicate the targeted closure of one permille
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to be expected as the forward region samples a wider range
of the momentum fractions, xi , thus introducing larger inter-
polation errors when the number of nodes is the same for
all bins. In principle, the density of interpolation nodes can
be adjusted in a phase-space dependent manner to mitigate
this degradation, but this would result in larger file sizes and
slower grid convolution. Closure tests were performed for all
grids that are made available together with this publication,
all of which show a similar level of interpolation quality that
is typically below the permille level and reaches a maximum
of 0.2% in exceptional phase-space regions.

3.3 Scale, αs, and PDF variations and their uncertainties

The predictions up to NNLO using the newly generated grids
are shown in Fig. 2 for two representative rapidity ranges
chosen for illustration. The bands correspond to the enve-
lope from independently varying μR and μF up and down by
factors of two with the constraint 1

2 ≤ μR/μF ≤ 2. A small
resulting spread of the calculations is observed, with the suc-
cessive orders displaying a satisfactory overlap within their
respective uncertainty estimates and, importantly, a dramatic
reduction in the width of the scale variation bands is observed
to result from the inclusion of higher-order corrections.

The sensitivity of the jet spectrum to the strong coupling,
αs, is presented in Fig. 3 for the different perturbative orders.
To this end, the NNPDF3.1 PDF sets with different values
for the strong coupling are used, covering the range between

0.108 ≤ αs(MZ) ≤ 0.124. It is observed that the scale vari-
ation at LO is substantially larger than that from varying
αs, while, at NLO, the spread in predictions from each of
these two sources are similar. In contrast, the reduced scale-
variation uncertainty at NNLO allows for the resolution of
the variation of αs at the level of a few percent for the first
time, illustrating the need for at least NNLO predictions for
a robust extraction of αs at this level of precision.

The fast convolution that is made possible by using the
grids allows the provision of NNLO predictions with differ-
ent PDF sets, together with their complete respective uncer-
tainties. Figure 4 contrasts the NNLO prediction using the
NNPDF3.1 [36], NNPDF4.0 [38], CT14 [37], CT18 [39],
HERAPDF2.0 [40], MSHT20 [41], ABMP16 [42],
PDF4LHC21 [43], and ATLASpdf21 [44] PDF sets by show-
ing the relative difference with respect to the prediction using
the NNPDF3.1 set. With the exception of the ABMP16, HER-
APDF2.0, and ATLASpdf21 sets, the predictions for the dif-
ferent PDF sets are mutually compatible within their respec-
tive uncertainty estimates. The PDF uncertainties are typi-
cally at the level of a few percent in the low-pT regime and
increase towards larger pT (or rapidity y) to O(10%) uncer-
tainties in the TeV range.

3.4 Robustness of NNLO K -factors

Owing to the large computational expenditure that NNLO
calculations for jet production entail, their direct use in

Fig. 2 Predictions at LO, NLO and NNLO for the ATLAS 7 TeV inclu-
sive jet cross section as a function of pjet

T for two representative ranges
in rapidity. The shaded bands show the scale uncertainties when using
the recommended scale choice of μ = ĤT for inclusive jets. The lower
panel displays the ratio with respect to the NLO prediction
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Fig. 3 LO, NLO, and NNLO predictions for the ATLAS 7 TeV inclu-
sive jet cross section as a function of pjet

T for two representative ranges in
rapidity and for different values of αs(MZ). The predictions are obtained
with αs-dependent variants of the NNPDF3.1 PDF set. The shaded area
indicates the scale uncertainty at the given perturbative order

Fig. 4 NNLO predictions for the ATLAS 7 TeV inclusive jet cross section as a function of pjet
T for two representative ranges in rapidity and for

various different PDF sets. The shaded areas indicate the respective PDF uncertainties

PDF fits has previously been unfeasible. Instead, a common
approach proceeds by complementing predictions from NLO
interpolation grids with an NNLO K -factor [45]. The NNLO
K -factor is a proxy for the full NNLO prediction and defined
as

KNNLO(μ) ≡ dσNNLO(μ)/dpT

dσNLO(μ)/dpT
, (12)

where the dependence on (μR, μF) is abbreviated with a sin-
gle scale μ for simplicity. To this end, both the numerator and

denominator are evaluated with the same PDF set. However,
the NNLO K -factor can be applied in two different ways,
namely

σNNLO
approx. 1(μ) = σNLO(μ) × KNNLO(μref) or (13a)

σNNLO
approx. 2(μ) = σNLO(μ) × KNNLO(μ) , (13b)

the consequences of which will be discussed in the remainder
of this section.

The naïve application of a constant K -factor using the
reference scale μref as done in Eq. (13a) gives rise to a scale
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Fig. 5 Summary of studies of the NNLO K -factor for the ATLAS
7 TeV inclusive jet cross section as a function of pjet

T for two represen-
tative ranges in rapidity. Top: the NNLO K -factor and corresponding

scale dependence. Middle and bottom panels: K -factor for different
PDF sets with their respective PDF uncertainty and dependence on the
value of αs(MZ), shown as a ratio with respect to that obtained with
NNPDF3.1

uncertainty that is determined by the NLO component and
thus at the ±5–10% level for inclusive jets. As a consequence,
fits and extractions of SM parameters that are based on this
approach and incorporate scale variations as uncertainties
will give rise to overly conservative estimates. In cases where
these uncertainties are sizeable, such as αs extractions, a more
reliable prediction is desirable.

The application in a scale-correlated manner as in Eq. (13b),
on the other hand, allows for scale compensations to occur
between σNLO and KNNLO, and it is necessary that the K -
factor be evaluated independently at both the central scale and
all the other scales in question. This is, however, limited by
the robustness of the K -factor with respect to changes of the
PDFs, as the two terms in Eq. (13b) are in general evaluated
using different PDF parameterisations. With the availability
of NNLO grids, these assumptions can now be tested for
any PDF sets, including their full uncertainties. Such a com-
parison is performed in Fig. 5 for two representative rapidity
regions, where the top panel in each group shows KNNLO(μ)

as defined in Eq. (12). The corresponding scale dependence is
added for illustrative purpose and shown as the yellow filled
bands that exhibit relative variations of ±5–10%. While this
scale variation can be associated with the ambiguity in the
choice of μref in the naïve approach (13a), caution is advised
in treating it as an additional uncertainty on top of the scale
depende of σNLO(μ) as it would lead to a substantial double-
counting of the NLO-like scale variations. In the case of the

scale-correlated approach (13b), it should be noted that the
scale variations of KNNLO(μ) displayed here will cancel to
a large extent with the correlated variation in σNLO(μ), and
therefore will not subsist in the final prediction.

The lower two panels in Fig. 5 display the relative differ-
ence between different NNLO K -factors for different PDF
sets with respect to the baseline NNPDF3.1 prediction. The
middle panel further includes a shaded band (purple) that
indicates the sensitivity to αs, again using variations in the
range 0.108 ≤ αs(MZ) ≤ 0.124. Overall, a remarkable
robustness of the NNLO K -factor with respect to changes
in the PDF set is observed at lower pT, agreeing to within
the 0.5% level. The largest excursions are again seen for
the ABMP16 and HERAPDF2.0 sets that, nevertheless, still
remain typically within ±0.5–1%. The PDF uncertainties
within a given PDF set are at a similar level. These results
indicate that the approach following Eq. (13b) is, in gen-
eral, likely to be safe also for fitting applications where the
K -factors have been calculated independently for all of the
required scales. Nonetheless, the availability of interpolation
grids frees us from having to rely on such an assumption.

3.5 The total fiducial inclusive jet cross section

The total fiducial inclusive jet cross section, σ
jet
tot , is one of

the largest inelastic cross sections measured in proton–proton
collisions and, as such, it is an important process for QCD
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studies. Moreover, this process forms an important QCD
induced background for many other processes measured at
the LHC, so it is important to have a precise knowledge of the
size of this cross section, and of the theoretical uncertainties,
in order to maximise the precision and physics potential of
measurements from hadron–hadron colliders.

For this study, the total jet cross section is defined as the
single-jet inclusive cross section within a selected rapidity
interval |yjet| and for a minimal transverse momentum of
pjet

T,min. The ATLAS Collaboration has measured total jet
cross sections for anti-kT jets with R = 0.4 in the range
pjet

T > 100 GeV and |yjet| < 3.0 at centre-of-mass energies
of 7, 8, and 13 TeV [28,32,34,46].2 For the CMS Collabo-
ration, the total jet cross section for centre-of-mass energies
of 2.76, 7, 8, and 13 TeV is derived from double-differential
measurements for anti-kT jets with R = 0.7 [30,33,35,48]
by summing the cross sections in the bins of the common
fiducial phase space of pjet

T > 97 GeV and |yjet| < 2.0.
The experimental uncertainties are obtained by propagating
each uncertainty component individually and accounting for
correlations. The displayed total experimental uncertainty is
then obtained by quadratic addition of all uncertainty com-
ponents.

Applying the technique of centre-of-mass reweighting [8]
for a grid, only the single grid at the largest centre-of-mass
energy of

√
s = 13 TeV is required for each jet-R cone

size. For the NNLO predictions the PDF4LHC21 PDF set
is used with the recommended scale of μR/F = ĤT. Non-
perturbative correction factors are taken from the relevant
experimental publications as cross-section weighted aver-
ages and are applied to the NNLO predictions. Lacking
bin-to-bin correlations, uncertainties for the non-perturbative
corrections have not been derived. Figure 6 presents the
results for the total jet cross section in comparison to data
as a function of the centre-of-mass energy for R = 0.4 and
R = 0.7. A reasonable agreement is observed between the
data and the predictions for all centre-of-mass energies. The√
s-dependence of the data is also well reproduced by the

NNLO predictions.
In the top row of Fig. 7 the scale dependence of σ

jet
tot

for R = 0.4 and 0.7 at
√
s = 13 TeV is presented for

μR/F = ĤT. Shown is the total jet cross section at LO, NLO,
and NNLO, where scale factors ranging from 0.125 to 8 are
applied to μR, shown on the horizontal axis, and for the three
scale factors of 0.5, 1, and 2 for μF shown in the band. The
NNLO correction is smaller than the NLO correction, and, as
expected, the scale dependence decreases moving from LO
to NLO to NNLO. Both the NLO and the NNLO correction
are somewhat smaller for the cone size R = 0.4 as com-

2 The ATLAS Collaboration has also measured inclusive jet differential
cross sections at

√
s = 2.76 TeV [47], but the bin boundaries chosen

for that measurement preclude it from being used here.

Fig. 6 The total jet cross section as a function of the proton–proton
centre-of-mass energy for anti-kT jets with R = 0.4 and 0.7. The pre-
dictions are compared to data from ATLAS (for R = 0.4) and CMS
(for R = 0.7), and the fiducial region is selected according to the avail-
able data. The size of the shaded area indicates the scale uncertainty,
evaluated as described in the text

pared to R = 0.7. For comparison, the scale dependence is
also shown when using μ = pjet

T in the bottom row of Fig. 7.
In this case the NLO and the NNLO corrections decrease,
but remain larger than unity for the cone size of R = 0.7,
while they become very small at NLO and even smaller than
unity at NNLO for R = 0.4. Moreover, the scale uncertainty
at NNLO becomes larger than the one at NLO for the smaller
cone size with μ = pjet

T confirming the findings of Ref. [23].
Even though the predictions for the total jet cross sec-

tion exhibit smaller scale uncertainties and smaller NNLO
K -factors for R = 0.4 than for R = 0.7 for the recom-
mended scale μ = ĤT, non-perturbative corrections have to
be considered as well for jet transverse momenta as small as
100 GeV. For the cone radius R = 0.4 the non-perturbative
correction is close to unity, while for R = 0.7 it is of the
order of 8% [34,35]. The uncertainties on these corrections,
however, are larger for the small cone size.

The total jet cross section is also an important benchmark
process for PDF determinations, since it is sensitive to the
gluon content of the proton. In Fig. 8 the predicted total
cross section σ

jet
tot for various PDF sets (error bars indicating

the respective PDF uncertainties only) is presented. Without
accounting for other theoretical uncertainties—in particular
those from non-perturbative corrections—it can be observed
that at R = 0.4 the predictions are in agreement with the
data, while for the larger R = 0.7 radius the resulting cross
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Fig. 7 The scale dependence of the total jet cross section at
√
s = 13 TeV for R = 0.4 (left column) and R = 0.7 (right column) anti-kT jets. The

top row presents the scale dependence with μR/F = ĤT as central scale, while the bottom row is for μR/F = pjet
T

Fig. 8 The PDF dependence of the total jet cross sections for R = 0.4 (left) and 0.7 (right) for the fiducial regions defined for ATLAS and CMS,
respectively. Uncertainties of a few percent from non-perturbative corrections are not available for the total jet cross sections

section found using any of the PDF sets underestimates the
measurement from CMS.

The predictions using the various PDF sets are mutually
compatible with the exception of the ABMP16 PDF set,
which predicts a significantly smaller cross section. The PDF
uncertainties exhibited by the different PDF sets vary in size

by approximately a factor of two. The recent NNPDF4.0 PDF
set, however, estimates PDF uncertainties to be significantly
smaller than the others.

Also seen in Fig. 8 are the predictions at NLO and NNLO
with scale uncertainty bands. As expected from the discus-
sion of Fig. 7 the NNLO K -factor is close to unity for an
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Table 2 An overview of dijet datasets with APPLfast interpolation
grids for proton–proton collisions at the LHC. For each dataset the
centre-of-mass energy

√
s, the integrated luminosity L, the number of

data points, and the jet algorithm are listed. The two leading jets must

fulfil the requirements with respect to their rapidities y1, y2 and trans-
verse momenta pT,1, pT,2. In addition, the choice of scale for μR/F in
the interpolation grids is shown

Data
√
s [TeV] L[fb−1] No. of points Anti-kT R Kinematic range [GeV] Fiducial cuts μR/F-choice

ATLAS [55] 7.0 4.5 90 0.6 m12 ∈ [260, 5040] |y1|, |y2| < 3.0 m12

[pT,1, pT,2] > [100, 50]GeV

y∗ < 3.0

CMS [31] 7.0 5.0 54 0.7 m12 ∈ [197, 5058] |y| < 5.0 m12

[pT,1, pT,2] > [60, 30]GeV

|ymax| < 2.5

CMS [49] 8.0 19.7 122 0.7 〈pT1,2〉 ∈ [133, 1784] |y| < 5.0 pT,1 exp(0.3 y∗)
pT,1, pT,2 > 50GeV

|y1|, |y2| < 3.0 m12

ATLAS [34] 13.0 3.2 136 0.4 m12 ∈ [260, 9066] |y1|, |y2| < 3.0 m12

pT,1, pT,2 > 75GeV

〈pT1,2〉 > 100GeV

y∗ < 3.0

anti-kT jet radius of R = 0.4, and larger for R = 0.7. Within
the scale uncertainties, however, the predictions at NLO and
NNLO remain compatible with each other. In contrast, for
R = 0.7 the NNLO predictions for the alternative scale of
μR/F = pjet

T do not lie within the NLO scale uncertainty.

4 PDF and αs fits using dijet data

In this section some of the full capabilities of the interpo-
lation grids are illustrated by performing a PDF fit using a
single dijet dataset from the measurements listed in Table 2;
specifically, the CMS triple-differential dijet data at

√
s =

8 TeV [49]. Since this measurement has already been used in
simultaneous PDF and αs(MZ) fits at NLO QCD, an exam-
ple of those results [50], is first reproduced, and then subse-
quently augmented by the inclusion of NNLO predictions.
The three dimensions of this dataset divide the phase space
into bins of the average transverse momentum of the two
leading pT jets, 〈pT1,2〉 = (pT,1 + pT,2)/2, the longitudinal
boost of the dijet system given by half the sum of the leading
jet rapidities, yb = |y1 + y2|/2, and half their rapidity sep-
aration, y∗ = |y1 − y2|/2, which is related to the scattering
angle of the jets in the centre-of-mass system.

It should be noted that the omission of sub-leading colour
effects in the NNLO part of the calculation, as utilised
throughout this work, could potentially have a more sizeable
effect in the dijet process. In particular, in the calculation of
the triple-differential cross section an effect of up to ±5%
was observed in the 〈pT1,2〉 spectrum [26].

All PDF fits presented here are performed using xFit-
ter3 [51–53] version 2.0.1, with technical updates required
to fully exploit the new NNLO grids, as described in
Ref. [54]. The details of the fits closely follow the HER-
APDF2.0 methodology [40], with adaptions as described in
Ref. [50]. Further specific details of the fit parameterisation
and procedure are described in the following subsections.

4.1 Reproduction of previous fits at NLO

In order to validate the PDF fitting procedure used for this
analysis, two NLO fits are first performed: one using the
HERA I+II inclusive DIS data alone, and another that addi-
tionally includes the CMS triple-differential dijet data.

As prescribed by the HERAPDF2.0 procedure, the PDFs
fi (x) are parameterised at some starting scale μF0 by

x fi (x) = Ai x
Bi (1 − x)Ci (1 + Di x + Ei x

2) , (14)

where the parameters Ai , Bi , and Ci are always included,
while the Di and Ei parameters increase the flexibility of the
fit and can be used to estimate the parameterisation uncer-
tainties. To describe the proton, five such PDFs are parame-
terised, defined here to be: the gluon fg; the valence quarks
fuv = fu− fu and fdv = fd− fd; and the light up- and down-
type anti-quark distributions fU = fu and fD = fd + fs. It
should be noted that the default HERAPDF2.0 parameteri-
sation, also used in Ref. [49], includes a second subtracted
term of the form A′

gx
B′

g (1 − x)C
′
g for the gluon distribution,

for fits beyond LO. Following Ref. [50], this term is not

3 Formerly known as HERAFitter.

123



  930 Page 12 of 17 Eur. Phys. J. C           (2022) 82:930 

adopted here, since it offers no advantage in χ2/ndof for the
performed studies.

Of the five normalisation constants Ai , three are con-
strained by the quark-number and momentum sum rules. Fol-
lowing HERAPDF2.0 choices, a symmetric low-x behaviour
of the up-and down-type quark sea is assumed, the strange
sea distribution is written as a fixed fraction fs/D = 0.4 of

the down-type quark sea,4 and it is assumed that xs = xs.
Finally, the u and d anti-quark normalisations are constrained
to be equal in the limit x → 0. This would leave ten free
parameters if all Di and Ei were set to zero.

Following Ref. [50], specific differences with respect to
the published HERAPDF2.05 are: a larger minimum Q2 cut
for the DIS data of Q2

min = 7.5 GeV2, the non-inclusion of
the negative gluon term, and a choice of a 13-parameter fit at
NLO, with the parameters Eg, Duv and DU included, as these
were found to optimally fit the CMS triple-differential dijet
data when added to the minimal set of ten parameters. Addi-
tional differences with respect to the PDF fit described in the
CMS publication [49] are summarised in Appendix A. The
theoretical calculation used to fit the CMS dijet measurement
is from NLOJet++ [56,57], encoded in the fast interpolation
grids of fastNLO.

The starting values of the parameters for the fit to HERA
DIS data alone are set to those published by the HERA-
PDF2.0 analysis [40], except for the parameters Eg and Duv ,
which were not fitted there and are given a starting value of
0. The values of all 13 parameters resulting from this fit are
then used as starting values for the simultaneous fit to the
HERA DIS and the CMS dijet data.

Following Ref. [50]6, the CMS dijet data used were lim-
ited to the range 〈pT1,2〉 < 1 TeV and without electroweak
corrections. The results are in good agreement with those
in Ref. [50]. Since electroweak corrections are now avail-
able, the NNLO fit presented in Sect. 4.2 includes these, and
uses the full 〈pT1,2〉 range of the measurement. For valida-
tion, an additional fit at NLO was performed including the
CMS 〈pT1,2〉 data beyond 1 TeV, with electroweak correc-
tions applied, and taking into account two additional uncer-
tainty sources, as described in Appendix A. It was found that
these modifications lead to only negligible differences, sup-
porting the contention that their impact is limited, due to the
larger statistical uncertainties on the jet data at high scales,
and the small size of the electroweak corrections at smaller
scales. Replacing the NLO prediction from NLOJet++ with

4 Reference [40] labels this parameter simply as fs , which differs from
the PDF notation adopted here.
5 The default HERAPDF2.0, as published, uses Q2

min = 3.5 GeV2, and
a 14-parameter fit: 10 + DU, Euv , A′

g and B ′
g.

6 At the time of Ref. [50], electroweak corrections were not available,
and so the CMS dijet data were restricted to a phase space region where
these were expected to be small – see Appendix A.

that from NNLOJET leaves the results practically unchanged,
as expected. Further details can be found in Ref. [54].

4.2 Extension to NNLO

Following the initial validation of the fit procedure to repro-
duce the previous fit, the methodology was extended to
include the NNLO predictions available from NNLOJET. The
corresponding interpolation grids have been created with two
different central scale choices: μR/F = pT,1 exp(0.3 y∗) as
before, and μR/F = m12, the mass of the dijet system, as rec-
ommended in Ref. [25]. To be less sensitive to potential issues
of the theoretical description at low x , such as the need for
resummation corrections [58] or the impact of higher-twist
corrections at low Q2, the minimum Q2 for the DIS data is
increased to Q2

min = 10.0 GeV2.
By examining the gluon distribution – the most sensitive

parton distribution – the dependence of the fit result on the
central scale choice is investigated, as shown in Fig. 9. At
NLO (left), significant differences are observed for the two
scales, while at NNLO (right) all fit qualities improve and
the differences resulting from the two scales are drastically
reduced such that the uncertainty bands overlap even though
they represent only the experimental uncertainty. It is perhaps
interesting to note that the recommended scale μR/F = m12

exhibits, at NLO, a significantly worse χ2/ndof of 1.282 than
the value 1.130 obtained using the scale pT,1 exp(0.3 y∗),
while at NNLO the scale choice of m12 exhibits the best
value of χ2/ndof, close to unity.

Employing the conventional scale variation methodology
as a proxy for the effect of missing higher orders, the fits for
both scales overlap as demonstrated in Fig. 10 (left), where
the scale variations are considered as an additional uncer-
tainty in the form of an envelope (evaluated using the “off-
set method”), added quadratically to the experimental uncer-
tainty. Detailed fit results can be found in Table 5 in Appendix
A, and in Ref. [54], where also a simultaneous fit to both CMS
dijet datasets of Table 2 is discussed.

4.3 Full fit of PDFs and αs(MZ)

The procedure established in Sect. 4.2 is extended further
by including αs(MZ) as an additional free parameter in the
fit. This leads to similar results for the PDFs as before, but
with larger uncertainties, in particular for the gluon, shown
in Fig. 10 (right).

Table 3 shows the values of αs(MZ) obtained for the simul-
taneous PDF and αs(MZ) fits. It is observed that the values
preferred by the NNLO fits are smaller than those obtained
at NLO. The fit quality, compared in the inserts in Figs. 9
(right) and 10 (right), is largely unchanged, since the previ-
ously fixed value of αs(MZ) = 0.1180 is already close to
the minimum found here. The experimental uncertainty on
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Fig. 9 The gluon PDF from fits to HERA DIS alone and with CMS dijet data at NLO (left) and NNLO (right) for two different central scale
choices for dijet production: μR/F = pT,1 exp(0.3 y∗) (yellow) and μR/F = m12 (red). Only the experimental uncertainties are shown

Fig. 10 Fits at NNLO of the gluon PDF using HERA DIS and CMS dijet data, but with uncertainties including scale variations (left) as described
in the text, or with αs(MZ) as an additional parameter (right)

Table 3 Values of αs(MZ)

determined in the
(13+1)-parameter PDF+αs(MZ)

fit at NLO and at NNLO with
HERA DIS and CMS
triple-differential dijet data, as
described in the text

Order Scale choice αs(MZ) Δαs(MZ) · 104

(Exp) (Scale) (Model) (Param) (Total)

NLO pT,1 exp(0.3 y∗) 0.1192 ±15 +26
−9

+5
−4

+1
−3

+31
−19

m12 0.1210 ±15 +32
−27 ±4 +6

−7
+36
−32

NNLO pT,1 exp(0.3 y∗) 0.1154 ±13 +7
−8

+5
−4

+1
−7

+15
−17

m12 0.1164 ±13 +11
−5

+6
−4

+2
−6

+18
−16

the quoted value of αs(MZ) is determined from the parabolic
dependence of the χ2 function near the minimum, and the

scale uncertainty is obtained as described in Sect. 4.2, using
the offset method.
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Two additional sets of uncertainties are estimated, to
account for the chosen PDF parameterisation and the values
of certain model and procedural choices, the latter detailed in
Table 6 of Appendix A. The parameterisation uncertainty is
determined by including all the remaining D and E parame-
ters in the fit one at a time and taking the largest positive and
negative difference of any of these variations, with respect
to the nominal αs(MZ) value, as an asymmetric uncertainty.
To obtain the model uncertainty, fits are performed for up
and down variations of the masses of the charm quark, mc,
and bottom quark, mb, the strangeness fraction, fs/D, the

starting scale, μF0 , and the Q2
min cut imposed on the DIS

data. Table 6 lists the values of the parameters used in the
nominal fit and for the systematic variations. The signed dif-
ferences with respect to the nominal αs(MZ) value, resulting
from the variation of each parameter, are added in quadra-
ture to yield the overall model uncertainty. The final result
using the recommended scale choice of μR/F = m12 is
αs(MZ) = 0.1164 +0.0018

−0.0016 (tot), which is compatible with the
result using the alternative scale choice (see Table 3) and the
world average of αs(MZ) = 0.1179 ± 0.0009 [59].

5 Conclusions and outlook

The technique of interpolation grids has been proven to be
an indispensable tool for QCD phenomenology of hadron-
collider data, since it allows repeated calculations of pQCD
cross sections with varying input conditions such as scale
choices, parton distribution functions, or the strong coupling,
αs. The grid technique is implemented in the APPLgrid and
fastNLO computer codes and, for this paper, a common
interface for both packages with the NNLOJET computer
program for hadron–hadron processes has been developed,
enabling the generation of fast interpolation grids at next-
to-next-to-leading order in QCD for inclusive jet and dijet
production cross sections at the LHC.

The performance of the grid technique for selected LHC
jet datasets is presented, demonstrating a closure of those
interpolation grids generated for inclusive jet and dijet cross
sections to generally better than 0.1%. Although the NNLO
calculations for jet production are computationally very
expensive, all grids were generated such that the statistical
uncertainty is less than 1% in most cases, but may increase
to 2–4% for some regions near the edges of the phase space
from the measurement.

The grids have been employed for phenomenological
studies that are otherwise computationally prohibitive. The
NNLO predictions for inclusive jet and dijet cross sections
were evaluated for different PDF sets including the full PDF
uncertainties. It is found that the PDFs from the CT, MSHT,
and NNPDF global fitting groups yield largely consistent pre-

dictions for jet production cross sections over a large kine-
matic range in pjet

T and jet rapidity y. The predictions using
the ABMP16 or HERAPDF2.0 PDFs exhibit some devia-
tions beyond the PDF uncertainty bands, e.g. at large pjet

T
or y. The new NNPDF4.0 set yields surprisingly small PDF
uncertainties compared to the other available PDF sets.

Predictions for NNLO cross sections are often included in
QCD phenomenological studies through the use of NNLO K -
factors. Here, their stability while varying the strong coupling
αs or the PDF set has been studied. Overall, it is observed that
the NNLO K -factors are largely insensitive to the choice ofαs

as expected, but exhibit a dependence on the PDF sets at the
few permille level in the bulk of phase space that increases to
the percent level towards the tails of the pT distributions. The
latter are sub-dominant compared to NNLO scale uncertain-
ties, though not necessarily negligible. Therefore, although
a case could be made to not require the full grid for repro-
duction of the central cross section, for full precision and, in
particular, for the evaluation of the scale uncertainties, the use
of interpolation grids is preferred over a K -factor approach.

The extension of the grid framework to hadron–hadron
collider processes shown here further enables the generation
of interpolation grids for the large set of processes available
within NNLOJET. Such applications and phenomenological
studies will be left for future studies.

The grids used in this analysis correspond to a large num-
ber of the available jet measurements from the ATLAS and
CMS collaborations. They have been made available for the
wider community on the Ploughshare [19] website.
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Appendix A: Details on the dijet fits

Additional setup differences in the reproduction fits of
Sect. 4.1 with respect to the PDF fit described in the CMS
publication Ref. [49] are:

1. A newer version of the fitting framework,xFitterv2.0.1,
is used in preference to HERAFitter v1.1.1.

2. The parameter fixing the strange sea fraction, fs/D, is set
to 0.4 instead of 0.31.

3. At the time of writing of the PhD thesis Ref. [50] elec-
troweak correction factors were not available. The range
in 〈pT1,2〉 for fits hence was restricted to 〈pT1,2〉 < 1 TeV.

4. The data comprise an additional experimental source of
uncertainty that accounts for non-Gaussian tails in the jet
energy resolution.

5. The statistical and numerical precision of the theory cal-
culations is taken into account as an additional bin-to-bin
uncorrelated uncertainty in the fit.

Table 4 Partial χ2 values for the NLO fits of Sect. 4.2

HERA I+II Combined ndata HERA I+II With CMS dijets With CMS dijets
DIS only μR/F = pT,1 exp(0.3 y∗) μR/F = m12

1016 1106.14 1124.45 1157.94

CMS 8 TeV dijets yb0 ys0 31 – 14.58 29.13

yb0 ys1 26 – 11.36 22.41

yb0 ys2 14 – 17.77 52.60

yb1 ys0 23 – 11.29 20.41

yb1 ys1 17 – 18.87 21.69

yb2 ys0 11 – 19.51 58.30

combined 122 – 93.38 204.54

Correlated χ2 50.96 65.04 92.11

Log penalty χ2 −2.98 −11.39 −12.89

Combined 1154.12 1271.48 1441.72

ndof 1003 1125 1125

p value 6.13 × 10−4 1.45 × 10−3 3.86 × 10−10

Combined χ2/ndof 1.151 1.130 1.282

Table 5 Partial χ2 values for the NNLO fits of Sect. 4.2

HERA I+II Combined ndata HERA I+II With CMS dijets With CMS dijets
DIS only μR/F = pT,1 exp(0.3 y∗) μR/F = m12

1016 1109.15 1115.65 1124.45

CMS 8 TeV dijets yb0 ys0 31 – 18.15 14.58

yb0 ys1 26 – 13.07 11.36

yb0 ys2 14 – 26.63 17.77

yb1 ys0 23 – 14.45 11.29

yb1 ys1 17 – 23.91 18.87

yb2 ys0 11 – 18.19 19.51

Combined 122 – 114.40 93.38

Correlated χ2 55.48 65.78 61.47

Log penalty χ2 −1.74 1.45 −1.67

Combined 1162.89 1297.30 1274.63

ndof 1003 1125 1125

p value 3.24 × 10−4 2.55 × 10−4 1.19 × 10−3

Combined χ2/ndof 1.159 1.153 1.133
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Table 6 Values of the model parameters used in the fits in Sects. 4.2
and 4.3, and the corresponding systematic variations used to determine
the model uncertainty on αs(MZ) in Sect. 4.3. Omitted values are due to
the restriction μF0 < mc imposed by the RTOPT heavy flavour number
scheme used here [60–62]. In these cases, to calculate the corresponding
contributions to the model uncertainty, the symmetrised variation in the
opposite direction is taken

Parameter Central value Variation

Down Up

fs/D 0.4 0.3 0.5

mc (GeV) 1.42 – 1.49

mb (GeV) 4.5 4.25 4.75

μ2
F0

(GeV2) 1.9 1.6 –

Q2
min (GeV2) 10 7.5 12.5

6. New dijet predictions at NLO pQCD have been calculated
with interpolation grids produced with NNLOJET [24]
instead of NLOJet++ [56,57].

The detailed results of the dijet fits of Sect. 4.2 are pre-
sented here in Tables 4 and 5. The labels “yb0 ys0” up to
“yb2 ys0” denote the six measurement bins in yb and y∗
with 0, 1, 2 corresponding to 0 < yb|y∗, 1 ≤ yb|y∗ < 2, and
2 ≤ yb|y∗ < 3.

The variations used for the model uncertainties are sum-
marised in Table 6.
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