
Diffuse-interface phase-field method [2]

► An energetic variational formulation based on continuum thermodynamics

► Interface is treated as a thin transition layer of finite and prescribed width

► Interface dynamics is modelled via the Cahn-Hilliard equation

► Fluid dynamics is modelled by the incompressible Navier-Stokes equations

► Implementation in OpenFOAM (FOAM-extend, code phaseFieldFoam)

Numerical setup and parameters

► Wedge type axisymmetric geometry (wedge angle 4°)

► Fixed grid, Cahn number 0.02, diffuse interface resolved by 13 mesh cells

► Impact parameters chosen below splashing limit [3]

► Fixed Weber number We = ρLDU2/σ = 150 

► Fixed Reynolds number Re = ρLDU/µL = 900

► The variation in fuel properties results in variation of drop diameter 

(D=µL
2Re2/σρLWe), drop impact velocity (U=σWe/µLRe), gas-liquid 

density ratio (ρG/ρL) and gas-liquid viscosity ratio (µG/µL)

Physical properties

► Liquid fuels (at room temperature)

► Gasoline (RON95) [4]

► Pure DMC [4]

► Pure MeFo [4]

► Pure OME (OMDME3) [5]

► Gas properties

► ρG = {1.2, 12, 24, 36} kg/m3

► νG = µG /ρG = 15.2 mm2/s (fixed)  

► Wall contact angle 50° (fixed)
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Effect of liquid fuel properties at fixed pressure (gas density)

► Normalization of instantaneous spreading radius by initial drop radius

► Normalization of time by kinematic time scale D/U

► Effect of fuel properties is small for 1 bar but increases with pressure

ResultsMotivation and Objective

References

Numerical Simulation

Background

► Synthetic E-Fuels serve as blends in internal combustion engines (ICEs)

thereby reducing greenhouse gases in the transport sector

► Otto engine: Dimethylcarbonat (DMC), Methylformiat (MeFo)

► Diesel engine: Oxymethylenether (OME) 

► In ICEs, the in-cylinder pressure and temperatures vary widely, e.g. 

from 35 to 150 bar during Diesel fuel injection while the piston wall 

temperature ranges from 200°C to 500°C [1]

► Blending of gasoline and Diesel with E-fuels affects liquid properties 

while the gas density depends strongly on pressure and temperature

Scientific questions

► How do fuel properties and gas pressure affect drop wall interaction?

Objectives 

► Study spreading of different fuels with respect to fluid dynamic similarity

► Determine effect of gas-liquid density ratio on maximum spreading factor 

Fig. 2: Effect of fuel properties on instantaneous spreading factor for gas 
densities corresponding to 1 bar (left) and to 20 bar (right).

Conclusions

► Numerical study on the effects of fuel properties and gas density for 

fixed values of Weber number, Reynolds number and wall contact angle

► At gas density equivalent to 1 bar, maximum spreading is only slightly 

affected by fuel properties and well described by a literature correlation

► An increase of gas density (i.e. gas inertia) reduces maximum spreading 

slightly and dampens spreading dynamics during receding

► Standard spreading correlations can be used for blends with E-fuels but 

may be extended to account for the gas-liquid density ratio  
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Liquid fuel ρL [kg/m3] µL [mPa s] σ [mN/m] D [µm] U [m/s]

RON95 746 0.395 20.0 57.0 8.4

DMC 1073 0.722 28.5 92.1 6.6

MeFo 980 0.354 25.0 27.6 11.8

OME (OMDME3) 1031 1.110 28.8 225.0 4.3
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Fig. 1: Sketch of computational domain.
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Fig. 3: Effect of gas density on instantaneous spreading of DMC (left) and on 
maximum spreading (right) compared with an empirical correlation [6].

Effect of gas density due to variation of ambient pressure

► Increase of gas density dampens receding after maximum spreading

► Maximum spreading slightly decreases with increase of gas density

► For all fuels, the maximum spreading factors for 1 bar agree well with 
an empirical correlation from [6] but deviate for larger gas densities


