Impingement of E-Fuel droplets on a wall at elevated gas pressure

— A numerical study on fluid dynamic similarity
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Motivation and Objective

Background

» Synthetic E-Fuels serve as blends in internal combustion engines (ICEs)
thereby reducing greenhouse gases in the transport sector

» Otto engine: Dimethylcarbonat (DMC), Methylformiat (MeFo)
» Diesel engine: Oxymethylenether (OME)

» In ICEs, the in-cylinder pressure and temperatures vary widely, e.g.
from 35 to 150 bar during Diesel fuel injection while the piston wall
temperature ranges from 200°C to 500°C [1]

» Blending of gasoline and Diesel with E-fuels affects liquid properties
while the gas density depends strongly on pressure and temperature

Scientific questions

» How do fuel properties and gas pressure affect drop wall interaction?
Objectives

» Study spreading of different fuels with respect to fluid dynamic similarity

» Determine effect of gas-liquid density ratio on maximum spreading factor

Numerical Simulation
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iffuse-interface phase-field method [2]
An energetic variational formulation based on continuum thermodynamics
Interface is treated as a thin transition layer of finite and prescribed width
Interface dynamics is modelled via the Cahn-Hilliard equation
Fluid dynamics is modelled by the incompressible Navier-Stokes equations
Implementation in OpenFOAM (FOAM-extend, code phaseFieldFoam)
umerical setup and parameters
Wedge type axisymmetric geometry (wedge angle 4°)
Fixed grid, Cahn number 0.02, diffuse interface resolved by 13 mesh cells

Impact parameters chosen below splashing limit [3]
» Fixed Weber number We = p DU?/c = 150
> Fixed Reynolds number Re = p DU/u,_ = 900
» The variation in fuel properties results in variation of drop diameter
(D=u,2Re?/op We), drop impact velocity (U=oWe/u Re), gas-liquid
density ratio (ps/p.) and gas-liquid viscosity ratio (ug/u)

Z Atmosphere

Liquid fuels (at room temperature) .
> Gasoline (RON95) [4] ;
» Pure DMC [4] :
» Pure MeFo [4] :
» Pure OME (OMDME;) [5]
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Gas properties i

> pe = {1.2, 12, 24, 36} kg/m? : — .

> v = lg/ps = 15.2 mm?2/s (fixed)

2.5D
Wall contact angle 50° (fixed) Fig. 1: Sketch of computational domain.
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MeFo 980 0.354 25.0 27.6 11.8
OME (OMDME;) 1031 1.110 28.8 225.0 4.3
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Results

Effect of liquid fuel properties at fixed pressure (gas density)
» Normalization of instantaneous spreading radius by initial drop radius
» Normalization of time by kinematic time scale D/U

» Effect of fuel properties is small for 1 bar but increases with pressure
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Fig. 2: Effect of fuel properties on instantaneous spreading factor for gas
densities corresponding to 1 bar (left) and to 20 bar (right).

Effect of gas density due to variation of ambient pressure
» Increase of gas density dampens receding after maximum spreading
» Maximum spreading slightly decreases with increase of gas density

» For all fuels, the maximum spreading factors for 1 bar agree well with
an empirical correlation from [6] but deviate for larger gas densities
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Fig. 3: Effect of gas density on instantaneous spreading of DMC (left) and on
maximum spreading (right) compared with an empirical correlation [6].

Conclusions

» Numerical study on the effects of fuel properties and gas density for
fixed values of Weber number, Reynolds number and wall contact angle

» At gas density equivalent to 1 bar, maximum spreading is only slightly
affected by fuel properties and well described by a literature correlation

» An increase of gas density (i.e. gas inertia) reduces maximum spreading
slightly and dampens spreading dynamics during receding

» Standard spreading correlations can be used for blends with E-fuels but
may be extended to account for the gas-liquid density ratio
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