
Prediction of cybersickness in
virtual environments using
topological data analysis and
machine learning

Azadeh Hadadi1,2*, Christophe Guillet3,
Jean-Rémy Chardonnet1, Mikhail Langovoy2, Yuyang Wang4

and Jivka Ovtcharova2

1Arts et Metiers Institute of Technology, LISPEN, HESAM Université, UBFC, Chalon-sur-Saône, France,
2Institute for Information Management in Engineering, Karlsruhe Institute of Technology, Karlsruhe,
Germany, 3Université de Bourgogne, LISPEN, UBFC, Chalon-sur-Saône, France, 4Computational
Media and Arts Thrust, Hong Kong University of Science and Technology, Hong Kong, China

Recent significant progress in Virtual Reality (VR) applications and environments

raised several challenges. They proved to have side effects on specific users,

thus reducing the usability of the VR technology in some critical domains, such

as flight and car simulators. One of the common side effects is cybersickness.

Some significant commonly reported symptoms are nausea, oculomotor

discomfort, and disorientation. To mitigate these symptoms and

consequently improve the usability of VR systems, it is necessary to predict

the incidence of cybersickness. This paper proposes a machine learning

approach to VR’s cybersickness prediction based on physiological and

subjective data. We investigated combinations of topological data analysis

with a range of classifier algorithms and assessed classification performance.

The highest performance of Topological Data Analysis (TDA) based methods

was achieved in combination with SVMs with Gaussian RBF kernel, indicating

that Gaussian RBF kernels provide embeddings of physiological time series data

into spaces that are rich enough to capture the essential geometric features of

this type of data. Comparing several combinations with feature descriptors for

physiological time series, the performance of the TDA + SVM combination is in

the top group, statistically being on par or outperforming more complex and

less interpretable methods. Our results show that heart rate does not seem to

correlate with cybersickness.
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1 Introduction

Virtual Reality (VR) is one of the main focuses of the

emerging technologies and research domain. The achievement

in this domain opens a new horizon into the 3D world to explore,

which was not possible a few decades ago. The development of

VR technology includes both software and hardware aspects.

One of the significant hardware developments of VR technology

was to make scaled displays such as Head-Mounted Displays

(HMD) and scaled-1 (real scale) displays as CAVE feasible. Since

HMDs, with its their open-source Software Development Kit

(SDK), is are now publicly available and considered a cost-

effective VR technology, most current research focuses on this

type of VR technologydevice. The environment developed for a

VR platform is substantially different from games or 2D screen

apps. The VR platform is essentially designed to immerse the user

in the environment partially or wholly (Merienne, 2017), while it

is not always valid for a game application. They can experience

physical effects similar to real environments but slightly different

sensations. Therefore, substantial efforts are made to minimize

the difference a user feels in VR concerning the natural

environment.

Generally, navigation in a Virtual Environment (VE) is

defined as the movement between two points to execute a

task or to explore the environment. This essential human

capability is considered one of the fundamental features of VR

(Diersch and Wolbers, 2019). In a virtual-navigation task, the

user usually moves in an environment confined to a physical

area, i.e., the VR platform’s physical border. A navigation task

often involves hand-centric devices (e.g., joysticks). Besides, it is

impossible to directly map actual walking to virtual walking, even

using travel devices such as omnidirectional treadmills, as some

sensory feedback is missing.

Furthermore, VR adaptation does not occur as in a real

environment, and always, there is a mismatching at the brain

level. This mismatching and the missing feedbacks lead to some

adverse effects and sensory conflict at the onset or session of a

sensory rearrangement (Chardonnet et al., 2021). The sensory

conflict literary is interpreted as “cybersickness”. Cybersickness,

also called simulator sickness or Virtual Reality Induced Sickness

Effects (VRISE), is a kind of motion sickness (Mazloumi Gavgani

et al., 2018). In severe cases, it emerges as discomfort, nausea,

headache, and vomiting and is associated with the discrepancies

perceived between real and virtual worlds during motion. It is

considered one of the severe challenges of virtual navigation,

which severely impacts the usability of VR applications.

There are usually two methods to evaluate cybersickness:

subjective one, using questionnaires and objective one, through

physiological and behavioural measurements (Niu et al., 2020).

Participants typically experience VR tasks such as navigation or

interaction in a subjective evaluation. After exposure, they

complete a survey to assess system comfort. To achieve this

aim, various questionnaires, e.g., the motion sickness

questionnaire (MSQ) (Frank et al., 1983), Simulator Sickness

Questionnaire (SSQ) (Kennedy et al., 1993), Fast Motion

Sickness Scale (FMS) (Keshavarz and Hecht, 2011), and VR

sickness questionnaire (VRSQ) (Kim et al., 2018) were designed

to measure the sickness levels in different contexts. They are

considered the cornerstone of the approach. However, such

methods are limited as they report a posteriori feedback,

preventing any possibility of acting efficiently to restrict

cybersickness. When it comes to objective evaluation of this

adverse VR side effect, signals like postural sway (Chardonnet

et al., 2017) (Lee et al., 2019) galvanic skin response (GSR)

(Plouzeau et al., 2018), known as Electrodermal activity (EDA) in

some literature, electroencephalograph (EEG) (Kim et al., 2019)

(Jeong et al., 2019) (Liao et al., 2020) (Lin et al., 2013), or

electrocardiogram (ECG) (Garcia-Agundez et al., 2019)are

used to assess physiological response and to complement

subjective data from questionnaires. In this evaluation, the

participant is immersed in a VE to perform a task, while

simultaneously, physiological indicators are monitored, and

instantaneous signals are recorded within the exposure time.

The signals are processed and analysed to identify the extent of

cybersickness during the exposure and determine the VR task’s

impact on participants. Though, when indicators of

cybersickness are detected in these signals, the onset of

cybersickness has already passed, limiting the possibility of

preventing users from avoiding cybersickness effects. The need

to better control the evolution of these signals becomes prevalent

to ensure cybersickness will not happen, thus justifying the

interest in predicting and interpreting cybersickness. Since

each physiological feedback changes over time, it can be

represented as a time series signal (Pincus and Goldberger,

1994). Time series is a real-valued function over a bounded

time domain I and is defined as an

f: I → R (1)

When classifying time series data using machine learning

algorithms, many of these algorithms would not be directly

applicable to raw time series because of the temporal nature

of the input data. Therefore, additional pre-processing might be

needed before using learning algorithms on time series data. This

pre-processing could also sometimes improve predictive

performance. There exists a wide range of methods to analyse

time series, ranging from bag-of-words models to deriving new

metrics to imaging time series to artificial neural networks.

Random Convolutional Kernel Transform (ROCKET)

algorithm (Dempster et al., 2020) extracts the maximum and

the proportion of positive values as two features from time series

using a large number of random convolutional kernels. Bag-of-

patterns algorithm (Lin et al., 2012) extracts sub-sequences from

a time series, discretizes each real-valued subsequence into a

discrete-valued word (a sequence of symbols over a fixed

alphabet), and builds a histogram (feature vector) from word

counts. The Word Extraction for Time Series Classification
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(WEASEL) algorithm (Schäfer and Leser, 2017) relies on

discretizing Fourier coefficients and using a sliding-window

approach applied to the time series, then extracts discrete

features per window. Here, mathematics plays a role like the

mentioned dedicated methods for Time Series Classification to

analyze time series.

Topology is a mathematical theory that emerged to study the

data from the perspective of geometrical structures, e.g., loops or

holes (Zomorodian and Carlsson, 2005). Traditionally, data

belonging to spaces equipped with a similarity measurement

or metric spaces are analyzed using a similarity metric such as

Euclidean distance or Manhattan distance. While this approach

is convenient and well-developed, it ignores valuable information

about the problem: the data’s shape and connectivity properties.

In complex multidimensional problems, the data additionally has

a topological (geometric) structure that can be used to improve

the analysis. We see that it would be beneficial to link the

topology theory to computational methods.

TDA is a mathematical apparatus to bridge these two fields.

TDA was initially popularized by Carlsson (Carlsson, 2009) and

has its roots in the fields of topology (Hatcher, 2002), linear

algebra (Strang, 2006), and graph theory (West, 2001). It

provides a means to infer cluster-like geometrical structures to

better understand the shape of data, discover patterns of all

dimensions, and elucidate even weak connections between them.

Topological features do not rely on a specific coordinate system

and can compare data from different platforms. Also, they are

invariant under small deformations. Furthermore, TDA helps to

create tools to represent the data in a compressed way. These

properties allow TDA to take advantage of the topological

information to process the data further and perform various

machine learning tasks, e.g., classification, clustering, etc.

(Moroni and Pascali, 2021).

This paper used TDA as the feature extractor to classify

participants’ multivariate physiological time series during a

virtual-navigation experiment. We employed a Gaussian Radial

Basis Function (RBF) kernel Support Vector Machine (SVM)

(Schölkopf and Smola, 2018) classifier to classify the time series

windows into “sick” and “non-sick” occasions based on the

difference in total sickness score extracted from SSQ before and

after exposure. In the literature, this topic was studied using different

classifiers and features [see (Garcia-Agundez et al., 2019),

(Padmanaban et al., 2018), (Porcino et al., 2020)]. We will

compare the accuracy of our approaches with existing methods.

As an essential addition, we will explore the effect of different types

of physiological data on detection accuracy.

To this end, our paper is organized as follows: first, we provide a

short recapitulation of the basic concepts of TDA. Section 3 will

present the state of research in this field, where we describe the

previous approaches to the problem. Section 4 presents the database

of physiological data used in our study, the data structure and the

recorded signals. Section 5 will demonstrate the application of TDA

and other approaches. The TDA-SVM (Gaussian RBF) classification

result will be presented in Section 6. It will be compared with other

approaches, and the effect of physiological data on performance will

be studied. Our paper will end up with a conclusion.

2 Background

As discussed in the previous section, TDA uses some

computational algorithms to track the topological features and

discover patterns of all dimensions in a point cloud.

Consider a point cloud χ � x1, . . . , xn{ }, sampled from a

space M; it will be mapped into the structures called

simplicial complexes. A k-simplex is a set of k + 1 indices

from the given set χ. A simplicial complex ϒ is a set of

simplices such that for any σ ∈ ϒ and any σ′ ⊂ σ, σ′ ∈ ϒ, as
is shown in Figure 1. One of the common complexes includes

Vietoris-Rips complexes R(χ, ε) (Hausmann, 1995), which we use

in this work. This complex is constructed by placing ε-balls (ε

that defines the radius of an imaginary ball) on each vertex and

adding edges whenever they overlap:

χ′ ∈ R χ, ε( ), χ′ ⊂ χ5d xi, xj( )< ε, ∀xi, xj ∈ χ′ (2)

For a sample X, an interval over the scale ε can be found, for

which the constructed simplicial complexes belong to the same

class of topological invariants asM. By increasing ε, a sequence of

such complexes will be created, which is called a filtration

(Figure 2) with the property:

ε1 ≤ ε20X ε1( ) ⊂ X ε2( ) (3)

During filtration, the classes of n-dimensional topological features

-connected components (0-dimension), holes (1-dimension), cavities

(2-dimension),. . .- appear at bin and disappear at din using the values

of ε which be computed by persistent homology (Zomorodian and

Carlsson, 2005). bin andd
i
n referred to the birth and death values of the

i-th class in dimension n, respectively. This information is represented

by a collection of points (bin, din) drawn in the Cartesian planeR2 and

called Persistent Diagram (Figure 3). A persistent diagram is an

excellent tool for presenting the robustness and stability of features

since the points near the diagonal are often considered noise. In

contrast, those further from the diagonal represent more robust

topological features.

Too few machine learning or statistical tools can be applied

directly to persistence diagram space. Hence, a mapping should

be done from persistent diagram space to topological vector

space, which is appropriate for machine learning tools and

further analysis. To achieve this aim by extracting scalar

features, there are different methods like persistent image

(Adams et al., 2017), persistent landscape (Bubenik, 2015),

and persistent entropy (Rucco et al., 2017) methods. Persistent

entropy is the (base 2) Shannon entropy of the persistence

diagram derived from the filtration. (For simplicity of

notation, the log will refer to the log-base-2 function.)
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E F( ) � −∑n
1

pi log pi( ), where pi � li
SL
, li � yi − xi and SL � ∑n

i�1
li (4)

3 Related works

There were past attempts to propose cybersickness prediction

based on machine learning. The data used can be either based on

stereoscopic 3D videos (Padmanaban et al., 2018), profile attributes

(Porcino et al., 2020), or physiological signals like electrocardiographic

(Garcia-Agundez et al., 2019). In almost all cases, questionnaires were

mixed with objective data (Padmanaban et al., 2018), (Porcino et al.,

2020), (Garcia-Agundez et al., 2019). Padmanaban et al. (2018)

presented a cybersickness prediction algorithm for desktop

applications based on a symbolic machine learning model, such as

a bagged decision trees classifier (Rao and Potts, 1997) using optical

flow as a feature. No physiological signal was recorded during the

experiment. Only the combination of two sickness questionnaires:

MSSQ and SSQ,was used tofind a single sickness value. The precision

FIGURE 1
k-simplices in R3 ,0≤ k≤3 and an example of a simplicial complex.

FIGURE 2
Example of filtration varying the filtration value ε, which increased from (A–C). The black dot represents the point cloud data connected (red
line) when the ε-balls around them overlap. The top part of (C) is the union of two adjacent triangles.

FIGURE 3
The corresponding persistence diagram with H0(X) in red
and H1(X) in green, representing the persistence of connected
components and holes over the ε-scale of filtration.
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of their method varied from 26% to 65%, depending on the use case.

Some classifiers outperform this (see Section 6).

Porcino et al. (2020), as Padmanaban et al. (2018), presented

some classification results without measuring any physiological

feedback. Instead, they worked based on profile attributes. They

concluded that the most relevant features were the exposure time,

the z-axis rotation and profile attributes of the individual (gender, age,

and VR experience). Moreover, the VRSQ validated inconsistencies

between subjective and objective data captured. As some details, such

as the correlation of the features with SSQ, are absent, we could not

reproduce their experiment. While very high precision was reported

for some classifiers such as Random Forest (96.6% for binary

classification of the data from both racing game and flight game

scenarios), it is hard to compare and evaluate these results because no

physiological feedback was acquired in that experiment.

Porcino et al. (2022) proposed an experimental analysis to

estimate the weight of cybersickness causes and not to predict the

presence of this phenomenon. These user and context-specific

causes were ranked according to their impact using symbolic

machine learning in VR games, including a racing game and a

flight game. They conducted six experimental protocols along

with 37 valid samples from 88 volunteers. They used VRSQ to

compare the user discomfort level with the verbal feedback

collected during the experiment and thereby evaluated the

data and discarded incompatible samples. They achieved

0.79 and 0.95 AUC scores using decision tree and random

forest algorithms, respectively. They concluded that exposure

time, rotation, and acceleration are likely the top factors

contributing to cybersickness. Since this approach, unlike

ours, was not to predict the presence of cybersickness, and the

input data of their experiment was not based on the participant’s

physiological data, it is impossible to compare these results.

The experimental setting of this paper is closer to Garcia et al.

(Garcia-Agundez et al., 2019). They collected

electrocardiographic, electrooculographic, respiratory, and skin

conductivity data from 66 participants given a 10min

experiment. They presented two classifiers to classify

cybersickness, i.e., Binary and Ternary, based on KNN and

SVM classifiers and achieved 82% and 56% accuracy for

cybersickness classification, respectively. Some approaches (see

Section 6) outperform the ternary classifier. Given the relatively

small number of observations, the occasional 82% accuracy of the

binary classifier requires investigation with more data. The result

of the binary classifier highly depends on several thresholds that

need to be selected by the user to define sick people. In our future

work, we plan to develop a multi-threshold version of the

methods of the present paper.

4 Data measurement and experiment

To collect data and showcase our approach, we performed a

user experiment. A total of 53 subjects, 26 females and 27 males,

with an age distribution with the mean and the standard

deviation of 26.3 years and 3.3 years, respectively, participated

in a VR navigation experiment using an HTC Vive Pro head-

mounted display. Participants were asked to repeat the

experiment three times on 3 days to gather enough samples.

In that way, 159 samples were collected and included in the

dataset. Upon arrival, participants were asked to sign a consent

form and fill out one questionnaire to investigate their health

conditions and experience in playing games and using VR

devices before participating in the VR task. No issue was

reported from this questionnaire. They were then explained

the navigation task to achieve, as well as indications on how

to navigate using the HTC Vive Pro hand controllers.

Participants had to navigate in a virtual forest following a

gravel path, including curves and straight lines depicted in

Figure 4.

Completing the navigation task took approximately

4 minutes. A Simulator Sickness Questionnaire (SSQ) was

deployed in the experiment in which three different categories

(nausea, oculomotor, disorientation) were measured in the form

of 16 questions to quantify the severity of each possible symptom

of cybersickness. Participants filled one SSQ before and after the

experiment to measure the psychological impact of the VR task

on them. The difference between the pre-exposure and the post-

exposure scores (called SSQ score) was included in the dataset:

SSQ � SSQpost − SSQpre (5)

It is worth noting that we used the SSQ as a subjective tool,

as being very predominant and largely administered in most

VR studies, despite the existence of strong debates about its

validity and reliability in VR studies [e.g., (Sevinc and

Berkman, 2020) or (Bouchard et al., 2021)] and

recommendation to use VR-more-dedicated questionnaires,

such as the VRSQ. This paper focuses on a methodology to

grasp and predict cybersickness from any sickness-related

data; we leave the use of different subjective means and

their incidence on our method for future work.

An Empatica E4 wristband1 on one participant’s arm was

used for real-time physiological data acquisition, particularly

the participants’ electrodermal activity (EDA) during this

experiment. This wearable device is equipped with sensors

to gather high-quality data sent during navigation to a

processing computer through Bluetooth. These sensors have

different frequencies for measurement data sampling: EDA

sensor 4 Hz, PPG Sensor 64 Hz (BVP), Infrared Thermopile

4Hz (TEM), 3-axis accelerometer sensor 32Hz, and average

heart rate values are computed in spans of 10 seconds.

Galvanic Skin Response (GSR), blood volume pressure

(BVP), heart rate (HR), and temperature (TEM) were

1 https://www.empatica.com/research/e4/.
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recorded during their navigation experiment. Moreover, the

recorded navigation speed computed the longitudinal (LG)

and rotational (RT) accelerations. An example of the recorded

signals is shown in Figure 5.

5 Methodology and implementation

We propose an overall workflow in four steps for the

complete detection process, as shown in Figure 6. The

workflow represented in this Figure has two main sub-

processes: pre-processing, data structure analysis, labelling of

the data (steps 1–3), and classification (step 4).

Recorded data for each subject includes five sensor output

variables, as discussed in the previous section. Each variable

corresponds to one physiological sensor data. Applying the

persistent entropy, three features are obtained per each

variable: birth, death, and dimension. We obtain the dataset

with 159 rows and 5 × 3 = 15 columns, where each row is related

to each sample.

As data recording was performed with different frequencies,

discussed in Section 4, the timesteps of various time series differed.

Therefore, as the first pre-processing step, we normalized the data

based on minimum timesteps throughout the dataset.

We improved our pre-processing in the workflow by

adding a denoising approach. We applied Empirical Mode

Decomposition (EMD) to the physiological data on every

variable before applying the TDA. EMD is used to

decompose the time series into a finite and often small

number of components named its Intrinsic Mode Functions

(IMFs) and residue series (Pereira and de Mello, 2015). To

decompose a signal and get the IMFs, lower and upper

envelopes are obtained by connecting all the local maxima/

minima using a cubic spline. Subsequently, a low-frequency

component is calculated using the mean of these envelopes.

This component is subtracted from the original signal.

Eventually, based on two specific criteria detailed in

(Huang et al., 1998), the output signal is calculated as an IMF.

EMD determines what frequency with what strength in the

signal occurs at any given moment. IMFs can be summed to

recover the original signal. Because the first IMF usually carries

FIGURE 4
Virtual navigation environment used through the experiment. The highlighted line shows the navigation path.

FIGURE 5
Sample of multivariate physiological data.
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the most oscillating (high-frequency) components, it can be

rejected to remove high-frequency components (e.g., random

noise). Figure 7 shows one example of EMD applied to the GSR

time series. Original, decomposed, and reconstructed signals are

shown on the left, middle and right sides.

After pre-processing, we additionally do qualitative data structure

analysis. We detected the 0 (connected components), 1 (loop), and 2

(void) dimensional persistent topological features across multiple

scales. We used the time delay embedding method, based on the

results of Taken’s embedding theorem (Takens, 1981), which can be

considered sliding a specific size wind over the signal. Each window is

represented as a point in a high-dimensional space.

More formally, given a time series f(t), a sequence of vectors

extracted has the form:

f i � f ti( ), f ti + 2τ( ), . . . , f ti + M − 1( )τ( )[ ] ∈ Rd (6)
Where (M-1) is the embedding dimension and τ is the time delay.

Hence, the window size is the quantity (M-1)τ and a stride is

defined as the difference between ti and ti+1. In other words, the

time delay embedding of f with parameters (M,τ) is the function:

TDM,τ f : R → Rd, t →

f t( )
f t + τ( )
f t + 2τ( )

/
f t + M − 1( )τ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

As a result, we have two hyperparameters:M,τ. To determine the

time delay automatically, we used the Mutual Information (MI)

technique (Wen and Wan, 2009). MI is used as an analytical

measure of the extent to which earlier values can predict the

values in the time series. At first, the time series’ Probability

Density Function (PDF) is calculated with n bins. Given pi as the

probability that xt is in the ith bin (marginal probability density

distribution) and pi,j as the probability that xt is in the j
th bin while

xt+τ is in the ith bin (joint probability density distribution), MI is

defined as Kulback-Liebler (KL) divergence between the pi,j and

pi and pj i.e.

I τ( ) � − ∑nbins
i�1

∑nbins
j�1

pi,j τ( )logpi,j τ( )
pipj

(8)

According to the MI technique, the optimal time delay can be

computed as the minimum value of I(τ).

The False Nearest Neighbor (FNN) technique is used to get

the optimal value for embedding dimensionM. According to this

algorithm, points lying close together due to projection are

separated in higher embedding dimensions. Conversely,

nearest neighbour points which are close in one embedding

dimension should be close in a higher one. Suppose that pj is

the nearest neighbour of pi in m-dimensional space. The

Euclidean distance between pi and pj is:

R2
m i, j( ) � ∑m−1

k�0
x i + kτ( ) − x j + kτ( )[ ]2 (9)

By adding one more dimension, the distance will change:

R2
m+1 i, j( ) � R2

m i, j( ) + x i +mτ( ) − x j +mτ( )[ ]2 (10)
Then, the FNN criterion is defined as:

Ri � R2
m+1 i, j( ) − R2

m i, j( )
R2
m i, j( )( )

1
2

� |x i +mτ( ) − x j +mτ( )|
Rd i, j( ) >Rth

(11)

FIGURE 6
Block diagram of the cybersickness prediction method. 1) Normalization of the time series as a pre-processing step 2) Applying TDA and
vectorizing persistent diagram to persistent entropy 3) Making the dataset (159 × 15 matrix) from the features descriptors that characterize the
sample’s data 4) Feeding the dataset into the SVM classifier along with ground truth labels (i.e., sick:1 and non-sick:0) provided by the questionnaire
scores. Finally, SVM finds a suitable hyperplane (the green surface shown in the Figure) that can cleanly separate the samples into two groups
(i.e., sick and non-sick). The method’s output is a set of predicted labels based on the decision made by the SVM classifier.
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More formally, if we have a point pi and neighbour pj, we check if

the normalized distance Ri for the next dimension is more

significant than some threshold Rth. If Ri > Rth, we have a

false nearest neighbour, and the optimal embedding

dimension is obtained by minimizing the total number of

such neighbours.

In a nutshell, time delay embeddings translate a 1-

dimensional time series to a d-dimensional time series in

which the current value at each time with (d − 1) lags.

After the data structure analysis, the physiological data

were labelled using the participants’ self-reported sickness

questionnaire collected during the VR experiment. To

achieve this aim, the SSQ score was collected pre- and

post-exposure, and the score for each participant was

calculated using original indexes (see Section 4). We

considered the SSQ score of 20 as the threshold to define

the label of “sick” and “non-sick” (Bimberg et al., 2020). The

participants whose SSQ score is equal to or greater than

20 are assumed to suffer from cybersickness and “sick”.

Conversely, an SSQ score of less than 20 is defined as not

experiencing cybersickness and labelled “non-sick”. This

step leads to a data size table 159 × 15, as shown in

Figure 6. Based on this labelling, the 159 samples were

divided into 87 and 72 “sick” and “non-sick” samples.

The next step of the workflow is the classification of the data.

This includes selecting a good classifier, training the classifier

with the above data, and evaluating the classifier’s performance

on some test data. The data extracted in step 3 is used as an input

to the machine learning classifier with two classes, i.e., “sick” and

“non-sick”.

To investigate the effect of the machine learning

classification algorithms on the performance and accuracy

of the detection process, we selected several classifiers of

different types and implemented them in the workflow.

First, we applied SVM classifiers with linear, polynomial

(second degree) and Gaussian RBF (gamma = 10–5, C = 1,

regularization parameter = 1) kernels. Second, we used

Random Forest as an ensemble method considering two

features when looking for the best split, 100 Decision Trees

in the forest, Gini as the criteria with which to split on each

node, minimum of two samples to split an internal node, and

minimum 1 sample to be at a leaf node. As the last classifier

algorithm, Logistic Regression with “lbfgs” as the solver used

for the optimization problem, a maximum of 500 iterations

was taken to converge the solvers, “l2” as the penalty, and C =

1 to control the penalty strength was compared. In total, five

classifiers were implemented and tested.

After applying EMD, we investigated the TDA performance

on raw and denoised signal reconstructed, summing the last five

IMFs plus residue. Additional classification algorithms that were

implemented and compared to TDA were the bag-of-patterns

(Lin et al., 2012)with sliding window size 16, length of the words

4, and 4 bins to produce without numerosity reduction; ROCKET

(Dempster et al., 2020) with 10000 kernels in sizes 7,9, and 11;

WEASEL (Schäfer and Leser, 2017) with word size 9 and window

sizes from 10 to 27. In all mentioned studies, SVM (Gaussian

RBF) with the parameters mentioned above was used as the

classifier.

Another point that we have investigated was which kind of

physiological data has more influence on cybersickness

FIGURE 7
(A)Original GSR time series (B) Six IMFs decomposed by EMD (C)Output Series from EMD on the original signal. It is the sum of the last five IMFs
plus residue.
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prediction. We applied the compound approach of TDA with

SVM (Gaussian RBF) to different combinations of variables. The

performance and accuracy of each classifier were evaluated using

the F1 score metric because we had an imbalanced classification

problem.

F1 � 2

recall −1 + precision −1( ) � 2.
precision p recall
precision + recall

(12)

precision � TP
TP + FP

, recall � TP
TP + FN

(13)

To assess the generalization ability of the classifier and evaluate

and test its performance, we used K-fold Cross-Validation (CV)

technique (Berrar, 2019) with K = 5. Also, we computed the

evaluation metric, i.e., the F1 score and its mean and standard

deviation (std) in every fold. Finally, we summarized the model’s

efficiency using the averaging of model evaluation scores as

demonstrated in Figure 8.

6 Results and discussion

As discussed in Section 5, first, we have presented the pre-

processing, the TDA-based feature descriptor (in three steps) and

machine learning classifiers to classify sensor data into two classes.

Then, we analyzed the accuracy of TDA in combination with

various classification algorithms. In the second investigation, we

applied other types of feature descriptors dedicated to tackling time

series classification and compared the results with TDA. In the third

investigation, we studied the effect of the heat rate signal on the

classification.

6.1 Comparison of classification
algorithms

The effect of the classification algorithm on the correct detection

of the affected subjects is demonstrated in Table 1. Figure 9 visually

demonstrates these outcomes. As seen, the SVM (Gaussian RBF)

presents a higher mean and lower standard deviation (std) than

other classifiers in the F1 score metric, whichmeans amore accurate

and more stable classification, with around 71% of accuracy.

Interestingly, while the mean of the F1 metric decreases from

SVM (Gaussian RBF) to SVM (linear kernel) in Table 1, the

standard deviation (std) consistently increases conversely. The

worst classification result was achieved by SVM (linear kernel),

with an average precision of 61%.

Our explanation for this performance is that Gaussian RBF

kernels provide embeddings of physiological time series data into

spaces rich enough to capture the essential geometric features of

these time series. Therefore, we consider SVM (with Gaussian

RBF) the more robust classifier algorithm for this data type. We

will be using it below to analyze the effect of feature descriptors

on cybersickness detection.

6.2 Comparison of compound classifiers

Five feature descriptors were selected: TDA, EMD + TDA,

bag-of-patterns, ROCKET, andWEASEL, and applied to the data

to extract features. The features were classified using SVM

(Gaussian RBF) with the configuration detailed in Section 5.

The mean and the standard deviation of the F1 score are

presented in Table 2 and visualized similar to the classifier

FIGURE 8
5-Fold cross-validation in which data is divided into 5-folds composed of 4-folds for training the model and 1-fold for validation. The overall
performance is obtained by computing the arithmetic mean.

TABLE 1 Comparison between various classification algorithms in
combination with TDA.

Classifier algorithm F1 score mean F1 score std

SVM (Gaussian RBF) 0.708 0.017

SVM (polynomial kernel) 0.655 0.037

Logistic Regression 0.614 0.064

Random Forest 0.613 0.073

SVM (linear kernel) 0.607 0.086
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effect as shown in Figure 10. The first finding is that the ROCKET

feature descriptor achieved a little better precision, 71%, a higher

mean F1 score and less standard deviation (std) than TDA.

However, the difference in the F1 score is only 0.002, with a

0.001 difference in standard deviation, on the dataset of 159 time

series, which indicates that the difference between ROCKET and

TDA is not statistically significant.

As ROCKET uses a very large number of random

convolutional kernels (10000 in this case), it is a more

computationally demanding method than the TDA. Due

to the technical similarities with convolutional neural

networks, we expect that a rigorous mathematical or

statistical performance analysis and explicit interpretation

of solutions would be difficult for ROCKET. On the other

hand, given that TDA is based on basic concepts of

mathematical topology and that SVMs are already proven

to be universally consistent, combinations of TDA and SVMs

are expected to be much easier for both rigorous analyses for

explainability.

It turned out that the mean of the evaluated metric of the

TDA alone is higher than that of a more complex combination of

TDA with EMD denoising and conversely, its standard deviation

(std) is less. This implies that important details of the sensor data

are removed by EMD during the denoising process. It can be

concluded the EMD parameter shall be set more precisely taking

into account the sampling frequency of each signal otherwise

some useful high-frequency information, where they are close to

the noise, can be easily eliminated with the improper setting of

filtering parameters. A mathematical framework accounting for

this effect was developed in (Langovoy, 2007). In all other cases,

TDA has a higher mean F1 score and a smaller standard

deviation (std).

6.3 Heart rate and cybersickness

The result of the third investigation is shown in Table 3.

Including the heart rate features leads to lower precision, high

stability, and a significant standard deviation (std) increase.

Therefore, this sensor data was excluded from the above

analysis. Surprisingly, heart rate was not a relevant predictor

for cybersickness. Since the heart rate sampling is less than the

other signals, a large portion of the signals and, subsequently, the

FIGURE 9
Performance evaluation and the effect of the classifier on
sickness detection using the TDA feature descriptor.

TABLE 2 Comparison between TDA and four other methods and their
effect on performance.

Feature extraction F1 score mean F1 score std

ROCKET 0.710 0.016

TDA 0.708 0.017

EMD + TDA 0.664 0.051

bag-of-patterns 0.664 0.090

WEASEL 0.648 0.050

FIGURE 10
Performance evaluation using different feature extraction
algorithms.

TABLE 3 The effect of heart rate (HR) on cybersickness prediction.

Physiological data F1 score mean F1 score std

Exclude Heart Rate 0.708 0.017

Include Heart Rate 0.660 0.050
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details are removed during the normalization phase, leading to a

decrease in prediction accuracy.

7 Conclusion

In this paper, we proposed a machine learning approach to

VR’s cybersickness prediction based on physiological and

subjective data. We investigated dynamic topological data

analysis combinations with a range of classifier algorithms

and assessed classification performance using the F1 score.

The highest performance of TDA-based methods was

achieved in combination with an SVM with a Gaussian RBF

kernel. Our explanation for this performance is that Gaussian

RBF kernels provide embeddings of physiological time series data

into spaces rich enough to capture the essential geometric

features of these time series.

A comparison of TDA with other feature descriptors for

physiological time series classification showed that the

performance of TDA + SVM is at the top of the list: whilst it

is slightly lower than ROCKET + SVM, the difference is not

significant, and the accuracy is higher than combinations of

SVMs with bag-of-patterns and WEASEL.

As ROCKET uses a very large number of random

convolutional kernels (10000 in this case), it is a more

computationally demanding method than the TDA. Due to

the technical similarities with convolutional neural networks,

we expect that a rigorous mathematical or statistical performance

analysis and explicit interpretation of solutions would be difficult

for ROCKET. On the other hand, given that TDA is based on

basic concepts of mathematical topology and that SVMs are

already proven to be universally consistent, combinations of

TDA and SVMs are expected to be much easier for both

rigorous analyses for explainability. Similar reasoning can be

applied to complex methods such as bag-of-patterns and

WEASEL.

We noticed that performance of TDA-based methods on

time series data got worse after adding the standard EMD

reconstruction. This warns against the noncritical application

of data smoothing and data transformation techniques.

Surprisingly, our results show that heart rate does not affect

cybersickness prediction. It remains to investigate whether this

would be the case for other VR experiments.

In addition, a few machine learning or statistical tools can be

applied directly to the persistence diagram space.We will attempt

to create such machine learning tools by proposing visual

perception-based metrics for persistence diagram spaces,

similar to. This will allow more direct and advanced

combinations of machine learning methods with the TDA.
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