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Tropical cyclone precipitation (TCP) can cause serious floods and urban

waterlogs as well as cause various secondary disasters, such as landslides

and debris flows, which negatively affect human lives and the sustainable

development of the economy. This study applied the prewhitening Mann-

Kendall test, empirical orthogonal function, and continuous wavelet

transform to investigate the long-term trend, spatiotemporal pattern, and

periodicity of TCP at monthly, interannual, and interdecadal timescales over

China. The recurrence risks of extreme TCP were analyzed using the return

period estimation model. The results showed that 1) TCP displayed a significant

increasing trend, especially in eastern China, inland areas, and Guangxi

Province. The TCP periodicities were 2.5 and 4.9 years across all of China.

However, TCP cycles had large discrepancies in the time and frequency

domains in different subregions. 2) Monthly TCP demonstrated a decreasing

trend in May and an increasing trend from June to October in all of China. The

TCP in northeastern China and southern China tended to decrease in July and

August, respectively. 3) TCP demonstrated a decreasing tendency from the

1960s–1980s followed by a rebounding trend in the 1990s–2010s. In addition,

TCP showed a dipole mode in the 1970s and 2000s. 4) There was an increasing

recurrence risk of extreme TCP in the Yangtze River Delta, Hainan Province,

southeastern Guangxi Province, and southwestern Guangdong Province. It is

therefore necessary to improve forecasting of extreme TCP events to improve

risk management and prevention capacity of natural disasters, especially in

regions with high population and economy exposure.
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1 Introduction

Tropical cyclones (TCs) are catastrophic weather systems

often accompanied by severe rainfall (Ren et al., 2007; Gu et al.,

2017; Zhang et al., 2019). The sixth assessment report from the

Intergovernmental Panel on Climate Change (IPCC) indicated

that the proportion of intense TCs and the intensity of tropical

cyclone precipitation (TCP) are projected to increase with the

intensification of global warming (high confidence) (Masson-

Delmotte et al., 2021). TC hazards such as storm surges,

rainstorms, and strong winds severely affect human lives

and the sustainable development of the economy (Jonkman

et al., 2009; Czajkowski et al., 2013; Rappaport, 2014; Zhang

et al., 2018). The World Meteorological Organization (WMO)

announced that TC hazards led to a daily average of 43 deaths

and 78 million USD in losses from 1970 to 2019 (WMO,

2021). China is one of the countries that are most frequently

and severely affected by TC hazards due to its unique

geographical environment and multiple climate conditions.

The six highest records of cumulative 24-h precipitation over

China were all the result of TCs (Chen et al., 2010). The Blue

Book on Climate Change in China 2021 showed that the

average intensity of TCs making landfall in China has

increased since the late 1990s (CMA Climate Change

Center 2021). TCP can cause various, long-lasting,

secondary disasters in China, such as urban waterlogs,

floods, mudslides, and landslides (Jonkman et al., 2009;

Mendelsohn et al., 2012; Zhang et al., 2018; Liu et al., 2020;

Qi and Gao, 2020; Yan et al., 2021). Thus, an in-depth study of

the spatiotemporal heterogeneity of TCP over China is of

significant importance for regional disaster prevention and

mitigation.

Many studies have focused on TCP variation in different

regions (Chen and Fu, 2015; Zhang et al., 2018; Feng et al., 2020;

Ma et al., 2020). Cavazos et al. (2008) indicated that extreme TCP

showed a significant increasing trend in northwest Mexico. Lau

and Zhou (2012) implied that TCP displayed an increasing trend

over the North Atlantic but a downward trend over the northeast

and northwest Pacific. Khouakhi et al. (2017) demonstrated that

extreme TCP occurred more frequently in Australia and along

the eastern coast of the US during La Ni~na. TCP has also attracted

considerable attention in China due to the improvement of the

TCP observation network (Chen et al., 2010). Li and Zhou (2015)

pointed out that TCP contributes 20–40% of the total

precipitation in southeastern China during the summer, with

significant interdecadal variations. Jiang et al. (2018) observed

that the frequency of maximum daily TCP reached between

100 and 250 mm on Hainan Island increased between 1969 and

2014. Wang et al. (2020a) confirmed that winter sea surface

temperature (SST) anomalies in the tropical eastern Pacific (TEP)

caused regional triple pattern abnormality, which had a

significant impact on TCP by influencing the paths of TCs

impacting mainland China.

Nevertheless, there are some limitations to these previous

studies. Most of these studies are based on precipitation from

landfalling TCs while ignoring sideswiping TCs (STCs),

i.e., storms that did not create landfall. However, STCs also

generate cloud systems on their periphery that contribute

substantially to TCP over China (Feng et al., 2020).

Furthermore, previous studies have only focused on specific

regions where TCs are most frequent, such as the

southeastern coastal area of China (Li and Zhou, 2015; Jiang

et al., 2018; Qiu et al., 2019; Ye et al., 2020). Few studies have been

conducted for other regions affected by TCP. However,

northeastern China was affected by a trio of TCs within half a

month during 2020, which led to severe urban waterlogging and

large-scale crop loss (Dai et al., 2021). The largest historically

observed TCP event occurred in southern Henan Province and

was caused by super tropical cyclone (Nina) stalling over the

region (Tao, 1980; Ding, 2015). The death toll caused by the

rainstorm exceeded 26,000, and the direct economic loss was

greater than 10 billion RMB (Ding, 2015; Yang et al., 2017). At

the same time, many studies only focused on months when TCs

were active and omitted other months. Additionally, there is

currently a lack of in-depth research into understanding and

comprehensively comparing interannual and monthly TCP

periodicity in different regions of China. Thus, this study

applied the prewhitening Mann-Kendall test (PWMK),

empirical orthogonal function (EOF), and continuous wavelet

transform (CWT) to clarify the spatiotemporal heterogeneity of

TCP at monthly, interannual, and interdecadal timescales in

various subregions of China based on daily TCP data from 1959

to 2018. This work established a return period estimation model

using the Gumbel distribution function to investigate the

recurrence risk of the extreme TCP threshold. This study

provides a substantial reference for regional rainstorm disaster

prevention and mitigation.

This paper is organized as follows. The study area

information and data are described in Section 2.1. Section 2.2

introduces the methods used in this study. The interannual

spatiotemporal pattern of TCP variability over China is

presented in Section 3.1. Section 3.2 investigates the monthly

changes in TCP. The interdecadal variability of TCP is discussed

in Section 3.3. Section 3.4 further estimates the recurrence risk of

extreme TCP in various regions of China. The conclusions are

summarized in Section 4.

2 Data and methods

2.1 Study area and observations

The daily TCP dataset used in this study is derived from

observations made between 1949 and 2018 from

183 meteorological stations provided by the China

Meteorological Administration Tropical Cyclone Data Center
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(http://tcdata.typhoon.org.cn) (Ying et al., 2014; Lu et al., 2021).

Rainfall caused by a combination of TCs and other weather

systems is also included in the dataset. Additionally, the number

of meteorological stations increased over the years due to the

successive construction of stations from 1949 to 1958.

Accordingly, the study period, 1959–2018, was chosen to

ensure data consistency. Stations missing more than 50% of

the TCP records during the study period were excluded.

Figure 1A shows the 115 selected meteorological stations for

this analysis.

There are substantial discrepancies between the different

regions affected by TCP over China due to the complex terrain

and various climate characteristics (Yue et al., 2015; Qiu et al.,

2019). Previous studies have pointed out that mountainous

terrain can increase the intensity of TCP (Jiang et al., 2018;

Chen et al., 2019). The urban heat island effect also impacts

local convection (Liang et al., 2013). Therefore, it is of great

significance to classify TCP by specific regions in order to

investigate regional TCP variability (Cheng et al., 2019).

Figure 1 and Table 1 display the information of the four

subregions in China. The average annual TCP distribution

over China is given in Figure 1B. There were more TCP

concentrated in Hainan Province and along the coastal areas

of southeastern China, which recorded an average annual TCP

amount exceeding 500 mm. TCP decreased from the

southeastern coastal regions to the northwestern inland

regions.

2.2 Methods

2.2.1. Prewhitening mann-kendall test
The Mann-Kendall (MK) test is a widely used method to

detect the trend of long-term data (Henry B, 1945; Kendall, 1975;

Song et al., 2015; Shiru et al., 2019; Xu et al., 2021, 2022; Lei et al.,

2022). However, many studies have confirmed that the

autocorrelation of hydrological and meteorological data will

seriously interfere with trend tests and cause certain errors

(Hamed and Ramachandra Rao, 1998; Lei et al., 2021b, 2021c;

Hu et al., 2022). Yue and Wang (2002) put forward a

“prewhitening” before the MK test method to eliminate this

autocorrelation issue. Numerous studies have noted that the

PWMK test can identify a more accurate time series trend

(Burn and Hag Elnur, 2002; Mirdashtvan and Mohseni Saravi,

2020; Lei et al., 2021b, 2021a). The PWMK test was used to

analyze the trend of TCP over China in this study.

2.2.2. Empirical orthogonal function
EOF is an analysis method that separates matrix data by

space and time and extracts the main structural features of the

data (Lorenz, 1956; Richman, 1986; Briggs, 2007). EOF can

simplify the original eigenvector field and reflect apparent

climate characteristics (Lian and Chen, 2012; Chang et al.,

2020). In this study, EOF is used to make the periodic TCP

signal more apparent prior to continuous wavelet analysis and to

disentangle the dominant TCP mode in each decade. The first

FIGURE 1
Study area information. (A) Meteorological stations and topography. (B) Distribution of the mean annual TCP over China.
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eigenvectors of the original TCP data indicate the most dominant

spatial distribution type of TCP over China. The first

eigenvectors of TCP anomalies represent the drought and

flood areas of TCP over China.

2.2.3. Continuous wavelet transforms
Wavelet transforms are a method that can reveal the multiple

change cycles in a time series by decomposing the time series into

the time-frequency domain (Mallat and Zhong, 1989), which is

widely used in atmospheric science, signal analysis, and other

areas (Wang et al., 2007; Liu et al., 2019; Raman Kumar and

Vaegae, 2020; Xu et al., 2020; Zhang et al., 2020).

Wavelet transforms can be divided into continuous wavelet

transform (CWT) and discrete wavelet transform (DWT). It has

been shown that CWT is more suitable for the extraction of signal

characteristics, whereas DWT is more commonly used for data

denoising and compression (Grinsted et al., 2004). Hence, CWT

is applied in this study to investigate the cycles of TCP over China

during the past 60 years. Red noise was used as the background

spectrum to test the significance of the wavelet spectrum.

2.2.4. Return period analysis
The return period is an indicator that represents the

likelihood of recurrence and is generally a relative period for

the occurrence of events above a certain intensity threshold

(Gumbel, 1958). It has been widely used in the fields of

climate analysis and climate change research (Gao et al., 2017,

2018; Naseef and Kumar, 2020; Lei et al., 2021b; Guo et al., 2021).

This study calculated different TCP return period thresholds by

developing a return period estimation model. The widely

applicable Gumbel distribution function is selected as the

algorithm for estimating the return period because it is

capable of estimating a large area (Gumbel, 1958).

3 Results and discussions

3.1 Interannual tropical cyclone
precipitation

Figure 2A demonstrates the annual total TCP and typhoon

cyclone frequency (TCF) from 1959 to 2018. The scatterplot of

TCF and TCP is also displayed in Figure 2B to further

investigate the relationship between TCF and total TCP. It

must also be mentioned that TCF represents the number of TCs

that produced precipitation over China. The interannual

variation in TCF had large fluctuations due to the phases of

the El Niño-Southern Oscillation (ENSO). Over the study

period, there was an average of 14 TCs affecting China per

year. The lowest TCF was seven in 1969, whereas the highest

TCF was 23, which occurred in 2013 (Li and Zhou, 2015; Zhang

et al., 2018; Wang et al., 2020b). The scatterplot of TCF and

TCP shows that the R2 value between TCF and TCP is 0.42,

which is statistically significant. TCF is also related to the path

of TCs and the effect of aerosols, which influence TCP

variability over China (Chan and Liu, 2022). Additionally,

terrain affects the distribution and intensity of typhoon

precipitation at regional scales (Jiang et al., 2018). The

average total TCP was 9,630.43 mm, with large fluctuations

and an upward trend over the past 60 years. This upward trend

became more pronounced, especially after 2004. The total TCP

reached a maximum of 21940.30 mm in 2018. This result

indicated that the intensity of TCP had gradually increased

over all of China.

TCP have substantial discrepancies due to the different

terrain and various climate characteristics in different

subregions. The total TCP and TCF for the four subregions

are shown in Figure 3 to further demonstrate the TCP

variability in the different regions. The regions most

frequently and severely affected by TCP are southern and

eastern China. Eastern China was affected by 8–9 TCs per

year, resulting in an average total TCP of 3,085.18 mm. TCP

displayed an upward trend, with the amount of TCP reaching a

maximum of 7,593.60 mm in 2018. Southern China was the

region affected by the most TCP. The annual TCF was 6–7 from

1959 to 2018, with the average total TCP being 4,986.80 mm. It

should be noted that although the average TCF in southern

China was less than that in eastern China, southern China’s

TCP amount was higher than that of eastern China. This

indicated that the intensity of TC rainstorms in southern

China was greater than that in eastern China. The average

total TCP was 520.73 mm, and the TCF was 1–2 each year on

average in northeastern China. Northeastern China was

unaffected by TCP for 17 of the years during the study

TABLE 1 Regionalization information.

Region Name Latitude (°) Longitude (°) Area (1.0 ×
104 km2)

Stations number

Ⅰ Northeastern China 117.64°-136.69°E 36.95°-53.79°N 72.80 20

Ⅱ Eastern China 113.13°-124.20°E 23.05°-38.58°N 78.85 30

Ⅲ Southern China 104.49°-117.53°E 17.52°-26.60°N 47.86 15

Ⅳ Inland areas 95.07°-120.38°E 20.47°-43.32°N 225.48 50
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period. The average total TCP was 1,037.72 mm and was

augmented by 6–7 TCs every year in the inland area. Inland

area TCP has shown an upward trend over the last 60 years.

Additionally, the R2 values of TCF and TCP are 0.65, 0.34, 0.41,

and 0.47 in the four subregions. This implies that the

relationship between TCP and TCF is statistically significant.

In brief, there was more TCP in eastern China and southern

China, whereas there was less TCP in the northeast and inland

areas from 1959 to 2018. The frequency of TCs affecting the four

subregions did not change over the past 60 years. However, the

trend of TCP showed regional divergence. The TCP trend

increased in eastern China and the inland areas. However,

there was no significant TCP trend in northeastern and

southern China.

The distribution of the PWMK test for TCP is presented in

Figure 4 to further investigate the spatial distribution of the trend

in TCP variability trend. Spatially, 87 stations, mainly distributed

in Region II, Region IV, and the west of Region III, reported an

upward trend. Twenty-five of these stations showed a significant

positive trend that passed the 95% level of significance, and the

increasing trend of 15 stations was statistically significant at a

99% confidence level. In other words, TCP in Region II and the

middle of Region IV demonstrated the most significant upward

trend. Eastern Region III displayed no significant increasing

FIGURE 2
(A) Annual total TCP and TCF over China from 1959 to 2018. (B) Scatterplot of TCF and TCP.

FIGURE 3
Annual total TCP and TCF in subregions from 1959 to 2018 (A) northeastern China, (B) eastern China, (C) southern China, and (D) inland areas.
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tendency. Nevertheless, Region I and western Region III exhibited

a decreasing trend. Fifteen stations showed a decreasing trend in

Region I, which accounted for 75% of the total stations. In

summary, TCP in eastern China, the inland area, and Guangxi

Province displayed a positive trend, whereas northeastern China

and eastern southern China had a decreasing tendency.

The time coefficient of the first eigenvector field was

obtained by the EOF to resolve the various cycles of TCP

over the past 60 years. CWT was conducted for the first

EOF time coefficient. Table 2 summarizes the oscillation

cycles and the corresponding periods of TCP from 1959 to

2018. Figure 5 displays the wavelet power spectrum and global

wavelet spectrum of TCP in China. Figure 5 shows that TCP

had five oscillation cycles: 2.5, 4.9, 8.3, 16.5, and 27.8 years. The

cycles of 2.5 and 4.9 years passed the 95% significant red noise

test. The principal cycle of TCP variation was 4.9 years due to

the highest peak wavelet variance. Throughout the time

domain, the energy density was concentrated from 1959 to

1975 and 1979 to 2014. There were generally 2.0–4.0 years

between oscillation cycles from 1964 to 1975. There was also

an oscillation cycle of 2.0–7.8 years from 1979 to 2014. Both

oscillation cycles passed the 95% significance level of the red

noise test.

CWT was applied to the time coefficient of the first EOF

mode in each region to explore the oscillation cycles of TCP

in those regions (Figure 6). It is important to note that the

time and frequency domains of TCP in southern China were

similar to those in all of China. In other words, the oscillation

cycles of TCP in southern China were synchronous with those

in all of China. TCP also occurred in a 2.0–4.0 years

oscillation cycle from 1964 to 1978 and existed in a

2.0–7.8 years cycle after 1980. TCP had four cycles of

approximately 3.5, 5.8, 11.7, and 27.8 years in northeastern

China. The statistically significant cycle was 3.5 years, which

passed the 0.05 level of significance.

FIGURE 4
Spatial distribution of the PWMK test for TCP over China from
1959 to 2018.

TABLE 2 Oscillation cycles and corresponding periods of TCP in each region.

Region Cycles (a) Significant oscillation cycles
(a)

Corresponding periods

I-Northeastern China 3.5, 5.8, 11.7, and 27.8 2.0–3.1 1963–1965

2.0–5.8 1981–1990

2.0–7.0 1990–2014

II-Eastern China 2.5, 5.1, 8.1, 14.2, and 27.8 3.7–6.8 1980–1995

2.0–2.9 1985–1998

2.2–4.5 2001–2014

2.1–3.7 2010–2014

III-Southern China 2.4, 5.8, 8.3, and 16.5 2.0–4.0 1964–1978

2.0–7.8 1980–2014

IV-Inland areas 5.8, and 9.8 2.0–4.8 1984–1991

2.0–7.9 2000–2014

The whole China 2.5, 4.9, 8.3, 16.5, and 27.8 2.0–4.0 1964–1975

2.0–7.8 1979–2014

Note: Bold font indicates that cycles have passed the standard red noise test at the 95% significance level.
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Eastern China had the greatest number of cycles, which were

2.5, 5.1, 8.1, 14.2, and 27.8 years. The statistically significant

cycles controlling TCP variability were 2.5 and 5.1 years. This is

in contrast to the inland areas where only two TCP cycles of

5.8 and 9.8 years were observed. The oscillation cycle in the time

domain was localized compared to other regions. There was an

oscillation cycle of approximately 2–8 years between 1984 and

1991, and 2000 and 2014. Overall, the time and frequency

domains of TCP variability were uneven across the different

regions, which had obvious local characteristics and regional

discrepancies. TCP cycles were more significant in eastern China

and southern China than in northeastern China and inland areas.

FIGURE 5
Wavelet power spectrum and global wavelet spectrum of TCP over China. (The thick black coil demonstrates that the wavelet transform has
passed the standard red noise test at the 95% significance level. Below the inverted cone, which is impacted by the edge effect, the periodic
characteristics are uncertain. The dashed line indicates the 95% confidence level. The corresponding cycle is significant if the peak of the solid line
exceeds the dashed line.)

FIGURE 6
Wavelet power spectrum and global wavelet spectrum of TCP in the four subregions between 1959 and 2018: (A) northeastern China, (B)
eastern China, (C) southern China, and (D) inland areas.
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3.2 Monthly tropical cyclone precipitation

The monthly variations in TCF and total TCP are illustrated

in Figure 7. TCP and TCF both showed a single-peaked

distribution and had significant monthly changes, which had

been explored by other studies (Li and Zhou, 2015; Wei et al.,

2021). TCs mainly occurred from the beginning of May to the

end of November, accounting for 98.48% of the total TCF and

FIGURE 7
Monthly total TCP and TCF variations over China from 1959 to 2018.

FIGURE 8
Monthly variations in total TCF and TCP in subregions from 1959 to 2018: (A) northeastern China, (B) eastern China, (C) southern China, and (D)
inland areas.
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99.79% of the TCP. TCP progressively increased in May, with the

most active TCs occurring in July–September. A total of 69.54%

of the TCs occurred from July to September and accounted for

80.64% of the precipitation between 1959 and 2018. The

maximum monthly TCP occurred in August, with an average

of 3–4 TCs occurring in August each year, resulting in an annual

average of 3,545.91 mm of TCP. After August, as the TCF

decreased, so did TCP. In particular, TCs had less impact

from December to April, accounting for only 0.21% of TCP

from 1959 to 2018.

Figure 8 displays the radar map of the monthly TCF and TCP

in the four subregions. The maximum monthly total TCP and

TCF in each region occurred in August, which was the same

across China. However, there were large discrepancies in the

timing of TCP occurrence in each region. TCP in northeastern

China was mainly concentrated from July to September, which

accounted for 97.80% of the total TCP. This TCP was the result of

approximately 1–2 TCs bringing 509.30 mm of precipitation in

July–September each year. Eastern China was influenced by TCP

over a longer time each year than northeastern China. TCP began

in April and ended in November. The TCP fromMay to October

accounted for 98.62% of the total TCP. The maximum monthly

TCF occurred in August, with 2–3 TCs occurring in that month

each year, which resulted in a TCP of 1,207.93 mm on average.

In addition, TCP occurred from January to December in

southern China. However, there was little precipitation from

December to April. The TCP of May–November comprised

98.62% of the total TCP. The TCP in inland areas was mainly

centralized from June to October. Although inland areas were

frequently affected by TCs, they produced less precipitation.

August was affected by 2–3 TCs on average, which generated

only a 471.47 mm average TCP. In summary, the beginning and

FIGURE 9
Spatial distribution of the PWMK test for TCP over China from May to October.
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ending months of TC influence were different in each region.

TCP occurred early, ended late, and lasted longer in eastern

China and southern China than in northeastern China and the

inland areas. Furthermore, TC-driven precipitation over China

was mainly concentrated from May to October. Therefore, this

study focuses on the characteristics of TCP cycles and trends

from May to October for the following analysis.

The PWMK test was conducted on the monthly TCP of each

station to further explore the monthly trends in the various

subregions. Figure 9 shows the spatial distribution of PWMK for

TCP over China from May to October. There was essentially no

trend for most stations in Regions I and IV inMay. Other stations

displayed a decreasing tendency and were mainly located in the

south of Region II and the east of Region III. After that, 55.65% of

stations had a positive trend, and four stations passed the 90%

level of significance in June. In Region II and Region III, more

than 90% of stations displayed an upward trend. Decreasing

trends were detected at five and seven stations in the middle of

Region I and the southwest of Region IV, respectively. For July,

Region I mainly showed a decreasing tendency across 90% of the

total stations. A decreasing trend was also observed in the

northern part of Region II and Region VI, which was similar

to Region I. The south-central region of Region II and the east-

central region of Region IV displayed a positive increase. Region

III showed an east-west distribution of TCP trends in July.

Approximately 50% of the stations noted that TCP tended to

increase in the west, and 50% of the stations in the east showed a

marginally decreasing trend.

Additionally, it is noteworthy that more than 85% of stations

had an increasing trend in August. A total of 36.67% of stations in

Region II increased at a significance level of 0.10. However,

Region III exhibited a decreasing tendency. Concerning

September, stations with an increasing trend accounted for

50% of the total stations in Region I, and there was a station

that passed the 90% level of significance. The overall positive

trend of Region II and Region IV was similar to that in August.

Region III showed an east-west distribution in September, which

was the same as the distribution in July. There was an upward

trend in the west, whereas there was a decreasing tendency in the

east. Additionally, some stations located in Region I and the

FIGURE 10
Wavelet power spectrum and global wavelet spectrum of monthly TCP over China from 1959 to 2018.
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northwestern area of Region IV observed no trend in October.

Other stations mainly observed a rising tendency, especially six

stations in the north-central region of Region II, which passed the

90% level of significance. In summary, TCP had a decreasing

trend in May. From June to October, most stations showed an

increase in TCP, except for northeastern China in July and

southern China in August, which tended to decrease.

CWT was conducted to investigate the oscillation cycles of

monthly TCP variability over China. Figure 10 displays the

wavelet power spectrum and global wavelet spectrum of

monthly TCP over China. Table 3 shows the significant cycles

and corresponding periods of monthly TCP. There were

3–4 TCP cycles detected each month. However, there were

discrepancies in the number of TCP cycles that passed the

95% significance test.

For the month of May, only the 2.9-years cycle passed the

red-noise significance test. The oscillation cycles of May were

weak and localized compared to other months. June had two

TABLE 3 Oscillation cycles and corresponding periods of monthly TCP from 1959 to 2018.

Month Cycles (a) Significant oscillation cycles
(a)

Corresponding periods

May 2.9, 8.3, 13.9, and 23.4 2.0–4.1 1965–1974

2.1–4.0 1984–1992

2.0–5.8 2001–2010

June 3.5, 4.9, and 8.3 2.1–4.0 1968–1980

2.0–5.1 1984–1999

2.0–4.0 2006–2014

July 2.5, 4.1, 6.9, and 13.3 2.0–2.7 1968–1974

2.0–4.8 1975–1998

2.0–7.5 1995–2010

August 2.9, 5.8, 10.2, and 22.1 2.3–7.0 1978–1990

2.0–3.8 1994–1999

2.0–6.8 2007–2014

September 2.9, 8.3, 13.9, and 29.7 3.2–4.2 1965–1971

7.0–7.6 1966–1973

2.0–2.8 1985–1991

2.0–5.0 1994–2014

October 4.1, 9.8, and 19.7 2.0–6.2 1963–1988

2.4–3.9 1992–1998

2.4–6.2 2005–2014

Note: Bold font indicates that cycles have passed the standard red noise test at the 95% significance level.

FIGURE 11
(A) Boxplot of interdecadal TCF and TCP over China from the 1960s to the 2010s (B) The 9-year moving mean of TCP and TCF over China from
1959 to 2018.
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significant cycles, 3.5 and 4.9 years. The oscillation cycles of

June were approximately 2–5 years and were concentrated for

1968–1980, 1984–1999, and 2006–2014. July had the greatest

number of cycles that passed the 95% significance test. These

were 2.5, 4.1, and 6.9 years. The dominant cycle was 6.9 years

with the highest peak wavelet variance. The frequency

domain in July showed greater variability in the analysis

period.

The number of significant cycles decreased from July to

October. August only had two significant cycles with 2.9 and

5.8 years. The dominant cycle controlling TCP variation was

5.8 years in August. TCP in September had some cyclical

characteristics similar to those in May. The change in TCP

also existed at 2.9, 8.3, and 13.9 years cycles in September.

The 2.9-years cycle passed the 95% significance test, which

was the same as in May. Only one cycle passed the red-noise

significance test in October, which was 4.1 years. TCP exhibited a

2.4–3.9 years oscillation cycle from 1992 to 1998. There was an

approximately 2.0–6.0 years oscillation cycle that occurred in

1963–1988 and 2005–2014.

FIGURE 12
Interdecadal TCF and TCP in subregions over China: (A) northeastern China, (B) eastern China, (C) southern China, and (D) inland areas.
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3.3 Interdecadal tropical cyclone
precipitation

In this section, the study period was divided into 6 decades,

1960–1969, 1970–1979, 1980–1989, 1990–1999, 2000–2009,

and 2010–2018, to analyze the interdecadal variations in

TCP. Figures 11, 12 plot the interdecadal variation in TCF

and TCP. It is worth mentioning that TCP showed a decreasing

tendency from the 1960s to the 1980s, followed by a significant

rebounding trend in the 1990s–2010s. Climatologically, the

increasing phenomenon after the 1990s corresponded to the

intensification of anthropogenic global warming. Many studies

have confirmed that sea surface temperature (SST) and

atmospheric water vapor significantly increased after the

Industrial Revolution (Goh and Chan, 2010; Jia et al., 2020;

Wang et al., 2019). In the context of global warming, higher

atmospheric water vapor content leads to more TCP. The 9-

year moving average of TCP also showed a significant increase

after 1999. Moreover, this is supported by the interdecadal

variations in regional TCP over China. Eastern China and

southern China showed a positive tendency from the 1990s

to the 2010s. Nevertheless, northeast China’s 9-year moving

average of TCP did not show a similar upward trend.

To further examine the interdecadal distribution of TCP in

each subregion, Figure 13 shows the spatial distribution of

TCP in each decade across China. Spatially, there was a double

higher TCP center pattern in the 1960s, 1970s, 1980s, and

1990s. One of these centers is in the southeast of southern

FIGURE 13
Interdecadal distribution of TCP over China from the 1960s–2010s.
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China, and another is in the mid-east of eastern China.

Moreover, the magnitude of TCP in the southeastern

coastal area significantly increased. The areas where TCP

was more than 2000 mm increased 60.18% from the 1960s

to the 2010s and showed an increasing trend. The area where

the annual TCP reached 3,000 mm expanded from the

southeastern part of Region III to the eastern part of

Region II. This was due to the increased land-sea

FIGURE 14
The first eigenvectors of TCP anomalies from the 1960s–2010s.

TABLE 4 Daily extreme TCP of 10-, 20-, 50-, 100-, and 500-years return periods.

Region 10-years 20-years 50-years 100-years 500-years

I - Northeastern China 149.4 184.4 229.7 263.6 342.0

II - Eastern China 283.3 324.7 378.4 418.5 511.4

III - Southern China 372.4 422.7 487.7 536.4 649.0

IV - Inland area 162.9 189.1 223.1 248.6 307.5

The whole of China 381.5 429.5 491.7 538.2 645.9
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thermodynamic difference between Eurasia and the Pacific as

the globe warmed, and resulted in a northward expansion of

the rainfall range (Wu et al., 2005; Wang et al., 2014; Yang

et al., 2018).

The first eigenvectors of the TCP anomalies from the

1960s–2010s calculated by EOF are demonstrated in

Figure 14. There was a similar major pattern of spatial

distribution for TCP in the 1960s, 1980s, and 1990s. The

eigenvalues gradually decreased from southeast to

northwest, reflecting the reduction in TCP from southeast

to northwest. The eigenvalues for the stations were all

positive in the 2010s, indicating that the TCP trend was

consistent in all of China between 2000 and 2018. It should

also be mentioned that the dominant pattern of TCP

demonstrated a dipole mode over eastern China and

southern China in the 1970s and 2000s. The positive

centers of this distribution pattern mainly occurred in

southern China and the negative centers in eastern China,

which showed an inverted north-south distribution pattern.

Previous studies have noted that this interdecadal variability

is related to the East Asian summer monsoon. Between the

1970s and 2000s, the East Asian summer monsoon

significantly weakened, which inhibited northward water

vapor transport and convergence and led to a lack of

water vapor availability in northern China (Ding et al.,

2008, 2009; Goh and Chan, 2010; Li and Zhou, 2015).

However, the Pacific Decadal Oscillation, aerosol forcing,

and Tibetan Plateau forcing were all factors that influenced

the interdecadal variation in the East Asian summer

monsoon. It remains challenging to disentangle the

complex interactions of the systems impacting TCP.

3.4 Recurrence risk of tropical cyclone
precipitation

The occurrence and intensity of extreme weather events,

such as TCP, are both stochastic and inevitable. Gumbel

extreme value distribution theory is used to further

estimate the recurrence risks of daily extreme TCP. Table 4

summarizes the daily maximum TCP of the five return

periods. The TCP of the 10-years return period was

381.5 mm in all of China, while for the 100-years return

period, TCP reached 538.2 mm. In addition, there were

significant differences in the recurrence risk of TCP in the

subregions. Region III has the most serious disaster risk of

TCP. The TCP of the 10-years return period was 372.4 mm.

TCP increased by 276.6 mm from the 10-years to the 500-

years return period. This was followed by the TCP of the 10-

years return period reaching 283.3 mm in Region II, which

also faced a higher risk of rainstorms.

Figure 15 illustrates the spatial distribution of the daily

extreme TCP for different return periods. The recurrence risk

of TCP is characterized by “higher in the southeast and lower

in the northwest” over China. The spatial discrepancy was

greater when the frequency of return periods was lower.

FIGURE 15
Distribution of the daily extreme TCP of the (A) 20-, (B) 100-, and (C) 500-years return periods.
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There were also differences in the recurrence risk of TCP in

coastal areas. The highest risk of the 5-years return period

TCP was located in the southeast of Region III and the east

and south of Region II, which are the densely populated and

economically developed areas in China. In other words, these

areas had higher exposure that could be prone to more

casualties and property damage when affected by extreme

TCP. The range of high risk gradually expands as the return

period increases. Areas with daily extreme TCP above

300 mm were concentrated in the Yangtze River Delta,

Hainan Province, southeastern Guangxi Province, and

southwestern Guangdong Province. Accordingly, southern

and eastern China had a greater recurrence risk of extreme

TCP. There was also a positive trend for TCP in eastern

China, which is discussed in Section 3.1.2. Therefore, eastern

China is at an increasing risk of TC rainstorm disasters in the

future. It is necessary to strengthen flood disaster prevention

and emergency management, construct water conservation

projects, and improve the capacity of reservoir storage to

prevent TC rainstorm disasters driven by global warming.

4 Conclusion

This study applied the prewhitening Mann-Kendall test,

empirical orthogonal function, and continuous wavelet

transform to investigate the long-term trend, spatiotemporal

heterogeneity, and oscillation cycle characteristics of TCP at

monthly, interannual, and interdecadal timescales across

China. The recurrence risks of the extreme TCP threshold

were analyzed using the return period estimation model. The

results showed the following:

1) China is impacted by an average of 14 TCs each year that

deliver a total of 9,630.43 mm of TCP. The intensity of TCP

displayed a significant increasing trend. Spatially, the

increasing trend of TCP was concentrated in eastern

China, inland areas, and Guangxi Province. The significant

cycles of TCP variability were 2.5 and 4.9 years in China.

However, there were large discrepancies in the time and

frequency domains of TCP cycles in different subregions.

TCP demonstrated more significant cycle characteristics in

eastern China and southern China than in northeastern

China and inland areas.

2) On a monthly timescale, TCP decreased during May, whereas

it exhibited an increasing trend in June–October. However,

the TCP in northeastern China and southern China tended to

decrease in July and August, respectively. In terms of the cycle

characteristics, July had themost number of significant cycles,

followed by June and then August. The fewest number of TCP

cycles occurred in May, September, and October.

3) The interdecadal TCP displayed a decreasing tendency from

the 1960s to the 1980s, followed by a rebounding trend in the

1990s–2010s, which was related to the continued

intensification of global warming following the Industrial

Revolution. Global warming also led to the northward

expansion of TCP areas that exceed 3,000 mm of rainfall.

In addition, TCP demonstrated a significant inverse dipole

mode over eastern China and southern China in the 1970s

and 2000s, which has been linked to the weakening of the East

Asian summer monsoon.

4) Southern and eastern China have a greater risk of substantial

TCP, with the 100-years return period delivering 536.4 and

418.4 mm of rainfall, respectively. In addition, there is an

increasing recurrence risk of extreme TCP in the Yangtze

River Delta, Hainan Province, southeastern Guangxi

Province, and southwestern Guangdong Province. It is

necessary to enhance the ability to forecast extreme TCP

in order to minimize the risks and improve the capacity to

prevent natural disasters, especially in high population and

economy exposure regions.
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